利用空间向量求空间角和距离
8.7.2 利用空间向量求空间角和距离

第24页
名师伴你行 ·高考一轮总复习 ·数学(理)
则各点的坐标分别为B(1,0,0),C(1,1,0),D(0,2,0),
P(0,0,2),
报
告 一
因为B→P=(-1,0,2),设B→Q=λB→P=(-λ,0,2λ)(0≤λ≤1), 课
时
又C→B=(0,-1,0),则C→Q=C→B+B→Q=(-λ,-1,2λ),
(1)证明:平面PEF⊥平面ABFD;
(2)求DP与平面ABFD所成角的正弦值.
第8章 第7节 第2课时
第33页
名师伴你行 ·高考一轮总复习 ·数学(理)
报 告
(1)[证明] 由已知可得,BF⊥PF,BF⊥EF,
一
又PF∩EF=F,所以BF⊥平面PEF.
课
时
又BF⊂平面ABFD,所以平面PEF⊥平面ABFD.
|AD||n|
3
2a = 32a2×1
22,
作 业
二
解得θ=45°,即AD与平面BCD所成的角为45°.
第8章 第7节 第2课时
第16页
名师伴你行 ·高考一轮总复习 ·数学(理)
报
(2)∵A→D·B→C=0,∴AD⊥BC,
告
一
∴AD与BC所成角为90°.
课
时
(3)设m=(x,y,z)是平面ABD的法向量,
作 业
报 告 二
第8章 第7节 第2课时
第3页
名师伴你行 ·高考一轮总复习 ·数学(理)
报
告
一
[考纲展示] 1.能用向量方法解决直线与直线、直线与平 课 时
面、平面与平面的夹角的计算问题.
作 业
报
2.了解向量方法在研究立体几何问题中的应用.
用空间向量解决空间角和距离问题

0,π2
二面角
设二面角α-l-β为θ,平面α,β的法向量分别为n1,
n2,则|cos
θ|=
|cos〈n1,n2〉|
=
|n1·n2| |n1||n2|
[0,π]
知识点二 利用空间向量求距离(※) 点到平面的距离:用空间向量法求点到平面的距离具体步骤如下: 先确定平面的法向量,再求点与平面内一点的连线形成的斜线段在平面 的 法 向 量 上 的 射 影 长 . 如 图 , 设 n = (a , b , c) 是 平 面 α 的 一 个 法 向 量 , P0(x0,y0,z0)为α外一点,P(x,y,z)是平面α内的任意一点,则点P0到 平面 α 的距离 d=|P→P|n0|·n|=|ax0-x+ab2+y0-b2+y+c2 cz0-z|.
证明
②若平面ABC⊥平面AA1B1B,AB=CB,求直线A1C与平面BB1C1C所成角 的正弦值.
解答
类型二 求二面角问题 例2 如图所示,正三棱柱ABC-A1B1C1的所有棱长都为2,D为CC1的中点, 求二面角A-A1D-B的余弦值.
解答
反思与感悟 求角二面角时,可以用方向向量法,也可以采用法向量 法求解.
2.向量法求距离(※) (1)求 P,Q 两点间的距离,可转化为求P→Q的模. (2)点到平面距离的求法:设 n 是平面 α 的法向量,B 是平面 α 外一点,A 是平面 α 内一点,AB 是平面 α 的一条斜线,则点 B 到平面 α 的距离为
→ d=|A|Bn·|n|.
(3)线面距离、面面距离均可转化为点面距离,利用(2)中的方法求解.
4 2×2
2=12,
且〈P→B,D→B〉∈[0,π],∴〈P→B,D→B〉=π3, ∴BD 与平面 ADMN 所成的角为π6.
用空间向量法求解立体几何问题典例及解析

用空间向量法求解立体几何问题典例及解析以多面体为载体,以空间向量为工具,来论证和求解空间角、距离、线线关系以及线面关系相关问题,是近年来高考数学的重点和热点,用空间向量解立体几何问题,极大地降低了求解立几的难度,很大程度上呈现出程序化思想。
更易于学生们所接受,故而执教者应高度重视空间向量的工具性。
首先,梳理一下利用空间向量解决立体几何的知识和基本求解方法 一:利用空间向量求空间角 (1)两条异面直线所成的夹角范围:两条异面直线所成的夹角的取值范围是 。
向量求法:设直线,a b 的方向向量为a,b ,其夹角为θ,则有cos ___________.θ= (2)直线与平面所成的角定义:直线与平面所成的角是指直线与它在这个平面内的射影所成的角。
范围:直线和平面所夹角的取值范围是 。
向量求法:设直线l 的方向向量为a ,平面的法向量为n ,直线与法向量所成角的余弦值为|cos |___________.θ=直线与平面所成的角为ϕ,则有sin ___________.ϕ=或在平面内任取一个向量m ,则|cos |___________.θ=.(3)二面角二面角的取值范围是 . 二面角的向量求法:方法一:在两个半平面内任取两个与棱垂直的向量,则这两个向量所成的 即为所求的二面角的大小;方法二:设1n ,2n 分别是两个面的 ,则向量1n 与2n 的夹角(或其补角)即为所求二面角的平面角的大小。
二:利用空间向量求空间距离 (1)点面距离的向量公式平面α的法向量为n ,点P 是平面α外一点,点M 为平面α内任意一点,则点P 到平面α的距离d 就是 ,即d =||||MP ⋅n n . (2)线面、面面距离的向量公式平面α∥直线l ,平面α的法向量为n ,点M ∈α、P ∈l ,平面α与直线l 间的距离d 就是MP 在向量n 方向射影的绝对值,即d = .平面α∥β,平面α的法向量为n ,点M ∈α、P ∈β,平面α与平面β的距离d 就是MP 在向量n 方向射影的绝对值,即d =||||MP ⋅n n . (3)异面直线的距离的向量公式设向量n 与两异面直线a 、b 都垂直,M ∈a 、P ∈b ,则两异面直线a 、b 间的距离d 就是MP 在向量n 方向射影的绝对值,即d =||||MP ⋅n n .三:利用空间向量解证平行、垂直关系1:①所谓直线的方向向量,就是指 的向量,一条直线的方向向量有 个。
第43讲 利用空间向量求空间角和距离(讲)(解析版)

第43讲 利用空间向量求空间角和距离思维导图知识梳理1.异面直线所成角设异面直线a ,b 所成的角为θ,则cos θ=|a ·b ||a ||b |, 其中a ,b 分别是直线a ,b 的方向向量.2.直线与平面所成角如图所示,设l 为平面α的斜线,l ∩α=A ,a 为l 的方向向量,n 为平面α的法向量,φ为l 与α所成的角,则sin φ=|cos 〈a ,n 〉|=|a ·n ||a ||n |3.二面角(1)若AB ,CD 分别是二面角αl β的两个平面内与棱l 垂直的异面直线,则二面角(或其补角)的大小就是向量AB ―→与CD ―→的夹角,如图(1).(2)平面α与β相交于直线l ,平面α的法向量为n 1,平面β的法向量为n 2,〈n 1,n 2〉=θ,则二面角α l β为θ或π-θ.设二面角大小为φ,则|cos φ|=|cos θ|=|n 1·n 2||n 1||n 2|,如图(2)(3). 4.利用空间向量求距离 (1)两点间的距离设点A (x 1,y 1,z 1),点B (x 2,y 2,z 2),则|AB |=|AB ―→|=(x 1-x 2)2+(y 1-y 2)2+(z 1-z 2)2. (2)点到平面的距离如图所示,已知AB 为平面α的一条斜线段,n 为平面α的法向量,则B 到平面α的距离为|BO ―→|=|AB ―→·n ||n |.题型归纳题型1 异面直线所成的角【例1-1】(2020•济南模拟)已知直角梯形ABCD 中,//AD BC ,AB BC ⊥,12AB AD BC ==,将直角梯形ABCD (及其内部)以AB 所在直线为轴顺时针旋转90︒,形成如图所示的几何体,其中M 为CE 的中点. (1)求证:BM DF ⊥;(2)求异面直线BM 与EF 所成角的大小.【分析】(1)建立空间坐标系,得出BM ,DF 的坐标,根据向量的数量积为0得出直线垂直; (2)计算BM 和EF 的夹角,从而得出异面直线所成角的大小. 【解答】(1)证明:AB BC ⊥,AB BE ⊥,BCBE B =,AB ∴⊥平面BCE ,以B 为原点,以BE ,BC ,BA 为坐标轴建立空间坐标系B xyz -,如图所示:设1AB AD ==,则(0D ,1,1),(1F ,0,1),(0B ,0,0),M 0),∴(2BM =,0),(1DF =,1-,0),∴200BM DF =-=,BM DF ∴⊥.(2)解:(2E ,0,0),故(1EF =-,0,1),cos BM ∴<,12||||2BM EF EF BM EF >===-⨯,∴设异面直线BM 与EF 所成角为θ,则cos |cos BM θ=<,1|2EF >=, 故3πθ=.【例1-2】(2020•北京模拟)在四棱锥P ABCD -中,PA ⊥平面ABCD ,底面四边形ABCD 为直角梯形,//AD BC ,AD AB ⊥,2PA AD ==,1AB BC ==,Q 为PD 中点.(Ⅰ)求证:PD BQ ⊥;(Ⅰ)求异面直线PC 与BQ 所成角的余弦值.【分析】()I 建立空间直角坐标系,只要证明0PD BQ =,即可证明结论. (Ⅰ)(1CP =-,1-,2),利用向量夹角公式即可得出.【解答】()I 证明:如图所示,(0A ,0,0),(1B ,0,0),(0P ,0,2),(0D ,2,0),(0Q ,1,1),(1C ,1,0),(0PD =,2,2)-,(1BQ =-,1,1),由220PD BQ =-=,∴PD BQ ⊥,PD BQ ∴⊥;(Ⅰ)解:(1CP =-,1-,2),cos CP <,BQ =.∴异面直线PC 与BQ 所成角的余弦值为3.【跟踪训练1-1】(2020•运城三模)如图,四边形ABCD 为平行四边形,且2AB AD BD ===,点E ,F 为平面ABCD 外两点,//EF AC 且2EF AE ==EAD EAB ∠=∠. (1)证明:BD CF ⊥;(2)若60EAC ∠=︒,求异面直线AE 与DF 所成角的余弦值.【分析】(1)设BD 与AC 相交于点G ,连接EG ,从而BD AC ⊥,推导出EAD EAB ∆≅∆,从而BD ⊥平面ACFE ,由此能证明BD CF ⊥.(2)过G 作AC 的垂线,交EF 于M 点,分别以GA ,GB ,GM 为x ,y ,z 轴建立空间直角坐标系G xyz -,利用向量法能求出异面直线AE 与DF 所成角的余弦值. 【解答】解:(1)证明:设BD 与AC 相交于点G ,连接EG , 由题意可得四边形ABCD 为菱形, 所以BD AC ⊥,DG GB =,在EAD ∆和EAB ∆中,AD AB =,AE AE =,EAD EAB ∠=∠, 所以EAD EAB ∆≅∆,所以ED EB =,所以BD EG ⊥, 因为ACEG G =,所以BD ⊥平面ACFE ,因为CF ⊂平面ACFE ,所以BD CF ⊥.(2)解:如图,在平面AEFC 内,过G 作AC 的垂线,交EF 于M 点, 由(1)可知,平面ACFE ⊥平面ABCD ,所以MG ⊥平面ABCD ,故直线GM ,GA ,GB 两两互相垂直, 分别以GA ,GB ,GM 为x ,y ,z 轴建立空间直角坐标系G xyz -, 因为60EAC ∠=︒,则A ,(0D ,1-,0),3)2E,3()2F ,所以3()2AE =-,3()2DF =, 异面直线AE 与DF 所成角的余弦值为:99|0|||44|cos ,|||||310AE DF AE DF AE DF ++<>===【名师指导】用向量法求异面直线所成角的一般步骤(1)选择三条两两垂直的直线建立空间直角坐标系;(2)确定异面直线上两个点的坐标,从而确定异面直线的方向向量; (3)利用向量的夹角公式求出向量夹角的余弦值;(4)两异面直线所成角的余弦等于两向量夹角余弦值的绝对值.题型2 直线与平面所成的角【例2-1】(2020•海南)如图,四棱锥P ABCD -的底面为正方形,PD ⊥底面ABCD .设平面PAD 与平面PBC 的交线为l .(1)证明:l ⊥平面PDC ;(2)已知1PD AD ==,Q 为l 上的点,QB =,求PB 与平面QCD 所成角的正弦值.【分析】(1)过P 在平面PAD 内作直线//l AD ,推得l 为平面PAD 和平面PBC 的交线,由线面垂直的判定和性质,即可得证;(2)以D 为坐标原点,直线DA ,DC ,DP 所在的直线为x ,y ,z 轴,建立空间直角坐标系D xyz -,求出(0Q ,1,1),运用向量法,求得平面QCD 的法向量,结合向量的夹角公式求解即可. 【解答】(1)证明:过P 在平面PAD 内作直线//l AD ,由//AD BC ,可得//l BC ,即l 为平面PAD 和平面PBC 的交线,PD ⊥平面ABCD ,BC ⊂平面ABCD ,PD BC ∴⊥,又BC CD ⊥,CDPD D =,BC ∴⊥平面PCD ,//l BC ,l ∴⊥平面PCD ;(2)解:如图,以D 为坐标原点,直线DA ,DC ,DP 所在的直线为x ,y ,z 轴,建立空间直角坐标系D xyz -,1PD AD ==,Q 为l 上的点,QB ,PB ∴1QP =,则(0D ,0,0),(1A ,0,0),(0C ,1,0),(0P ,0,1),(1B ,1,0),作//PQ AD ,则PQ 为平面PAD 与平面PBC 的交线为l ,取(1Q ,0,1),则(1DQ =,0,1),(1PB =,1,1)-,(0DC =,1,0), 设平面QCD 的法向量为(n a =,b ,)c ,则00n DC n DQ ⎧=⎪⎨=⎪⎩,∴00b a c =⎧⎨+=⎩,取1c =,可得(1n =-,0,1),cos n ∴<,6||||32n PB PB n PB >===,PB ∴与平面QCD . 【例2-2】(2020•北京)如图,在正方体1111ABCD A B C D -中,E 为1BB 的中点. (Ⅰ)求证:1//BC 平面1AD E ;(Ⅰ)求直线1AA 与平面1AD E 所成角的正弦值.【分析】(Ⅰ)根据正方体的性质可证得11//BC AD ,再利用线面平行的判定定理即可得证;(Ⅰ)解法一:以A 为原点,AD 、AB 、1AA 分别为x 、y 和z 轴建立空间直角坐标系,设直线1AA 与平面1AD E 所成角为θ,先求出平面1AD E 的法向量m ,再利用sin |cos m θ=<,111|||||||m AA AA m AA >=以及空间向量数量积的坐标运算即可得解. 解法二:设正方体的棱长为2a ,易知122AA DS a =,结合勾股定理和余弦定理可求得1cos EAD ∠=,再求得1111sin 2EAD SAD AE EAD =∠;设点1A 到平面1EAD 的距离为h ,根据等体积法111A EAD E AA D V V --=,可求出h 的值,设直线1AA 与平面1AD E 所成角为θ,则1sin hAA θ=,从而得解. 【解答】解:(Ⅰ)由正方体的性质可知,11//AB C D 中,且11AB C D =,∴四边形11ABC D 是平行四边形,11//BC AD ∴,又1BC ⊂/平面1AD E ,1AD ⊂平面1AD E ,1//BC ∴平面1AD E .(Ⅰ)解法一:以A 为原点,AD 、AB 、1AA 分别为x 、y 和z 轴建立如图所示的空间直角坐标系,设正方体的棱长为a ,则(0A ,0,0),1(0A ,0,)a ,1(D a ,0,)a ,(0E ,a ,1)2a ,∴1(0,0,)AA a =,1(,0,)AD a a =,1(0,,)2AE a a =,设平面1AD E 的法向量为(,,)m x y z =,则100m AD m AE ⎧=⎪⎨=⎪⎩,即()01()02a x z a y z +=⎧⎪⎨+=⎪⎩, 令2z =,则2x =-,1y =-,∴(2m =-,1-,2),设直线1AA 与平面1AD E 所成角为θ,则sin |cos m θ=<,11122|||33||||m AA a AA a m AA >===,故直线1AA 与平面1AD E 所成角的正弦值为23. 解法二:设正方体的棱长为2a ,则1AD =,AE =,13ED a =,1212222AA DSa a a ==,由余弦定理知,222222111110 cos22225AD AE EDEADAD AE a a+-∠===1sin EAD∴∠=∴12111sin32EADS AD AE EAD a=∠=,设点1A到平面1EAD的距离为h,111A EAD E AA DV V--=,∴221132233h a a a=,43h a∴=,设直线1AA与平面1AD E所成角为θ,则1423sin23ahAA aθ===.故直线1AA与平面1AD E所成角的正弦值为23.【跟踪训练2-1】(2020•山东)如图,四棱锥P ABCD-的底面为正方形,PD⊥底面ABCD.设平面PAD与平面PBC的交线为l.(1)证明:l⊥平面PDC;(2)已知1PD AD==,Q为l上的点,求PB与平面QCD所成角的正弦值的最大值.【分析】(1)过P在平面PAD内作直线//l AD,推得l为平面PAD和平面PBC的交线,由线面垂直的判定和性质,即可得证;(2)以D为坐标原点,直线DA,DC,DP所在的直线为x,y,z轴,建立空间直角坐标系D xyz-,设(0Q,m,1),运用向量法,求得平面QCD的法向量,结合向量的夹角公式,以及基本不等式可得所求最大值.【解答】解:(1)证明:过P在平面PAD内作直线//l AD,由//AD BC ,可得//l BC ,即l 为平面PAD 和平面PBC 的交线,PD ⊥平面ABCD ,BC ⊂平面ABCD ,PD BC ∴⊥,又BC CD ⊥,CDPD D =,BC ∴⊥平面PCD ,//l BC ,l ∴⊥平面PCD ;(2)如图,以D 为坐标原点,直线DA ,DC ,DP 所在的直线为x ,y ,z 轴,建立空间直角坐标系D xyz -,则(0D ,0,0),(1A ,0,0),(0C ,1,0),(0P ,0,1),(1B ,1,0), 设(Q m ,0,1)(0)m >,(DQ m =,0,1),(1PB =,1,1)-,(0DC =,1,0), 设平面QCD 的法向量为(n a =,b ,)c ,则00n DC n DQ ⎧=⎪⎨=⎪⎩,∴00b am c =⎧⎨+=⎩,取1c =,可得1(n m =-,0,1),cos n ∴<,211||||131n PBPB n PB m -->==+,PB ∴与平面QCD211111131m m m +++=++232611132m =++=+,当且仅当1m =取等号, PB ∴与平面QCD . 【名师指导】利用向量求线面角的2种方法(1)分别求出斜线和它所在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角). (2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角,取其余角就是斜线与平面所成的角.题型3 二面角【例3-1】(2020•江苏)在三棱锥A BCD -中,已知CB CD =,2BD =,O 为BD 的中点,AO ⊥平面BCD ,2AO =,E 为AC 中点.(1)求直线AB 与DE 所成角的余弦值; (2)若点F 在BC 上,满足14BF BC =,设二面角F DE C --的大小为θ,求sin θ的值.【分析】(1)由题意画出图形,连接OC ,由已知可得CO BD ⊥,以O 为坐标原点,分别以OB ,OC ,OA 所在直线为x ,y ,z 轴建立空间直角坐标系,求出所用点的坐标,得到(1,0,2)AB =-,(1,1,1)DE =,设直线AB 与DE 所成角为α,由两向量所成角的余弦值,可得直线AB 与DE 所成角的余弦值; (2)由14BF BC =,得14BF BC =,设(F x ,y ,)z ,由向量等式求得3(4F ,12,0),进一步求出平面DEF 的一个法向量与平面DEC 的一个法向量,由两法向量所成角的余弦值求得cos θ,再由同角三角函数基本关系式求解sin θ.【解答】解:(1)如图,连接OC ,CB CD =,O 为BD 的中点,CO BD ∴⊥.以O 为坐标原点,分别以OB ,OC ,OA 所在直线为x ,y ,z 轴建立空间直角坐标系.2BD =,1OB OD ∴==,则2OC =.(1B ∴,0,0),(0A ,0,2),(0C ,2,0),(1D -,0,0),E 是AC 的中点,(0E ∴,1,1),∴(1,0,2)AB =-,(1,1,1)DE =.设直线AB 与DE 所成角为α,则||cos ||||14111AB DE AB DE α===++,即直线AB 与DE ; (2)14BF BC =,∴14BF BC =, 设(F x ,y ,)z ,则(1x -,y ,1)(4z =-,12,0),3(4F ∴,12,0).∴(1,1,1)DE =,71(,,0)42DF =,(1,2,0)DC =.设平面DEF 的一个法向量为111(,,)m x y z =,由11111071042m DE x y z m DF x y ⎧=++=⎪⎨=+=⎪⎩,取12x =-,得(2,7,5)m =--; 设平面DEC 的一个法向量为222(,,)n x y z =,由22222020n DE x y z n DC x y ⎧=++=⎪⎨=+=⎪⎩,取22x =-,得(2,1,1)n =-. |||cos |||||44925411mn m n θ∴===+++.sinθ∴=. 【例3-2】(2020•新课标Ⅰ)如图,D 为圆锥的顶点,O 是圆锥底面的圆心,AE 为底面直径,AE AD =.ABC ∆是底面的内接正三角形,P 为DO 上一点,PO =. (1)证明:PA ⊥平面PBC ; (2)求二面角B PC E --的余弦值.【分析】(1)设圆O 的半径为1,求出各线段的长度,利用勾股定理即可得到PA PC ⊥,PA PB ⊥,进而得证;(2)建立空间直角坐标系,求出平面PBC 及平面PCE 的法向量,利用向量的夹角公式即可得解. 【解答】解:(1)不妨设圆O 的半径为1,1OA OB OC ===,2AE AD ==,AB BC AC ===,DO PO ==PA PB PC ===, 在PAC ∆中,222PA PC AC +=,故PA PC ⊥, 同理可得PA PB ⊥,又PBPC P =,故PA ⊥平面PBC ;(2)建立如图所示的空间直角坐标系,则有11,0),(,0),222B C P ,(0E ,1,0),故3131(3,0,0),(,,0),(,22BC CE CP =-==-, 设平面PBC 的法向量为(,,)m x y z =,则3031022m BC m CP x y z ⎧=-=⎪⎨=-=⎪⎩,可取(0,2,1)m =, 同理可求得平面PCE 的法向量为(2,n =--,故||25cos||||5m n m n θ==,即二面角B PC E --.【跟踪训练3-1】(2020•新课标Ⅰ)如图,在长方体1111ABCD A B C D -中,点E ,F 分别在棱1DD ,1BB 上,且12DE ED =,12BF FB =. (1)证明:点1C 在平面AEF 内;(2)若2AB =,1AD =,13AA =,求二面角1A EF A --的正弦值.【分析】(1)在1AA 上取点M ,使得12A M AM =,连接EM ,1B M ,1EC ,1FC ,由已知证明四边形1B FAM 和四边形EDAM 都是平行四边形,可得1//AF MB ,且1AF MB =,//AD ME ,且AD ME =,进一步证明四边形11B C EM 为平行四边形,得到11//EC MB ,且11EC MB =,结合1//AF MB ,且1AF MB =,可得1//AF EC ,且1AF EC =,则四边形1AFC E 为平行四边形,从而得到点1C 在平面AEF 内;(2)在长方体1111ABCD A B C D -中,以1C 为坐标原点,分别以11C D ,11C B ,1C C 所在直线为x ,y ,z 轴建立空间直角坐标系.分别求出平面AEF 的一个法向量与平面1A EF 的一个法向量,由两法向量所成角的余弦值可得二面角1A EF A --的余弦值,再由同角三角函数基本关系式求得二面角1A EF A --的正弦值. 【解答】(1)证明:在1AA 上取点M ,使得12A M AM =,连接EM ,1B M ,1EC ,1FC , 在长方体1111ABCD A B C D -中,有111////DD AA BB ,且111DD AA BB ==. 又12DE ED =,12A M AM =,12BF FB =,1DE AM FB ∴==.∴四边形1B FAM 和四边形EDAM 都是平行四边形.1//AF MB ∴,且1AF MB =,//AD ME ,且AD ME =.又在长方体1111ABCD A B C D -中,有11//AD B C ,且11AD B C =, 11//B C ME ∴且11B C ME =,则四边形11B C EM 为平行四边形, 11//EC MB ∴,且11EC MB =,又1//AF MB ,且1AF MB =,1//AF EC ∴,且1AF EC =,则四边形1AFC E 为平行四边形,∴点1C 在平面AEF 内;(2)解:在长方体1111ABCD A B C D -中,以1C 为坐标原点,分别以11C D ,11C B ,1C C 所在直线为x ,y ,z 轴建立空间直角坐标系.2AB =,1AD =,13AA =,12DE ED =,12BF FB =,(2A ∴,1,3),(2E ,0,2),(0F ,1,1),1(2A ,1,0),则(2,1,1)EF =--,(0,1,1)AE =--,1(0,1,2)A E =-. 设平面AEF 的一个法向量为1111(,,)n x y z =.则1111111200n EF x y z n AE y z ⎧=-+-=⎪⎨=--=⎪⎩,取11x =,得1(1,1,1)n =-; 设平面1A EF 的一个法向量为2222(,,)n x y z =.则222221222020n EF x y z n A E y z ⎧=-+-=⎪⎨=-+=⎪⎩,取21x =,得2(1,4,2)n =. 1212127cos ,||||321n n nn n n ∴<>===. 设二面角1A EF A --为θ,则sin θ==. ∴二面角1A EF A --.【跟踪训练3-2】(2019•天津)如图,AE ⊥平面ABCD ,//CF AE ,//AD BC ,AD AB ⊥,1AB AD ==,2AE BC ==.(Ⅰ)求证://BF 平面ADE ;(Ⅰ)求直线CE 与平面BDE 所成角的正弦值;(Ⅰ)若二面角E BD F --的余弦值为13,求线段CF 的长.【分析】(Ⅰ)以A 为坐标原点,分别以AB ,AD ,AE 所在直线为x ,y ,z 轴建立空间直角坐标系,求得A ,B ,C ,D ,E 的坐标,设(0)CF h h =>,得(1F ,2,)h .可得(1,0,0)AB =是平面ADE 的法向量,再求出(0,2,)BF h =,由0BF AB =,且直线BF ⊂/平面ADE ,得//BF 平面ADE ;(Ⅰ)求出(1,2,2)CE =--,再求出平面BDE 的法向量,利用数量积求夹角公式得直线CE 与平面BDE 所成角的余弦值,进一步得到直线CE 与平面BDE 所成角的正弦值;(Ⅰ)求出平面BDF 的法向量,由两平面法向量所成角的余弦值为13列式求线段CF 的长.【解答】(Ⅰ)证明:以A 为坐标原点,分别以AB ,AD ,AE 所在直线为x ,y ,z 轴建立空间直角坐标系,可得(0A ,0,0),(1B ,0,0),(1C ,2,0),(0D ,1,0),(0E ,0,2). 设(0)CF h h =>,则(1F ,2,)h .则(1,0,0)AB =是平面ADE 的法向量,又(0,2,)BF h =,可得0BF AB =. 又直线BF ⊂/平面ADE ,//BF ∴平面ADE ;(Ⅰ)解:依题意,(1,1,0)BD =-,(1,0,2)BE =-,(1,2,2)CE =--. 设(,,)n x y z =为平面BDE 的法向量,则020n BD x y n BE x z ⎧=-+=⎪⎨=-+=⎪⎩,令1z =,得(2,2,1)n =. 4cos ,9||||CE n CE n CE n ∴<>==-.∴直线CE 与平面BDE 所成角的正弦值为49; (Ⅰ)解:设(,,)m x y z =为平面BDF 的法向量, 则020m BD x y m BF y hz ⎧=-+=⎪⎨=+=⎪⎩,取1y =,可得2(1,1,)m h =-,由题意,2|4|||1|cos ,|||||332m n m n m n -<>===⨯,解得87h =. 经检验,符合题意.∴线段CF 的长为87.【跟踪训练3-3】(2019•新课标Ⅰ)如图,直四棱柱1111ABCD A B C D -的底面是菱形,14AA =,2AB =,60BAD ∠=︒,E,M ,N 分别是BC ,1BB ,1A D 的中点.(1)证明://MN 平面1C DE ; (2)求二面角1A MA N --的正弦值.【分析】(1)过N 作NH AD ⊥,证明//NM BH ,再证明//BH DE ,可得//NM DE ,再由线面平行的判定可得//MN 平面1C DE ;(2)以D 为坐标原点,以垂直于DC 得直线为x 轴,以DC 所在直线为y 轴,以1DD 所在直线为z 轴建立空间直角坐标系,分别求出平面1A MN 与平面1MAA 的一个法向量,由两法向量所成角的余弦值可得二面角1A MA N --的正弦值.【解答】(1)证明:如图,过N 作NH AD ⊥,则1//NH AA ,且112NH AA =, 又1//MB AA ,112MB AA =,∴四边形NMBH 为平行四边形,则//NM BH , 由1//NH AA ,N 为1A D 中点,得H 为AD 中点,而E 为BC 中点, //BE DH ∴,BE DH =,则四边形BEDH 为平行四边形,则//BH DE , //NM DE ∴,NM ⊂/平面1C DE ,DE ⊂平面1C DE ,//MN ∴平面1C DE ;(2)解:以D 为坐标原点,以垂直于DC 得直线为x 轴,以DC 所在直线为y 轴,以1DD 所在直线为z 轴建立空间直角坐标系,则N 12-,2),M ,1,2),1A ,1-,4), 33(,0)2NM =,131(,2)2NA =-, 设平面1A MN 的一个法向量为(,,)m x y z =,由133022312022m NM y m NA y z ⎧=+=⎪⎪⎨⎪=-+=⎪⎩,取x (3,1,1)m =--, 又平面1MAA 的一个法向量为(1,0,0)n =,3cos ,||||5m n m n m n ∴<>===.∴二面角1A MA N --.【名师指导】利用空间向量计算二面角大小的常用方法(1)找法向量:分别求出二面角的两个半平面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角的大小.(2)找与棱垂直的方向向量:分别在二面角的两个半平面内找到与棱垂直且以垂足为起点的两个向量,则这两个向量的夹角的大小就是二面角的大小.题型4 求空间距离【例4-1】(2019•新课标Ⅰ)如图,直四棱柱1111ABCD A B C D -的底面是菱形,14AA =,2AB =,60BAD ∠=︒,E ,M ,N 分别是BC ,1BB ,1A D 的中点.(1)证明://MN 平面1C DE ; (2)求点C 到平面1C DE 的距离.【分析】法一:(1)连结1B C ,ME ,推导出四边形MNDE 是平行四边形,从而//MN ED ,由此能证明//MN 平面1C DE . (2)过C 作1C E 的垂线,垂足为H ,推导出DE BC ⊥,1DE C C ⊥,从而DE ⊥平面1C CE ,DE CH ⊥,进而CH ⊥平面1C DE ,故CH 的长即为C 到平面1C DE 的距离,由此能求出点C 到平面1C DE 的距离. 法二:(1)以D 为原点,DA 为x 轴,DE 为y 轴,1DD 为z 轴,建立空间直角坐标系,利用向量法能证明//MN 平面1C DE .(2)求出(1DC =-0),平面1C DE 的法向量(4n =,0,1),利用向量法能求出点C 到平面1C DE 的距离.【解答】解法一:证明:(1)连结1B C ,ME ,M ,E 分别是1BB ,BC 的中点,1//ME B C ∴,又N 为1A D 的中点,112ND A D ∴=, 由题设知11//A B DC =,11//B C A D =∴,//ME ND =∴,∴四边形MNDE 是平行四边形,//MN ED ,又MN ⊂/平面1C DE ,//MN ∴平面1C DE .解:(2)过C 作1C E 的垂线,垂足为H , 由已知可得DE BC ⊥,1DE C C ⊥,DE ∴⊥平面1C CE ,故DE CH ⊥,CH ∴⊥平面1C DE ,故CH 的长即为C 到平面1C DE 的距离,由已知可得1CE =,14CC =,1C E ∴=,故CH =,∴点C 到平面1C DE 解法二:证明:(1)直四棱柱1111ABCD A B C D -的底面是菱形,14AA =,2AB =,60BAD ∠=︒,E ,M ,N 分别是BC ,1BB ,1A D 的中点. 1DD ∴⊥平面ABCD ,DE AD ⊥,以D 为原点,DA 为x 轴,DE 为y 轴,1DD 为z 轴,建立空间直角坐标系,(1M 2),(1N ,0,2),(0D ,0,0),(0E 0),1(1C -4),(0MN =,0),1(DC =-,(0,DE =,设平面1C DE 的法向量(n x =,y ,)z ,则14030n DC x z n DE y ⎧=-++=⎪⎨==⎪⎩,取1z =,得(4n =,0,1),0MN n =,MN ⊂/平面1C DE ,//MN ∴平面1C DE .解:(2)(1C -0),(1DC =-0),平面1C DE 的法向量(4n =,0,1),∴点C 到平面1C DE 的距离:||||17DC n d n ==.【跟踪训练4-1】(2020•梅州二模)如图,PAD ∆中,90PDA ∠=︒,2DP DA ==,B ,C 分别是PA ,PD 的中点,将PBC ∆沿BC 折起,连结PA ,PD ,得到多面体PABCD .(1)证明:在多面体PABCD 中,BC PD ⊥;(2)在多面体PABCD 中,当PA B 到平面PAD 的距离.【分析】(1)推导出BC CD ⊥,BC PC ⊥,得到BC ⊥平面PCD ,由此能证明BC PD ⊥.(2)推导出PC ⊥平面ABCD ,以C 为原点,CB 为x 轴,CD 为y 轴,CP 为z 轴,建立空间直角坐标系,利用向量法能求出点B 到平面PAD 的距离.【解答】解:(1)证明:PAD ∆中,90PDA ∠=︒,2DP DA ==,B ,C 分别是PA ,PD 的中点, 将PBC ∆沿BC 折起,连结PA ,PD ,得到多面体PABCD .BC CD ∴⊥,BC PC ⊥,CD PC C =,BC ∴⊥平面PCD ,PD ⊂平面PCD ,∴在多面体PABCD 中,BC PD ⊥.(2)由(1)得BC ⊥平面PCD ,又PC ⊂平面PCD ,BC PC ∴⊥,PAD ∆中,90PDA ∠=︒,2DP DA ==,B ,C 分别是PA ,PD 的中点,PA =AC ∴=222PC AC PA ∴+=,PC AC ∴⊥, AC BC C =,PC ∴⊥平面ABCD ,以C 为原点,CB 为x 轴,CD 为y 轴,CP 为z 轴,建立空间直角坐标系, (1B ,0,0),(0P ,0,1),(2A ,1,0),(0D ,1,0),(1PB =,0,1)-,(2PA =,1,1)-,(0PD =,1,1)-,设平面PAD 的法向量(n x =,y ,)z ,则200n PA x y z n PD y z ⎧=+-=⎪⎨=-=⎪⎩,取1y =,得(0n =,1,1),∴点B 到平面PAD 的距离为:||1||22PB n d n ===⨯.【名师指导】求点面距一般有以下三种方法(1)作点到面的垂线,点到垂足的距离即为点到平面的距离.(2)等体积法.(3)向量法.其中向量法在易建立空间直角坐标系的规则图形中较简便.。
向量法求空间的距离和角

所以异面直线BD与D1A间的距离为
3 。 3
(2) A1 B1 = (0,1, 0), 设n = ( x, y, z )是平面A1DB的一 个法向量,因为DA1 = (1, 0,1), DB = (1,1, 0), ì ì x +z = 0 nDA1 = 0 镲 由眄 即 取x = - 1, 镲 î x+y =0 î nDB = 0 | nA1 B1 | 1 2 于是n = (-1,1,1, ),且 = = 。 2 |n| 2 2 所以点B1到平面A1 BD的距离为 。 2
例1:如图1所示: 三棱柱ABC - A1 B1C1中,CA=CB, AB = AA1, ? BAA1 60o, ( 1)求证:AB^ A1C (2)若平面ABC ^ 平面AA1 B1 B, AB =CB,求直线A1C与平面BB1C1C 所成角的正弦值。
C C1
B A A1
B1
图1
C
C1
O
B A1
Z
解:由(1)知OC ^ AB,OA1 ^ AB, 又平面ABC ^ 平面AA1 B1 B,交线 为AB,所以OC ^ 平面AA1 B1 B, 故OA、OA1、OC两两相互垂直。 建立如图所示的空间直角坐标系 A
O
C
C1
B A1
B1 图1-2
X o - xyz 设AB = 2,由题设知A(1, 0, 0)、B(- 1, 0, 0)、C (0, 0, 3)、A1 (0, 3, 0), 则BC = (1, 0, 3)、 BB1 = AA1 = (- 1, 3, 0)、 A1C = (0, - 3, 3). 设n = ( x, y, z )是平面BBCC的法向量,则 ì x + 3z = 0 ì nBC = 0 镲 即 可取n = ( 3,1, -1), 眄 镲 î nBB1 = 0 î - x + 3y = 0 nA1C 10 故 cos < n, A1C >= =. 5 | n | ×| A1C |
立体几何中的向量方法求空间角和距离

基础知识・自主学习I要点梳理知识冋顾理消救材1.空间向量与空间角的关系(1)已知异面直线11, 12的方向向量分别为S i, S2,当0<< Si, S2>< ,直线11与12的夹角等于〈S i, S2〉当n< < Si, S z>< n时,直线l1与l2的夹角等于n—< S1, S2 >.⑵已知平面n和n的法向量分别为n1和敗,当0<< n1, n2>< ,平面n与n的夹角等于〈n i, n2〉n当2< < n 1,敗〉^ n时,平面n与n的夹角等于兀―〈n i,n2>.⑶已知直线I的方向向量为S,平面n的法向量为n, 则直线l与平面n的夹角sin 0= |cos〈 s, n > |.2.距离公式点到直线的距离公式:d= . |PA|2—|P A S of.点到平面的距离公式:d= |PA n o|.I夯基释疑夯实基础突破疑砒1.判断下面结论是否正确(请在括号中打“V”或“X”(1)两直线的方向向量所成的角就是两条直线所成的角.(2)直线的方向向量和平面的法向量所成的角就是直线与平面所成的角.(3)两个平面的法向量所成的角是这两个平面的夹角.n(4)两异面直线夹角的范围是(0,刁,直线与平面所成角的范围是⑸直线I的方向向量与平面a的法向量夹角为120 °则I和a所成角为30°2.已知二面角a—I —B的大小是n, m, n是异面直线,且m丄a, n丄伏则m,3n所成的角n B.nnC.2nD.6|OP n| |n ||— 2— 6 + 2| =2,故选 B.• cos 〈 n , a >又I 与a 所成角记为 0,即 sin = |cos 〈 n , a >4 5133答案 B解析 ■/ m 丄a, n 丄B,•••异面直线m , n 所成的角的补角与二面角 a-1- B 互补.又•••异面直线所成角的范围为(0,彳, • m , n 所成的角为33.在空间直角坐标系 Oxyz 中,平面OAB 的一个法向量为n = (2, — 2,1),已知点P( — 1,3,2), 则点P 到平面OAB 的距离d 等于 ()A . 4B . 2C . 3D . 1答案 B解析 P 点到平面OAB 的距离为4.若平面a 的一个法向量为n = (4,1,1),直线l 的一个方向向量为 a = (— 2, — 3,3),则I 与 a 所成角的正弦值为 _______________________ . 答案解析 •/ na =— 8— 3 + 3 = — 8, |n |=“ 16+ 1 + 1 = 3 2, |a |= ” ‘4+ 9 + 9 = .22,n a ―84^/11|n| |a |= 3 2X 22=—335 . P 是二面角a — AB — B 棱上的一点,分别在平面a B 上引射线PM 、PN ,如果/ BPM =/ BPN = 45° / MPN = 60° 那么平面 a 与B 的夹角为 _________ . 答案 90° 解析不妨设PM = a , PN = b ,如图,A作ME 丄AB 于E , NF 丄AB 于F ,•••/ EPM = / FPN = 45° •PE =, PF = -22b ,E为CC i的中点,则异面直线B.嚅C並C. 103 10D.^思维启迪本题可以通过建立空间直角坐标系,利用向量BC I、AE所成的角来求. 答案B解析建立坐标系如图,则A(1,0,0),E(0,2,1),B(1,2,0),C i(0,2,2). BC i= (—1,0,2),Al= (—i,2,i),cos〈BC i, AE >BC i A E 30D,G/Hi/I11111/E C y|BC I||AE|10 -求解,而两异面直线所成角的范围是,两向量的夹角a的范围是[0, n,所以要注意二者的区别与联系,应有cos 0= |cos a|.已知直四棱柱ABCD —A1B1C1D1中,底面ABCD 为正方形,AA1= 2AB, E 为AA i的中点,则异面直线BE与CD i所成角的余弦值为10 D.;—> —> —> —> —> —>EM FN = (PM —PE) (PN—PF)=PM PN —PM PF —PE PN+PE PF=abcos 60 —ax^bcos 45 —乎abcos 45 +^axab ab—辿 + ab= 0O 1 O 5••• EM丄FN , •••平面a与B的夹角为90°题型分类・深度剖析题型一求异面直线所成的角【例 1 长方体ABCD —A I B I C I D I中,AB= AA i= 2, AD = 1,BC i与AE所成角的余弦值为所以异面直线BC i与AE所成角的余弦值为誉.思维升华用向量方法求两条异面直线所成的角,是通过两条直线的方向向量的夹角来1B.5答案C解析如图,以D为坐标原点建立如图所示空间直角坐标系.设AA i = 2AB = 2,则B(1,1,0), E(1,0,1), C(0,1,0), D i(0,0,2),•-BE = (0,- 1,1),••• cos 〈 BE , C D 1 >1 +2 = 3后2 • 5= 10题型二求直线与平面所成的角[例 2】如图,已知四棱锥 P — ABCD 的底面为等腰梯形, AB // CD ,AC 丄BD ,垂足为H , PH 是四棱锥的高,E 为AD 的中点. (1) 证明:PE 丄BC ;(2) 若/ APB = /ADB = 60 °求直线PA 与平面PEH 所成角的正弦值.思维启迪:平面的法向量是利用向量方法解决位置关系或夹角的关键,本题可通过建立 坐标系,利用待定系数法求出平面PEH 的法向量.(1)证明 以H 为原点,HA , HB , HP 所在直线分别为x , y , z 轴, 线段HA 的长为单位长度,建立空间直角坐标系(如图),则 A(1,0,0) , B(0,1,0).设 C(m,0,0), P(0,0, n) (m<0, n>0),则 D(0, m,0), E ;,罗,0 . 可得 PE = 2,罗,-n , BC = (m ,- 1,0).因为 PE BC = m — m + 0 = 0,所以 PE 丄 BC.⑵解由已知条件可得 m = —_3故 C -于,0 0 , D 0,—于,0 , E J ,*, 0,P(0,0,1). 设n = (x , y , n H E = 0, 则Sgx -吕=0,』HP = 0, Z= 0.C D i = (0,- 1,2),yAC 丄BD,BC= 1 ,AD = AA1= 3.因此可以取n = (1, - 3, 0).又PA= (1,0, - 1), 所以|cos < F A, n〉1=乎.一迈所以直线PA与平面PEH所成角的正弦值为丁.思维升华利用向量法求线面角的方法:(1)分别求出斜线和它在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角);(2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角,取其余角就是斜线和平面所成的角.虽21,1 汙― (2013 湖南)如图,在直棱柱ABCD —A1B1C1D1中,AD // BC,/ BAD = 90°(1) 证明:AC 丄B1D;(2) 求直线B1C1与平面ACD1所成角的正弦值.方法一(1)证明如图,因为BB1丄平面ABCD , AC 平面ABCD,所以AC丄BB1.又AC丄BD,所以AC丄平面BB1D, 而B1D 平面BB1D,所以AC丄B1D.⑵解因为B1C1 // AD,所以直线B1C1与平面ACD1所成的角等于直线AD与平面ACD1所成的角(记为9).如图,连接A1D,因为棱柱ABCD —A1B1C1D1是直棱柱,且 / B1A1D1= / BAD = 90°从而Rt △ ABC s Rt △ DAB,故AB = DA =BCAB,所以A i B i丄平面ADD I A I,从而A i B i丄AD i.又AD = AA i= 3,所以四边形ADD i A i是正方形.于是A i D丄AD i,故AD i丄平面A i B i D,于是AD i丄B i D. 由⑴知,AC丄B i D,所以B i D丄平面ACD i. 故/ ADB i= 90°—0,在直角梯形ABCD中,因为AC丄BD,所以/ BAC = Z ADB.即AB= , DA BC = 3.连接AB i,易知△ AB i D 是直角三角形,且B I D2= BB2+ BD2= BB?+ AB2+ AD2= 2i,即B i D = 2i.AD 3 vf2i在Rt△ AB i D 中,cos Z ADB i= =21 = ^^,即cos(90 ° 0= 从而sin 0=一即直线B i C i与平面ACD i所成角的正弦值为一尹.方法二⑴证明易知,AB,AD,AA i两两垂直.如图,以 A 为坐标原点,AB,AD,AA i所在直线分别为x轴,y轴,z轴建立空间直角坐标系.设AB= t,则相关各点的坐标为A(0,0,0),B(t,0,0),B i(t,0,3),C(t,i,0),C i(t,i,3),D(0,3,0),D i(0,3,3).从而E h D = (—1,3,—3),AC= (t,i,0),BD = (—t,3,0).因为AC丄BD,所以A C E B D = —t2+ 3 + 0= 0,解得t= .3或t =—,3(舍去).于是B T D = (—.3,3,—3),AC= ( . 3,i,0),因为AC B i D = —3+ 3 + 0= 0,(2)解 由 AC = CB =-^AB 得, 以C 为坐标原点,CA 的方向为 方向,CC 1的方向为z 轴正方向,AC 丄 BC.x 轴正方向,CB 的方向为y 轴正建立如图所示的空间直角坐标系sin 0= |cos 〈 n , B 1C 1 > |=n B 1C 1|n | |E h C 1| _ .3_ .21=7= 7即直线B 1C 1与平面ACD 1所成角的正弦值为21 7题型三求两个平面的夹角【例3】(2013课标全国II )如图,直三棱柱 ABC - A 1B 1C 1 中,J 2AB , BB 1 的中点,AA 1 = AC = CB =-^AB. (1) 证明:BC 1 〃 平面 A 1CD ;(2) 求平面A 1CD 与平面A 1CE 夹角的正弦值.思维启迪 根据题意知/ ACB = 90°故CA 、CB 、C®两两垂直,可以 C 为原点建立空 间直角坐标系,利用向量求两个平面的夹角.(1)证明 连接AC 1交A 1C 于点F ,则F 为AC 1的中点. 又D 是AB 的中点,连接DF ,则BC 1 // DF . 因为DF 平面A 1CD , BC 「平面A 1CD , 所以BC 1 //平面A 1CD.所以AC 丄B i D ,即AC 丄B i D.⑵解 由⑴知,AD i = (0,3,3), AC= ( 3, 1,0), B i C i = (0,1,0).设n = (x , y , z)是平面ACD i 的一个法向量, n A C = 0, 3x + y = 0,则$,即丫n AD i = 03y+3z= 0,令 x = 1,则 n = (1, -3, 3).设直线B 1C 1与平面ACD 1所成角为0,则D ,C|C可取m = (2,i,—2).从而cos〈n, m> ~~,故sin〈 n, m>6 3 .Cxyz.设CA= 2,贝U D(1,1,0), E(0,2,1), A i(2,0,2),CD = (1,1,0), CE = (0,2,1), CA i= (2,0,2).设n= (x i, y i, z i)是平面A i CD的法向量,n CD = 0, x i + y i = 0,则即可取n= (i, - i,—i).n CA i= 0, 2xi+ 2zi =0.同理,设m是平面A i CE的法向量,m CE = 0, 则Tm CA i= 0.所以平面A i CD与平面A i CE夹角的正弦值为思维升华求平面间的夹角最常用的方法就是分别求出两个平面的法向量,然后通过两n 个平面的法向量的夹角得到所求角的大小,但要注意平面间的夹角的范围为[0,刁.吕I」H如图,在圆锥PO中,已知PO= 2, O O的直径AB= 2,C是;的中点,D为AC的中点.(1)证明:平面POD丄平面FAC;(2)求平面ABF与平面ACF夹角的余弦值.(1)证明如图,以O为坐标原点,OB, OC, OF所在直线分别为x轴,y轴,z轴建立空间直角坐标系,则O(0,0,0), A( —1,0,0),B(1,0,0), C(0,1,0), P(0,0, 2), D(—2, 2 0).设n i = (x i, y i, z i)是平面POD的一个法向量,则由n i OD = 0, n i OP = 0,lie —2xi + 2y i=,得2 2 (■:;'2 z i= 0.所以平面ABP与平面ACP夹角的余弦值为10 5所以z i = 0, x i = y i,取y i = 1,得n i = (1,1,0).设n2=(X2, y2, Z2)是平面PAC的一个法向量,则由n2 PA= 0, n2 PC= 0,| —X2—■.”'2Z2= 0,得y2 —:;.;2z2= 0.所以X2=—2z2, y2= ,2z2.取z> = 1,得n2= (—2, 2, 1).因为n 1 n2= (1,1,0) (—2, 2, 1)= 0,所以m丄n2•从而平面POD丄平面PAC.⑵解因为y轴丄平面FAB,所以平面PAB的一个法向量为n3= (0,1,0).由(1)知,平面PAC的一个法向量为n2= ( —2, 2, 1). 设向量n2和n3的夹角为0,则C0S 9=|器3|=€=甲.题型四求空间距离【例4 已知正方形ABCD的边长为4, CG丄平面ABCD , CG = 2, E, F分别是AB, AD的中点,则点C到平面GEF的距离为___________ .思维启迪所求距离可以看作CG在平面GEF的法向量的投影.答案*解析建立如图所示的空间直角坐标系Cxyz,n=(1,1,3)所以点C到平面GEF的距离为d=嘗6 11 11则CG = (0,0,2),由题意易得平面GEF的一个法向量为思维升华求点面距一般有以下三种方法:②等体积法;③向量法.其1.①作点到面的垂线,点到垂足的距离即为点到平面的距离; 中向量法在易建立空间直角坐标系的规则图形中较简便.亍心讥IY4 (2012大纲全国改编)已知直四棱柱 ABCD — A I B I C I D I 中,底面 ABCD 为正 方形,AB = 2, CC 1 = 2 2, E 为C®的中点,则点 A 到平面BED 的距离为 ()A . 2 B. 3C. ,2D . 1答案 D解析 以D 为原点,DA 、DC 、DD i 所在直线分别为 x 轴、y 轴、z 轴建立空间直角坐标系 (如图),贝U D(0,0,0), A(2,0,0), B(2,2,0), C(0,2,0), C i (0,2,2 .2), E(0,2 ,,2).设n = (x , y , z)是平面BED 的法向量.n BD = 2x + 2y = 0 则S T.DE = 2y+V2z = 0取y = 1,贝U n = (— 1,1, — .2)为平面BED 的一个法向量. 又 D A = (2,0,0),•••点A 到平面BED 的距离是|n D A|l— 1x 2+ 0+ 0||n |'.;—12+ 12+ — ,22=答题按板系列8利用空间向量求角典例:(12分)(2013江西)如图,四棱锥 P — ABCD 中,PA 丄平面 ABCD , E 为BD 的中点,G 为PD 的中点,△ DABDCB , EA = EB = AB = 1 , PA = 3,连接 CE 并延长交 AD 于F.6G⑴求证:AD丄平面CFG ;(2)求平面BCP与平面DCP夹角的余弦值.思维启迪(1)可利用判定定理证明线面垂直;(2)利用AD、AP、AB两两垂直建立空间直角坐标系,求两个平面的法向量,利用向量夹角求两个平面BCP、DCP夹角的余弦值.规范解答(1)证明在厶ABD中,因为E为BD的中点,所以EA= EB = ED = AB= 1 ,n故/ BAD = 2,n3'/ ABE = / AEB =-因为△ DAB也厶DCB,所以△ EABECB ,n从而有 / FED = Z BEC = Z AEB =-,3所以Z FED = Z FEA. [2分] 故EF 丄AD , AF = FD ,又因为PG = GD,所以FG // FA.又FA丄平面ABCD ,[4分] 所以GF丄AD,故AD丄平面CFG. [6分]⑵解以A为坐标原点建立如图所示的坐标系,[9分] [10 分][12 分]则 A(0,0,0) , B(1,0,0), C 号,于,0 ,D(0, ,3, 0), P 0, 0, 2 , 故BC =扌冷,0, Cp = -2,设平面BCP 的法向量为 n i = (X i , y i , Z i ),n i CP = 0 则 -n i BC = 0令 y i = — ,3,贝V X i = 3, Z i = 2, n i = (3,— 3, 2). 同理求得面DCP 的法向量为n 2= (i ,,3, 2),从而平面BCP 与平面DCP 夹角0的余弦值为 ,I n i n 2|4 卫cos Fsg n 2〉= |n i ||n 2= 4X 2=〒利用向量求空间角的步骤 第一步:建立空间直角坐标系. 第二步:确定点的坐标.第三步:求向量(直线的方向向量、平面的法向量)坐标. 第四步:计算向量的夹角(或函数值). 第五步:将向量夹角转化为所求的空间角.第六步:反思回顾•查看关键点、易错点和答题规范.温馨提醒 (1)利用向量求角是高考的热点,几乎每年必考,主要是突出向量的工具性作用.GD—3电I 2, 2,0. [8分](2) 本题易错点是在建立坐标系时不能明确指出坐标原点和坐标轴,导致建系不规范.(3) 将向量的夹角转化成空间角时,要注意根据角的概念和图形特征进行转化,否则易错.思想方法・感悟提高方法与技巧1 .用向量来求空间角,各类角都可以转化为向量的夹角来计算.2 .求点到平面的距离,若用向量知识,则离不开以该点为端点的平面的斜线段.失误与防范1 .利用向量求角,一定要注意将向量夹角转化为各空间角.因为向量夹角与各空间角的定义、范围不同.2 .求点到平面的距离,有时利用等体积法求解可能更方便.B i D 和CD i 所成的角( )、选择题1.已知正方体ABCD — A i B i C i D i 如图所示,则直线为 A . 60 ° B . 45 ° C . 30 ° D . 90 °答案 D解析 以A 为原点,AB 、AD 、AA i 所在直线分别为x , y , z 轴建立空间直角坐标系,设正方体边长为i ,则射线CD i 、B i D 的方向向量分别是 CD i = (-i,O,i),•••直线B i D 和CD i 所成的角为90°2 .如图,四棱锥 S — ABCD 的底面为正方形,SD 丄底面ABCD ,则下列 结论中不正确的是 ()A . AC 丄 SB B . AB //平面 SCDC . SA 与平面SBD 所成的角等于 SC 与平面SBD 所成的角 D . AB 与SC 所成的角等于DC 与SA 所成的角 答案 D解析 •••四边形ABCD 是正方形,• AC 丄BD. 又••• SD 丄底面 ABCD , • SD 丄AC.其中SD A BD = D , • AC 丄平面SDB ,从而 AC 丄SB. 故A 正确;易知 B 正确;设 AC 与DB 交于O 点,连接SO.则SA 与平面SBD 所成的角为/ ASO , SC 与平面SBD 所成的角为/ CSO ,练出高分A 组专项基础训练 (时间:40分钟)B i D = (— i,i ,i),COS 〈 CD i , B i D >i + 0— i 2X- 3= 0,SA. i2nB.nnC.4nD.6答案B解析如图所示:iS ABC = 2 X ■. 3 X•.::.;: 3 X. nsin 3=3“ 34A: 2B.3 C逅C. 3答案解析以A为原点建立如图所示的空间直角坐标系Axyz,设棱长为i,1则A i(0,0,i), E i , 0, 2 , D(0,i,0),Eft •-心=(0,i, —i) , A T E= i, 0, —2 ,设平面A i ED的一个法向量为n i= (i, y, z), y—z= 0 ,则i|i —2z= 0 ,y= 2,z= 2..n i= (1,2,2).•••平ABCD 的一个法向量为2n2= (0,0,i) , . cos〈n i ,血〉=23.所以平面A i ED与平面ABCD夹角的余弦值为2 3.在四面体P —ABC中,PA, PB, PC两两垂直,设PA = PB= PC = a,则点P到平面ABC又0A= OC, SA= SC,.•./ ASO= / CSO.故C正确;由排除法可知选 D.93. (2013山东)已知三棱柱ABC —A i B i C i的侧棱与底面垂直,体积为4底面是边长为.3的正三角形•若P为底面A i B i C i的中心,则PA与平面ABC所成角的大小为()VABC—A i B i C i = S\BC X OP = 3-43 X OP = 4, /. OP = _ 3. 又OA= ~2^X ,3X1= i, tan/ OAP = OA = .3,—/ 兀/ n又0< / OAP<2, OAP = 3.2 3余弦值为在正方体ABCD —A i B i C i D i中,点E为BB i的中点,则平面A i ED与平面ABCD夹角的的距离为A•身 B.fa C.3 D. 6a答案B解析根据题意,可建立如图所示的空间直角坐标系Pxy z,则P(0,0,0),A(a,O,O),B(0,a,0),C(0,0,a).过点P作PH丄平面ABC,交平面ABC于点H,则PH的长即为点P到平面ABC的距离.PA = PB= PC, ••• H ABC 的外心.又•••△ ABC为正三角形,• H ABC的重心,可得H点的坐标为(3,3,3)• PH - ... 3- 02+ a - 0 2+ 3 - 0 2詔a.•••点P到平面ABC的距离为-^a.二、填空题6. 已知两平面的法向量分别为_______________________________ m = (0,1,0), n= (0,1,1),则两平面夹角的大小为 ____________________________________________ 答案n4m n 2 n解析cos〈m, n>=丽厂T,•〈m,n>=;.•两平面夹角的大小为n7. 如图所示,在三棱柱ABC—A i B i C i中,AA i丄底面ABC, AB = BC= AA i,/ ABC = 90°点E、F分别是棱AB、BB i的中点,则直线EF和BC i所成的角是_________ .答案60°解析以BC为x轴,BA为y轴,BB i为z轴,建立空间直角坐标系. 设AB = BC = AA i = 2,则C i(2,0,2), E(0,i,0), F(0,0,i),则E F = (0,- i,i), B C i= (2,0,2),•- EF BC i= 2,RBcos〈E F, B C1> 2 _ 1 -,2X2*2—2,答案3,5 i0解析以A为坐标原点,AB、AD、AA i所在直线分别为x轴、y轴、z轴建立空间直角坐标系,如图所示,小i i则A i(0,0,i),E(i,0,2),F(2, i,0), D i(0,i,i).• A?E_ (1,0,—2), A?D i_ (0,1,0).设平面A i D i E的一个法向量为n_ (x, y, z),n A T E _ 0, 则n A i D i_ 0,1x —2z_ 0, 即2y_ 0.••• EF和BC i所成的角为60°8. 正方体ABCD —A i B i C i D i的棱长为1 , E、F分别为BB「CD的中点,则点F到平面AQ i E的距离为________令z_ 2,贝y x_ 1..・.n_ (1,0,2).又心_ (2, 1, —1),•••点F到平面A i D i E的距离为T1_ 心n I_〔2 —2|_ d_|n| _ 5 _10 .三、解答题9. 如图,四棱锥P—ABCD中,PD丄平面ABCD , PA与平面ABD所成的角为60°,在四边形ABCD 中,/ ADC _/ DAB _ 90° AB _ 4,CD _ 1 , AD _ 2.(1) 建立适当的坐标系,并写出点B, P的坐标;(2) 求异面直线PA与BC所成的角的余弦值.解(1)建立如图空间直角坐标系,•••/ ADC _ Z DAB _ 90°AB_ 4, CD_ 1, AD _ 2,a • A(2,0,0), C(0,1,0), B(2,4,0)..13 13,•异面直线PA与BC所成的角的余弦值为.13 13 .由PD丄平面ABCD,得/ FAD为PA与平面ABCD所成的角,•••/ FAD = 60°在Rt△ FAD 中,由AD = 2,得PD = 2.3, • P(0,0,2 . 3).—> ——>(2) •/ FA = (2,0,- 2 3), BC= (- 2,- 3,0),• cos〈PA, BC〉2 X - 2 + 0X -3 + - 2^3 X 04 .1310. (2013天津)如图,四棱柱ABCD - A1B1C1D1中,侧棱A1A丄底面ABCD , AB // DC , AB 丄AD , AD = CD = 1 , AA1 = AB= 2, E 为棱AA1的中点.(1) 证明:B1C1 丄CE;(2) 求二面角B1 - CE - C1的正弦值;(3) 设点M在线段C1E上,且直线AM与平面ADD1A1所成角的正弦值为¥,求线段AM的长.方法一如图,以点A为原点,以AD, AA1, AB所在直线为x轴, y轴,z轴建立空间直角坐标系,依题意得A(0,0,0), B(0,0,2) ,C(1,0,1),B1(0,2,2), C1(1,2,1), E(0,1,0).(1)证明易得B?C1 = (1,0, - 1), CE= ( - 1,1, - 1),于是B1C1C E =0,所以B1C1丄CE.(2)解B1C = (1 , - 2, - 1).设平面BQE的法向量m= (x, y, z),m B1C= 0, ]x-2y-z= 0,则即消去x,得y+ 2z= 0,不妨令z= 1,可得一个法m CE = 0, -x+ y-z=°.向量为m= (- 3,- 2,1).由(1)知,B1C1 丄CE,又CC1 丄B1C1,可得B1C1 丄平面CEC1, 故BQ1= (1,0,—1)为平面于是cos 〈 m, B i C i 〉 m B i C i|m | |B i C i |从而 sin 〈m , B ?C i 〉=亠尹sin 0= |cos 〈 AM , AB 〉|= AM AB||AM| |A B|于是-6,解得匸*(负值舍去), CEC i 的一个法向量.所以二面角B i - CE - C i 的正弦值为亡尹 ⑶解 AE =(o,i,o ), E C i =(i,i,i ),设E M = ?E C i =(入入为,o w 庄i ,有AM = AE + EM 可取AB = (0,0,2)为平面ADD i A i 的一个法向量.设B 为直线AM 与平面ADD i A i 所成的角,则所以AM = 2.方法二(1)证明因为侧棱CC i丄底面A i B i C i D i, B i C i平面A i B i C i D i,所以CC i丄B i C i.经计算可得B i E = .5, B i C i= .2, EC i=v3,从而B i E2= B i C i+ EC i,所以在△ B i EC i中,B i C i丄C i E,又CC i, C i E 平面CC i E, CC i Q C i E = C i,所以B i C i丄平面CC i E,又CE平面CC i E,故B i C i丄CE.⑵解过B i作B i G丄CE于点G,连接C i G.由⑴知,B i C i丄CE,故CE丄平面B i C i G,得CE丄C i G , 所以/ B i GC i为二面角B i-CE —C i的平面角.在Rt △ B1C1G 中, B i G ='42 3即二面角B i—CE —C i的正弦值为亠号.⑶解连接D i E,过点M作MH丄ED i于点H ,可得MH丄平面ADD i A i,连接AH , AM , 则/ MAH为直线AM与平面ADD i A i所成的角.设AM = x,从而在Rt△ AHM中,有在Rt△ C i D i E 中,C i D i = i, ED i = , 2,得EH = ,2MH = 3X.在厶AEH 中,/ AEH = i35° AE = i,由AH2= AE2+ EH2—2AE EHcos i35 °得珞(=i+9/+承整理得5x2— 2 2x— 6 = 0,解得x = ■, 2(负值舍去).所以线段AM的长为.2.所以sin / B i GC i =• cos〈F D i, OE >〔+ 2=VT55 • 3= 5B组专项能力提升(时间:30分钟)1.过正方形ABCD的顶点A作线段PA丄平面ABCD ,若AB= PA,则平面ABP与平面CDP的夹角大小为A. 30°B. 45°C. 60°D. 90°答案B解析建立如图所示的空间直角坐标系,设AB= PA= 1,知A(0,0,0) , B(1,0,0), D(0,1,0), C(1,1,0), P(0,0,1)由题意得,AD丄平面ABP,设E为PD的中点,连接AE,贝U AE丄PD ,又••• CD丄平面PAD, ••• AE丄CD,又PD A CD = D, • AE 丄平面CDP.• AD = (0,1,0), AE = (0, 2 , 2)分别是平面ABP、平面CDP的法向量,而〈AD, AE〉= 45°•平面ABP与平面CDP的夹角大小为45° 2 .在棱长为2的正方体ABCD —A i B i C i D i中,0是底面ABCD的中点,E, F分别是CC i,AD的中点,那么异面直线0E和FD i所成的角的余弦值等于 _____________ .答案严5解析以D为原点,分别以DA、DC、DD i为x轴、y轴、z轴建立空间直角坐标系,•F(1,0,O), D i(0,0,2), O(1,1,0), E(0,2,1),•F D i= (—1,0,2),OE = (—1,1,1),3. ________________________________________________________________________ 设正方体ABCD —A i B i C i D i的棱长为2,则点D i到平面A i BD的距离是_________________________DA I =(2,0,2), DB =(2,2,0),设平面A I BD的一个法向量n = (x, y, z),n DA I=2X+ 2z= 0 则S T .n DB = 2x+ 2y= 0令x= 1,贝U n= (1, - 1,- 1),•••点D1到平面A1BD的距离为.ID^A1 n| 2 23d |n| .3 3 .4. 如图,在底面为直角梯形的四棱锥P—ABCD中,AD // BC,Z ABC=90° PA丄平面ABCD , PA = 3, AD = 2, AB = 2羽,BC= 6.(1)求证:BD丄平面PAC;(2)求平面BPD与平面ABD的夹角.(1)证明如图,建立空间直角坐标系,则A(0,0,0) , B(2 3, 0,0),C(2 .3, 6,0), D(0,2,0), P(0,0,3),• A P =(0,0,3), A C = (2西,6,0), BD = (- 2亞,2,0).•- BD AP = 0, BD AC= 0.• BD 丄AP, BD 丄AC.又••• FA Q AC= A, • BD丄平面FAC.⑵解设平面ABD的法向量为m= (0,0,1), 平面PBD的法向量为n = (x, y, z),则n BD = 0, n BP = 0.答案2333解析如图建立空间直角坐标系,则D I(0,0,2) , A i(2,0,2), D(0,0,0), B(2,2,0), D1A1 = (2,0,0),••• BP = (- 2 3, 0,3), •••-2 3x+ 2y= 0,-2 3x+ 3z= 0, 丫=晶,解得\ =塑Z= 丁x.令x= .3,则n= ( .3, 3,2),m-n 1• cos〈 m, n > = ----- =一|m||n| 2•••平面BPD与平面ABD的夹角为60°(3)证明:在线段 5. (2013北京)如图,在三棱柱 ABC — A i B i C i 中,AAQ I C 是边长为4的正方形.平面 ABC 丄平面AA 1C 1C , AB = 3, BC = 5.(1)求证:AA i 丄平面ABC ;⑵求平面A 1BC 1与平面BB 1C 1夹角的余弦值;BD BC 1上存在点D ,使得AD 丄A 1B ,并求 的值. BC 1(1)证明 在正方形 AA 1C 1C 中,A 1A 丄AC.又平面ABC 丄平面AA 1C 1C ,且平面ABC 门平面AA 1C 1C = AC , ••• 丄平面 ABC.(2)解 在厶ABC 中,AC = 4, AB = 3, BC = 5,••• BC 2 = AC 2+ AB 2, AB 丄AC•以A 为坐标原点,建立如图所示空间直角坐标系 Axyz. A 1(0,0,4), B(0,3,0), C 1(4,0,4), B 1(0,3,4), A 1C 1= (4,0,0), A 1B = (0,3 , — 4), B 1C 1 = (4 , — 3,0) , BB 1 = (0,0,4). 设平面 A 1BC 1的法向量 n 1= (X 1 , y 1 , Z 1),平面 B 1BC 1的法向量n 2= (X 2 , y ,Z 2).A 1C 1 n 1 = 0 , 4x 1 = 0• \AB m= 0 脚-4乙=0•取向量 n 1= (0,4,3)f _B 1C 1 n 2= 0, 4x 2 — 3y 2 = 0,由S _ ? $^B _1 n 2= 0 -4z2= °.取向量 n 2= (3,4,0), m n 2 16 16…cos 〈 n 1, n 2〉= 1 1 1 . = = cl2 |n 1| |n 2| 5X 5 25'由题意知二面角 A 1 — BC 1 — B 1为锐角,•平面A 1BC 1与平面BB 1C 1夹角的余弦值为 黒 25 ⑶证明 设D(x , y , z)是直线BC 1上一点,且BD =疋_1.• (x , y — 3, z) = X 4,— 3,4),3— 3 X, 4 A 解得 x = 4 入 y = 3 — 3 入 z = 4 X — AD = (4 人又 AD 丄A i B , ••• 0+ 3(3 — 3R — 16X= 09 BD 9则X=旦,因此BD =— 则 A 25 '因此 BC i 25.。
高中数学例题:利用空间向量求空间角和距离 (2)

高中数学例题:利用空间向量求空间角和距离1.如图,在直四棱柱ABCD-A1B1C1D1中,底面ABCD为等腰梯形,AB∥CD,AB=4,BC=CD=2,AA1=2,E,F,G分别是棱A1B1,AB,A1D1的中点.(1)求证:GE⊥平面FCC1;(2)求点A1到平面BFC1的距离;(3)求直线CD到平面BFC1的距离.解:因为AB=4,BC=CD=2,F是棱AB的中点,ABCD为等腰梯形,所以易得BF=BC=CF,即△BCF为正三角形,所以∠BAD=∠ABC=60°,取AF的中点M,连接DM,则DM⊥AB,所以DM⊥CD.故以D为坐标原点,以DM,DC,DD1所在直线分别为x轴、y 轴、z轴建立如图所示的空间直角坐标系,则D(0,0,0),A(3,-1,0),F(3,1,0),C(0,2,0),C 1(0,2,2),E (3,1,2),G ⎝ ⎛⎭⎪⎫32,-12,2,B (3,3,0). 所以CF →=(3,-1,0),CC 1→=(0,0,2),FC 1→=(-3,1,2).(1)证明:设平面FCC 1的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧ n ·CF →=0,n ·CC 1→=0,即⎩⎪⎨⎪⎧3x -y =0,2z =0,取n =(1,3,0). 因为GE →=⎝ ⎛⎭⎪⎫32,32,0,则GE →=32n , 所以GE →∥n ,所以GE ⊥平面FCC 1.(2)解:FB →=(0,2,0),设平面BFC 1的法向量为m =(x 1,y 1,z 1),则⎩⎪⎨⎪⎧ m ·FB →=0,m ·FC 1→=0,即⎩⎪⎨⎪⎧2y 1=0,-3x 1+y 1+2z 1=0,取m =(2,0,3). 因为A 1(3,-1,2),所以A 1F →=(0,2,-2),所以点A 1到平面BFC 1的距离d =|A 1F →·m ||m |=|2×0+0×2+3×(-2)|22+02+(3)2=2217. (3)解:因为CD ∥AB ,CD ⊄平面BFC 1,AB ⊂平面BFC 1, 所以CD ∥平面BFC 1.又D ∈CD ,所以点D 到平面BFC 1的距离等于直线CD 到平面BFC 1的距离.由(2)可知,平面BFC 1的一个法向量为m =(2,0,3). 又DF →=(3,1,0),所以点D 到平面BFC 1的距离d =|DF →·m ||m |=|2×3+0×1+3×0|22+02+(3)2=2217. 所以直线CD 到平面BFC 1的距离为2217.。
用空间向量求空间角和距离

用空间向量求空间角和距离四川省通江中学 徐荣德空间中角和距离的计算问题是立体几何的重要内容,也是近几年高考的热点之一。
空间向量为求空间角和距离提供了新的方法,可以使几何问题中的逻辑推理转化为向量的代数运算,使问题的解决更简洁、清晰,有较强的规律性,易于掌握。
一、求空间中的角1、两异面直线所成的角设异面直线AB 、CD 所成的角为])2,0((παα∈ (如图1),则|||||||,cos |cos CD AB ⋅=><=α。
2、直线与平面所成的角设直线PA 与平面α(),αα∉∈P A 所成的角 为])2,0[(πθθ∈,平面α的法向量为(如图2),则|||||||,cos |sin n AP ⋅=><=θ。
3、二面角设二面角βα--l 的大小为θ(),0(πθ∈), 平面βα,的法向量分别为n m ,(如图3), 则><-=>=<,,πθθ或。
例1、四棱锥P —ABCD 中,底面ABCD 是正方形,侧面PAD 是边长为2的正三角形,且侧面PAD 与底面ABCD 垂直,E 为DP 的中点。
(1) 求异面直线AE 与PB (2) 求直线BE 与平面PCD 所成的角; (3) 求二面角E —AC —D 的大小。
解:建立如图4所示的空间直角坐标系,则(1) A(0,0,0),B(2,0,0),P(0,1,3),E(0,23∴23,23,0(),3,1,2(=-=AE BP46||||,cos =⋅>=<∴AE BP ∴异面直线AE 与PB 所成的角46arccos.(2) C(2,2,0),D(0,2,0),)23,23,2(),3,1,2(),0,0,2(-=--=-=∴BE CP CD , 设平面PCD 的一个法向量),,,(z y x =则⎩⎨⎧⎩⎨⎧==∴=+--=-z y x z y x x 30,03202,取1=z ,得)1,3,0(= 设直线BE 与平面PCD 所成的角为θ,则=θsin 721|||,cos |==>< ∴直线BE 与平面PCD 所成的角为721arcsin。
利用空间向量求角和距离典型例题精讲

9.8用空间向量求角和距离一、明确复习目标1.了解空间向量的概念;会建立坐标系,并用坐标来表示向量; 2.理解空间向量的坐标运算;会用向量工具求空间的角和距离.二.建构知识网络1.求角:(1)直线和直线所成的角:求二直线上的向量的夹角或补角; (2)直线和平面所成的角: ①找出射影,求线线角;②求出平面的法向量n ,直线的方向向量a ,设线面角为θ,则|cos ,|||||||n asin n a n a θ⋅=<>=⋅.(3)二面角:①求平面角,或求分别在两个面内与棱垂直的两个向量的夹角(或补角); ②求两个法向量的夹角(或补角). 2.求距离(1)点M 到面的距离||cos d MN θ=(如图)就是斜线段MN 在法向量n 方向上的正投影. 由||||cos ||n NM n NM n d θ⋅=⋅⋅=⋅ 得距离公式:||||n NM d n ⋅=(2)线面距离、面面距离都是求一点到平面的距离;(3)异面直线的距离:求出与二直线都垂直的法向量n 和连接两异面直线上两点的向量NM ,再代上面距离公式.三、双基题目练练手1.在空间直角坐标系中,已知点P (x ,y ,z ),下列叙述中正确的个数是 ( ) ①点P 关于x 轴对称点的坐标是P 1(x ,-y ,z ) ②点P 关于yOz 平面对称点的坐标是P 2(x ,-y ,-z ) ③点P 关于y 轴对称点的坐标是P 3(x ,-y ,z ) ④点P 关于原点对称的点的坐标是P 4(-x ,-y ,-z ) A.3 B.2 C.1D.02. 直三棱柱A 1B 1C 1—ABC ,∠BCA =90°,D 1、F 1分别是A 1B 1、A 1C 1的中点,BC =CA =CC 1,则BD 1与AF 1所成角的余弦值是 ( )A .1030B . 21C .1530 D .10153.已知向量a =(1,1,0),b =(-1,0,2),且ka +b 与2a -b 互相垂直,则k = ___ 4. 已知A (3,2,1)、B (1,0,4),则线段AB 的中点坐标和长度分别是 , .◆答案提示: 1. C ; 2. A ; 3. 57;4.(2,1,25),d AB =17四、以典例题做一做【例1】 (2005江西)如图,在长方体ABCD —A 1B 1C 1D 1,中,AD =AA 1=1,AB =2,点E 在棱AB 上移动.(1)证明:D 1E ⊥A 1D ;(2)当E 为AB 的中点时,求点E 到面ACD 1的距离; (3)AE 等于何值时,二面角D 1—EC —D 的大小为4π.解:以D 为坐标原点,直线DA ,DC ,DD 1分别为x ,y ,z轴,建立空间直角坐标系,设AE =x ,则A 1(1,0,1),D 1(0,0,1),E (1,x ,0),A (1,0,0)C (0,2,0)(1)11(1,0,1)(1,,1)DA D E x ⋅=⋅-因为110,.DA D E =⊥所以 (2)因为E 为AB 的中点,则E (1,1,0), 从而)0,2,1(),1,1,1(1-=-=AC E D ,)1,0,1(1-=AD , 设平面ACD 1的法向量为,n n 则不与y 轴垂直,可设(,1,)n a c =,则⎪⎩⎪⎨⎧=⋅=⋅,0,01AD n AC n也即200a a c -+=⎧⎨-+=⎩,得2a a c=⎧⎨=⎩,从而)2,1,2(=n , ∴点E 到平面AD 1C 的距离:.313212||||1=-+=⋅=n n E D h (3)1(1,2,0),(0,2,1),CE x DC =-=-1(0,0,1),DD = 设平面D 1EC 的法向量(,1,)n a c =,由10,20(2)0.0,n D C c a x n CE ⎧⋅=-=⎧⎪⇒⎨⎨+-=⋅=⎩⎪⎩ ).2,1,2(x n -= 依题意11||2cos 42||||n DD n DD π⋅==⋅222.2(2)5x ⇒=-+∴321+=x (不合,舍去),322-=x . ∴AE =32-时,二面角D 1—EC —D 的大小为4π【例2】(2005全国)已知四棱锥P -ABCD 的底面为直角梯形,AB ∥DC ,⊥=∠PA DAB ,90 底面ABCD ,且P A =AD =DC =21AB =1,M 是PB 的中点。
空间角与距离的计算

由△PAD 为等腰直角三角形得 PN⊥AD. 由 DC⊥AD,BC∥AD,BC=12AD,N 是 AD 的中点得 BN⊥AD.所以 AD⊥平面 PBN. 由 BC∥AD 得 BC⊥平面 PBN, 则平面 PBC⊥平面 PBN. 过点 Q 作 PB 的垂线, 垂足为 H,连接 MH,易知 QH⊥平面 PBC, 所以 MH 是 MQ 在平面 PBC 上的射影, 所以∠QMH 是直线 CE 与平面 PBC 所成的角.
令 y=1,则 n=(0,1,-1),
BF=1,EPPF=2,所以 EP=233,设 D 到面 PEA 的距离为 d,
因为 VA-EDP=VD-AEP,即13·AD·S△EDP=13·d·S△AEP,所以 d=
AD·S△EDP= S△AEP
1×
3 3
=
33× 2
2 2.
【通法指导】 诚如上文所说,求点面距问题可以采用等积转换和向量 法求解,除此之外个别问题也可采用垂面法(利用面面垂直性 质定理)和等价转移法(利用线面平行)求解.当然,一些求几 何体体积问题,也是对点面距问题的相应考查.
因为A→P=-1,2
3
3,1,A→E=(-1,0,1)
,
所以xy==z0,, 令 z=1,则 n=(1,0,1). 因为D→A=(1,0,0),
所以
D
到面
APE
的距离为
d=|D→|An·|n|=
|1| = 2
2 2.
解法二:由(1)知,AD⊥平面 BFED,所以 AD⊥EP,
AD⊥ED.又因为 EP⊥ED,所以 EP⊥平面 ADE.BD= 3,
【题型分析】 如图,在梯形 ABCD 中,AB∥CD,AD=DC=CB=1, ∠BCD=120°,四边形 BFED 为矩形,平面 BFED⊥平面 ABCD,BF=1.
向量法求解空间距离与空间角

向量法求解空间距离与空间角要求能掌握用向量法解决空间距离与空间角问题。
一、 空间向量与空间距离由向量的数量积||||cos AB b AB b θ⋅=⋅可知,向量AB 在向量b (直线l 的方向向量)方向上的射影(投影)是||cos ||AB b AB b θ⋅=,也就是说向量AB 在向量b (直线l 的方向向量)方向上的射影(投影)是线段AB 在直线l 上射影线段的长。
1、 点面距离公式:平面α的法向量为n ,P 是平面α外一点,点M 为平面α内任一点,则P 到平面α的距离d 就是MP在向量n 方向上射影的绝对值,即||||n MP d n ⋅=。
2、 线面距离公式: 平面α∥直线l ,平面α的法向量为n ,P ∈直线l ,点M 为平面α内一点,则直线l 与平面α的距离d 就是MP 在向量n 方向上射影的绝对值,即||||n MP d n ⋅=。
3、 面面距离公式:平面α∥平面β,平面α的法向量为n,点M 为平面α内一点,点P 为β平面β内一点,则平面α与平面β的距离d就是MP 在向量n 方向上射影的绝对值,即||||n MP d n ⋅=。
4、向量法求解距离问题的步骤: ① 建立适当的空间直角坐标系;② 将相应线段及平面的法线等用向量或坐标表示出来; ③ 利用向量的相应距离公式求解。
5、典例评析: 例1、(03广东)已知四棱柱ABCD -A 1B 1C 1D 1中,AB=1,AA 1=2,点E 是CC 1的中点,F 是BD 1中点。
(1)证明:EF 是BD 1与CC 1的公垂线; (2)求点D 1到面BDE 的距离。
二、 空间向量与空间的角 1、 异面直线所成的角:异面直线a 、b 的方向向量分别为m 、n,其向量的夹角为θ,直线a 、b 的所成的角为α,(0,]2πα∈,则||cos |cos |||||m n m n αθ⋅== ,即||cos ||||m n arc m n α⋅=。
利用空间向量求角求距离

利用空间向量求角、求距离专题一:求角 一、求异面直线所成的角分别在直线n m ,上取两个定向量,,b a则异面直线n m ,所成的角β等于向量ba ,所成的角或其补角θ,则||c o s c o s ||||ab a b βθ⋅==⋅特殊情形:0a bab ⊥⇔=, 即异面直线a 垂直于b 。
【例1】如图,正方体ABCD —A 1B 1C 1D 1中,求异面直线AC 与BC 1的夹角【例2】已知:正方体ABCD -A 1B 1C 1D 1的棱长为2,M 、N 分别为AA 1,BB 1的中点,求CM 和D 1N 所成角的余弦值。
【例3】已知长方体1111,A B C DA B C D -12,1,A B A A ==直线B D 与平面 11A A B B 所成的角为,A E 垂直B D 于E ,F 为11A B 的中点. (Ⅰ)求异面直线A E 与B F 所成的角;(II )求平面BDF 与平面1A A B 所成的二面角; (III )求点A 到平面BDF 的距离.分析:在长方体1111A B C DA B C D -中,以A 为原点以A B 所在的直线为x 轴,以A D 所在的直线为y 轴,1A A 所在的直线为z 轴建立空间直角EF ADCD 1A 1C 1B 1BNB1AAD BCC1D1M坐标系。
由已知12,1,A B A A ==可得()(0,0,0),2,0,0A B (1,0,1)F 。
又AD ⊥平面11A A B B ,从而B D 与平面11A A B B 所成的角为30D B A ∠=︒, 又2A B =,A E B D⊥,231,3A E A D ==, 从而易得1323,,0,0,,0223E D ⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭则()13,,0,1,0,122A E B F ⎛⎫==- ⎪ ⎪⎝⎭,再利用向量定义式求异面直线的夹角。
评注:应用空间向量法解此类题避开了作平移及复杂的逻辑推理,只须求出异面直线所在的向量坐标,应用向量内积即可求夹角,然后利用公式求解异面直线所成的角。
高中数学空间向量与立体几何立体几何中的向量方法利用空间向量求空间角空间距离问题数学.doc

3.2.3 利用空间向量求空间角、空间距离问题1.空间角及向量求法(1)两异面直线所成的角与两直线的方向向量所成的角相等.( )(2)直线l∥平面α,则直线l到平面α的距离就是直线l上的点到平面α的距离.( )(3)若平面α∥β,则两平面α,β的距离可转化为平面α内某条直线到平面β的距离,也可转化为平面α内某点到平面β的距离.( )答案 (1)× (2)√ (3)√2.做一做(请把正确的答案写在横线上)(1)已知两平面的法向量分别为m =(0,1,0),n =(0,1,1),则两平面所成的二面角的大小为________.(2)(教材改编P 111A 组T 11)如图,在正方体ABCD -A 1B 1C 1D 1中,M 是C 1C 的中点,O 是底面ABCD 的中点,P 是A 1B 1上的任意点,则直线BM 与OP 所成的角为________.(3)已知平面α的一个法向量为n =(-2,-2,1),点A (-1,3,0)在平面α内,则点P (-2,1,4)到平面α的距离为________.答案 (1)45°或135° (2)π2 (3)103解析 (2)建立如图所示的空间直角坐标系,设正方体棱长为2 ,则O (1,1,0),P (2,x,2),B (2,2,0),M (0,2,1),则OP→=(1,x -1,2),BM →=(-2,0,1).所以OP →·BM →=0,所以直线BM 与OP 所成角为π2. 探究1 利用空间向量求线线角例1 如图1,已知两个正四棱锥P -ABCD 与Q -ABCD 的高分别为1和2,AB =4.求异面直线AQ 与PB 所成角的余弦值.[解] 由题设知,ABCD 是正方形,连接AC ,BD ,交于点O ,则AC ⊥BD .连接PQ ,则PQ 过点O .由正四棱锥的性质知PQ ⊥平面ABCD ,故以O 为坐标原点,以直线CA,DB,QP分别为x轴、y轴、z轴建立空间直角坐标系(如图2),则P(0,0,1),A(22,0,0),Q(0,0,-2),B(0,22,0),∴AQ→=(-22,0,-2),PB→=(0,22,-1).于是cos〈AQ→,PB→〉=AQ→·PB→|AQ→||PB→|=39,∴异面直线AQ与PB所成角的余弦值为3 9 .拓展提升两异面直线所成角的求法(1)平移法:即通过平移其中一条(也可两条同时平移),使它们转化为两条相交直线,然后通过解三角形获解.(2)取定基底法:在一些不适合建立坐标系的题型中,我们经常采用取定基底的方法,这是小技巧.在由公式cos〈a,b〉=a·b|a||b|求向量a、b的夹角时,关键是求出a·b及|a|与|b|,一般是把a、b用一组基底表示出来,再求有关的量.(3)用坐标法求异面直线的夹角的方法①建立恰当的空间直角坐标系;②找到两条异面直线的方向向量的坐标形式;③利用向量的夹角公式计算两直线的方向向量的夹角;④结合异面直线所成角的范围得到异面直线所成的角.【跟踪训练1】如图,在三棱锥V-ABC中,顶点C在空间直角坐标系的原点处,顶点A,B,V分别在x,y,z轴上,D是线段AB 的中点,且AC =BC =2,∠VDC =θ.当θ=π3时,求异面直线AC 与VD 所成角的余弦值.解 由于AC =BC =2,D 是AB 的中点,所以C (0,0,0),A (2,0,0),B (0,2,0),D (1,1,0).当θ=π3时,在Rt △VCD 中,CD =2,故有V (0,0,6).所以AC →=(-2,0,0),VD →=(1,1,-6).所以cos 〈AC →,VD →〉=AC →·VD→|AC →||VD →|=-22×22=-24.所以异面直线AC 与VD 所成角的余弦值为24.探究2 利用空间向量求线面角例2 正三棱柱ABC -A 1B 1C 1的底面边长为a ,侧棱长为2a ,求AC 1与侧面ABB 1A 1所成的角.[解] 建立如下图所示的空间直角坐标系,则A (0,0,0),B (0,a,0),A 1(0,0, 2a ),C 1⎝⎛⎭⎪⎪⎫-32a ,a2, 2a , 取A 1B 1的中点M ,则M ⎝⎛⎭⎪⎫0,a2,2a ,连接AM ,MC 1,有MC 1→=⎝ ⎛⎭⎪⎪⎫-32a ,0,0, AB →=(0,a,0),AA1→=(0,0,2a ).∴MC 1→·AB →=0,MC 1→·AA 1→=0, ∴MC 1→⊥AB →,MC1→⊥AA 1→, 即MC 1⊥AB ,MC 1⊥AA 1,又AB ∩AA 1=A , ∴MC 1⊥平面ABB 1A 1 .∴∠C 1AM 是AC 1与侧面A 1ABB 1所成的角.由于AC 1→=⎝ ⎛⎭⎪⎪⎫-32a ,a 2,2a ,AM →=⎝ ⎛⎭⎪⎫0,a 2,2a ,∴AC 1→·AM →=0+a 24+2a 2=9a 24,|AC 1→|=3a 24+a 24+2a 2=3a , |AM →|=a 24+2a 2=32a , ∴cos 〈AC1→,AM →〉=9a 243a ×3a 2=32. ∴〈AC 1→,AM →〉=30°,即AC 1与侧面ABB 1A 1所成的角为30°. [解法探究] 此题有没有其他解法?解 与原解建立相同的空间直角坐标系,则AB →=(0,a,0),AA1→=(0,0,2a ),AC 1→=⎝ ⎛⎭⎪⎪⎫-32a ,a 2,2a . 设侧面ABB 1A 1的法向量n =(λ,x ,y ),∴n ·AB →=0且n ·AA1→=0.∴ax =0且2ay =0.∴x =y =0.故n =(λ,0,0).∵AC 1→=⎝ ⎛⎭⎪⎪⎫-32a ,a 2,2a , ∴cos 〈AC 1→,n 〉=n ·AC1→|n ||AC 1→|=-λ2|λ|.∴|cos 〈AC 1→,n 〉|=12. ∴AC 1与侧面ABB 1A 1所成的角为30°.[条件探究] 此题中增加条件“E ,F ,G 为AB ,AA 1,A 1C 1的中点”,求B 1F 与平面GEF 所成角的正弦值.解 建立如图所示的空间直角坐标系,则B 1(0,a ,2a ),E ⎝ ⎛⎭⎪⎫0,a 2,0,F ⎝ ⎛⎭⎪⎪⎫0,0,22a ,G ⎝⎛⎭⎪⎪⎫-34a ,a 4,2a , 于是B 1F →=⎝ ⎛⎭⎪⎪⎫0,-a ,-22a ,EF →=⎝ ⎛⎭⎪⎪⎫0,-a 2,22a , EG →=⎝ ⎛⎭⎪⎪⎫-34a ,-a 4,2a . 设平面GEF 的法向量n =(x ,y ,z ),则⎩⎨⎧n ·EF →=0,n ·EG →=0,即⎩⎪⎨⎪⎧-a 2y +22az =0,-34ax -a 4y +2az =0,所以⎩⎪⎨⎪⎧y =2z ,x =6z ,令z =1,得x =6,y =2,所以平面GEF 的一个法向量为n =(6,2,1), 所以|cos 〈B 1F →,n 〉|=|n ·B 1F →||n ||B 1F →|=⎪⎪⎪⎪⎪⎪⎪⎪-2a -22a 9×a 2+a 22=33. 所以B 1F 与平面GEF 所成角的正弦值为33.拓展提升求直线与平面的夹角的方法与步骤思路一:找直线在平面内的射影,充分利用面与面垂直的性质及解三角形知识可求得夹角(或夹角的某一三角函数值).思路二:用向量法求直线与平面的夹角可利用向量夹角公式或法向量.利用法向量求直线与平面的夹角的基本步骤:(1)建立空间直角坐标系; (2)求直线的方向向量AB →; (3)求平面的法向量n ;(4)计算:设线面角为θ,则sin θ=|n ·AB→||n ||AB→|.【跟踪训练2】 如图,四棱锥P -ABCD 中,PA ⊥底面ABCD ,AD ∥BC ,AB =AD =AC =3,PA =BC =4,M 为线段AD 上一点,AM =2MD ,N 为PC 的中点.(1)证明:MN ∥平面PAB ;(2)求直线AN 与平面PMN 所成角的正弦值.解 (1)证明:由已知得AM =23AD =2.取BP 的中点T ,连接AT ,TN .由N 为PC 的中点知TN ∥BC ,TN =12BC =2.又AD ∥BC ,故TN 綊AM ,四边形AMNT 为平行四边形,于是MN ∥AT .因为AT ⊂平面PAB ,MN ⊄平面PAB ,所以MN ∥平面PAB .(2)取BC 的中点E ,连接AE .由AB =AC 得AE ⊥BC ,从而AE ⊥AD ,且AE =AB 2-BE 2=AB2-⎝ ⎛⎭⎪⎫BC 22= 5.以A 为坐标原点,AE →的方向为x 轴正方向,建立如图所示的空间直角坐标系Axyz .由题意知,P (0,0,4),M (0,2,0),C (5,2,0),N ⎝⎛⎭⎪⎪⎫52,1,2, PM →=(0,2,-4),PN →=⎝ ⎛⎭⎪⎪⎫52,1,-2,AN →=⎝ ⎛⎭⎪⎪⎫52,1,2. 设n =(x ,y ,z )为平面PMN 的法向量,则⎩⎨⎧n ·PM →=0,n ·PN →=0,即⎩⎪⎨⎪⎧2y -4z =0,52x +y -2z =0,可取n =(0,2,1).于是|cos 〈n ,AN →〉|=|n ·AN →||n ||AN →|=8525,则直线AN 与平面PMN所成角的正弦值为8525.探究3 利用空间向量求二面角例3 如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,面ABEF 为正方形,AF =2FD ,∠AFD =90°,且二面角D -AF -E 与二面角C -BE -F 都是60°.(1)证明:平面ABEF⊥平面EFDC;(2)求二面角E-BC-A的余弦值.[解] (1)证明:由已知可得AF⊥DF,AF⊥FE,所以AF⊥平面EFDC.又AF⊂平面ABEF,故平面ABEF⊥平面EFDC.(2)过D作DG⊥EF,垂足为G,由(1)知DG⊥平面ABEF.以G为坐标原点,GF→的方向为x轴正方向,|GF→|为单位长,建立如图所示的空间直角坐标系Gxyz.由(1)知∠DFE为二面角D-AF-E的平面角,故∠DFE=60°,则DF=2,DG=3,可得A(1,4,0),B(-3,4,0),E(-3,0,0),D(0,0,3).由已知,AB∥EF,AB⊄平面EFDC,EF⊂平面EFDC,所以AB∥平面EFDC.又平面ABCD∩平面EFDC=CD,故AB∥CD,CD∥EF.由BE∥AF,可得BE⊥平面EFDC,所以∠CEF为二面角C-BE -F的平面角,∠CEF=60°.从而可得C(-2,0,3).连接AC,则EC→=(1,0,3),EB→=(0,4,0),AC→=(-3,-4,3),AB→=(-4,0,0).设n=(x,y,z)是平面BCE的法向量,则⎩⎨⎧n ·EC →=0,n ·EB →=0,即⎩⎪⎨⎪⎧x +3z =0,4y =0,所以可取n =(3,0,-3).设m 是平面ABCD 的法向量,则⎩⎨⎧m ·AC →=0,m ·AB →=0,同理可取m =(0,3,4).则cos 〈n ,m 〉=n ·m |n ||m |=-21919.故二面角E -BC -A 的余弦值为-21919.拓展提升二面角的向量求法(1)若AB ,CD 分别是二面角α-l -β的两个半平面内与棱l 垂直的异面直线,则二面角的大小就是向量AB →与CD →的夹角(如图①).(2)利用坐标法求二面角的步骤设n 1,n 2分别是平面α,β的法向量,则向量n 1与n 2的夹角(或其补角)就是两个平面夹角的大小,如图②.用坐标法的解题步骤如下:①建系:依据几何条件建立适当的空间直角坐标系. ②求法向量:在建立的坐标系下求两个面的法向量n 1,n 2.③计算:求n1与n2所成锐角θ,cosθ=|n1·n2| |n1||n2|.④定值:若二面角为锐角,则为θ;若二面角为钝角,则为π-θ.【跟踪训练3】若PA⊥平面ABC,AC⊥BC,PA=AC=1,BC =2,求二面角A-PB-C的余弦值.解 解法一:如下图所示,取PB 的中点D ,连接CD .∵PC =BC =2,∴CD ⊥PB .∴作AE ⊥PB 于E ,那么二面角A -PB -C 的大小就等于异面直线DC 与EA 所成的角θ的大小.∵PD =1,PE =PA 2PB =12,∴DE =PD -PE =12,又∵AE =AP ·AB PB =32,CD =1,AC =1,AC →=AE →+ED →+DC →,且AE →⊥ED →,ED →⊥DC→,∴|AC →|2=|AE →|2+|ED →|2+|DC →|2+2|AE →|·|DC →|·cos(π-θ), 即1=34+14+1-2×32×1×cos θ,解得cos θ=33.故二面角A -PB -C 的余弦值为33.解法二:由解法一可知,向量DC →与EA →的夹角的大小就是二面角A -PB -C 的大小,如图,建立空间直角坐标系Cxyz ,则A (1,0,0),B (0,2,0),C (0,0,0),P (1,0,1),D 为PB的中点,D ⎝⎛⎭⎪⎪⎫12,22,12. ∵PE EB =AP 2AB 2=13,即E 分PB →的比为13,∴E ⎝⎛⎭⎪⎪⎫34,24,34,EA →=⎝ ⎛⎭⎪⎪⎫14,-24,-34, DC →=⎝ ⎛⎭⎪⎪⎫-12,-22,-12,|EA →|=32,|DC →|=1,EA →·DC →=14×⎝ ⎛⎭⎪⎫-12+⎝ ⎛⎭⎪⎪⎫-24×⎝ ⎛⎭⎪⎪⎫-22+⎝ ⎛⎭⎪⎫-34×⎝ ⎛⎭⎪⎫-12=12.∴cos 〈EA →,DC →〉=EA →·DC →|EA →||DC →|=33. 故二面角A -PB -C 的余弦值为33.解法三:如右图所示,建立空间直角坐标系,则A (0,0,0),B (2,1,0),C (0,1,0),P (0,0,1),AP →=(0,0,1),AB →=(2,1,0),CB →=(2,0,0),CP →=(0,-1,1),设平面PAB 的法向量为m =(x ,y ,z ),则⎩⎨⎧m ·AP →=0,m ·AB →=0⇒⎩⎪⎨⎪⎧x ,y ,z ·0,0,1=0,x ,y ,z ·2,1,0=0⇒⎩⎪⎨⎪⎧y =-2x ,z =0,令x =1,则m =(1,-2,0),设平面PBC 的法向量为n =(x ′,y ′,z ′),则⎩⎨⎧n ·CB →=0,n ·CP →=0⇒⎩⎪⎨⎪⎧x ′,y ′,z ′·2,0,0=0,x ′,y ′,z ′·0,-1,1=0⇒⎩⎪⎨⎪⎧x ′=0,y ′=z ′.令y ′=-1,则n =(0,-1,-1),∴cos 〈m ,n 〉=m ·n |m ||n |=33.∴二面角A -PB -C 的余弦值为33.探究4 利用空间向量求距离例4 已知正方形ABCD 的边长为1,PD ⊥平面ABCD ,且PD =1,E ,F 分别为AB ,BC 的中点.(1)求点D 到平面PEF 的距离; (2)求直线AC 到平面PEF 的距离.[解] 解法一:(1)建立如图所示的空间直角坐标系,则D (0,0,0),P (0,0,1),A (1,0,0),C (0,1,0),E ⎝ ⎛⎭⎪⎫1,12,0,F ⎝ ⎛⎭⎪⎫12,1,0.设DH ⊥平面PEF ,垂足为H ,则DH →=xDE →+yDF →+zDP →=⎝ ⎛⎭⎪⎫x +12y ,12x +y ,z ·(x +y +z =1),PE →=⎝ ⎛⎭⎪⎫1,12,-1,PF →=⎝ ⎛⎭⎪⎫12,1,-1.∴DH →·PE →=x +12y +12⎝ ⎛⎭⎪⎫12x +y -z =54x +y -z =0.同理,DH →·PF →=x +54y -z =0,又x +y +z =1,∴可解得x =y =417,z =917.∴DH →=317(2,2,3).∴|DH →|=31717.因此,点D 到平面PEF 的距离为31717.(2)设AH ′⊥平面PEF ,垂足为H ′,则AH ′→∥DH →,设AH ′→=λ(2,2,3)=(2λ,2λ,3λ)(λ≠0),则EH ′→=EA →+AH ′→=⎝ ⎛⎭⎪⎫0,-12,0+(2λ,2λ,3λ)=⎝ ⎛⎭⎪⎫2λ,2λ-12,3λ.∴AH ′→·EH ′→=4λ2+4λ2-λ+9λ2=0,即λ=117.∴AH ′→=117(2,2,3),|AH ′→|=1717, 又AC ∥平面PEF ,∴AC 到平面PEF 的距离为1717.解法二:(1)由解法一建立的空间直角坐标系知EF →=⎝ ⎛⎭⎪⎫-12,12,0,PE →=⎝ ⎛⎭⎪⎫1,12,-1,DE →=⎝ ⎛⎭⎪⎫1,12,0,设平面PEF 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧-12x +12y =0,x +12y -z =0,解得⎩⎪⎨⎪⎧y =x ,z =32x ,令x =2,则n =(2,2,3), ∴点D 到平面PEF 的距离d =|DE →·n ||n |=|2+1|4+4+9=31717.(2)∵AC ∥EF ,∴直线AC 到平面PEF 的距离也即是点A 到平面PEF 的距离.又AE →=⎝ ⎛⎭⎪⎫0,12,0,∴点A 到平面PEF 的距离为 d =|AE →·n ||n |=117=1717.拓展提升1.向量法求点到直线的距离的两种思路(1)将求点到直线的距离问题转化为求向量模的问题,即利用待定系数法求出垂足的坐标,然后求出向量的模,这是求各种距离的通法.(2)直接套用点线距公式求解,其步骤为直线的方向向量a →所求点到直线上一点的向量PP ′→及其在直线的方向向量a 上的投影→代入公式.注意平行直线间的距离与点到直线的距离之间的转化. 2.点面距、线面距、面面距的求解方法线面距、面面距实质上都是求点面距,求直线到平面、平面到平面的距离的前提是线面、面面平行.点面距的求解步骤:(1)求出该平面的一个法向量;(2)找出从该点出发的平面的任一条斜线段对应的向量; (3)求出法向量与斜线段对应向量的数量积的绝对值,再除以法向量的模,即可求出点到平面的距离.【跟踪训练4】 正方体ABCD -A 1B 1C 1D 1的棱长为2,E ,F ,G 分别是C 1C ,D 1A 1,AB 的中点,求点A 到平面EFG 的距离.解 如图,建立空间直角坐标系,则A (2,0,0),E (0,2,1),F (1,0,2),G (2,1,0),∴EF →=(1,-2,1),EG →=(2,-1,-1),GA →=(0,-1,0). 设n =(x ,y ,z )是平面EFG 的法向量,则⎩⎨⎧n ·EF →=0,n ·EG →=0,∴⎩⎪⎨⎪⎧x -2y +z =0,2x -y -z =0,∴x =y =z ,可取n =(1,1,1), ∴d =|GA →·n ||n |=13=33,即点A 到平面EFG 的距离为33.探究5 与空间有关的探索性问题例5 如图,矩形ABCD 和梯形BEFC 所成的平面互相垂直,BE ∥CF ,∠BCF =∠CEF =90°,AD =3,EF =2.(1)求证:AE ∥平面DCF ;(2)当AB 的长为何值时,二面角A -EF -C 的大小为60°?[解] 如图,以点C 为坐标原点,以CB ,CF 和CD 所在直线分别作为x 轴、y 轴和z 轴,建立空间直角坐标系Cxyz .设AB =a ,BE =b ,CF =c ,则C (0,0,0),A (3,0,a ),B (3,0,0),E (3,b,0),F (0,c,0).(1)证明:AE →=(0,b ,-a ),CB →=(3,0,0),BE →=(0,b,0),∴CB →·AE →=0,CB →·BE →=0, 从而CB ⊥AE ,CB ⊥BE . 又AE ∩BE =E , ∴CB ⊥平面ABE . ∵CB ⊥平面DCF ,∴平面ABE ∥平面DCF .又AE ⊂平面ABE , 故AE ∥平面DCF .(2)∵EF →=(-3,c -b,0),CE →=(3,b,0), 且EF →·CE →=0,|EF→|=2, ∴⎩⎪⎨⎪⎧-3+b c -b =0,3+c -b2=2,解得b =3,c =4.∴E (3,3,0),F (0,4,0).设n =(1,y ,z )与平面AEF 垂直, 则n ·AE →=0,n ·EF →=0,即⎩⎪⎨⎪⎧1,y ,z ·0,3,-a =0,1,y ,z ·-3,1,0=0,解得n =⎝⎛⎭⎪⎪⎫1,3,33a.又∵BA ⊥平面BEFC ,BA →=(0,0,a ),∴|cos 〈n ,BA →〉|=|n ·BA →||n ||BA →|=334a 2+27=12, 解得a =92或a =-92(舍去).∴当AB =92时,二面角A -EF -C 的大小为60°.拓展提升利用向量解决存在性问题的方法策略求解存在性问题的基本策略是:首先,假定题中的数学对象存在;其次,构建空间直角坐标系;再次,利用空间向量法把存在性问题转化为求参数是否有解问题;最后,解方程,下结论.利用上述思维策略,可使此类存在性难题变为常规问题.【跟踪训练5】 在长方体ABCD -A 1B 1C 1D 1中,AD =AA 1=12AB ,点E 是棱AB 上一点,且AEEB=λ. (1)证明:D 1E ⊥A 1D ;(2)是否存在λ,使得二面角D 1-EC -D 的平面角为π4?并说明理由.解 (1)证明:以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴建立空间直角坐标系,如图所示.不妨设AD =AA 1=1,AB =2,则D (0,0,0),A (1,0,0),B (1,2,0),C (0,2,0),A 1(1,0,1),B 1(1,2,1),C 1(0,2,1),D 1(0,0,1).因为AEEB =λ,所以E ⎝⎛⎭⎪⎫1,2λ1+λ,0, 于是D 1E →=⎝ ⎛⎭⎪⎫1,2λ1+λ,-1,A 1D →=(-1,0,-1),所以D 1E →·A 1D →=⎝ ⎛⎭⎪⎫1,2λ1+λ,-1·(-1,0,-1)=-1+0+1=0,故D 1E ⊥A 1D .(2)因为DD 1⊥平面ABCD ,所以平面DEC 的一个法向量为n =(0,0,1),设平面D 1EC 的法向量为n 1=(x ,y ,z ),又CE →=⎝ ⎛⎭⎪⎫1,2λ1+λ-2,0,CD 1→=(0,-2,1), 则⎩⎨⎧n 1·CE →=0,n 1·CD 1→=0,即⎩⎪⎨⎪⎧n 1·⎝ ⎛⎭⎪⎫1,2λ1+λ-2,0=0,n 1·0,-2,1=0,整理得⎩⎪⎨⎪⎧x -y ·21+λ=0,-2y +z =0,取y =1,则n 1=⎝ ⎛⎭⎪⎫21+λ,1,2. 因为二面角D 1-EC -D 的平面角为π4,所以22=|n ·n 1||n ||n 1|,即22=21+4+⎝⎛⎭⎪⎫21+λ2,解得λ=233-1. 故存在λ=233-1,使得二面角D 1-EC -D 的平面角为π4.1.用空间向量解决立体几何问题的“三步曲”(1)建立立体图形与空间向量的联系,用空间向量表示问题中涉及的点、直线,把立体几何问题转化为向量问题.(2)通过向量运算,研究点、直线、平面之间的位置关系以及相应的距离和夹角等问题.(3)把向量的运算结果“翻译”成相应的几何意义. 2.利用法向量求直线AB 与平面α所成的角θ的步骤 (1)求平面α的法向量n .(2)利用公式sin θ=|cos 〈AB →,n 〉|=|AB →·n ||AB →||n |,注意直线和平面所成角的取值范围为⎣⎢⎡⎦⎥⎤0,π2.3.利用法向量求二面角的余弦值的步骤 (1)求两平面的法向量.(2)求两法向量的夹角的余弦值.(3)由图判断所求的二面角是锐角、直角,还是钝角,从而下结论.在用法向量求二面角的大小时应注意:平面的法向量有两个相反的方向,取的方向不同求出来的角度当然就不同,所以最后还应该根据这个二面角的实际形态确定其大小.4.点面距的求解步骤(1)求出该平面的一个法向量.(2)找出从该点出发的平面的任一条斜线段对应的向量. (3)求出法向量与斜线段对应向量的数量积的绝对值,再除以法向量的模,即可求出点到平面的距离.1.若两异面直线l 1与l 2的方向向量分别为a =(0,4,-3),b =(1,2,0),则直线l 1与l 2的夹角的余弦值为( )A.32B.8525C.4315D.33答案 B解析 设l 1,l 2的夹角为θ,则cos θ=|cos 〈a ,b 〉|=0×1+4×2+-3×05×5=8525.2.直角△ABC 的两条直角边BC =3,AC =4,PC ⊥平面ABC ,PC =95,则点P 到斜边AB 的距离是( )A .5B .3C .3 2 D.125答案 B解析 以C 为坐标原点,CA ,CB ,CP 所在直线为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系.则A (4,0,0),B (0,3,0),P ⎝ ⎛⎭⎪⎫0,0,95,所以AB →=(-4,3,0),AP →=⎝⎛⎭⎪⎫-4,0,95, 所以AP →在AB →上的投影长为|AP →·AB →||AB →|=165,所以点P 到AB 的距离为d =|AP →|2-⎝ ⎛⎭⎪⎫1652=16+8125-25625=3.故选B.3.把正方形ABCD 沿对角线AC 折起成直二面角,点E ,F 分别是AD ,BC 的中点,O 是正方形中心,则折起后,∠EOF 的大小为( )A .(0°,90°)B .90°C .120°D .(60°,120°)答案 C解析 OE →=12(OA →+OD →),OF →=12(OB →+OC →),∴OE →·OF →=14(OA →·OB →+OA →·OC →+OD →·OB →+OD →·OC →)=-14|OA →|2.又|OE →|=|OF →|=22|OA →|,∴cos 〈OE →,OF →〉=-14|OA →|212|OA →|2=-12.∴∠EOF =120°.故选C. 4.平面α的法向量n 1=(1,0,-1),平面β的法向量n 2=(0,-1,1),则平面α与β所成二面角的大小为________.答案π3或2π3解析 设二面角的大小为θ,则cos 〈n 1,n 2〉=1×0+0×-1+-1×12·2=-12,所以cos θ=12或-12,∴θ=π3或2π3.5.如图,在长方体AC 1中,AB =BC =2,AA 1=2,点E ,F 分别是平面A 1B 1C 1D 1、平面BCC 1B 1的中心.以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x ,y ,z 轴建立空间直角坐标系.试用向量方法解决下列问题:(1)求异面直线AF 和BE 所成的角;(2)求直线AF 和平面BEC 所成角的正弦值.解 (1)由题意得A (2,0,0),F ⎝ ⎛⎭⎪⎪⎫1,2,22,B (2,2,0),E (1,1,2),C (0,2,0).∴AF →=⎝⎛⎭⎪⎪⎫-1,2,22,BE →=(-1,-1,2), ∴AF →·BE →=1-2+1=0.∴直线AF 和BE 所成的角为90°.(2)设平面BEC 的法向量为n =(x ,y ,z ),又BC→=(-2,0,0),BE →=(-1,-1,2),则n ·BC →=-2x =0,n ·BE →=-x -y +2z =0,∴x =0,取z =1,则y =2,∴平面BEC 的一个法向量为n =(0,2,1).∴cos 〈AF →,n 〉=AF →·n|AF →||n |=522222×3=53333.设直线AF 和平面BEC 所成的角为θ,则sin θ=53333,即直线AF 和平面BEC 所成角的正弦值为53333.。
9.8用空间向量求角和距离Microsoft Word 文档

9.8用空间向量求角和距离一、明确复习目标1.了解空间向量的概念;会建立坐标系,并用坐标来表示向量; 2.理解空间向量的坐标运算;会用向量工具求空间的角和距离.二.建构知识网络1.求角:(1)直线和直线所成的角:求二直线上的向量的夹角或补角; (2)直线和平面所成的角: ①找出射影,求线线角;②求出平面的法向量n ,直线的方向向量a,设线面角为θ,则|cos ,|||||||n asin n a n a θ⋅=<>=⋅. (3)二面角:①求平面角,或求分别在两个面内与棱垂直的两个向量的夹角(或补角); ②求两个法向量的夹角(或补角). 2.求距离(1)点M 到面的距离||cos d MN θ=(如图)就是斜线段MN 在法向量n方向上的正投影.由||||cos ||n NM n NM n d θ⋅=⋅⋅=⋅得距离公式:||||n NM d n ⋅=(2)线面距离、面面距离都是求一点到平面的距离;(3)异面直线的距离:求出与二直线都垂直的法向量n和连接两异面直线上两点的向量NM,再代上面距离公式.三、双基题目练练手1.在空间直角坐标系中,已知点P (x ,y ,z ),下列叙述中正确的个数是 ( ) ①点P 关于x 轴对称点的坐标是P 1(x ,-y ,z ) ②点P 关于yOz 平面对称点的坐标是P 2(x ,-y ,-z ) ③点P 关于y 轴对称点的坐标是P 3(x ,-y ,z ) ④点P 关于原点对称的点的坐标是P 4(-x ,-y ,-z ) A.3 B.2 C.1D.02. 直三棱柱A 1B 1C 1—ABC ,∠BCA =90°,D 1、F 1分别是A 1B 1、A 1C 1的中点,BC =CA =CC 1,则BD 1与AF 1所成角的余弦值是 ( )A .1030B . 21C .1530 D .10153.已知向量a =(1,1,0),b =(-1,0,2),且ka +b 与2a -b 互相垂直,则k = ___ 4. 已知A (3,2,1)、B (1,0,4),则线段AB 的中点坐标和长度分别是 , .◆答案提示: 1. C ; 2. A ; 3. 57;4.(2,1,25),d AB 四、以典例题做一做【例1】 (2005江西)如图,在长方体ABCD —A 1B 1C 1D 1,中,AD =AA 1=1,AB =2,点E 在棱AB 上移动.(1)证明:D 1E ⊥A 1D ;(2)当E 为AB 的中点时,求点E 到面ACD 1的距离; (3)AE 等于何值时,二面角D 1—EC —D 的大小为4π.解:以D 为坐标原点,直线DA ,DC ,DD 1分别为x ,y ,z轴,建立空间直角坐标系,设AE =x ,则A 1(1,0,1),D 1(0,0,1),E (1,x ,0),A (1,0,0)C (0,2,0)(1)11(1,0,1)(1,,1)DA D E x ⋅=⋅-因为110,.DA D E =⊥所以 (2)因为E 为AB 的中点,则E (1,1,0), 从而)0,2,1(),1,1,1(1-=-=D ,)1,0,1(1-=AD ,设平面ACD 1的法向量为,n n则不与y 轴垂直,可设 (,1,)n a c = ,则⎪⎩⎪⎨⎧=⋅=⋅,0,01AD也即200a a c -+=⎧⎨-+=⎩,得2a a c=⎧⎨=⎩,从而)2,1,2(=, ∴点E 到平面AD 1C 的距离:.3132121=-+==h (3)1(1,2,0),(0,2,1),CE x D C =-=-1(0,0,1),DD =设平面D 1EC 的法向量(,1,)n a c =,由10,20(2)0.0,n D C c a x n CE ⎧⋅=-=⎧⎪⇒⎨⎨+-=⋅=⎩⎪⎩).2,1,2(x n -=依题意11||cos 4||||n DD n DD π⋅==⋅∴321+=x (不合,舍去),322-=x . ∴AE =32-时,二面角D 1—EC —D 的大小为4π【例2】(2005全国)已知四棱锥P -ABCD 的底面为直角梯形,AB ∥DC ,⊥=∠PA DAB ,90 底面ABCD ,且P A =AD =DC =21AB =1,M 是PB 的中点。
利用空间向量求空间角和距离

∴EA1⊥平面ABC1D1.
又FO∥EA1, ∴FO⊥平面ABC1D1,
∴FO= 1 EA1= 2 .
2 4
方法二:建立如图所示的空间直角坐标系,可得
1 1 平面 ABC D 的法向量 C1O=( , ,), 0 DA1 =(1,0,1), 1 1判断下面结论是否正确(请在括号中打“√”或“×”). (1)两直线的方向向量的夹角就是两条直线的夹角.( )
(2)直线的方向向量和平面的法向量的夹角就是直线与平面的 夹角.( ) )
(3)两个平面的法向量的夹角是这两个平面的夹角.( (4)两异面直线的夹角的范围是(0,
],直线与平面的夹角的 2 范围是[0, ],平面与平面的夹角的范围是[0, ]. 2 2
E(0,2,1),B(1,2,0),C1(0,2,2), BC1 =(-1,0,2),
AE =(-1,2,1), BC1 AE 30 . ∴cos〈 BC1 , AE〉 BC1 | AE | 10
(C)30°
(D)150°
【解析】选C.设l与α的夹角为α, 则sin α=
又∵0°≤α≤90°,∴α=30°.
2.已知两个平面的法向量分别为m=(0,1,0),n=(0,1,1),则两 平面的夹角的大小为( (A)45° (C)45°或135° ) (B)135° (D)以上都不对
【解析】选A.∵m=(0,1,0),n=(0,1,1), ∴|m|=1,|n|= 2, m·n=1,
m n 1 2 , ∴cos〈m,n〉= | m || n | 2 2
∴〈m,n〉=45°, ∴两平面的夹角的大小为45°.
3.正方体ABCD-A1B1C1D1的棱长为1,O是A1C1的中点,则O到平 面ABC1D1的距离为( (A) 3
用空间向量方法求角和距离

用向量方法求空间角和距离在高考的立体几何试题中,求角与距离是常考查的问题,其传统的“三步曲”解法:“作图、证明、解三角形”,作辅助线多、技巧性强,是教学和学习的难点.向量进入高中教材,为立体几何增添了活力,新思想、新方法与时俱进,本专题将运用向量方法简捷地解决这些问题.1求空间角问题分别在直线n m ,b a ,所成的角或0a b a b ⊥⇔= , (2)求线面角特殊情形:当a = 一般情形:在直线图所示),再求cos 则sin cos βθ=(3)求二面角方法1:转化为分别是在二面角的两个半平面内且与棱都垂直的两条直线上的两个向量的夹角(注意:要特别关注两个向量的方向).方法2:先求出二面角一个面内一点到另一个面的距离及到棱的距离,然后通过解直角三角形求角.方法3:(法向量法)构造二面角βα--l 的两个半平面βα、的法向量21n n 、(都取向上的方向,如图所示)2)若二面角βα--l 是“锐角型”如图乙所示,那么其大小φ等于两法向量21n n 、的夹角即 1212cos cos .||||n n n n φθ⋅==⋅2.求空间距离问题(1)求点面距离 其中n 是平面α在法一、找平面β使面β法二:如图,d 是异面直线a 与 b 的距离,n是直线a 与b 的一个法向量 A 、 B 分别是 直线a , b 上的点,显然:||cos ,d AB θ=又||cos ,AB n θ= ||AB n d ∴= 图甲例1.如图,在棱长为2的正方体1111ABCD A B C D -中,E 、F 分别是棱1111,A D A B 的中点.(Ⅰ)求异面直线1DE FC 与所成角的余弦值; (II )求1BC 和面EFBD 所成的角; (III )求1B 到面EFBD 的距离例2.如图,三棱柱中,已知A BCD 是边长为1的正方形,四边形B B A A '' 是矩形,。
平面平面ABCD B B A A ⊥''(Ⅰ)若A A '=1,求直线AB 到面'DAC 的距离.(II ) 试问:当A A '的长度为多少时,二面角 A C A D -'-的大小为? 60(Ⅰ)求证:直线1B P 不可能与平面11ACC A 垂直;(II )当11BC B P ⊥时,求二面角11C B P C --的大小的余弦值.例4.如图,1BE AB ⊥;(Ⅱ)求二面角B (Ⅲ)求异面直线例5.(山东卷)如图,已知平面A 1B 1C 1平行于三棱锥V-ABC 的底面ABC ,等边∆ AB 1C 所在的平面与底面ABC 垂直,且∠ACB =90°,设AC =2a ,BC=a .(1)求证直线B 1C 1是异面直线AB 1与A 1C 1的公垂线; (2)求点A 到平面VBC 的距离; (3)求二面角A-VB-C 的大小例6.如图,在底面是菱形的四棱锥P —ABCD 中,60,ABC ∠=︒,PA AC a ==,PB PD ==点E 在PD上,且PE:ED= 2: 1. (Ⅰ)证明 PA⊥平面ABCD;(Ⅱ)求以AC 为棱,EAC 与DAC 为面的二面角θ的大小:(Ⅲ)在棱PC 上是否存在一点F, 使BF∥平面AEC?证明你的结论.练习:1.在正四面体S ABC -中,棱长为a ,E,F分别为SA 和BC 的中点,求异面直线BE 和SF 所成角的余弦值.2.在边长为1的菱形ABCD 中,60ABC ︒∠=,将菱形沿对角线AC 折起,使折起后BD =1,求二面角B ACD --的余弦值.3.在四棱锥P ABCD -中,底面ABCD 为矩形,PD ⊥底面,且PD AD a ==,问平面PBA 与平面PBC 能否垂直?试说明理由.(不垂直)4.在直三棱柱12AC AA ==. (1) 求1O(2) 求BCPA=2,(Ⅰ)求直线PA 与平面DEF 所成角的大小; (Ⅱ)求点P 到平面DEF 的距离。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
利用空间向量求空间角和距离A 级——夯基保分练1.如图所示,在正方体ABCD -A 1B 1C 1D 1中,已知M ,N 分别是BD 和AD 的中点,则B 1M 与D 1N 所成角的余弦值为( )A.3030 B .3015C.3010D.1515解析:选C 建立如图所示的空间直角坐标系.设正方体的棱长为2,则B 1(2,2,2),M (1,1,0),D 1(0,0,2),N (1,0,0),∴B 1M ―→=(-1,-1,-2),D 1N ―→=(1,0,-2),∴B 1M 与D 1N 所成角的余弦值为|B 1M ―→·D 1N ―→||B 1M ―→|·|D 1N ―→|=|-1+4|1+1+4×1+4=3010. 2.如图,已知长方体ABCD -A 1B 1C 1D 1中,AD =AA 1=1,AB =3,E 为线段AB 上一点,且AE =13AB ,则DC 1与平面D 1EC 所成角的正弦值为( )A.33535B .277C.33D.24解析:选A 如图,以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,则C 1(0,3,1),D 1(0,0,1),E (1,1,0),C (0,3,0),∴DC 1―→=(0,3,1),D 1E ―→=(1,1,-1),D 1C ―→=(0,3,-1). 设平面D 1EC 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·D 1E ―→=0,n ·D 1C ―→=0,即⎩⎪⎨⎪⎧x +y -z =0,3y -z =0,取y =1,得n =(2,1,3).∴cos DC 1―→,n=DC 1―→·n |DC 1―→|·|n|=33535, ∴DC 1与平面D 1EC 所成的角的正弦值为33535.3.在正方体ABCD -A 1B 1C 1D 1中,点E 为BB 1的中点,则平面A 1ED 与平面ABCD 所成的锐二面角的余弦值为( )A.12 B .23C.33D.22解析:选B 以A 为坐标原点建立如图所示的空间直角坐标系A -xyz ,设棱长为1,则A 1(0,0,1),E ⎝⎛⎭⎫1,0,12,D (0,1,0), ∴A 1D ―→=(0,1,-1), A 1E ―→=⎝⎛⎭⎫1,0,-12, 设平面A 1ED 的一个法向量为n 1=(1,y ,z ), 则⎩⎪⎨⎪⎧ n 1·A 1D ―→=0,n 1·A 1E ―→=0,即⎩⎪⎨⎪⎧y -z =0,1-12z =0,∴⎩⎪⎨⎪⎧y =2,z =2,∴n 1=(1,2,2). 又平面ABCD 的一个法向量为n 2=(0,0,1), ∴cos 〈n 1,n 2〉=23×1=23. 即平面A 1ED 与平面ABCD 所成的锐二面角的余弦值为23.4.如图,正三棱柱ABC -A 1B 1C 1的所有棱长都相等,E ,F ,G 分别为AB ,AA 1,A 1C 1的中点,则B 1F 与平面GEF 所成角的正弦值为( )A.35 B .56C.3310D.3610解析:选A 设正三棱柱的棱长为2,取AC 的中点D ,连接DG ,DB ,分别以DA ,DB ,DG 所在的直线为x 轴,y 轴,z 轴建立空间直角坐标系,如图所示,则B 1()0,3,2,F (1,0,1), E ⎝⎛⎭⎫12,32,0,G (0,0,2), B 1F ―→=()1,-3,-1,EF ―→=⎝⎛⎭⎫12,-32,1,GF ―→=(1,0,-1).设平面GEF 的法向量n =(x ,y ,z ), 则⎩⎪⎨⎪⎧ EF ―→·n =0,GF ―→·n =0,即⎩⎪⎨⎪⎧12x -32y +z =0,x -z =0,取x =1,则z =1,y =3,故n =()1,3,1为平面GEF 的一个法向量, 所以cos 〈n ,B 1F ―→〉=1-3-15×5=-35,所以B 1F 与平面GEF 所成角的正弦值为35.5.(多选)(2019·浙江高考改编)设三棱锥V -ABC 的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点).记直线PB 与直线AC 所成的角为α,直线PB 与平面ABC 所成的角为β,二面角P -AC -B 的平面角为 γ,则α,β,γ大小关系正确的是( )A .α>βB .α=βC .γ>βD.γ≥β解析:选AC 过B 作直线l ∥AC ,过P 作底面ABC 的垂线PD ,D 为垂足,过D 作DF ⊥AB 于F ,作DE ⊥l 于E ,连接AD ,BD ,PF ,PE .由题意可知,二面角P -AC -B 的大小与二面角P -AB -C 的大小相等, 结合空间角的定义知∠PBE =α,∠PBD =β,∠PFD =γ, 在Rt △PEB 与Rt △PDB 中,由PE >PD 得sin α>sin β, ∴α>β(α,β均为锐角).故A 正确,B 错误;在Rt △PDB 与Rt △PDF 中,由PB >PF 得sin β<sin γ,∴γ>β(β,γ均为锐角).故C 正确;由于不存在PB =PF 的可能,故D 错误. 6.(多选)如图,在直三棱柱ABC -A 1B 1C 1中,AC =BC =AA 1=2,∠ACB =90°,D ,E ,F 分别为AC ,AA 1,AB 的中点.则下列结论正确的是( )A .AC 1与EF 相交B .B 1C 1∥平面DEFC .EF 与AC 1所成的角为90°D .点B 1到平面DEF 的距离为322解析:选BCD 对选项A ,由图知AC 1⊂平面ACC 1A 1,EF ∩平面ACC 1A 1=E ,且E ∉AC 1.由异面直线的定义可知AC 1与EF 异面,故A 错误;对于选项B ,在直三棱柱ABC -A 1B 1C 1中,B 1C 1∥BC .∵D ,F 分别是AC ,AB 的中点, ∴FD ∥BC ,∴B 1C 1∥FD .又∵B 1C 1⊄平面DEF ,DF ⊂平面DEF , ∴B 1C 1∥平面DEF .故B 正确;对于选项C ,由题意,建立如图所示的空间直角坐标系,则C (0,0,0),A (2,0,0),B (0,2,0),A 1(2,0,2),B 1(0,2,2),C 1(0,0,2),D (1,0,0),E (2,0,1),F (1,1,0). ∴EF ―→=(-1,1,-1),AC 1―→=(-2,0,2). ∵EF ―→·AC 1―→=2+0-2=0,∴EF ―→⊥AC 1―→, ∵EF 与AC 1所成的角为90°.故C 正确;对于选项D ,设向量n =(x ,y ,z )是平面DEF 的一个法向量. ∵DE ―→=(1,0,1),DF ―→=(0,1,0),∴由⎩⎪⎨⎪⎧ n ⊥DE ―→,n ⊥DF ―→,即⎩⎪⎨⎪⎧n ·DE ―→=0,n ·DF ―→=0,得⎩⎪⎨⎪⎧x +z =0,y =0.取x =1,则z =-1,∴n =(1,0,-1), 设点B 1到平面DEF 的距离为d . 又∵DB 1―→=(-1,2,2),∴d =|DB 1―→·n ||n |=|-1+0-2|2=322,∴点B 1到平面DEF 的距离为322,故D 正确.故选B 、C 、D.7.在直三棱柱ABC -A 1B 1C 1中,AA 1=2,二面角B -AA 1-C 1的大小为60°,点B 到平面ACC 1A 1的距离为3,点C 到平面ABB 1A 1的距离为23,则直线BC 1与直线AB 1所成角的正切值为________.解析:由题意可知,∠BAC =60°,点B 到平面ACC 1A 1的距离为3,点C 到平面ABB 1A 1的距离为23,由于侧面和底面垂直,由面面垂直的性质定理可得,B 到AC 的距离为3,C 到AB 的距离为23,所以在三角形ABC 中,AB =2,AC =4,BC =23,∠ABC =90°,则AB 1―→·BC 1―→=(BB 1―→-BA ―→)·(BB 1―→+BC ―→)=4, |AB 1―→|=22,|BC 1―→|=4,cos AB 1―→,BC 1―→=AB 1―→·BC 1―→|AB 1―→|·|BC 1―→|=422·4=24,sin 〈AB 1―→,BC 1―→〉=1-⎝⎛⎭⎫242=144.故tanAB 1―→,BC 1―→=7.答案:78.如图,菱形ABCD 中,∠ABC =60°,AC 与BD 相交于点O ,AE ⊥平面ABCD ,CF ∥AE ,AB =2,CF =3.若直线OF 与平面BED 所成的角为45°,则AE =________.解析:如图,以O 为坐标原点,以OA ,OB 所在直线分别为x 轴,y 轴,以过点O 且平行于CF 的直线为z 轴建立空间直角坐标系.设AE =a ,则B (0,3,0),D (0,-3,0),F (-1,0,3),E (1,0,a ),∴OF ―→=(-1,0,3),DB ―→=(0,23,0),EB ―→=(-1,3,-a ).设平面BED 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·DB ―→=0,n ·EB ―→=0,即⎩⎨⎧23y =0,-x +3y -az =0,则y =0,令z =1,得x =-a , ∴n =(-a,0,1),∴cos 〈n ,OF ―→〉=n ·OF ―→|n ||OF ―→|=a +3a 2+1×10.∵直线OF 与平面BED 所成角的大小为45°, ∴|a +3|a 2+1×10=22,解得a =2或a =-12(舍去),∴AE =2.答案:29.如图,已知四棱锥P -ABCD 的底面ABCD 是等腰梯形,AB ∥CD ,且AC ⊥BD ,AC 与BD 交于O ,PO ⊥底面ABCD ,PO =2,AB =22,E ,F 分别是AB ,AP 的中点,则二面角F -OE -A 的余弦值为________.解析:以O 为坐标原点,OB ,OC ,OP 所在直线分别为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系O -xyz ,由题知,OA =OB =2,则A (0,-2,0),B (2,0,0),P (0,0,2),E (1,-1,0),F (0,-1,1),OE ―→=(1,-1,0),OF ―→=(0,-1,1),设平面OEF 的法向量为m =(x ,y ,z ), 则⎩⎪⎨⎪⎧m ·OE ―→=0,m ·OF ―→=0,即⎩⎪⎨⎪⎧x -y =0-y +z =0.令x =1,可得m =(1,1,1).易知平面OAE 的一个法向量为n =(0,0,1), 则cos 〈m ,n 〉=m·n |m||n|=33.由图知二面角F -OE -A 为锐角, 所以二面角F -OE -A 的余弦值为33. 答案:3310.(一题两空)如图所示,在四棱锥P -ABCD 中,侧面P AD ⊥底面ABCD ,侧棱P A =PD =2,P A ⊥PD ,底面ABCD 为直角梯形,其中BC ∥AD ,AB ⊥AD ,AB =BC =1,O 为AD 的中点.(1)则直线PB 与平面POC 所成角的余弦值为________; (2)则B 点到平面PCD 的距离为________. 解析:(1)在△P AD 中,P A =PD ,O 为AD 的中点, ∴PO ⊥AD .又∵侧面P AD ⊥底面ABCD ,平面P AD ∩平面ABCD =AD ,PO ⊂平面P AD ,∴PO ⊥平面ABCD .在△P AD 中,P A ⊥PD ,P A =PD =2,∴AD =2. 在直角梯形ABCD 中,O 为AD 的中点,∴OA =BC =1,∴OC ⊥AD .以O 为坐标原点,OC 所在直线为x 轴,OD 所在直线为y 轴,OP 所在直线为z 轴建立空间直角坐标系,如图所示,则P (0,0,1),A (0,-1,0),B (1,-1,0),C (1,0,0),D (0,1,0),∴PB ―→=(1,-1,-1).∵OA ⊥OP ,OA ⊥OC ,OP ∩OC =O ,∴OA ⊥平面POC . ∴OA ―→=(0,-1,0)为平面POC 的法向量, cos 〈PB ―→,OA ―→〉=PB ―→·OA ―→|PB ―→||OA ―→|=33,∴PB 与平面POC 所成角的余弦值为63. (2)∵PB ―→=(1,-1,-1),设平面PCD 的法向量为u =(x ,y ,z ), 则⎩⎪⎨⎪⎧u ·CP ―→=-x +z =0,u ·PD ―→=y -z =0.取z =1,得u =(1,1,1).则B 点到平面PCD 的距离d =|PB ―→·u ||u |=33.答案:(1)63 (2)3311.(2019·全国卷Ⅱ)如图,长方体ABCD -A 1B 1C 1D 1的底面ABCD 是正方形,点E 在棱AA 1上,BE ⊥EC 1.(1)证明:BE ⊥平面EB 1C 1;(2)若AE =A 1E ,求二面角B -EC -C 1的正弦值.解:(1)证明:由已知得,B 1C 1⊥平面ABB 1A 1,BE ⊂平面ABB 1A 1, 故B 1C 1⊥BE .又BE ⊥EC 1,B 1C 1∩EC 1=C 1, 所以BE ⊥平面EB 1C 1.(2)由(1)知∠BEB 1=90°.由题设知Rt △ABE ≌Rt △A 1B 1E ,所以∠AEB =45°,故AE =AB ,AA 1=2AB .以D 为坐标原点,DA ―→的方向为x 轴正方向,|DA ―→|为单位长度,建立如图所示的空间直角坐标系D -xyz ,则C (0,1,0),B (1,1,0),C 1(0,1,2),E (1,0,1),CB ―→=(1,0,0),CE ―→=(1,-1,1),CC 1=(0,0,2). 设平面EBC 的法向量为n =(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧CB ―→·n =0,CE ―→·n =0,即⎩⎪⎨⎪⎧x 1=0,x 1-y 1+z 1=0,所以可取n =(0,-1,-1).设平面ECC 1的法向量为m =(x 2,y 2,z 2),则 ⎩⎨⎧CC 1·m =0,CE ―→·m =0,即⎩⎪⎨⎪⎧2z 2=0,x 2-y 2+z 2=0, 所以可取m =(1,1,0). 于是cos n ,m=n ·m |n ||m |=-12. 所以二面角B -EC -C 1的正弦值为32. 12.[创新题型]如图,四棱锥P -ABCD 的底面是平行四边形,且PD ⊥AB . (1)从下列两个条件中任选一个条件证明:AB ⊥平面P AD . ①O 是AD 的中点,且BO =CO ;②AC =BD .(2)在(1)条件下,若AD =2AB =4,P A =PD ,点M 在侧棱PD 上,且PD =3MD ,二面角P -BC -D 的大小为π4,求直线BP 与平面MAC 所成角的正弦值.解:(1)证明:选择条件②∵四边形ABCD 为平行四边形,且AC =BD , ∴四边形ABCD 为矩形,AB ⊥AD .又∵AB ⊥PD ,且AD ∩PD =D ,故AB ⊥平面P AD . 选择条件①在平行四边形ABCD 中,设N 是BC 的中点,连接ON ,如图,因为O 是AD 的中点,所以AB ∥ON .又BO =CO ,所以ON ⊥BC .所以AB ⊥BC ,又在平行四边形ABCD 中,BC ∥AD ,所以AB ⊥AD .又AB ⊥PD ,且PD ∩AD =D ,AD ⊂平面P AD ,PD ⊂平面P AD ,故AB ⊥平面P AD . (2)由(1)知AB ⊥平面P AD ,又AB ⊂平面ABCD , 于是平面P AD ⊥平面ABCD ,连接PO ,PN ,由P A =PD ,可得PO ⊥AD ,则PO ⊥BC ,又ON ⊥BC ,PO ∩NO =O ,所以BC ⊥平面PNO ,所以PN ⊥BC ,故二面角P -BC -D 的平面角为∠PNO ,则∠PNO =π4.由此得PO =AB =2.以O 为坐标原点,ON ,OD ,OP 所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系,则A (0,-2,0),B (2,-2,0),C (2,2,0),P (0,0,2),由PD =3MD 可得M ⎝⎛⎭⎫0,43,23, 所以AC ―→=(2,4,0),AM ―→=⎝⎛⎭⎫0,103,23,BP ―→=(-2,2,2). 设平面MAC 的法向量为n =(x ,y ,z ),由⎩⎪⎨⎪⎧n ·AC ―→=0,n ·AM ―→=0⇒⎩⎪⎨⎪⎧ 2x +4y =0,10y +2z =0,令y =1,得⎩⎪⎨⎪⎧x =-2,z =-5,所以n =(-2,1,-5)为平面MAC 的一个法向量. 设直线BP 与平面MAC 所成的角为θ, 则sin θ=⎪⎪⎪⎪⎪⎪⎪⎪BP ―→·n |BP―→|·|n |=|4+2-10|23·30=1015, 故直线BP 与平面MAC 所成角的正弦值为1015. B 级——提能综合练13.(2018·全国卷Ⅱ改编)在长方体ABCD -A 1B 1C 1D 1中,AB =BC =1,AA 1=3,则异面直线AD 1与DB 1夹角的余弦值为( )A.15 B .56C.55D.22解析:选C 法一:以D 为坐标原点,DA ,DC ,DD 1所在直线为x ,y ,z 轴建立空间直角坐标系,则D (0,0,0),A (1,0,0),D 1(0,0,3),B 1(1,1,3),所以AD 1―→=(-1,0,3),DB 1―→=(1,1,3),设异面直线AD 1与DB 1的夹角为α,则cos α=cos 〈AD 1―→,DB 1―→〉=⎪⎪⎪⎪⎪⎪-1+31+3·1+1+3=55.法二:如图,连接A 1D 交AD 1于点E .取A 1B 1中点F ,连接EF ,则EF 綊12B 1D ,连接D 1F ,在△D 1FE 中,∠D 1EF 为异面直线AD 1与DB 1的夹角.由已知EF =12DB 1=1212+12+(3)2=52,D 1E =12AD 1=1,D 1F =12+⎝⎛⎭⎫122=52,所以cos ∠D 1EF =EF 2+ED 21-D 1F22EF ·ED 1=55.14.如图,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,E 为BC 的中点,点P 在线段D 1E 上,点P 到直线CC 1的距离的最小值为________.解析:如图,过E 作EE 1⊥B 1C 1于E 1,连接D 1E 1,过P 作PQ ⊥D 1E 1于Q ,在同一个平面EE 1D 1内,EE 1⊥E 1D 1,PQ ⊥D 1E 1,所以PQ ∥EE 1,又因为CC 1∥EE 1,所以CC 1∥PQ ,因为CC 1⊥平面A 1B 1C 1D 1,所以点P 到CC 1的距离就是QC 1的长度,所以当且仅当C 1Q ⊥D 1E 1时,所求的距离最小值为C 1Q =C 1D 1·C 1E 1D 1E 1=2×15=255.答案:25515.已知在四棱锥P -ABCD 中,平面PDC ⊥平面ABCD ,AD ⊥DC ,AB ∥CD ,AB =2,DC =4,E 为PC 的中点,PD =PC ,BC=2 2.(1)求证:BE ∥平面P AD ;(2)若PB 与平面ABCD 所成角为45°,点P 在平面ABCD 上的射影为O ,问:BC 上是否存在一点F ,使平面POF 与平面P AB 所成的角为60°?若存在,试求点F 的位置;若不存在,请说明理由.解:(1)证明:取PD 的中点H ,连接AH ,EH ,则EH ∥CD ,EH =12CD , 又AB ∥CD ,AB =12CD =2, ∴EH ∥AB ,且EH =AB ,∴四边形ABEH 为平行四边形,故BE ∥HA .又BE ⊄平面P AD ,HA ⊂平面P AD ,∴BE ∥平面P AD .(2)存在,点F 为BC 的中点.理由:∵平面PDC ⊥平面ABCD ,PD =PC ,作PO ⊥DC ,交DC 于点O ,连接OB ,可知O 为点P 在平面ABCD 上的射影,则∠PBO =45°.由题可知OB ,OC ,OP 两两垂直,以O 为坐标原点,分别以OB ,OC ,OP 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系O -xyz ,由题知OC =2,BC =22,∴OB =2,由∠PBO =45°,可知OP =OB =2,∴P (0,0,2),A (2,-2,0),B (2,0,0),C (0,2,0).设F (x ,y ,z ),BF ―→=λBC ―→,则(x -2,y ,z )=λ(-2,2,0),解得x =2-2λ,y =2λ,z =0,可知F (2-2λ,2λ,0),设平面P AB 的一个法向量为m =(x 1,y 1,z 1),∵P A ―→=(2,-2,-2),AB ―→=(0,2,0),∴⎩⎪⎨⎪⎧ m ·P A ―→=0,m ·AB ―→=0,得⎩⎪⎨⎪⎧2x 1-2y 1-2z 1=0,2y 1=0, 令z 1=1,得m =(1,0,1).设平面POF 的一个法向量为n =(x 2,y 2,z 2),∵OP ―→=(0,0,2),OF ―→=(2-2λ,2λ,0),∴⎩⎪⎨⎪⎧ n ·OP ―→=0,n ·OF ―→=0,得⎩⎪⎨⎪⎧2z 2=0,(2-2λ)x 2+2λy 2=0, 令y 2=1,得n =⎝⎛⎭⎫λλ-1,1,0.∴cos 60°=|m ·n ||m ||n |=⎪⎪⎪⎪λλ-11+1·⎝⎛⎭⎫λλ-12+1, 解得λ=12, 可知当F 为BC 的中点时,两平面所成的角为60°.C 级——拔高创新练16.已知四棱锥P -ABCD 的底面ABCD 是直角梯形,AD ∥BC ,AB ⊥BC ,AB =3,BC =2AD =2,E 为CD 的中点,PB ⊥AE .(1)证明:平面PBD ⊥平面ABCD ;(2)若PB =PD ,PC 与平面ABCD 所成的角为π4,试问“在侧面PCD 内是否存在一点N ,使得BN ⊥平面PCD ?”若存在,求出点N 到平面ABCD 的距离;若不存在,请说明理由.解:(1)证明:由四边形ABCD 是直角梯形,AB =3,BC =2AD =2,AB ⊥BC ,可得DC =2,∠BCD =π3,从而△BCD 是等边三角形,BD =2,BD 平分∠ADC . ∵E 为CD 的中点,∴DE =AD =1,∴BD ⊥AE ,又∵PB ⊥AE ,PB ∩BD =B ,∴AE ⊥平面PBD .又∵AE ⊂平面ABCD ,∴平面PBD ⊥平面ABCD .(2)在平面PBD 内作PO ⊥BD 于O ,连接OC ,又∵平面PBD ⊥平面ABCD ,平面PBD ∩平面ABCD =BD ,∴PO ⊥平面ABCD .∴∠PCO 为PC 与平面ABCD 所成的角,则∠PCO =π4, ∴由题意得OP =OC =3,∵PB =PD ,PO ⊥BD ,∴O 为BD 的中点,∴OC ⊥BD . 以OB ,OC ,OP 所在的直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,则B (1,0,0),C (0,3,0),D (-1,0,0),P (0,0,3),假设在侧面PCD 内存在点N ,使得BN ⊥平面PCD 成立,设PN ―→=λPD ―→+μPC ―→(λ,μ≥0,λ+μ≤1),由题意得N (-λ,3μ,-3(λ+μ-1)),BN ―→=(-λ-1,3μ,-3(λ+μ-1)),PC ―→=(0,3,-3),PD ―→=(-1,0,-3),由⎩⎪⎨⎪⎧ BN ―→·PC ―→=0,BN ―→·PD ―→=0得⎩⎪⎨⎪⎧3μ+3(λ+μ-1)=0,λ+1+3(λ+μ-1)=0, 解得λ=15,μ=25,满足题意,∴N 点到平面ABCD 的距离为-3(λ+μ-1)=235.。