系统建模与仿真概述_图文

合集下载

建模与仿真(MAS部分)_图文_图文

建模与仿真(MAS部分)_图文_图文
即对环境的感知和影响。无论主体生存在现实世界还是虚拟世界 ,主体都应该可以感知所处环境,并能及时地对环境中发生的变 化做出反应,通过行为影响环境。
预动性(pro-activeness):
主体不是简单的对环境被动反应,而是能采取主动,表现出目标 导向(goal-directed)的行为。
(4)主体的强概念
建模与仿真(MAS部分)_图文_图文.ppt
主讲内容
主体与多主体系统 多主体建模与仿真 多主体模型的实现 多主体仿真在社会科学中的应用 Aspen多主体经济模型
一、 主体与多主体系统
(一) 主体概念 (1)主体的来源
Agent :主体,智能体,代理 来源于分布式人工智能领域 Minsky,1986《The Society of Mind》 1990s在人工智能领域得到重视 1990s~ 在其他领域广泛应用
控制器根据主体的性质选择控制策略,将规则与事实进行 匹配,消解冲突,进行推理,实现主体决策,产生行动。
(2)面向对象技术
为每类主体设计相应的类,用属性表达主体
的内部状态,用方法表示主体的行为。
多主体系统中的主体本质上是并发的。主体
的主动性和并发性需要在面向对象框架中采 用一定的技术手段进行模拟。
ACL 消息结构
一个ACL消息是由通信行为、通信内容以及
一组消息参数等几部分组成
(2)通信方式
主体之间常用的通信机制有三种:
黑板机制 邮箱机制 消息传递机制
(3)交互协议
交互协议定义了主体之间为了进行协作,实
现某个特定目标而进行交互的结构化消息。
FIPA对一些典型的对话定义了交互协议,
界,
设定初始条件(如结构条件、制度安排、主

系统建模与仿真简述

系统建模与仿真简述
3
第1章 概述
• 1 .2 仿真的意义阐释
计算机仿真出现的意义: 计算机仿真之前的科研状态分析: 费时费力费用高,周期长,可靠性高,复杂度高的 问题难以解决,缺乏形象性可视性。 计算机仿真之后的科研状态分析: 省时省力省费用,周期短,可靠性高,复杂度高的 问题也能解决,复杂环境下的问题也能解决,形象直 观,可视性、可操控性强。 例如:航天环境下的计算机仿真,核技术中的仿真等。
4
第1章 概述
当下的意义: 建模、仿真能力对年轻的一代IT技术人才已经 不是特长,而是基本的技能和交流工具。 如,ITU(国际电信联盟)第三代通信系统的标 准讨论规定:技术文本与仿真结果必须同时提交, 并且鼓励对其他公司提交的方案进行仿真验证。 我们学习掌握MATLAB仿真,在某种意义上说 是在科学计算、工程设计和工具应用上与国际接
第1章 概述
1
第1章 概述
• 1 什么是仿真?(仿真的 定义和意义) • 2 数学仿真与MATLAB软件 • 3 电子通信系统的建模与 仿真 • 4 本课程的内容与结构概 观
2
第1章 概述
1 .1 什么是仿真?(仿真的定义)
• 系统仿真(Simulation)技术也称为系统模拟技术,简 称“仿真”。 • 计算机仿真:本课程特指自1970年以来发展起来的 利用现代计算机和仿真软件来进行仿真的计算机仿 真技术。由于计算机仿真具有精度高,通用性强, 重复性好,建模迅速以及成本低廉等许多优点。 • MATLAB仿真:是计算机仿真的一种。近年来在计算 机仿真的基础之上,发展了以MATLAB/Simulink为代 表的多种科学计算和系统仿真系统。它使用起来比 利用传统的Fortran、C/C++语言进行仿真可靠、方便、 快捷。

建模与仿真-PPT精品

建模与仿真-PPT精品
Simulink模型可以用来模拟线性和非线性、连续和离散或者 两者的混合系统,也就是说它可以用来模拟几乎所有可能遇 到动态系统。另外Simulink还提供一套图形动画的处理方法, 使用户可以方便的观察到仿真的整个过程。
Simulink没有单独的语言,但是它提供了S函数规则。所谓 的S函数可以是一个M函数文件、FORTRAN程序、C或C++ 语言程序等,通过特殊的语法规则使之能够被Simulink模型 或模块调用。S函数使Simulink更加充实、完备,具有更强 的处理能力。
Matlab具有友好的工作平台和编程环境、简单易学的编程语言、 强大的科学计算和数据处理能力、出色的图形和图像处理功能、 能适应多领域应用的工具葙、适应多种语言的程序接口、模块化 的设计和系统级的仿真功能等,诸多的优点和特点。
支持Matlab仿真是Simulink工具箱,Simulink一般可以附在 Matlab上同时安装,也有独立版本来单独使用。但大多数用户 都是附在Matlab上,以便能更好地发挥Matlab在科学计算上的 优势,进一步扩展Simulink的使用领域和功能。
③ 模型中的模块按更新的次序进行排序。排序算法产生一个列表 以确保具有代数环的模块在产生它的驱动输入的模块被更新后才 更新。当然,这一步要先检测出模型中存在的代数环。
④ 决定模型中有无显示设定的信号属性,例如名称、数据类型、 数值类型以及大小等,并且检查每个模块是否能够接受连接到它 输入端的信号。Simulink使用属性传递的过程来确定未被设定的 属性,这个过程将源信号的属性传递到它所驱动的模块的输入信 号;
目前,随着软件的升级换代,在软硬件的接口方面有了 长足的进步,使用Simulink可以很方便地进行实时的信 号控制和处理、信息通信以及DSP的处理。世界上许多 知名的大公司已经使用Simulink作为他们产品设计和开 发的强有力工具。

机电系统建模与仿真PPT课件-PPT资料72页

机电系统建模与仿真PPT课件-PPT资料72页
f
5、功率键合图上因果关系及标注规则
a.因果关系
对于外界输给系统的功率,其中往往只知道一个 变量(力变量或流变量),而另一个变量则由系 统中各 因素的共同作用决定其量值。 同理对于系统中的任一作用元来讲,其功率键上 的力变量e和流变量f中,也有一个变量是以自变 量的形式输给该作用元,而另一个变量则是因该 作用元的作用而以因变量的形式反馈回系统。

p2 R阀
q8

Sf
( 1 R泄

1 R节

1 R阀
) p2

Av 12
状态变量表达式中变量包括:
储能元功率键上的因变量 P2
V12
F11
输入变量 Se Sf
阻性作用元 R泄 R节 R阀 R孔
第四步:消去储能元功率键上的因变量, 得到状态方程。
状态方程与功率键合图的物理意义是一致的。
<二>动态仿真 仿真说明与程序清单
四、应用实例
一、功率键合图的作用及优点
1 作用: 表示系统中的功率流程。在研究液
压系统的动态特性时,表示系统在各 种作用元(因素)的作用下,功率的 流向、汇集、分配和能量转换等。
2、优点
a 功率键合图对功率流描述上的模块化结构 与系统本身各部分物理结构及各种动态影响 因素之间具有直观而形象的一一对应关系。
第一步: 画出功率键合图 功率键合图
第二步:写出功率键合图中储能元件上原来的因 变量之间的关系
V12

1 I阀
P12
F11

1 C弹
x12
P2

1 C管
v2
第三步:应用键合图的规则及其变量间的逻辑关系,将 各状态变量的一阶导数(相当于原来的自变量) 推导成储能元功率键上的因变量及输入变量的代 数或函数关系。

系统建模与仿真-第1章 导论

系统建模与仿真-第1章 导论

Add Your Company Slogan
Thank you
Logo
1.1 系统
三、 西方主要系统流派
(1)以麦萨罗维克(M.Mesorovic)为代表的数学系统学派。 (2)以霍尔(Arthur D.Hall)等人为代表的系统分析学派。 (3)以阿考夫(Russell Ackoff)为代表的运筹学派。 (4)特洛卡勒(Len Trocale)创立的耦合命题学派。 (5)福雷斯特(Jay W.Forrester)创立的系统动力学学派。 (6)以奥杜姆(Howard T.Odum)为代表的系统生态学派。 (7)以比尔(Stafford Beer)为代表的活力系统学派。 (8)以亚伯拉罕(Ralph Abraha。m)为代表的动态系统学派。
1.3 系统仿真
1.3.1系统仿真的定义与特点
定义1.3.1:通过对替代物或模仿品的实验分析对与 之相似的原型系统进行研究的过程称为系统仿真。 系统仿真包含三个基本要素:实际系统、数学模型、 计算机。系统仿真过程的实现则要通过三项基本活动: 建立模型、实验仿真、结果分析(如图1.3所示)。
1.3 系统仿真
。 。
1.1 系统
四、中国的系统科学研究与应用
50年代中期,钱学森和许国志把运筹学从西方带到中国 50年代未期,中国科学家开始将运筹学应用于国民经济发展。 20世纪70年代,在钱学森、宋健、许国志等人的大力倡导下, 中国出现了新的系统科学研究热潮。 华罗庚提出的解决国民经济大范围优化问题的“产综正特征矢 量法”,钱学森提出的“综合集成方法”,都极大地丰富了系 统科学方法论。70年代末80年代初,中国学者创立了一批系统 科学新学科,其中邓聚龙创立的“灰色系统理论”、吴学谋提 出的“泛系理论”和蔡文创立的“物元分析”,都在国际上产 生了一定影响。

生产系统建模与仿真

生产系统建模与仿真
生产系统工程
第10章 生产系统建模与仿真
本章内容
• • • • 生产系统建模概述 常见生产系统模型 生产系统仿真技术 生产系统仿真实例
1.生产系统建模概述
1.1生产系统模型
– 模型是系统某种特定性能的一种抽象形式。 它是为了某种特定的目的将系统的某一部分 信息进行抽象而构成的系统替代物,是对系 统的简化 – 模型是现实系统的抽象描述,它由一些与所 分析的问题有关的主要因素构成,并表明有 关因素之间的关系
1.生产系统建模概述
• 生产系统的建模原则
– 准确性。模型必须反映现实物理系统的本质规律,数据 必须可靠,公式和图表必须正确,有科学依据 – 可靠性。模型必须反映事物的本质,且有一定的精度。 – 简明性。模型的表达式应明确、简单、抓住本质 – 实用性。模型必须能方便用户,具有实用性,因此要使 模型标准化、规范化 – 反馈性。建模时要注意灵敏问题
1.生产系统建模概述
• 生产系统的一般建模方法
– 优化方法。该方法是依赖精确的数学方程式和严密的数 学过程来分析和评价生产系统的各种可选方案,从数学 上可以证明所得到的解是针对该问题的最优解 – 仿真模型。所谓仿真模型,就是以代数和逻辑语言做出 对系统的模拟,这种模拟通常要利用随机的数学关系。 仿真模型能真实的模拟系统过程,可用于生产系统中的 各种规划 – 启发式模型。启发式模型是以启发式方法为基础建立的 系统模型。启发式方法是指那些能指导问题求解的原理 、概念和经验法则
v jk | y j y k | wij | yi bi |
j 1 i 1
m
n
f 2 (y) =
1 j k m

j 1 i 1 m n
2.常见生产系统模型
• 多设施选址—分配模型

系统建模与仿真讲义

系统建模与仿真讲义
模型参数确定
通过实验或经验数据,确定数学模 型的参数值。
03
02
建立数学模型
根据系统特性,选择合适的数学模 型描述系统的动态行为。
模型验证与修正
对建立的数学模型进行验证,并根 据实际需求进行必要的修正。
04
仿真实验设计与分析
实验方案设计
根据仿真目标,设计合理的实验方案,包括 实验条件、输入输出等。
概率模型
概率分布
概率分布是描述随机事件发生可能性的数学工具,常见的概率分布有二项分布、 泊松分布、正态分布等。
随机过程
随机过程是描述一系列随机事件随时间变化的模型,例如马尔科夫链和泊松过程 等。
03
系统仿真基础
仿真模型的建立与实现
01
确定系统边界
明确仿真目标,确定系统边界,将 系统划分为可管理的子系统。
系统建模与仿真讲义
汇报人: 日期:
目录
• 系统建模概述 • 数学建模基础 • 系统仿真基础 • 仿真技术的应用 • 系统建模与仿真的挑战与未来
发展
01
系统建模概述
定义与目的
定义
系统建模是对真实系统进行抽象、简 化和描述的过程,通过数学、逻辑和 图形等工具来表示系统的结构、行为 和性能。
目的
系统建模的目的是为了更好地理解、 分析和预测系统的行为,为系统设计 、优化和控制提供依据。
模型改进
根据性能优化需求,对数学模型进行改进,提应用于实际系统设计、分析和优化中,发挥仿真的价值和作用。
04
仿真技术的应用
工业系统仿真
总结词
工业系统仿真通过模拟工业生产过程,帮助企业优化生产流程、提高生产效率和降低成本。
详细描述
工业系统仿真通过对生产线的布局、工艺流程、设备运行等进行模拟,发现潜在的问题和瓶颈,为企 业提供改进方案。同时,仿真技术还可以用于新产品开发和设计阶段,预测产品的性能和可行性。

[管理学]物流系统建模与仿真ppt

[管理学]物流系统建模与仿真ppt

(3)详细定义 本步骤要分别定义每 个元素detail对话框中的参数。 (4)机器的详细定义 本模型中对机器 主要定义它们的机器类型、加工周期、 进入规则和送出规则。 (5)仿真运行 运行一周(5天*8小时* 60分钟=2400分钟) (6)仿真分析
一、垃圾回收物流系统介绍 二、系统框架 三、数据信息 四、仿真系统逻辑结构 五、WITNESS仿真模型的建立 六、仿真运行与结果分析 七、系统优化
2.规则
(1)定义系统元素 (2)显示系统元素 (3)详细定义 (4)运行 (5)报告 (6)归档 (7)优化
3.WITNESS建模与仿真的步骤
4.WITNESS建模与仿真过程应用举例
在实例模型中,小部件(widget)要经过称重、冲洗、加工和检测等操作。执行完每一步操作后小部件通过充当运输工具和缓存器的传送带(conveyer)传送至下一个操作单元。小部件在经过最后一道工序“检测”以后,脱离本模型系统。仿真一周,试求该系统的产出量和各设备的利用率。
二、物流系统建模与仿真软件
软件选择中需要考虑如下问题: 1.一般性问题 2.输入方面 3.处理过程的考虑 4.系统环境方面 5.成本方面 6.基本要求
三、复杂系统仿真软件选择的原则
1.WITNESS系统的建模元素 2.规则 3.WITNESS建模与仿真的步骤 4.WITNESS建模与仿真过程应用举例
垃圾回收系统最优方案数据表
0
0
0
本模型系统的流程视图如图:
widget
weigh
C1
wash
C2
produce
C3
inspect
ship
图8-5 加工系统模型流程图
该模型的建立步骤:
(1)定义元素

《系统建模与仿真》概论

《系统建模与仿真》概论

History for CVDS:
Development of mechanics for
CVDS
Self regulating governor for steam
engines
<1940
W W II Servom echanism >1940
M odern control theory and practice
确定了系统内部发生变化的过程
概论(1)--系统、模型、仿真(2) (系统的分类)
(1)工程领域: 机械,航空,航天,电力,冶金,化工和电子等. 非工程领域: 交通管理,生产调度,库存控制,生态环境
和社会经济等. (2) CVDS (Continuous Variable Dynamic Systems)
e2 e3 e4
e5
e6
tim e
Comparison with a CVDS Trajectory
D iscrete state
dx/dt = f(x,u,t)
tim e Hybrid System: each state can hide CVDS behavior
Historical Perspective on the Control and Optimization of DEDS and CVDS
概论(1)-- 系统、模型、仿真
不同系统之间的相似性
Ft
M
K
B
R
E t
C
L
M d d 2 2 x t B d d K x t F x t
L d d 2 q 2 t R d d C q t E q t
概 论 ( 1) -- 系 统 、 模 型 、 仿 真

生理系统建模与仿真

生理系统建模与仿真

6.2.2 数学模型

所谓数学模型,就是用数学表达式来描述 事物的数学特性,它不像物理模型那样追求与 客观事物的几何结构或物理结构的相似性,但 可较好地刻划系统内在的数量联系,从而可定 量地探求系统的运转规律。同时,现代电子计 算机技术的发展极大地促进了数学模型的发展。 凡是具有数学表达式的事物,都可以编成计算 机程序。这不仅使许多繁杂的计算成为可能, 还使数学模型更加直观形象和动态化。

随着电子技术的发展,建立模型的方法已由最 初的静态发展为动态,由形态相似的实体模型 发展为性质和功能相似的电路模型,由用简单 数学公式描述的模型发展为用计算机程序语言 描述的复杂运算模型。然而,尽管模型的概念 是建立在与其原型具有某种相似性的基础之上 的,但是,相似并不是等同。尤其是对生理系 统的模型而言,到目前为止,还无法构造一个 与其原型完全一样的模型。当然,那也不是建 立模型的目标。

3.生理特性相似模型 此时,既不追求几何形态上的相似, 亦不追求动力学上的相似,而是以模拟 出的生理特性为评判标准。例如当建立 主动脉瓣膜时,将以其所给出的主动脉 血压波型是否与生理波形相似为标准而 构造其物理模型。

4.等效电路模型 因为许多系统的动态特性都可用一个 等效电路来描述,故亦可用模拟电路作 为系统的一个模型。例如在循环系统中, 常常将血流阻尼等效为电阻,血流惯性 等效为电感,血管弹性等效为电容,血 压等效为电压,而血流等效为电流。


数学模型就是用数学表达式来描述研究对象的 生理特性,它不象物理模型那样追求与客观实 体的几何结构或物理结构类似,只是要求较好 地刻划生理系统内在的数量关系,从而可探求 客观实体的变化规律。例如,血液在血管中的 流动可以用流体力学的公式来描述;物质的交 换可以用连续性方程来描述,等等。现代计算 机技术的发展又进一步促进了数学模型的发展, 凡是具有数学表达式的事物,都可编成计算机 程序,不仅使许多繁杂的计算成为可能,而且 使数学模型更加直观和动态化,从而动态的模 拟整个生理过程的活动。

系统建模与仿真概述

系统建模与仿真概述

系统建模与仿真概述System Modeling and Simulation第一章系统建模与仿真概述主要内容•系统与模型-系统建模-系统仿真•系统建模与仿真技术14系统与模型1.1.1系统1.系统的广义定义:x由相互联系、相互制约、相互依存的若干组成部分(要素)结合起来在一起形成的具有特定功能和运动规律的有机整体。

举例:宇宙世界,原子分子,电炉温度调节系统, 商品销售系统,等等。

例一:电炉温度调节系统例二:商品销售系统经理部[市场部I I采购部仓储部销售部I14系统与模型2系统的特性:1)系统是实体的集合+实体是指组成系统的具体对象例如:电炉调节系统中的比校器、调节器、电炉、温度计。

商品销售系统中的经理、部门、商品、货币、仓库等。

+实体具有一定的相对独立性,又相互联系构成一个整体,即系统。

14系统与模型2)组成系统的实体具有一定的属性属性是指实体所具有的全部有效性,例如状态、参数等。

在电炉温度调芒系统中,温度、温度偏差. 电压等都是属性。

在商品销售系统中,部门的属性有人员的数董、职能范围,商品的属性有生产日期、进货价格.销售日期.售价等等。

X系统处于活动之中+活动是指实体随时间的推移而发生属性变化。

例如: 电炉温度调节系统中的主要活动是控制电压的变化, 而商品销售系统中的主要活动有库存商品数量的变化、零售商品价格的增长等。

14系统当摆型X系统三要素:实体、属性与活动。

系统是在不断地运动、发展、变化的;系统不是孤立存在的;系统边界的划分在很大程度上取决于系统研究的目的。

系统研究:系统分析、系统综合和系统预测O 系统描述:同态、同构+同态:系统与模型之间行为的相似(低级阶段)同构:系统与模型之间结构的相似(高级阶段)同态与同构建模+同构系统:对外部激励具有同样反应的系统十同态系统:两个系统只有少数具有代表性的输入输出相対应14系统与模型——3.系统的分类X按照系统特性分类:+工程系统(物理系统):为了满足某种需要或实现某个预定的功能,采用某种手段构造而成的系统,如机械系统、电气系统等。

生产系统建模与仿真

生产系统建模与仿真

1.4 系统性质
• 自然 vs. 人造系统 (Natural vs. Man-made ) • 静态 vs. 动态系统 (Static vs. Dynamic) • 物理系统 vs. 抽象系统 (physics vs. Abstract) • 开环 vs. 闭环系统 (open vs. Closed)
课程登记
办公室 17413 办公室 17411 办公室 17409
100.00 76.00 60.00
100.00
40.00 使用欧元
FK1,I1 当地货币
存储 17113
办公室 17117
销售 PK,FK2,I2 PK,FK1,I1 PK PK 产品编号 国家/地区名称 年号 季度号 nr销售单位 建筑物职能 PK,FK1,I2,I1 PK
D
PK U1 U1 FK1,I1,U1
产品编号 人员 ID
C
立方体立方体立方体 17468 17467 17465 立方体立方体立方体 17460 17461 17463
考试 PK 考试 ID 证书级别
人员 ID 公司名
PK
办公室 17403
申请状态 状态代码 状态名
存储
申请 PK 证书级别 PK,FK1,I2,I1 人员 ID PK,FK3,I4 产品编号
货币 PK U1 货币代码 货币名称
课程登记1
H
人员 ID 课程会话 ID 注册日期 完成标记 确认日期 货币转换 转换至 转换源 转换日期 速率 PK U1
办公室 17202 办公室 17204 办公室 17206
F
G
立方体立方体立方体 17498 17497 17495
邮区 PK,FK1,I1 PK 国家/地区 邮政编码 州/省代码 城市名

系统工程导论 第五章 系统建模与仿真 第四节系统仿真概述

系统工程导论 第五章 系统建模与仿真 第四节系统仿真概述
统),或在扩展时间内研究系统的详细运行情况。
5.4系统仿真概述
仿真的缺点:
(1)开发仿真软件,建立运行仿真模型是一项艰巨的工作 (2)系统仿真只能得到问题的一个特解或可行解,不可能获得问题的通解 或者是最优解。
(3)仿真建模直接面向实际问题,对于同一问题,由于建模者的认识和 看法有差异,往往会得到迥然不同的模型,自然,模型运行的结果也就 不同。
仿真(Simulation)就是利用模型对实际系统进行实验研究的过 程。但由于安全上、经济上、技术上或者是时间上的原因,对实际系 统进行真实的物理实验是很困难的,有时甚至是不可能时,系统仿真 技术就成了十分重要、甚至是必不可少的工具。
在我国,仿真技术最初是用于航空、航天、核反应堆等少数领域, 后来逐步发展到电力、冶金、机械、电子、通信网络等一些主要工业 部门。现在,系统仿真已逐步扩大应用于社会经济、交通运输、生态 环境、武器装备研制、军事作战、企业管理等众多领域。
第三,系统仿真的输出结果是在仿真过程中,是仿真软件自动给出的。
第四,一次仿真结果,只是对系统行为的一次抽样,因此,一项仿真 研究往往由多次独立的重复仿真所组成,所得到的仿真结果也只是对真实 系统进行具有一定样本量的仿真实验的随机样本。因此,系统仿真往往要 进行多次试验的统计推断,以及对系统的性能和变化规律作多因素的综合 评估。
5.4系统仿真概述
仿真优点: (1)可以研究哪些不可能正确地用解析方法计算的数学模型来描述的 复杂的、带有随机因素的现实世界系统。 (2)系统仿真采用问题导向来建模分析,并使用人机友好的计算机软 件,使建模仿真直接面向分析人员,他们可以集中精力研究问题的内部 因素及其相互关系,而不是计算机编程、调试及实现。 (3)仿真允许人们在假设的一组运行条件下估计现有系统的性能。 (4)仿真比用系统本身做实验能更好地控制实验条件。 (5)仿真使人们能在较短的时间内研究长时间范围的系统(如经济系
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在这些过程中,人们经常要进行:实验、分析 、计算、决策等步骤。
然而实验分析对某些真实系统可能是不允许的 。通常的原因有:
系统还处于设计阶段。并没有真正建立起来, 因此不可能在真实系统上进行试验。
在真实系统上做试验会破坏系统的运行。
如果人是系统的一部分时,由于他知道自己是 试验的一部分,其行动往往会与平时不一样; 因此会影响实验的效果。
宇宙世界,原子分子,电炉温度调节系统, 商品销售系统,等等。
温度 给定值
比较器
温度偏差
调节器
控制电 炉的电

扰动 加热炉
温度
炉温值
温度计
经理部
市场部
采购部
仓储部
销售部
2 系统的特性: 1)系统是实体的集合
实体是指组成系统的具体对象 例如:电炉调节系统中的比较器、调节器、电炉、
温度计。 商品销售系统中的经理、部门、商品、货币、仓库
、 光学环境、电磁环境)
1.3.4 仿真的分类: 1)根据系统模型的特性分类 连续系统仿真、离散事件系统仿真 2)根据所采用的技术分类
面向对象仿真、面向agent仿真、分布交互仿真等
1.3.5 系统仿真的一般过程:
1)对模型的形式化处理 2)仿真建模 3)程序设计 4)模型运行 5)进行仿真实验,处理仿真结果。
在实际系统上做多次试验,很难保证每一次的 操作条件都相同。
试验时间太长或费用太大或有危险。
无法复原。
因此,在实践中出现了用模型来代替真实系统 做仿真实验的方法,以解决上述无法直接对真 实系统进行实验分析的问题。
“仿真”一词译自英文的“simulation”。 有关它的定义有多种说法,我们定义为: 通过 对模型的实验以达到研究系统本质的目的,或 用模型对系统进行实验研究的过程。
概念模型
1)定义:为了某一目的,对真实世界及其活 动进行的概念抽象与描述,是运用语言、 符号和框图等形式,对从所研究的问题抽 象出的概念进行有机的组合。这些有机组 合的概念就形成了某种概念模型.
2) 概念模型的分类
(1)从概念模型描述的内容来分类
面向领域的概念模型:将真实世界划分成相应的领域 ,再对每个领域进行概念建模。
3. 系统的分类 按照系统中起主要作用的状态随时间变化分类:
连续系统:状态随时间连续变化的系统。 离散事件系统:状态的变化在离散的时间点上发生,且
往往又是随机的系统。
按照系统物理结构和数学性质分类:
线性系统和非线性系统。 定常系统和时变系统。 集中参数系统和分布参数系统 单输入单输出系统和多输入多输出系统
3. 系统的分类
按照系统内子系统的关联关系分类
简单系统:组成子系统数量较少,子系统之间的关系 比较简单,或尽管子系统数量较多,但它们之间的关 联关系比较简单。 例如:一台仪器
复杂系统:系统具有众多的状态变量,反馈结构复杂,输 入与输出呈现非线性特征(高阶次、多回路、非线性)
复杂巨系统:子系统数量极大,种类很多,关系复杂 例如:星系系统
面向设计的概念模型:在领域概念的基础上,进一步 进行相应的概念设计。如数据库设计概念模型。
(2)从概念模型的用途来分类 资源概念模型:用作一种资源,支撑进一步的开发。 主用概念模型:在系统开发过程中,根据需求和资源
概念模型进一步开发出的模型。
(3)基于知识获取与描述方法来分类
基于表示的概念模型:直接反映与推理机制关联的 符号级表示。
系统研究:系统分析、系统综合和系统预测。 系统描述:同态、同构
同态:系统与模型之间行为的相似(低级阶段) 同构:系统与模型之间结构的相似(高级阶段)
同态与同构建模
同构系统:对外部激励具有同样反应的系统 同态系统:两个系统只有少数具有代表性的输入输出
相对应
3. 系统的分类
先验知识
建模过程 系统模型
实验数据
1.2.2 系统建模的途径
(1)分析法/演绎法/理论建模/机理建模
根据系统的工作原理,运用一些已知的定理、定律 和原理推导出描述系统的数学模型。
(2)测试法/归纳法/实验建模/系统辨识
通过测试系统在人为输入作用下的输出响应,或正 常进行时系统的输入输出记录,加以必要的数据处 理和数学计算,估计出系统的数学模型。
模型分解 第一种分解:模型=集合结构(静态结构 、动态结 构) 第二种分解:模型=集合结构(框架、结构、参数 )
进一步,我们将模型构造具体分解为三个步骤:框架 定义、结构特征化和参数估计。
复杂系统 建模( 定性 + 定量)
1)开发思想,形成概念,通过定性分析、研究,明确研 究的方向、目标、途径、措施,并将结果用准确简练 的语言加以表达(语言建模)
2)分类:
按照系统的特性来分:线性与非线性、静态与动 态、确定性与随机性、微观与宏观、定常(时不 变)与非定常(时变)、集中参数与分布参数
按照研究方法来分:连续模型与离散模型、时域 模型与频域模型、输入输出模型与状态空间模型
系统建模就是:认识系统,并把它表述出来 。1.2.1系统建模的信息源
建模目的
基于方法的概念模型:面向知识级建模分析,提供 预先定义的方法去描述在特定应用领域中实现方法 的有关知识。
基于任务的概念模型:面向特别种类的任务,直接 刻画任务结构而非执行任务的方法。
数学模型
1)定义:对于现实世界的一个特定对象,为了一个 特定目的,根据对象特有的内在规律,做出一些 必要的简化假设,运用适当的数学工具,得到的 一个数学结构。
• 按照子系统的数量分类
小系统、大系统、巨系统
1.1.2模型
1.模型的定义
模型是一个系统的物理的、数学的或其他方 式的逻辑表述,它以某种确定的形式(如 文字、符号、图表、实物、数学公式等) 提供关于系统的知识。
2. 模型的分类
物理模型:根据一定的规则(如相似原理 )对系统简化或比例缩放而得到的复制品 。
系统处于活动之中
活动是指实体随时间的推移而发生属性变化。例如 :电炉温度调节系统中的主要活动是控制电压的变 化,而商品销售系统中的主要活动有库存商品数量 的变化、零售商品价格的增长等。
系统三要素:实体、属性与活动。
系统是在不断地运动、发展、变化的;系统不是孤立存在的;系统 边界的划分在很大程度上取决于系统研究的目的。
建立五种模型: 语言模型网络模型量化模型动态模型优化模型
建模过程是一个不断反馈、多次循环的过程。
1.2.6 模型文档
定义:根据一定的规范对模型的文字描述。
在模型开发的过程中,通过编写模型文档,可以加深建 模者对模型的认识,有助于消除模型的不完全性、不明 确性和不一致性,提高建模的规范化程度。
[2]假设及适用范围
[2.1] 理论依据 [2.2] 主要假设及理由 [2.3]主要简化计算及依据 [2.4]模型的应用条件或使用限制 [2.5]对预期使用目的的适应性
[3]模型描述
[3.1] 模型的结构与功能 [3.2] 模型变量说明
[3.2.1] 输入变量说明(包括外部控制变量或干扰变量) [3.2.2]输出变量说明 [3.2.3]关键输入/输出变量
[3.3] 随机变量及分布函数的类型与参数 [3.4] 模型参数和常数说明 [3.5]与其他模型的输入/输出联系 [3.6]形式化描述(数学关系\逻辑关系\知识规则等)
[4.1] 模型在其他项目中的应用情况及效果 [4.2] 模型在开发中参考其他模型的情况 [4.3] 假设条件和简化对模型的影响分析 [4.4]分布函数类型及参数选取方法 [4.5] 模型参数取值的依据 [4.6]模型算例 [4.6.1] 输入条件设置 [4.6.2] 驱动方式 [4.6.3] 稳态特性分析 [4.6.4] 样本数据采集方法 [4.6.5] 结果比较 [4.6.5.1]原型系统/参考系统的情况 [4.6.5.2] 原型系统/参考系统的样本数据采集方法 [4.5.6.3] 结果对比曲线
按照系统特性分类:
工程系统(物理系统):为了满足某种需要或实现某 个预定的功能,采用某种手段构造而成的系统,如机 械系统、电气系统等。
非工程系统(非物理系统):由自然和社会发展过程 中形成的,被人们在长期的生产劳动和社会实践中逐 步认识的系统,如社会系统、经济系统、管理系统、 交通系统等。
系统建模与仿真概述_图文.ppt
第一章 系统建模与仿真概述
主要内容
• 系统与模型 • 系统建模 • 系统仿真 • 系统建模与仿真技术
1.1.1 系统
1. 系统的广义定义:
由相互联系、相互制约、相互依存的若干 组成部分(要素)结合起来在一起形成的 具有特定功能和运动规律的有机整体。
举例:
[4.7] 对模型精度的认识 [4.8] 知名专家对模型的评价
软件工具:Edraw Mindmap
1.3.1 仿真概念的提出
人们在认识自然、利用自然的过程中,为了更 好地完成这一能动过程,需要对物质世界,乃 至非物质世界进行实验研究。例如:
进行一项工程设计
规划一次军事演习
分析人口发展趋势
模型文档是模型开发者与使用者之间信息交流的依据。
完善的、规范化的文档能够帮助用户迅速、清晰的了解 模型结构、功能、使用方法和适用范围,而不必重复建 模者的所有工作。
数学模型文档的参考示例: [1]综述
[1.1] 模型开发目的 [1.2] 模型功能 [1.3]模型性质(随机/确定,动态/静态,离散事件/连续/混合)
系统、模型、仿真三者之间的关系 系统是研究的对象 模型是系统的抽象,是仿真的桥梁 实验是仿真的手段
1、相似原理
空间相似、时间相似、功能相似、动态特性相似、 信息相似
2、相似方法
模式相似方法、模糊相似法、组合相似方法、 坐标变换相似方法 3、相似方法的实现 时间与逻辑相似、几何相似、环境相似(力学环境
相关文档
最新文档