(word完整版)高二数学导数及其应用练习题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二上学期《导数及其应用》
单元测试(数学文)
(满分:150分 时间:120分钟)
一、选择题(本大题共10小题,共50分,只有一个答案正确) 1.函数()2
2)(x x f π=的导数是( )
(A) x x f π4)(=' (B) x x f 2
4)(π=' (C) x x f 28)(π=' (D) x x f π16)(='
2.函数x
e x x
f -⋅=)(的一个单调递增区间是( )
(A)[]0,1- (B) []8,2 (C) []2,1 (D) []2,0
3.已知对任意实数x ,有()()()()f x f x g x g x -=--=,,且0x >时,
()0()0f x g x ''>>,,则0x <时( )
A .()0()0f x g x ''>>,
B .()0()0f x g x ''><,
C .()0()0f x g x ''<>,
D .()0()0f x g x ''<<,
4.若函数b bx x x f 33)(3
+-=在()1,0内有极小值,则( ) (A ) 10<b (D ) 2
1<
b 5.若曲线4
y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为( )
A .430x y --=
B .450x y +-=
C .430x y -+=
D .430x y ++= 6.曲线x
y e =在点2
(2)e ,处的切线与坐标轴所围三角形的面积为( )
A.2
94
e
B.2
2e
C.2
e
D.2
2
e
7.设()f x '是函数()f x 的导函数,将()y f x =和()y f x '=的图象画在同一个直角坐标系中,不可能正确的是( )
8.已知二次函数2
()f x ax bx c =++的导数为'()f x ,'(0)0f >,对于任意实数x 都有
()0f x ≥,则
(1)
'(0)
f f 的最小值为( ) A .3 B .
52 C .2 D .32
9.设2
:()e ln 21x
p f x x x mx =++++在(0)+∞,内单调递增,:5q m -≥,则p 是q 的( )
A.充分不必要条件 B.必要不充分条件 C.充分必要条件
D.既不充分也不必要条件
10. 函数)(x f 的图像如图所示,下列数值排序正确的是( ) (A ))2()3()3()2(0/
/
f f f f -<<< y (B ) )2()2()3()3(0/
/
f f f f <-<< (C ))2()3()2()3(0/
/
f f f f -<<<
(D ))3()2()2()3(0/
/
f f f f <<-< O 1 2 3 4 x 二.填空题(本大题共4小题,共20分)
11.函数()ln (0)f x x x x =>的单调递增区间是____.
12.已知函数3
()128f x x x =-+在区间[3,3]-上的最大值与最小值分别为,M m ,则
M m -=__.
13.点P 在曲线3
2
3
+
-=x x y 上移动,设在点P 处的切线的倾斜角为为α,则α的取值范围是 14.已知函数53
123
-++=
ax x x y (1)若函数在()+∞∞-,总是单调函数,则a 的取值范围是 . (2)若函数在),1[+∞上总是单调函数,则a 的取值范围 . (3)若函数在区间(-3,1)上单调递减,则实数a 的取值范围是 .
三.解答题(本大题共4小题,共12+12+14+14+14+14=80分)
15.用长为18 cm 的钢条围成一个长方体形状的框架,要求长方体的长与宽之比为2:1,问该长方体的长、宽、高各为多少时,其体积最大?最大体积是多少? 16.设函数3
2
()2338f x x ax bx c =+++在1x =及2x =时取得极值.
(1)求a 、b 的值;
(2)若对于任意的[03]x ∈,,都有2
()f x c <成立,求c 的取值范围.
17.设函数3()32f x x x =-++分别在12x x 、处取得极小值、极大值.xoy 平面上点A B 、的
坐标分别为11()x f x (,)、22()x f x (,)
,该平面上动点P 满足•4PA PB =u u u r u u u r
,点Q 是点P 关于直线2(4)y x =-的对称点,.求 (Ⅰ)求点A B 、的坐标; (Ⅱ)求动点Q 的轨迹方程.
18. 已知函数32
()23 3.f x x x =-+ (1)求曲线()y f x =在点2x =处的切线方程;
(2)若关于x 的方程()0f x m +=有三个不同的实根,求实数m 的取值范围.
19.已知()R a x x a ax x f ∈+++-=14)1(3
)(23
(1)当1-=a 时,求函数的单调区间。 (2)当R a ∈时,讨论函数的单调增区间。
(3)是否存在负实数a ,使[]0,1-∈x ,函数有最小值-3?
20.已知函数()2
a f x x x
=+,()ln g x x x =+,其中0a >.
(1)若1x =是函数()()()h x f x g x =+的极值点,求实数a 的值;
(2)若对任意的[]12,1x x e ∈,(e 为自然对数的底数)都有()1f x ≥()2g x 成立,求
实数a 的取值范围.