初三中考数学 等腰三角形
中考数学真题分类汇编及解析(二十四)等腰三角形
(2022•桂林中考)如图,在△ABC中,∠B=22.5°,∠C=45°,若AC=2,则△ABC的面积是()A.3+√22B.1+√2C.2√2D.2+√2【解析】选D.如图,过点A作AD⊥AC于A,交BC于D,过点A作AE⊥BC于E,因为∠C=45°,所以△ADC是等腰直角三角形,所以AD=AC=2,∠ADC=45°,CD=√2AC=2√2,因为∠ADC=∠B+∠BAD,∠B=22.5°,所以∠DAB=22.5°,所以∠B=∠DAB,所以AD=BD=2,因为AD=AC,AE⊥CD,所以DE=CE,所以AE=12CD=√2,所以△ABC的面积为12•BC•AE=12×√2×(2+2√2)=2+√2.(2022·安徽中考)已知点O是边长为6的等边△ABC的中心,点P在△ABC外,△ABC,△PAB,△PBC,△PCA(2022•泰安中考)如图,l1∥l2,点A在直线l1上,点B在直线l2上,AB=BC,∠C=25°,∠1=60°.则∠2的度数是()A.70°B.65°C.60°D.55°【解析】选A.如图,因为AB=BC,∠C=25°,所以∠C=∠BAC=25°,因为l1∥l2,∠1=60°,所以∠BEA=180°﹣60°﹣25°=95°,因为∠BEA=∠C+∠2,所以∠2=95°﹣25°=70°(2022•宜宾中考)如图,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,点D是BC边上的动点(不与点B、C重合),DE与AC交于点F,连结CE.下列结论:①BD=CE;②∠DAC=∠CED;③若BD=2CD,则CFAF =45;④在△ABC内存在唯一一点P,使得PA+PB+PC的值最小,若点D在AP的延长线上,且AP的长为2,则CE=2+√3.其中含所有正确结论的选项是()A.①②④ B.①②③ C.①③④ D.①②③④【解析】选B.如图1中,因为∠BAC=∠DAE=90°,所以∠BAD=∠CAE,因为AB=AC,AD=AE,所以△BAD≌△DAE(SAS),所以BD=EC,∠ADB=∠AEC,故①正确,因为∠ADB+∠ADC=180°,所以∠AEC+∠ADC=180°,所以∠DAE+∠DCE=180°,所以∠DAE=∠DCE=90°,取DE的中点O,连接OA,OA,OC,则OA=OD=OE=OC,所以A,D,C,E四点共圆,所以∠DAC=∠CED,故②正确,设CD=m,则BD=CE=2m.DE=√5m,OA=√52m,过点C作CJ⊥DF于点J,因为tan∠CDF=CJDJ =CECD=2,所以CJ=2√55m,因为AO⊥DE,CJ⊥DE,所以AO∥CJ,所以CFAF =CJAO=2√55m√52m=45,故③正确.如图2中,将△BPC绕点B顺时针旋转60°得到△BNM,连接PN,所以BP=BN,PC=NM,∠PBN=60°,所以△BPN是等边三角形,所以BP=PN,所以PA+PB+PC=AP+PN+MN,所以当点A,点P,点N,点M共线时,PA+PB+PC值最小,此时∠APB=∠APC=∠BPC=120°,PB=PC,AD⊥BC,所以∠BPD=∠CPD=60°,设PD=t,则BD=AD=√3t,所以2+t=√3t,所以t=√3+1,所以CE=BD=√3t=3+√3,故④错误,故正确的结论是①②③.(2022•福建中考)如图所示的衣架可以近似看成一个等腰三角形ABC,其中AB=AC,∠ABC=27°,BC=44cm,则高AD约为()(参考数据:sin27°≈0.45,cos27°≈0.89,tan27°≈0.51)A.9.90cm B.11.22cm C.19.58cm D.22.44cm【解析】选B.因为AB=AC,BC=44cm,所以BD=CD=22cm,AD⊥BC,因为∠ABC=27°,所以tan∠ABC=ADBD≈0.51,所以AD≈0.51×22=11.22cm.(2022•永州中考)如图,在Rt△ABC中,∠ABC=90°,∠C=60°,点D为边AC的中点,BD=2,则BC 的长为()A.√3B.2√3C.2D.4【解析】选C.在Rt△ABC中,∠ABC=90°,点D为边AC的中点,BD=2,所以AC=2BD=4,因为∠C=60°,所以∠A=30°,所以BC=12AC=2.(2022•鄂州中考)如图,直线l1∥l2,点C、A分别在l1、l2上,以点C为圆心,CA长为半径画弧,交l1于点B,连接AB.若∠BCA=150°,则∠1的度数为()A.10°B.15°C.20°D.30°【解析】选B.由题意可得AC=BC,所以∠CAB=∠CBA,因为∠BCA=150°,∠BCA+∠CAB+∠CBA=180°,所以∠CAB=∠CBA=15°,因为l1∥l2,所以∠1=∠CBA=15°.(2022•梧州中考)如图,在△ABC 中,AB =AC ,AD 是△ABC 的角平分线,过点D 分别作DE ⊥AB ,DF ⊥AC ,垂足分别是点E ,F ,则下列结论错误的是( )A .∠ADC =90°B .DE =DFC .AD =BC D .BD =CD【解析】选C .因为AB =AC ,AD 是△ABC 的角平分线,所以AD ⊥BC ,BD =CD ,∠B =∠C ,所以∠ADC =90°,在△BDE 和△CDF 中,{∠B =∠C ∠BED =∠CFD BD =CD,所以△BDE ≌△CDF (AAS ),所以DE =DF .(2022•龙东中考)如图,△ABC 中,AB =AC ,AD 平分∠BAC 与BC 相交于点D ,点E 是AB 的中点,点F是DC 的中点,连接EF 交AD 于点P .若△ABC 的面积是24,PD =1.5,则PE 的长是( )A .2.5B .2C .3.5D .3【解析】选A .如图,过点E 作EG ⊥AD 于G ,因为AB =AC ,AD 平分∠BAC ,所以AD ⊥BC ,BD =CD ,所以∠PDF =∠EGP =90°,EG ∥BC , 因为点E 是AB 的中点,所以G 是AD 的中点,所以EG =12BD ,因为F 是CD 的中点,所以DF =12CD ,所以EG =DF ,因为∠EPG =∠DPF ,所以△EGP ≌△FDP (AAS ),所以PG =PD =1.5,所以AD =2DG =6,因为△ABC 的面积是24,所以12•BC •AD =24,所以BC =48÷6=8, 所以DF =14BC =2,所以EG =DF =2,由勾股定理得:PE =√22+1.52=2.5.A .36°B .54°C .72°D .108°【解析】选A .由题意可得BP 为∠ABC 的角平分线,所以∠ABD =∠CBD ,因为AD =BD ,所以∠A =∠ABD ,所以∠A =∠ABD =∠CBD ,所以∠ABC =2∠A ,因为AB =AC ,所以∠ABC =∠C =2∠A ,所以∠A +∠ABC +∠C =∠A +2∠A +2∠A =180°,解得∠A =36°.(2022•滨州中考)如图,屋顶钢架外框是等腰三角形,其中AB =AC ,立柱AD ⊥BC ,且顶角∠BAC =120°,则∠C 的大小为 30° .【解析】因为AB =AC 且∠BAC =120°,所以∠B =∠C =12(180°﹣∠BAC )=12×60°=30°.答案:30°.(2022•绍兴中考)如图,在△ABC 中,∠ABC =40°,∠BAC =80°,以点A 为圆心,AC 长为半径作弧,交射线BA 于点D ,连结CD ,则∠BCD 的度数是 10°或100° .【解析】如图,点D 即为所求;在△ABC中,∠ABC=40°,∠BAC=80°,所以∠ACB=180°﹣40°﹣80°=60°,由作图可知:AC=AD,所以∠ACD=∠ADC=12(180°﹣80°)=50°,所以∠BCD=∠ACB﹣∠ACD=60°﹣50°=10°;由作图可知:AC=AD′,所以∠ACD′=∠AD′C,因为∠ACD′+∠AD′C=∠BAC=80°,所以∠AD′C=40°,所以∠BCD′=180°﹣∠ABC﹣∠AD′C=180°﹣40°﹣40°=100°.综上所述:∠BCD的度数是10°或100°.答案:10°或100°.(2022•娄底中考)如图,已知等腰△ABC的顶角∠BAC的大小为θ,点D为边BC上的动点(与B、C不重合),将AD绕点A沿顺时针方向旋转θ角度时点D落在D′处,连接BD′.给出下列结论:①△ACD≌△ABD′;②△ACB∽△ADD′;③当BD=CD时,△ADD′的面积取得最小值.其中正确的结论有①②③(填结论对应的应号).【解析】由题意可知AC=AB,AD=AD′,∠CAD=∠BAD′,所以△ACD≌△ABD′,故①正确;因为AC=AB,AD=AD′,∠BAC=∠D′AD=θ,所以ACAD =ABAD′,所以△ACB∽△ADD′,故②正确;因为△ACB∽△ADD′,所以S△ADD′S△ACB=(ADAC)2,因为当AD⊥BC时,AD最小,△ADD′的面积取得最小值.而AB=AC,所以BD=CD,所以当BD=CD时,△ADD′的面积取得最小值,故③正确;(2022•岳阳中考)如图,在△ABC中,AB=AC,AD⊥BC于点D,若BC=6,则CD= 3 .【解析】因为AB=AC,AD⊥BC,所以CD=BD,因为BC=6,所以CD=3.答案:3(2022•德阳中考)如图,直角三角形ABC纸片中,∠ACB=90°,点D是AB边上的中点,连结CD,将△ACD沿CD折叠,点A落在点E处,此时恰好有CE⊥AB.若CB=1,那么CE=√3.【解析】如图,设CE交AB于点O.因为∠ACB=90°,AD=DB,所以CD=AD=DB,所以∠A=∠ACD,由翻折的性质可知∠ACD=∠DCE,因为CE⊥AB,所以∠BCE+∠B=90°,因为∠A+∠B=90°,所以∠BCE=∠A,所以∠BCE=∠ACD=∠DCE=30°,,所以CO=CB•cos30°=√32因为DA=DE,DA=DC,所以DC=DE,,所以CE=√3.因为DO⊥CE,所以CO=OE=√32答案:√3.(2022•嘉兴中考)小曹同学复习时将几种三角形的关系整理如图,请帮他在括号内填上一个适当的条件∠B=60°.【解析】有一个角是60°的等腰三角形是等边三角形,答案:∠B=60°(2022•无锡中考)△ABC是边长为5的等边三角形,△DCE是边长为3的等边三角形,直线BD与直线AE 交于点F.如图,若点D在△ABC内,∠DBC=20°,则∠BAF=80°;现将△DCE绕点C旋转1周,在这个旋转过程中,线段AF长度的最小值是4−√3.【解析】因为△ACB,△DEC都是等边三角形,所以AC=CB,DC=EC,∠ACB=∠DCE=60°,所以∠BCD=∠ACE,在△BCD和△ACE中,{CB=CA∠BCD=∠ACE CD=CE,所以△BCD≌△ACE(SAS),所以∠DBC=∠EAC=20°,因为∠BAC=60°,所以∠BAF=∠BAC+∠CAE=80°.如图1中,设BE交AC于点T.同法可证△BCD ≌△ACE ,所以∠CBD =∠CAF ,因为∠BTC =∠ATF ,所以∠BCT =∠AFT =60°,所以点F 在△ABC 的外接圆上运动,当∠ABF 最小时,AF 的值最小,此时CD ⊥BD ,所以BD =√BC 2−CD 2=√52−32=4,所以AE =BD =4,∠BDC =∠AEC =90°,因为CD =CE ,CF =CF ,所以Rt △CFD ≌Rt △CFE (HL ),所以∠DCF =∠ECF =30°,所以EF =CE •tan30°=√3,所以AF 的最小值为AE ﹣EF =4−√3.答案:80,4−√3(2022•鄂州中考)如图,在边长为6的等边△ABC 中,D 、E 分别为边BC 、AC 上的点,AD 与BE 相交于点P ,若BD =CE =2,则△ABP 的周长为 42+18√77 .【解析】因为△ABC 是等边三角形,所以AB =BC ,∠ABD =∠C =60°,在△ABD 和△BCE 中,{AB =BC∠ABD =∠C BD =CE所以△ABD ≌△BCE (SAS ),所以∠BAD =∠CBE ,所以∠APE =∠ABP +∠BAD =∠ABP +∠CBE =∠ABD =60°,所以∠APB =120°,在CB 上取一点F 使CF =CE =2,则BF =BC ﹣CF =4,所以∠C =60°,所以△CEF 是等边三角形,所以∠BFE =120°,即∠APB =∠BFE ,所以△APB ∽△BFE ,所以AP BP =BF EF =42=2, 设BP =x ,则AP =2x ,作BH ⊥AD 延长线于H ,因为∠BPD =∠APE =60°,所以∠PBH =30°,所以PH =x 2,BH =√32x ,所以AH =AP +PH =2x +x 2=52x ,在Rt △ABH 中,AH 2+BH 2=AB 2,即(52x )2+(√32x )2=62, 解得x =6√77或−6√77(舍去),所以AP =12√77,BP =6√77, 所以△ABP 的周长为AB +AP +BP =6+12√77+6√77=6+18√77=42+18√77, 答案:42+18√77. (2022•泰州中考)如图,△ABC 中,∠C =90°,AC =8,BC =6,O 为内心,过点O 的直线分别与AC 、AB边相交于点D 、E .若DE =CD +BE ,则线段CD 的长为 2或12 .【解析】如图,过点O 的直线分别与AC 、AB 边相交于点D 、E ,连接BO ,CO ,因为O 为△ABC 的内心,所以CO 平分∠ACB ,BO 平分∠ABC ,所以∠BCO =∠ACO ,∠CBO =∠ABO ,当CD =OD 时,则∠OCD =∠COD ,所以∠BCO =∠COD ,所以BC ∥DE ,所以∠CBO =∠BOE ,所以BE =OE ,则DE =CD +BE ,设CD =OD =x ,BE =OE =y ,在Rt △ABC 中,AB =√AC 2+BC 2=10,所以{AD AC =DE BC AE AB =DE BC ,即{8−x 8=x+y 610−y 10=8−x 8,解得{x =2y =52,所以CD =2,过点O 作D ′E ′⊥AB ,作DE ∥BC ,因为点O 为△ABC 的内心,所以OD =OE ′,在Rt △ODD ′和Rt △OE ′E 中,{∠OE′E =∠ODD′OE′=OD ∠EOE′=∠D′OD,所以△ODD ′≌△OE ′E (ASA ),所以OE =OD ′,所以D ′E ′=DE =CD +BE =CD ′+BE ′=2+52=92,在△AD ′E ′和△ABC 中,{∠A =∠A ∠D′E′A =∠BCA,所以△AD ′E ′∽△ABC , 所以AD′AB =D′E′BC ,所以AD′10=926,解得:AD ′=152,所以CD ′=AC ﹣AD ′=12. 答案:2或12. (2022•包头中考)如图,在Rt △ABC 中,∠ACB =90°,AC =BC =3,D 为AB 边上一点,且BD =BC ,连接CD ,以点D 为圆心,DC 的长为半径作弧,交BC 于点E (异于点C ),连接DE ,则BE 的长为 3√2−3 .【解析】因为∠ACB =90°,AC =BC =3,所以AB =√2AC =3√2,∠A =∠B =45°,因为BD =BC =3,AC =BC ,所以BD =AC ,AD =3√2−3.因为DC =DE ,所以∠DCE =∠DEC .因为BD =BC ,所以∠DCE =∠CDB ,所以∠CED =∠CDB ,因为∠CDB =∠CDE +∠EDB ,∠CED =∠B +∠EDB ,所以∠CDE =∠B =45°.所以∠ADC +∠EDB =180°﹣∠CDE =135°.因为∠ADC +∠ACD =180°﹣∠A =135°,所以∠ACD =∠EDB .在△ADC 和△BED 中,{AC =BD ∠ACD =∠EDB CD =DE,所以△ADC ≌△BED (SAS ).所以BE =AD =3√2−3.答案:3√2−3.【解析】过点A作AH⊥BC于点H.设AN=CM=x.因为AB=AC=√2,∠BAC=90°,所以BC=√(√2)2+(√2)2=2,因为AH⊥BC,所以BH=AH=1,所以AH=BH=CH=1,所以AM+BN=√12+(1−x)2+√(√2)2+x2,欲求AM+BN的最小值,相当于在x轴上寻找一点P(x,0),到E(1,1),F(0,√2)的距离和的最小值,如图1中,作点F关于x轴的对称点F′,当E,P,F′共线时,PE+PF的值最小,此时直线EF′的解析式为y=(√2+1)x−√2,当y=0时,x=2−√2,所以AM+BN的值最小时,CM的值为2−√2.答案:2−√2(2022•自贡中考)如图,△ABC是等边三角形,D、E在直线BC上,DB=EC.求证:∠D=∠E.【证明】因为△ABC是等边三角形,所以AB=AC,∠ABC=∠ACB=60°,所以∠ABD=∠ACE=120°,在△ABD和△ACE中,{AB=AC∠ABD=∠ACE BD=CE,所以△ABD≌△ACE(SAS),所以∠D=∠E.(2022•怀化中考)如图,在等边三角形ABC中,点M为AB边上任意一点,延长BC至点N,使CN=AM,连接MN交AC于点P,MH⊥AC于点H.(1)求证:MP=NP;(2)若AB=a,求线段PH的长(结果用含a的代数式表示).【解析】(1)证明:过点M作MQ∥BC,交AC于点Q,如图所示:在等边△ABC中,∠A=∠B=∠ACB=60°,因为MQ∥BC,所以∠AMQ=∠B=60°,∠AQM=∠ACB=60°,∠QMP=∠N,所以△AMQ是等边三角形,所以AM=QM,因为AM=CN,所以QM=CN,在△QMP和△CNP中,{∠QPM=∠CPN ∠QMP=∠N QM=CN,所以△QMP≌△CNP(AAS),所以MP=NP;(2)因为△AMQ是等边三角形,且MH⊥AC,所以AH=HQ,因为△QMP≌△CNP,所以QP=CP,所以PH=HQ+QP=12 AC,因为AB=a,AB=AC,所以PH=1 2 a(2022•杭州中考)如图,在Rt△ACB中,∠ACB=90°,点M为边AB的中点,点E在线段AM上,EF⊥AC 于点F,连接CM,CE.已知∠A=50°,∠ACE=30°.(1)求证:CE=CM.(2)若AB=4,求线段FC的长.(2022•绥化中考)我们可以通过面积运算的方法,得到等腰三角形底边上的任意一点到两腰的距离之和与一腰上的高之间的数量关系,并利用这个关系解决相关问题.(1)如图一,在等腰△ABC 中,AB =AC ,BC 边上有一点D ,过点D 作DE ⊥AB 于E ,DF ⊥AC 于F ,过点C 作CG ⊥AB 于G .利用面积证明:DE +DF =CG .(2)如图二,将矩形ABCD 沿着EF 折叠,使点A 与点C 重合,点B 落在B '处,点G 为折痕EF 上一点,过点G 作GM ⊥FC 于M ,GN ⊥BC 于N .若BC =8,BE =3,求GM +GN 的长.(3)如图三,在四边形ABCD 中,E 为线段BC 上的一点,EA ⊥AB ,ED ⊥CD ,连接BD ,且AB CD =AE DE ,BC =√51,CD =3,BD =6,求ED +EA 的长.【解析】(1)连接AD ,因为S △ABC =S △ABD +S △ACD ,所以12×AB ×CG =12×AB ×DE +12×AC ×DF ,因为AB =AC ,所以DE +DF =CG ;(2)因为将矩形ABCD 沿着EF 折叠,使点A 与点C 重合,所以∠AFE =∠EFC ,AE =CE ,因为AD ∥BC ,所以∠AFE =∠CEF ,所以∠CEF =∠CFE ,所以CE =CF ,因为BC =8,BE =3,所以CE =AE =5,在Rt △ABE 中,由勾股定理得,AB =4,所以等腰△CEF 中,CE 边上的高为4, 由(1)知,GM +GN =4;(3)延长BA 、CD 交于G ,作BH ⊥CD 于H ,因为ABCD =AEDE ,∠BAE =∠EDC =90°,所以△BAE ∽△CDE ,所以∠ABE =∠C ,所以BG =CG ,所以ED +EA =BH ,设DH =x ,由勾股定理得,62﹣x 2=(√51)2﹣(x +3)2,解得x =1,所以DH =1, 所以BH =√BD 2−DH 2=√62−12=√35,所以ED +EA =√35.。
【中考数学考点梳理】考点14_等腰三角形与直角三角形
考点14 等腰三角形与直角三角形一、等腰三角形1.等腰三角形的性质定理:等腰三角形的两个底角相等(简称:等边对等角).推论1:等腰三角形顶角平分线平分底边并且垂直于底边,即等腰三角形的顶角平分线、底边上的中线、底边上的高重合.推论2:等边三角形的各个角都相等,并且每个角都等于60°.2.等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称:等角对等边).这个判定定理常用于证明同一个三角形中的边相等.推论1:三个角都相等的三角形是等边三角形.推论2:有一个角是60°的等腰三角形是等边三角形.推论3:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.二、等边三角形1.定义:三条边都相等的三角形是等边三角形.2.性质:等边三角形的各角都相等,并且每一个角都等于60°.3.判定:三个角都相等的三角形是等边三角形;有一个角等于60°的等腰三角形是等边三角形.三、直角三角形与勾股定理1.直角三角形定义:有一个角是直角的三角形叫做直角三角形.性质:(1)直角三角形两锐角互余;(2)在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半;(3)在直角三角形中,斜边上的中线等于斜边的一半.判定:(1)两个内角互余的三角形是直角三角形;(2)三角形一边上的中线等于这条边的一半,那么这个三角形是直角三角形.2.勾股定理及逆定理(1)勾股定理:直角三角形的两条直角边a 、b 的平方和等于斜边c 的平方,即:a 2+b 2=c 2.(2)勾股定理的逆定理:如果三角形的三条边a 、b 、c 有关系:a 2+b 2=c 2,那么这个三角形是直角三角形.考向一 等腰三角形的性质1.等腰三角形是轴对称图形,它有1条或3条对称轴.2.等腰直角三角形的两个底角相等且等于45°.3.等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角).4.等腰三角形的三边关系:设腰长为a ,底边长为b ,则2b <a . 5.等腰三角形的三角关系:设顶角为顶角为∠A ,底角为∠B 、∠C ,则∠A =180°-2∠B ,∠B =∠C =2180A ∠-︒.1.等腰三角形的一个内角为70°,则另外两个内角的度数分别是( )A .55°,55°B .70°,40°或70°,55°C .70°,40°D .55°,55°或70°,40° 【答案】D【分析】先根据等腰三角形的定义,分70︒的内角为顶角和70︒的内角为底角两种情况,再分别根据三角形的内角和定理即可得.【详解】(1)当70︒的内角为等腰三角形的顶角,则另外两个内角均为底角,它们的度数为18070552︒-︒=︒ (2)当70︒的内角为等腰三角形的底角,则另两个内角一个为底角,一个为顶角;底角为70︒,顶角为180707040︒-︒-︒=︒综上,另外两个内角的度数分别是55,55︒︒或70,40︒︒故选:D .【点睛】本题考查了等腰三角形的定义、三角形的内角和定理,根据等腰三角形的定义,正确分两种情况讨论是解题关键.2.古希腊数学家欧多克索斯在深入研究比例理论时,提出了分线段的“中末比”问题:点G 将一线段MN 分为两线段MG ,GN ,使得其中较长的一段MG 是全长MN 与较短的段GN 的比例中项,即满足12MG GN MN MG ==,后人把12这个数称为“黄金分割”数,把点G 称为线段MN 的“黄金分割”点.如图,在ABC 中,已知3AB AC ==,4BC =,若D ,E 是边BC 的两个“黄金分割”点,则ADE的面积为( )A .10-B .5CD .20-【答案】A【分析】作AF ⊥BC ,根据等腰三角形ABC 的性质求出AF 的长,再根据黄金分割点的定义求出BE 、CD 的长度,得到ADE 中DE 的长,利用三角形面积公式即可解题.【详解】解:过点A 作AF ⊥BC ,∵AB=AC ,∴BF=12BC=2,在Rt ABF ==∵D 是边BC 的两个“黄金分割”点,∴CD BC =即142CD =,解得CD=2,同理BE=2,∵CE=BC -BE=4-(2)=6-DE=CD -8,∴S △ABC=12DE AF ⨯⨯=()182⨯10- A. 【点睛】本题考查了“黄金分割比”的定义、等腰三角形的性质、勾股定理的应用以及三角形的面积公式,求出DE 和AF 的长是解题的关键。
中考数学分类(含答案)等腰三角形
中考数学分类(含答案)等腰三角形一、选择题 1.(2010浙江宁波) 如图,在△ABC 中,AB =AC ,∠A =36°,BD 、CE 分别是△ABC 、△BCD 的角平分线, 则图中的等腰三角形有(A)5个 (B)4个 (C)3个 (D)2个【答案】A 2.(2010 浙江义乌)如图,直线CD 是线段AB 的垂直平分线,P 为直线CD 上的一点,已知线段PA =5,则线段PB 的长度为( ▲ )A .6B .5C .4D .3 【答案】B3.(2010江苏无锡)下列性质中,等腰三角形具有而直角三角形不一定具有的是 ( )A .两边之和大于第三边B .有一个角的平分线垂直于这个角的对边C .有两个锐角的和等于90°D .内角和等于180° 【答案】B4.(2010 黄冈)如图,过边长为1的等边△ABC 的边AB 上一点P ,作PE ⊥AC 于E ,Q 为BC 延长线上一点,当PA =CQ 时,连PQ 交AC 边于D ,则DE 的长为( )A .13 B .12 C .23D .不能确定ABC DPE D CBA(第10题)第15题图 【答案】B . 5.(2010山东烟台)如图,等腰△ ABC 中,AB=AC ,∠A=20°。
线段AB 的垂直平分线交AB 于D ,交AC 于E ,连接BE ,则∠CBE 等于 A 、80° B 、 70° C 、60° D 、50°【答案】C6.(2010江西)已知等腰三角形的两条边长分别是7和3,则下列四个数中,第三条边的长是( )A .8B .7C . 4D .3【答案】B 7.(2010湖北武汉)如图,△ABC 内有一点D ,且DA=DB=DC ,若∠DAB=20°,∠DAC=30°,则∠BDC 的大小是( )DA.100°B.80°C.70°D.50° 【答案】A 8.(2010山东威海)如图,在△ABC 中,D ,E 分别是边AC ,AB 的中点, 连接BD .若BD 平分∠ABC ,则下列结论错误的是A .BC =2BEADBEB .∠A =∠EDAC .BC =2AD D .BD ⊥AC 【答案】C9.(2010 湖南株洲)如图所示的正方形网格中,网格线的交点称为格点.已知A 、B 是两格点,如果C 也是图中的格点,且使得ABC ∆为等腰三角形.....,则点C 的个数是 A .6B .7C .8D .9【答案】C 10.(2010云南楚雄)已知等腰三角形的一个内角为70°,则另外两个内角的度数是( )A .55°,55° B.70°,40° C .55°,55°或70°,40° D .以上都不对 【答案】C 11.(2010湖北随州)如图,过边长为1的等边△ABC 的边AB 上一点P ,作PE ⊥AC 于E ,Q 为BC 延长线上一点,当PA =CQ 时,连PQ 交AC 边于D ,则DE 的长为( )A .13 B .12 C .23D .不能确定第15题图【答案】B12.(2010湖北襄樊)已知:一等腰三角形的两边长x 、y 满足方程组2-3,328,x y x y =⎧⎨+=⎩则此等腰三角形的周长为( )A .5B .4C .3D .5或4 【答案】A 13.(2010 山东东营)如图,点C 是线段AB 上的一个动点,△ACD 和△BCE 是在ABB A第8题图 C同侧的两个等边三角形,DM ,EN 分别是△ACD 和△BCE 的高,点C 在线段AB 上沿着从点A 向点B 的方向移动(不与点A ,B 重合),连接DE ,得到四边形DMNE .这个四边形的面积变化情况为( )(A )逐渐增大 (B) 逐渐减小 (C) 始终不变 (D) 先增大后变小【答案】C 14.(2010 广东汕头)如图,把等腰直角△ABC 沿BD 折叠,使点A 落在边BC 上的点E 处.下面结论错误的是( )A .AB =BE B .AD =DC C .AD =DE D .AD =EC【答案】B15.(2010 重庆江津)已知:△ABC 中,AB=AC=x ,BC=6,则腰长x 的 取值范围是( )A .03x <<B .3x >C .36x <<D .6x >【答案】B16.(2010 重庆江津)如图,在Rt △ABC 中,AB=AC ,D 、E 是斜边BC 上两点,且∠DAE=45°,将△ADC 绕点A 顺时针旋转90︒后,得到△AFB ,连接EF .下列结论中正确的个数有( )①45EAF ∠=︒ ②△ABE ∽△ACD ③EA 平分CEF ∠ ④222BE DC DE +=A .1个B .2个C .3个D .4个【答案】C 17.(2010广东茂名)如图,吴伯伯家有一块等边三角形的空地ABC ,已知点E 、F 分别是边AB 、AC 的中点,量得EF =5米,他想把四边形BCFE 用篱笆围成一圈放养小鸡,则需用篱笆的长是A 、15米B 、20米C 、25米D 、30米 【答案】C 18.(2010广东深圳)如图1,△ABC 中,AC=AD=BD ,∠DAC=80°。
中考数学专题复习课件(第20讲_等腰三角形)
目录
首页
上一页
下一页
末页
考 点 知 识 精 讲 中 考 典 例 精 析
7.如图,在边长为 4 的正三角形 ABC 中,AD⊥BC 于点 D,以 AD 为一边向右作正三 角形 ADE.
举 一 反 三
(1)求△ABC 的面积 S; (2)判断 AC、DE 的位置关系,并给出证明.
考 点 训 练
答案:(1)S=4 3 (2)AC⊥DE
考 点 训 练
目录
首页
上一页
下一页
末页
考 点 知 识 精 讲 中 考 典 例 精 析
6. 如图, △ABC 内有一点 D, 且 DA=DB=DC, 若∠DAB=20° , ∠DAC=30° , 则∠BDC 的大小是( A ) A.100° B.80° C.70° D.50°
举 一 反 三
考 点 训 练
)
(3)(2010· 烟台 )如图,在等腰三角形 ABC 中, AB= AC,∠ A= 20° .线段 AB 的垂直平分 线交 AB 于 D,交 AC 于 E,连结 BE,则∠ CBE 等于( ) A. 80° B. 70° C.60° D.50°
举 一 反 三
考 点 训 练
例 1(3)题
目录
首页
上一页
举 一 反 三
【解答】 (1)根据“三角形任意两边之和大于第三边”知腰应为 7, 该三角形三边为 7、 7、 3.故选 B. (2)当 40° 为底角时,顶角为 100° ; 40° 也可以为顶角.故选 C. (3)∵DE 垂直平分 AB ,∴EA = EB ,∴∠EBD =∠A = 20° .∵∠ A = 20° , AB = AC , ∴∠ABC=∠C=80° ,∴∠CBE=80° -20° =60° ,故选 C. 考 (4)等腰三角形分别是△ ABC、△ABD、△BCD、△BCE、△CDE.故选 A. 点
中考数学第19讲 等腰三角形与等边三角形
由(1)知 BA=BC=BE,
∴∠EAB=∠AEB.
∴∠BAG=∠BEF=∠BCF.
课堂精讲
又∵BA=BC, ∴△GAB≌△FCB(SAS). ∴∠GBA=∠FBC,BG=BF. ∴∠GBF=∠GBA+∠ABF=∠FBC+∠ABF=∠ABC=120°.
GF ∴BF= 3. ∵AE=5,EF=CE=CF=2,∴GF=9. ∴BF= GF3= 93=3 3.
答案图 ∵∠ADB=∠EDC, ∴△ABD∽△ECD.∴BDDC=AEBC. ∵AD 平分∠BAC,∴∠BAD=∠CAD. ∴∠CAD=∠E.∴AC=CE.∴BDDC=AACB.
课堂精讲
例 8 下面是有关三角形内外角平分线的探究,阅读后按要求作答: 探究 1:如图 1,在△ABC 中,点 O 是∠ABC 与∠ACB 的平分线 BO 和 CO 的交点,通过分析发现:∠BOC=90°+12∠A.理由如下: ∵BO 和 CO 分别是∠ABC 和∠ACB 的平分线, ∴∠1=12∠ABC,∠2=12∠ACB. ∴∠1+∠2=12(∠ABC+∠ACB). 又∵∠ABC+∠ACB=180°-∠A, ∴∠1+∠2=12(180°-∠A)=90°-12∠A. ∴∠BOC=180°-(∠1+∠2)=180°-90°-12∠A=90°+12∠A.
课堂精讲
考点一 等腰三角形的性质和判定 例1 (1)(2018·成都)等腰三角形的一个底角为50°, 则它的顶角的度数为________. 【答案】80°
课堂精讲
(2)(2018·湖州)如图,AD,CE 分别是△ABC 的中线和角平分线.若 AB= AC,∠CAD=20°,则∠ACE 的度数是( )
知识回顾
二、线段的垂直平分线 1.线段垂直平分线定义: 垂直于 一条线段且 平分 这 条线段的直线叫作线段的垂直平分线. 2.性质:线段垂直平分线上的点到 线段两端点 的距离相 等. 3.判定:到一条线段两端点距离相等的点在__这__条__线__段__的___
2024年中考数学复习课件 第17讲 等腰三角形与直角三角形
返回命题点清单
返回栏目导航
8.(2019·三州联考20题3分)三角板是我们学习数学的好帮手.将一对
直角三角板如图放置,点C在FD的延长线上,点B在ED上,AB∥CF,
∠F=∠ACB=90°,∠E=45°,∠A=60°,AC=10,则CD的长度
是 15-5 .
6
7
8
9
10
11
第17讲 等腰三角形与直角三角形— 真题试做
返回栏目导航
方法指导
1.在解决与直角三角形相关问题时,要联想到与其相关的知
识:(1)两锐角互余;(2)勾股定理;(3)斜边上的中线等于斜
边的一半;(4)30°角所对直角边等于斜边的一半.
2.常过直角三角形直角顶点作斜边垂线,构造相似三角形求
线段长度.
例2
3
4
第17讲 等腰三角形与直角三角形— 重难突破
命题点 2 直角三角形的性质及计算
返回栏目导航
第17讲 等腰三角形与直角三角形— 真题试做
返回栏目导航
返回命题点清单
命题点 1 等腰三角形的性质及计算 (贵阳6年1考,遵义6年2考,毕节
6年1考)
1.(2020·毕节9题3分)等腰三角形的两条边长分别为3和7,则这个等腰
三角形的周长是 ( C
A.10
湘教:八上P61~P67,八下P2~P18
考点梳理
返回栏目导航
第17讲
返回栏目导航
等腰三角形与直角三角形— 思维导图
定义
定义
性质
性质
直角三角形
等腰三角形
判定
判定
等腰三角
形与直角
三角形
定义
性质
判定
等边三角形
2020年九年级数学中考高频考点——等腰三角形考点分析
中考高频考点————等腰三角形一、复习回顾(一)课前热身1.有关等腰三角形的计算:(1)等腰三角形中,若底角是65º,则顶角的度数是.(2)等腰三角形的周长为10cm,一边长为3cm,则其它两边长分别为.(3)等腰三角形一个内角为70º,则其它两个角分别是.(4)等腰三角形一腰上的高与另一腰的夹角是20º,则等腰三角形的底角等于度.2.下列条件能判定△ABC为等腰三角形的是( )A. ∠A=30°,∠B=60°B. AB=5,AC=12,BC=13C. ∠A=50°,∠B=80°D. ∠A:∠B:∠C=3:4:53.如图所示的正方形网格中,网格线的交点称为格点。
已知A. B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形,则点C的个数是( )A. 6 个B. 7 个C. 8 个D. 9个4.如图,在△ABC中,∠B与∠C的平分线交于点O,过点O作DE∥BC,分别交AB、AC于点D. E. 若AB=5,AC=4,则△ADE的周长为( )A. 9B. 5C. 17D. 205.如图,在△ABC中,BO、CO分别平分∠ABC、∠ACB,OM//AB,ON//AC,BC=10cm.则△OMN 的周长= .(二)知识梳理1.三角形的概念及分类2.三角形中的重要线段OCN M B A3.等腰三角形的性质和判定(1)等腰三角形的性质定理及推论:定理:等腰三角形的两个底角相等(简称:等边对等角)推论1:等腰三角形顶角平分线平分底边并且垂直于底边。
即等腰三角形的顶角平分线、底边上的中线、底边上的高重合。
推论2:等边三角形的各个角都相等,并且每个角都等于60°。
(2)等腰三角形的其他性质:①等腰直角三角形的两个底角相等且等于45°②等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角)。
③等腰三角形的三边关系:设腰长为a ,底边长为b ,则2b<a ④等腰三角形的三角关系:设顶角为顶角为∠A ,底角为∠B 、∠C ,则∠A=180°—2∠B ,∠B=∠C=2180A∠-︒ (3)等腰三角形的判定等腰三角形的判定定理及推论:定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称:等角对等边)。
初三数学等腰三角形的性质和判定试题
初三数学等腰三角形的性质和判定试题1.等腰三角形的底边长为6,它的周长不大于20,则腰长x的取值范围是_______。
【答案】【解析】根据等腰三角形的性质结合周长不大于20即可列不等式求解.由题意得,.【考点】等腰三角形的性质点评:不等式的应用在初中数学中极为广泛,与各个知识点的结合极为容易,因而是中考的热点,在各种题型中均有出现,一般难度不大,需特别注意.2.如图,在⊿ABC中,AB=AC,过∠ABC和∠ACB的平分线的交点O作DE∥BC,交AB于D,交AC于E,则图中的等腰三角形有___________个,它们分别是____________。
【答案】5,△ABC,△ADE,△DBO,△ECO,△BCO【解析】由AB=AC可得∠ABC=∠ACB,再根据角平分线的性质结合平行线的性质即可判断.∵AB=AC∴∠ABC=∠ACB∵OB平分∠ABC,OC平分∠ACB∴∠ABO=∠OBC,∠ACO=∠OCB∵DE∥BC∴∠DOB=∠OBC,∠EOC=∠OCB∴∠DOB=∠ABO=∠EOC=∠ACO∴BD=OD,CE=OE,OB=OC∵DE∥BC∴∠ADE=∠ABC,∠AED=∠ACB∴∠ADE=∠AED∴AD=AE∴等腰三角形有△ABC,△ADE,△DBO,△ECO,△BCO共5个.【考点】角平分线的性质,平行线的性质点评:角平分线的性质与平行线的性质在初中数学中极为广泛,与各个知识点的结合极为容易,因而是中考的热点,在各种题型中均有出现,一般难度不大,需特别注意.3.如图,在⊿ABC中,∠C=90°,AD平分∠BAC交BC于点D,BD=6cm,DC=3cm,则D到AB的距离为______。
【答案】3cm【解析】角平分线的性质:角平分线上的点到角两边的距离相等.∵∠C=90°,AD平分∠BAC,DC=3cm∴D到AB的距离为3cm.【考点】角平分线的性质点评:角平分线的性质在初中数学中极为广泛,与各个知识点的结合极为容易,因而是中考的热点,在各种题型中均有出现,一般难度不大,需特别注意.4.将两块直角三角板的直角顶点重合为如图所示的形状,若∠AOD=127°,则∠BOC=________。
2023年九年级中考数学分类讨论专题之等腰三角形中的分类讨论思想专练
中考数学分类讨论专题之等腰三角形中的分类讨论思想专练一.选择题(共10小题)1.已知一个等腰三角形的三边长分别为3x-2,4x-3,7,则这个等腰三角形的周长为()A.23 B.19.5或23C.9或23 D.9或19.5或232.已知方程x 2 -6x+8=0的根,分别是等腰三角形的底边和腰长,则该三角形的周长为()A.6 B.10 C.8 D.124.已知等腰三角形的一个外角等于100°,则它的顶角是()A.80°B.20°C.80°或20°D.不能确定5.等腰△ABC的一边长为4,另外两边的长是关于x的方程x 2 -10x+m=0的两个实数根,则m的值是()A.24 B.25 C.26 D.24或25为坐标轴上一点,且使得△MOA为等腰三角形,则满足条件的点M的个数为()A.4 B.5 C.6 D.87.在△ABC中,∠A的相邻外角是110°,要使△ABC为等腰三角形,则底角∠B的度数是()A.70 B.55°C.70°或55°D.60°8.等腰三角形的一个外角等于100°,则这个三角形的三个内角分别为()A.80°、80°、20°B.80°、50°、50°C.80°、80°、20°或80°、50°、50°D.以上答案都不对9.如图,点A、B、P在⊙O上,且∠APB=50°.若点M是⊙O上的动点,要使△ABM为等腰三角形,则所有符合条件的点M有()A.1个B.2个C.3个D.4个10.等腰三角形的一个外角等于100°,则这个三角形的三个内角分别是()A.50°,50°,50°B.80°,80°,20°C.100°,100°,20°D.50°,50°,80°或80°,80°,20°二.填空题(共5小题)11.等腰三角形的三边长分别为m-2,2m+1,8,则等腰三角形的周长为________ .12.等腰三角形的一条边长为4cm,另一条边长为6cm,则它的周长是________ .13.如图,在矩形ABCD中,AB=4,BC=10,点P在BC上,且PB=3,以AP为腰作等腰三角形APM,使得点M落在矩形ABCD边上,则CM=________ .14.如图,在Rt△ABC中,∠C=90°,点E、F分别是边AB、AC上一点,且AF=EF.若∠CFE=72°,则∠B= ________ °.15.如图,在△ABC中,∠ACB=90°,AC=9,BC=5,点P为△ABC内一动点.过点P作PD⊥AC于点且S △PBC = 152,则D,交AB于点E.若△BCP为等腰三角形,PD的长为________ .三.解答题(共5小题)16.如图矩形ABCD中,AB=2,AD=4,点P是边AD上一点,联结BP,过点P作PE⊥BP,交DC于E点,将△ABP沿直线PE翻折,点B落在点B′处,若△B′PD为等腰三角形,求AP的长.17.(1)已知4a 2 -a-4=0,求代数式(2a-3)(2a+3)+(a-1) 2 +(1+a)(2-a)的值;(2)已知a,b满足a 2 +b 2 -10a-4b+29=0,且a,b为等腰三角形△ABC的边长.求△ABC的周长.18.如图,△ABC中,∠C=90°,AB=5cm,BC=3cm,若动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒1cm,设出发的时间为t秒.(1)当点P在线段AB上时,BP= ________cm.(用含t的代数式表示)(2)若△BCP为直角三角形,则t的取值范围是________ .(3)若△BCP为等腰三角形,直接写出t的值.(4)另有一动点Q从点C开始,按B→A→C→B的路径运动,且速度为每秒2cm,若P、Q两点同时出发,当P、Q中有一点到达终点时,另一点也停止运动.请直接写出t为何值时,直线PQ把△ABC的周长分成相等的两部分.19.如图,矩形ABCD,点P是对角线AC上的动点(不与A、C重合),连接PB,作PE⊥PB交射线DC于点E.已知AD=6,AB=8.设AP的长为x.(1)如图1,PM⊥AB于点M,交CD于点N.求证:△BMP∽△PNE.是否是定值?若是,请求出这个值;若不是,请说明理(2)试探究:PEPB由.(3)当△PCE是等腰三角形时,请求出所有x的值.20.如图,CD是△ABC的高,CD=8,AD=4,BD=3,点P是BC边上的一个动点(与B、C不重合),PE⊥AB于点E,DF=DE,FQ⊥AB于点F,交AC于点Q,连接QE.(1)若点P是BC的中点,则QE= ________ ;(2)在点P的运动过程中,①EF+FQ的值为________ ;②当点P运动到何处时,线段QE最小?最小值是多少?③当△AQE是等腰三角形时,求BE的长.。
中考数学专题复习第4章三角形第14讲等腰三角形和直角三角形含答案
第14讲 等腰三角形和直角三角形☞【基础知识归纳】☜☞归纳 一、等腰三角形1.等腰三角形的定义: 有两条边相等 的三角形是等腰三角形.2.等腰三角形的性质①等腰三角形两个底角 相等 ;②等腰三角形 顶角的平分线 、 底边上的中线 、 底边上的高 互相重合, 简称:“三线合一”③等腰三角形是轴对称图形,有 1 条对称轴. 3.等腰三角形的判定方法①定义判定:一个三角形中,如果有两条边 相等 ,那么这个三角形是等腰三角形. ②判定定理:等角对等边;即一个三角形中,如果有两个角相等,那么这两个角所对的边 相等 .4.等边三角形的性质①等边三角形的各角都 相等 ,并且每—个角都等于 60 度; ②等边三角形是轴对称图形,有 3 条对称轴. 5.等边三角形的判定①三边都 相等 的三角形是等边三角形; ②三个角都 相等 的三角形是等边三角形; ③有一个角等于 60 度的等腰三角形是等边三角形.☞归纳二、直角三角形 1.直角三角形的定义 有一个角是 直角 的三角形叫做直角三角形 2.直角三角形的性质①直角三角形的两个锐角 互余 ;②在直角三角形中,如果一个锐角等于30°, 那么它所对的直角边等于斜边的 一半 ; ③在直角三角形中,斜边上的中线等于斜边的 一半 3.直角三角形的判定①两个内角和为 90° 的三角形是直角三角形;②一边上的中线等于这条边的 一半 的三角形是直角三角形 4.勾股定理及逆定理【勾股定理】如果直角三角形两条直角边分别为,a b ,斜边为c ,那么222a b c += 【逆定理】如果三角形三边长,,a b c 满足222a b c +=,那么这个三角形是 直角 三角形☞【常考题型剖析】☜☺ 题型一、等腰三角形【例1】(2016贺州) 一个等腰三角形的两边长分别为4,8,则它的周长为( )A. 12B. 16C. 20D. 16或20【答案】C【分析】当等腰三角形的三边为4, 4, 8时,因为4+4=8,不符合题意,舍去;当等腰三角形的三边为4, 8, 8时,因为4+8>8符合题意,此时它的周长为4+8+8=20【例2】(2016邵阳)如图所示,点D是△ABC的边AC上一点(不含端点),AD=BD,则下列结论正确的是()A. AC>BCB. AC=BCC.∠A>∠ABCD. ∠A=∠ABC 【答案】A【解答】∵AD=BD,∴∠A=∠ABD,∴∠ABC>∠A,所以C选项和D选项错误;∴AC>BC,所以A选项正确;B选项错误.【举一反三】1. (2016湘西州) 一个等腰三角形一边长为4cm,另一边长为5cm,那么这个等腰三角形的周长是()A. 13cmB. 14cmC. 13cm或14cmD. 以上都不对【答案】c【分析】当等腰三角形的三边为4, 4, 5时,因为4+4>5,符合题意,此时它的周长为4+4+5=13cm;当等腰三角形的三边为4, 5, 5时,因为4+5>5符合题意,此时它的周长为4+5+5=142. (2016通辽) 等腰三角形一腰上的高与另一腰的夹角为48°,则该等腰三角形的底角的度数为【答案】69°或21°【解答】分两种情况讨论:①若∠A<90°,如图1所示:∵BD⊥AC,∴∠A+∠ABD=90°,∵∠ABD=48°,∴∠A=90°﹣48°=42°,∵AB=AC,∴∠ABC=∠C=69°;②若∠A>90°,如图2所示:同①可得:∠DAB=90°﹣48°=42°,∴∠BAC=180°﹣42°=138°,∵AB=AC,∴∠ABC=∠C=21°;综上所述:等腰三角形底角的度数为69°或21°.3. (2016淮安) 已知一个等腰三角形的两边长分别为2和4,则该等腰三角形的 周长是 【答案】10【分析】当等腰三角形的三边为2,2,4时,因为2+2=4,不符合题意,舍去;当等腰三角形的三边为2,4,4时,因为2+4>4符合题意, 此时它的周长为2+4+4=104. (2016随州) 已知等腰三角形的一边长为9,另一边长为方程28150x x -+=的根, 则该等腰三角形的周长为 【答案】19或21或23【解答】解方程28150x x -+=得x=3或x=5,当等腰三角形的三边长为9、9、3时,其周长为21; 当等腰三角形的三边长为9、9、5时,其周长为23;当等腰三角形的三边长为9、3、3时,3+3<9,不符合三角形三边关系定理,舍去; 当等腰三角形的三边长为9、5、5时,其周长为19; 综上,该等腰三角形的周长为19或21或23,5. (2016安顺) 已知实数,x y 满足480x y --=,则以,x y 的值为两边长的等腰三角形的周长是( )A. 20或16B. 20C. 16D. 以上答案均不对 【答案】B【分析】根据非负数的意义列出关于x 、y 的方程并求出x 、y 的值,再根据x 是腰长和底边长两种情况讨论求解.【解答】解:根据题意得4080x y -=⎧⎨-=⎩,解得48x y =⎧⎨=⎩, (1)若4是腰长,则三角形的三边长为:4、4、8,不能组成三角形;(2)若4是底边长,则三角形的三边长为:4、8、8,能组成三角形,周长为4+8+8=20.6. (2016荆门) 已知3是关于x 的方程2(1)20x m x m -++=的一个实数根,并且这个 方程的两个实数根恰好是等腰△ABC 的两条边的边长,则△ABC 的周长为( ) A. 7 B. 10 C. 11 D. 10或11 【答案】D【分析】把x=3代入已知方程求得m 的值;然后通过解方程求得该方程的两根,即等腰△ABC 的两条边长,由三角形三边关系和三角形的周长公式进行解答即可.【解答】解:把x=3代入方程得9﹣3(m+1)+2m=0,解得m=6,则原方程为27120x x -+=,解得123,4x x ==,因为这个方程的两个根恰好是等腰△ABC 的两条边长,①当△ABC 的腰为4,底边为3时,则△ABC 的周长为4+4+3=11; ②当△ABC 的腰为3,底边为4时,则△ABC 的周长为3+3+4=10. 综上所述,该△ABC 的周长为10或11.7. (2016荆门) 如图,△ABC 中,AB=AC ,AD 是∠BAC 的平分线.已知AB=5,AD=3, 则BC 的长为( )A. 5B. 6C. 8D. 10 【答案】C【分析】根据等腰三角形的性质得到AD ⊥BC ,BD=CD ,根据勾股定理即可得到结论. 【解答】解:∵AB=AC ,AD 是∠BAC 的平分线,∴AD ⊥BC ,BD=CD ,∵AB=5,AD=3,∴22AB AD -,∴BC=2BD=8,☺ 题型二、直角三角形【例3】(2015毕节) 下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是( )3,4,523【答案】B【分析】如果三角形三边长,,a b c 满足222a b c +=,那么这个三角形是 直角 三角形;因为 22212)3)+=,所以能够组成直角三角形【例4】(2016南充) 如图,在Rt△ABC 中,∠A=30°,BC=1,点D ,E 分别是直角边BC ,AC 的中点,则DE 的长为( )A. 1B. 2C. 3D. 1+3 【答案】A【解析】如图,∵在Rt△ABC 中,∠C=90°,∠A=30°,∴BC=12AB, 又∵BC=1 ∴AB=2BC=2.又∵点D 、E 分别是AC 和BC 的中点, ∴DE 是△ACB 的中位线,∴DE=12AB=1.故选A .【举一反三】1. (2015来宾) 下列各组线段中,能够组成直角三角形的一组是( )A. 1, 2, 3B. 2, 3, 4C. 4, 5, 6D. 1,2,3 【答案】D【分析】如果三角形三边长,,a b c 满足222a b c +=,那么这个三角形是 直角 三角形;因为 2221(2)(3)+=,所以能够组成直角三角形2. (2016甘孜州) 直角三角形斜边长是5,一直角边的长是3, 则此直角三角形的面积为 . 【答案】6【分析】∵直角三角形斜边长是5,一直角边的长是3,∴另一直角边长为4.该直角三角形的面积S =12×3×4=63. (2016泉州) 如图3,在Rt △ABC 中,E 是斜边AB 的中点,若AB=10,则CE= .图3 图4 【答案】5【分析】根据直角三角形斜边上的中线等于斜边的一半,可得CE= 12AB=1102⨯=5.4. (2016百色) 如图,△ABC 中,∠C=90°,∠A=30°,AB=12,则BC=( ) A. 6 B. 62 C. 63 D.12 【答案】A【解答】∵∠C=90°,∠A=30°,AB=12,∴BC=12sin30°=12×12=6,5. (2016深圳龙岭期中) 如图,在△ABC 中,AB=AC ,DE∥BC, 则下列结论中不正确的是( )A. AD=AEB. DB=ECC. ∠ADE=∠CD. DE=12BC 【答案】D【分析】由DE 与BC 平行,得到△ADE ∽△ABC ,由相似得比例,根据AB=AC ,得到AD=AE ,进而确定出DB=EC ,再由两直线平行同位角相等,以及等腰三角形的底角相等,等量代换得到∠ADE=∠C, 而DE 不一定为中位线,即DE 不一定为BC 的一半,即可得到正确选项.☞【巩固提升自我】☜1. (2014广东) 一个等腰三角形的两边长分别是3和7,则它的周长为( ) A. 17 B. 15 C. 13 D. 13或17 【答案】A【分析】①当等腰三角形的腰为3,底为7时,3+3<7不能构成三角形;②当等腰三角形的腰为7,底为3时,周长为3+7+7=17.2. (2015广州) 已知2是关于x 的方程2230x mx m -+=的一个根,并且这个方程的 两个根恰好是等腰三角形ABC 的两条边长,则三角形ABC 的周长为( ) A. 10 B. 14 C. 10或14 D. 8或10 【答案】B【分析】解:将x=2代入方程,得:4﹣4m+3m=0,解得:m=4.当m=4时,原方程为28120x x -+=, 解得:122,6x x ==,∵2+2=4<6,∴此等腰三角形的三边为6、6、2, ∴此等腰三角形的周长C=6+6+2=14.3. (2016广州) 如图3,已知△ABC 中,AB=10,AC=8,BC=6,DE 是AC 的垂直平分线, DE 交AB 于点D ,连接CD ,则CD=( )图3 图4A. 3B. 4C. 4.8D. 5【答案】D【解答】∵AB=10,AC=8,BC=6, ∴222BC AC AB +=,∴△ABC 是直角三角形, ∵DE 是AC 的垂直平分线,∴AE=EC=4,DE ∥BC ,且线段DE 是△ABC 的中位线,∴DE=3, ∴AD=DC=22AE DE +=5.4. (2015南宁) 如图4,在△ABC 中,AB=AD=DC ,∠B=70°,则∠C 的度数为( ) A. 35° B. 40° C . 45° D . 50° 【答案】A若测得AM 的长为1.2km ,则M ,C 两点间的距离为( )图5 图6A. 0.5kmB. 0.6kmC. 0.9kmD. 1.2km【答案】D解:∵△ABD 中,AB=AD ,∠B=70°, ∴∠B=∠ADB=70°,∴∠ADC=180°﹣∠ADB=110°, ∵AD=CD ,∴∠C=(180°﹣∠ADC )÷2=(180°﹣110°)÷2=35°【分析】∵在Rt△ABC中,∠ACB=90°,M为AB的中点,∴MC=12AB=AM=1.2km6. (2015丹东) 如图6,在△ABC中,AB=AC,∠A=30°,E为BC延长线上一点,∠ABC与∠ACE的平分线相交于点D,则∠D的度数为()A. 15°B. 17.5°C. 20°D. 22.5°【答案】A解:∵∠ABC的平分线与∠ACE的平分线交于点D,∴∠1=∠2,∠3=∠4,∵∠ACE=∠A+∠ABC,即∠1+∠2=∠3+∠4+∠A,∴2∠1=2∠3+∠A,∵∠1=∠3+∠D,∴∠D=12∠A=12×30°=15°7. (2016海南) 如图,AD是△ABC的中线,∠ADC=45°,把△ADC沿着直线AD 对折,点C落在点E的位置.如果BC=6,那么线段BE的长度为()A. 6B. 62332【答案】D解:根据折叠的性质知,CD=ED,∠CDA=∠ADE=45°,∴∠CDE=∠BDE=90°,∵BD=CD,BC=6,∴BD=ED=3,即△EDB是等腰直角三角形,∴×3=。
2023年中考数学考点总结+题型专训专题20 等腰三角形与等边三角形篇(原卷版)
知识回顾微专题专题20等腰三角形与等边三角形考点一:三角形的中位线1. 中位线的定义:三角形任意两边中点的连线段叫做这个三角形的中位线。
2. 中位线的性质:三角形的中位线平行且等于第三边的一半。
1.(2022•南充)数学实践活动中,为了测量校园内被花坛隔开的A ,B 两点的距离,同学们在AB 外选择一点C ,测得AC ,BC 两边中点的距离DE 为10m (如图),则A ,B 两点的距离是 m .第1题 第2题2.(2022•福建)如图,在△ABC 中,D ,E 分别是AB ,AC 的中点.若BC =12,则DE 的长为 .3.(2022•西藏)如图,如果要测量池塘两端A ,B 的距离,可以在池塘外取一点C ,连接AC ,BC ,点D ,E 分别是AC ,BC 的中点,测得DE 的长为25米,则AB 的长为 米.第3题 第4题4.(2022•丽水)如图,在△ABC 中,D ,E ,F 分别是BC ,AC ,AB 的中点.若AB =6,BC =8,则四边形BDEF 的周长是( )A .28B .14C .10D .75.(2022•眉山)在△ABC 中,AB =4,BC =6,AC =8,点D ,E ,F 分别为边AB ,AC ,知识回顾微专题BC 的中点,则△DEF 的周长为( )A .9B .12C .14D .166.(2022•广东)如图,在△ABC 中,BC =4,点D ,E 分别为AB ,AC 的中点,则DE =( )第6题 第7题 第8题A .41B .21C .1D .27.(2022•沈阳)如图,在Rt △ABC 中,∠A =30°,点D 、E 分别是直角边AC 、BC 的中点,连接DE ,则∠CED 的度数是( )A .70°B .60°C .30°D .20°8.(2022•常州)如图,在△ABC 中,D 、E 分别是AB 、AC 的中点.若DE =2,则BC 的长是( )A .3B .4C .5D .6考点二:等腰三角形3. 等腰三角形的定义:有两条边相等的三角形叫做等腰三角形。
初中数学等腰三角形的存在性问题(word版+详解答案)
等腰三角形的存在性问题【考题研究】近几年各地的中考数学试题中,探索等腰三角形的存在性问题频频出现,这类试题的知识覆盖面较广,综合性较强,题意构思精巧,要求学生要有较高的分析问题的能力和解决问题的能力,这类问题符合课标对学生能力提高的要求。
【解题攻略】在讨论等腰三角形的存在性问题时,一般都要先分类.如果△ABC是等腰三角形,那么存在①AB=AC,②BA=BC,③CA=CB三种情况.解等腰三角形的存在性问题,有几何法和代数法,把几何法和代数法相结合,可以使得解题又好又快.几何法一般分三步:分类、画图、计算.哪些题目适合用几何法呢?如果△ABC的∠A(的余弦值)是确定的,夹∠A的两边AB和AC可以用含x的式子表示出来,那么就用几何法.①如图1,如果AB=AC,直接列方程;②如图2,如果BA=BC,那么;③如图3,如果CA=CB,那么.代数法一般也分三步:罗列三边长,分类列方程,解方程并检验.如果三角形的三个角都是不确定的,而三个顶点的坐标可以用含x的式子表示出来,那么根据两点间的距离公式,三边长(的平方)就可以罗列出来.【解题类型及其思路】解题类型:动态类型:1.一动点类型问题;2.双动点或多动点类型问题背景类型:1.几何图形背景;2.平面直角坐标系和几何图形背景解题思路:几何法一般分三步:分类、画图、计算;代数法一般也分三步:罗列三边长,分类列方程,解方程并检验.如果△ABC是等腰三角形,那么存在①AB=AC,②BA=BC,③CA=CB三种情况.已知腰长画等腰三角形用圆规画圆,已知底边画等腰三角形用刻度尺画垂直平分线.解等腰三角形的存在性问题,有几何法和代数法,把几何法和代数法相结合,可以使得解题又好又快.【典例指引】类型一【二次函数综合题中根据条件判定三角形的形状】典例指引1.抛物线2y x bx c =++与x 轴交于点A ,点B (1,0),与y 轴交于点C (0,﹣3),点M 是其顶点. (1)求抛物线解析式;(2)第一象限抛物线上有一点D,满足∠DAB=45°,求点D 的坐标;(3)直线x t = (﹣3<t <﹣1)与x 轴相交于点H .与线段AC ,AM 和抛物线分别相交于点E ,F ,P .证明线段HE ,EF ,FP 总能组成等腰三角形.【举一反三】(2020·江西初三期中)如图①,已知抛物线y=ax 2+bx+3(a≠0)与x 轴交于点A (1,0)和点B (-3,0),与y 轴交于点C .(1)求抛物线的解析式;(2)设抛物线的对称轴与x 轴交于点M ,问在对称轴上是否存在点P ,使△CMP 为等腰三角形?若存在,请直接写出所有符合条件的点P 的坐标;若不存在,请说明理由;(3)如图②,若点E 为第二象限抛物线上一动点,连接BE 、CE ,求四边形BOCE 面积的最大值,并求此时E 点的坐标.类型二【利用二次函数的性质与等腰三角形的性质确定点的坐标】典例指引2.(2019·山东初三期末)如图1,已知抛物线2()30y ax bx a =++≠与x 轴交于点(1,0)A 和点(3,0)B -,与y 轴交于点C .(l )求抛物线的表达式;(2)如图l ,若点E 为第二象限抛物线上一动点,连接,BE CE ,求四边形BOCE 面积的最大值,并求此时E 点的坐标;(3)如图2,在x 轴上是否存在一点D 使得ACD ∆为等腰三角形?若存在,请求出所有符合条件的点D 的坐标;若不存在,请说明理由.【举一反三】(2019·广东省中山市中山纪念中学三鑫双语学校初三期中)如图,已知抛物线y =ax 2+bx +c 的图象与x 轴交于A (2,0),B (﹣8,0)两点,与y 轴交于点C (0,﹣8).(1)求抛物线的解析式;(2)点F是直线BC下方抛物线上的一点,当△BCF的面积最大时,求出点F的坐标;(3)在(2)的条件下,是否存在这样的点Q(0,m),使得△BFQ为等腰三角形?如果有,请直接写出点Q的坐标;如果没有,请说明理由.类型三【确定满足等腰三角形的动点的运动时间】典例指引3.(2018济南中考)如图1,抛物线平移后过点A(8,,0)和原点,顶点为B,对称轴与轴相交于点C,与原抛物线相交于点D.(1)求平移后抛物线的解析式并直接写出阴影部分的面积;(2)如图2,直线AB与轴相交于点P,点M为线段OA上一动点,为直角,边MN与AP相交于点N,设,试探求:①为何值时为等腰三角形;②为何值时线段PN的长度最小,最小长度是多少.【举一反三】如图所示,抛物线y=ax2+bx+c(a≠0)经过A(﹣1,0)、B(3,0)、C(0,3)三点.点D从C出发,沿线段CO以1个单位/秒的速度向终点O运动,过点D作OC的垂线交BC于点E,作EF∥OC,交抛物线于点F.(1)求此抛物线的解析式;(2)小明在探究点D运动时发现,①当点D与点C重合时,EF长度可看作O;②当点D与点O重合时,EF长度也可以看作O,于是他猜想:设点D运动到OC中点位置时,当线段EF最长,你认为他猜想是否正确,为什么?(3)连接CF、DF,请直接写出△CDF为等腰三角形时所有t的值.【新题训练】1.(2020·江西初三)如图,在平面直角坐标系中,已知点A(﹣2,﹣4),直线x=﹣2与x轴相交于点B,连接OA,抛物线y=﹣x2从点O沿OA方向平移,与直线x=﹣2交于点P,顶点M到点A时停止移动.(1)线段OA 所在直线的函数解析式是 ;(2)设平移后抛物线的顶点M 的横坐标为m ,问:当m 为何值时,线段PA 最长?并求出此时PA 的长. (3)若平移后抛物线交y 轴于点Q ,是否存在点Q 使得△OMQ 为等腰三角形?若存在,请求出点Q 的坐标;若不存在,请说明理由.2.(2018·山东中考真题)如图,在平面直角坐标系中,二次函数2y ax bx c =++交x 轴于点()4,0A -、()2,0B ,交y 轴于点()0,6C ,在y 轴上有一点()0,2E -,连接AE .(1)求二次函数的表达式;(2)若点D 为抛物线在x 轴负半轴上方的一个动点,求ADE ∆面积的最大值;(3)抛物线对称轴上是否存在点P ,使AEP ∆为等腰三角形,若存在,请直接写出所有P 点的坐标,若不存在请说明理由.3.(2016·广西中考真题)在平面直角坐标系中,抛物线223y x x =--+与x 轴交于A ,B 两点(A 在B的左侧),与y 轴交于点C ,顶点为D . (1)请直接写出点A ,C ,D 的坐标;(2)如图(1),在x 轴上找一点E ,使得△CDE 的周长最小,求点E 的坐标;(3)如图(2),F 为直线AC 上的动点,在抛物线上是否存在点P ,使得△AFP 为等腰直角三角形?若存在,求出点P的坐标,若不存在,请说明理由.4.(2019·广东广州市第二中学初三)如图(1),在平面直角坐标系中,矩形ABCO,B点坐标为(4,3),抛物线y=12-x2+bx+c经过矩形ABCO的顶点B、C,D为BC的中点,直线AD与y轴交于E点,与抛物线y=12-x2+bx+c交于第四象限的F点.(1)求该抛物线解析式与F点坐标;(2)如图,动点P从点C出发,沿线段CB以每秒1个单位长度的速度向终点B运动;同时,动点M从点A出发,沿线段AE 13个单位长度的速度向终点E运动.过点P作PH⊥OA,垂足为H,连接MP,MH.设点P的运动时间为t秒.①问EP+PH+HF是否有最小值,如果有,求出t的值;如果没有,请说明理由.②若△PMH是等腰三角形,求出此时t的值.5.(2019·湖南中考模拟)如图,关于x的二次函数y=x2+bx+c的图象与x轴交于点A(1,0)和点B与y 轴交于点C(0,3),抛物线的对称轴与x轴交于点D.(1)求二次函数的表达式;(2)在y轴上是否存在一点P,使△PBC为等腰三角形?若存在.请求出点P的坐标;(3)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动,另一个点N从点D与点M 同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M到达点B时,点M、N同时停止运动,问点M、N运动到何处时,△MNB面积最大,试求出最大面积.6.(2018·山东中考模拟)如图,抛物线y=﹣x2+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0),C(0,2).(1)求抛物线的表达式;(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;(3)点E时线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.7.(2019·山东中考模拟)已知:如图,抛物线y=ax2+bx+c与坐标轴分别交于点A(0,6),B(6,0),C (﹣2,0),点P是线段AB上方抛物线上的一个动点.(1)求抛物线的解析式;(2)当点P运动到什么位置时,△PAB的面积有最大值?(3)过点P作x轴的垂线,交线段AB于点D,再过点P做PE∥x轴交抛物线于点E,连结DE,请问是否存在点P 使△PDE 为等腰直角三角形?若存在,求出点P 的坐标;若不存在,说明理由.8.(2018·广东中考模拟)如图,在平面直角坐标系xOy 中,二次函数24y ax bx =+-(0a ≠)的图象与x 轴交于A (﹣2,0)、B (8,0)两点,与y 轴交于点B ,其对称轴与x 轴交于点D .(1)求该二次函数的解析式;(2)如图1,连结BC ,在线段BC 上是否存在点E ,使得△CDE 为等腰三角形?若存在,求出所有符合条件的点E 的坐标;若不存在,请说明理由;(3)如图2,若点P (m ,n )是该二次函数图象上的一个动点(其中m >0,n <0),连结PB ,PD ,BD ,求△BDP 面积的最大值及此时点P 的坐标.9.(2019·四川中考模拟)如图,已知二次函数y =﹣x 2+bx+c (c >0)的图象与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,且OB =OC =3,顶点为M .(1)求二次函数的解析式;(2)点P 为线段BM 上的一个动点,过点P 作x 轴的垂线PQ ,垂足为Q ,若OQ =m ,四边形ACPQ 的面积为S ,求S 关于m 的函数解析式,并写出m 的取值范围;(3)探索:线段BM 上是否存在点N ,使△NMC 为等腰三角形?如果存在,求出点N 的坐标;如果不存在,请说明理由.10.(2019·甘肃中考模拟)如图,已知二次函数y=ax 2+bx+c 的图象与x 轴相交于A (﹣1,0),B (3,0)两点,与y 轴相交于点C (0,﹣3). (1)求这个二次函数的表达式;(2)若P 是第四象限内这个二次函数的图象上任意一点,PH ⊥x 轴于点H ,与BC 交于点M ,连接PC . ①求线段PM 的最大值;②当△PCM 是以PM 为一腰的等腰三角形时,求点P 的坐标.11.(2019·安徽中考模拟)如图,已知直线1y x =+与抛物线2y ax 2x c =++相交于点()1,0A -和点()2,B m 两点.(1)求抛物线的函数表达式;(2)若点P 是位于直线AB 上方抛物线上的一动点,当PAB ∆的面积S 最大时,求此时PAB ∆的面积S 及点P 的坐标;(3)在x 轴上是否存在点Q ,使QAB ∆是等腰三角形?若存在,直接写出Q 点的坐标(不用说理);若不存在,请说明理由.12.(2018·江苏中考模拟)(2017南宁,第26题,10分)如图,已知抛物线2239y ax ax a =--与坐标轴交于A ,B ,C 三点,其中C (0,3),∠BAC 的平分线AE 交y 轴于点D ,交BC 于点E ,过点D 的直线l 与射线AC ,AB 分别交于点M ,N .(1)直接写出a的值、点A的坐标及抛物线的对称轴;(2)点P为抛物线的对称轴上一动点,若△PAD为等腰三角形,求出点P的坐标;(3)证明:当直线l绕点D旋转时,11AM AN均为定值,并求出该定值.13.(2019·重庆中考模拟)如图,在平面直角坐标系中,一抛物线的对称轴为直线,与y轴负半轴交于C点,与x轴交于A、B两点,其中B点的坐标为(3,0),且OB=OC.(1)求此抛物线的解析式;(2)若点G(2,y)是该抛物线上一点,点P是直线AG下方的抛物线上一动点,当点P运动到什么位置时,△APG的面积最大?求出此时P点的坐标和△APG的最大面积.(3)若平行于x轴的直线与该抛物线交于M、N两点(其中点M在点N的右侧),在x轴上是否存在点Q,使△MNQ为等腰直角三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.14.(2019·辽宁中考模拟)抛物线y=ax2+bx﹣3(a≠0)与直线y=kx+c(k≠0)相交于A(﹣1,0)、B(2,﹣3)两点,且抛物线与y轴交于点C.(1)求抛物线的解析式;(2)求出C、D两点的坐标(3)在第四象限抛物线上有一点P,若△PCD是以CD为底边的等腰三角形,求出点P的坐标.15.(2020·浙江初三期末)如图,抛物线y=﹣12x2+2x+6交x轴于A,B两点(点A在点B的右侧),交y轴于点C,顶点为D,对称轴分別交x轴、线段AC于点E、F.(1)求抛物线的对称轴及点A的坐标;(2)连结AD,CD,求△ACD的面积;(3)设动点P从点D出发,沿线段DE匀速向终点E运动,取△ACD一边的两端点和点P,若以这三点为顶点的三角形是等腰三角形,且P为顶角顶点,求所有满足条件的点P的坐标.16.(2020·湖北初三期末)如图,已知二次函数的图象经过点A(4,4),B(5,0)和原点O,P为二次函数图象上的一个动点,过点P作x轴的垂线,垂足为D(m,0),并与直线OA相较于点C.(1)求出二次函数的解析式;(2)当点P在直线OA的上方时,求线段PC的最大值;(3)当点P在直线OA的上方时,是否存在一点P,使射线OP平分∠AOy,若存在,请求出P点坐标;若不存在.请说明理由;(4)当m>0时,探索是否存在点P,使得△PCO为等腰三角形,若存在,求出P点的坐标;若不存在,请说明理由.17.(2019·吉林初三)如图1,抛物线与y =﹣211433x x ++与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,连接AC 、BC ,点D 是线段AB 上一点,且AD =CA ,连接CD .(1)如图2,点P 是直线BC 上方抛物线上的一动点,在线段BC 上有一动点Q ,连接PC 、PD 、PQ ,当△PCD 面积最大时,求PQ +10CQ 的最小值; (2)将过点D 的直线绕点D 旋转,设旋转中的直线l 分别与直线AC 、直线CO 交于点M 、N ,当△CMN 为等腰三角形时,直接写出CM 的长.18.(2020·江苏初三期末)在平面直角坐标系xOy 中,抛物线2y x mx n =-++与x 轴交于点A,B ( A 在B的左侧)(1)如图1,若抛物线的对称轴为直线3,4x AB =-= .①点A 的坐标为( , ),点B 的坐标为( , ); ②求抛物线的函数表达式;(2)如图2,将(1)中的抛物线向右平移若干个单位,再向下平移若干个单位,使平移后的抛物线经过点O ,且与x 正半轴交于点C ,记平移后的抛物线顶点为P ,若OCP ∆是等腰直角三角形,求点P 的坐标.等腰三角形的存在性问题【考题研究】近几年各地的中考数学试题中,探索等腰三角形的存在性问题频频出现,这类试题的知识覆盖面较广,综合性较强,题意构思精巧,要求学生要有较高的分析问题的能力和解决问题的能力,这类问题符合课标对学生能力提高的要求。
中考数学历年各地市真题 等腰三角形
中考数学历年各地市真题等腰三角形,等边三角形(2010哈尔滨)1。
如图,AB 、AC 为⊙O 的弦,连接CO 、BO 并延长分别交弦AB 、AC 于点E 、F ,∠B =∠C .求证:CE =BF .(2010珠海)2。
如图,在梯形ABCD 中,AB ∥CD(1)用尺规作图方法,作∠DAB 的角平分线AF (只保留作图痕迹,不写作法和证明) (2)若AF 交CD 边于点E ,判断△ADE 的形状(只写结果) 解:(1)所以射线AF 即为所求 (2)△ADE 是等腰三角形.(2010珠海)3.如图,△ABC 内接于⊙O ,AB =6,AC =4,D 是AB 边上一点,P 是优弧BAC 的中点,连结PA 、PB 、PC 、PD.(1)当BD 的长度为多少时,△PAD 是以AD 为底边的等腰三角形?并证明; (2)若cos ∠PCB=55,求PA 的长.解:(1)当BD =AC =4时,△PAD 是以AD 为底边的等腰三角形 ∵P 是优弧BAC 的中点 ∴弧PB =弧PC ∴PB =PC∵BD =AC =4 ∠PBD=∠PCA ∴△PBD ≌△PCA∴PA=PD 即△PAD 是以AD 为底边的等腰三角形(2)由(1)可知,当BD =4时,PD =PA ,AD =AB-BD =6-4=2过点P 作PE ⊥AD 于E ,则AE =21AD=1 ∵∠PCB=∠PAD ∴cos ∠PAD=cos ∠PCB=55PA AE ∴PA=5(2010红河自治州)11. 如图3,D 、E 分别是AB 、AC 上的点,若∠A=70°,∠B=60°, DE//BC.则∠AED 的度数是 50°.图3ED CBA(2010年镇江市)20.推理证明(本小题满分6分)如图,在△ABC 和△ADE 中,点E 在BC 边上,∠BAC=∠DAE ,∠B=∠D ,AB=AD. (1)求证:△ABC ≌△ADE ;(2)如果∠AEC=75°,将△ADE 绕着点A 旋转一个锐角后与△ABC 重合,求这个旋转角的大小.(1)∵∠BAC=∠DAE ,AB=AD ,∠B=∠D ,∴△ABD ≌△ADE.(3分) (2)∵△ABC ≌△ADE ,∴AC 与AE 是一组对应边, ∴∠CAE 的旋转角,(4分) ∵AE=AC ,∠AEC=75°,∴∠ACE=∠AEC=75°, (5分)∴∠CAE=180°—75°—75°=30°. (6分)(玉溪市2010)22. 平面内的两条直线有相交和平行两种位置关系.(1)AB 平行于CD .如图a ,点P 在AB 、CD 外部时,由AB ∥CD ,有∠B=∠BOD ,又因∠BOD 是△POD 的外角,故∠BOD=∠BPD +∠D ,得∠BPD=∠B-∠D .如图b ,将点P 移到AB 、CD 内部,以上结论是否成立?,若不成立,则∠BPD 、∠B 、∠D 之间有何数量关系?请证明你的结论;(2)在图b 中,将直线AB 绕点B 逆时针方向旋转一定角度交直线CD 于点Q , 如图c ,则∠BPD ﹑∠B ﹑∠D ﹑∠BQD 之间有何数量关系?(不需证明); (3)根据(2)的结论求图d 中∠A+∠B+∠C+∠D+∠E+∠F 的度数.解:(1)不成立,结论是∠BPD=∠B+∠D. 延长BP 交CD 于点E,∵AB ∥CD. ∴∠B=∠BED.又∠BPD=∠BED+∠D ,∴∠BPD=∠B+∠D. …………4分 (2)结论: ∠BPD=∠BQD+∠B+∠D. …………7分(3)由(2)的结论得:∠AGB=∠A+∠B+∠E. 又∵∠AGB=∠CGF.∠CGF+∠C+∠D+∠F=360°∴∠A+∠B+∠C+∠D ∠E+∠F=360°. …………11分(桂林2010)26.(本题满分12分)如图,过A (8,0)、B (0,直线x y 3=交于点C .平行于y 轴的直线l 从原点O 出发,以每秒1个单位长度的速度沿x 轴向右平移,到C 点时停止;l 分别交线段BC 、OC 于点D 、E ,以DE 为边向左侧作等边△DEF ,设△DEF 与△BCO 重叠部分的面积为S (平方单位),直线l 的运动时间为t (秒).(1)直接写出C 点坐标和t 的取值范围; (2)求S 与t 的函数关系式;(3)设直线l 与x 轴交于点P ,是否存在这样的点P ,使得以P 、O 、F 为顶点的三角形P 的坐标;若不存在,请说明理由.图a O图bO图c图d G26.(本题12 分)解(1)C(4,……………………………2分t的取值范围是:0≤t≤4 ………………………………3分(2)∵D点的坐标是(t,+,E的坐标是(t)∴DE=+=……………………4分∴等边△DEF的DE边上的高为:123t-∴当点F在BO边上时:123t-=t,∴t=3 ……………………5分①当0≤t<3时,重叠部分为等腰梯形,可求梯形上底为:-3…7分S=)23tt+-=)2t=2+………………………………8分②当3≤t≤4时,重叠部分为等边三角形S=1)(123)2t-…………………9分=2-+……………………10分(3)存在,P(247,0)……………………12分说明:∵FO≥FP≥OP≤4备用图1∴以P ,O ,F 以顶点的等腰三角形,腰只有可能是FO ,FP , 若FO =FP 时,t =2(12-3t ),t =247,∴P (247,0)(2010年无锡)7.下列性质中,等腰三角形具有而直角三角形不一定具有的是 ( ▲ )A .两边之和大于第三边B .有一个角的平分线垂直于这个角的对边C .有两个锐角的和等于90°D .内角和等于180° 答案 B(2010年无锡)16.如图,△ABC 中,DE 垂直平分AC 交AB 于E,∠A=30°,∠ACB=80°,则∠BCE= ▲ °. 答案 502010年无锡)26.(本题满分10分)(1)如图1,在正方形ABCD 中,M 是BC 边(不含端点B 、C )上任意一点,P 是BC延长线上一点,N 是∠DCP 的平分线上一点.若∠AMN=90°,求证:AM=MN . 下面给出一种证明的思路,你可以按这一思路证明,也可以选择另外的方法证明. 证明:在边AB 上截取AE=MC ,连ME .正方形ABCD 中,∠B=∠BCD=90°, AB=BC .∴∠NMC=180°—∠AMN —∠AMB=180°—∠B —∠AMB=∠MAB =∠MAE .本试卷由无锡市天一实验学校金杨建录制 QQ :623300747.转载请注明!(下面请你完成余下的证明过程)(2)若将(1)中的“正方形ABCD ”改为“正三角形ABC ”(如图2),N 是∠ACP 的平分线上一点,则当∠AMN=60°时,结论AM=MN 是否还成立?请说明理由. 本试卷由无锡市天一实验学校金杨建录制 QQ :623300747(3)若将(1)中的“正方形ABCD ”改为“正n 边形ABCD …X ”,请你作出猜想:当∠AMN = °时,结论AM=MN 仍然成立.(直接写出答案,不需要证明)(第16题)EDCBAM N P D CEBA 图1答案解:(1)∵AE=MC,∴BE=BM, ∴∠BEM=∠EMB=45°, ∴∠AEM=1355°, ∵CN 平分∠DCP ,∴∠PCN=45°,∴∠AEM=∠MCN=135°在△AEM 和△MCN 中:∵,,=CMN,AEM MCN AE MC EAM ∠=∠=∠∠⎧⎪⎨⎪⎩∴△AEM ≌△MCN ,∴AM=MN(2)仍然成立. 在边AB 上截取AE=MC ,连接ME ∵△ABC 是等边三角形, ∴AB=BC ,∠B=∠ACB=60°, ∴∠ACP=120°. ∵AE=MC ,∴BE=BM ∴∠BEM=∠EMB=60° ∴∠AEM=120°. ∵CN 平分∠ACP ,∴∠PCN=60°, ∴∠AEM=∠MCN=120° ∵∠CMN=180°—∠AMN —∠AMB=180°—∠B —∠AMB=∠BAM ∴△AEM ≌△MCN ,∴AM=MN (3)(2)180n n-︒(2010宁波市)10.如图,在△ABC 中,AB =AC ,∠A =36°,BD 、CE 分别是△ABC 、△BCD 的角平分线,则图中的等腰三角形有 AA .5个B .4个C .3个D .2个 18.(2010年金华)(本题6分)如图,在△ABC 中,D 是BC 边上的点(不与B ,C 重合),及其延长线上的点,CF ∥BE . 请你添加一个条件,使△BDE ≌△段,不再标注或使用其他字母),并给出证明.(1)你添加的条件是: ▲ ; (2)证明:解:(1)DC BD =(或点D 是线段BC 的中点),ED FD =,BE CF =中任选一个即可﹒………………………………2分(2)以DC BD =为例进行证明:∵CF ∥BE , ∴∠FCD ﹦∠EBD .又∵DC BD =,∠FDC ﹦∠EDB , ∴△BDE ≌△CDF .…………………4分5.(2010年长沙)下列每一组数据中的三个数值分别为三角形的三边长,不能构成直角三角形的是 C A .3、4、5 B .6、8、10 C2D .5、12、13 22.(2010年长沙)在正方形ABCD 中,AC 为对角线,E 为AC 上一点,连接EB 、ED . (1)求证:△BEC ≌△DEC ;于F ,当∠BED =120°时,求∠EFD 的度数.答案:(1)证明:∵四边形ABCD 是正方形 ∴BC =CD ,∠ECB =∠ECD =45°又EC =EC …………………………2分 ∴△ABE ≌△ADE ……………………3分ACBD FE(第18题ACBD FE.··.(2)∵△ABE ≌△ADE ∴∠BEC =∠DEC=12∠BED …………4分 ∵∠BED =120°∴∠BEC =60°=∠AEF ……………5分 ∴∠EFD =60°+45°=105° …………………………6分(2010湖北省荆门市)6.给出以下判断:(1)线段的中点是线段的重心(2)三角形的三条中线交于一点,这一点就是三角形的重心 (3)平行四边形的重心是它的两条对角线的交点 (4)三角形的重心是它的中线的一个三等分点 那么以上判断中正确的有( )(A)一个 (B)两个 (C)三个 (D)四个 答案D11. (2010年郴州市)如图3,一个直角三角形纸片,剪去直角后,得到一个四边形,则12∠+∠= 度.答案:2703.(2010年济宁市)若一个三角形三个内角度数的比为2︰3︰4,那么这个三角形是A. 直角三角形B. 锐角三角形C. 钝角三角形D. 等边三角形答案:B北京3. 如图,在△ABC 中,点D 、E 分AB 、AC 边上,DE //BC ,若AD :AB =3:4, AE =6,则AC 等于 (A) 3 (B) 4 (C) 6 (D) 8。
中考数学微专题6 等腰三角形、直角三角形形存在性问题
如图 4,当∠BDC=90°时, 线段 BC 的中点 T3,-32,BC=3 5, 设 D(3,m),∵DT=21BC, ∴|m+23|=3 2 5, ∴m=325-32或 m=-325-23, ∴D3,325-32或 D3,-325-23; 综上所述:△BCD 是直角三角形时,D 点坐标为(3,6)或(3,-9)或3,-325-32或3,325-32.
解:(1)对直线 y=-34x+3,当 x=0 时,y=3,当 y=0 时,x=4, ∴点 B(4,0),C(0,3), ∵抛物线过点 A(-2,0),点 B(4,0), ∴抛物线为 y=a(x+2)(x-4), 将点 C(0,3)代入得:-8a=3, ∵a=-38,
∴抛物线为:y=-38(x+2)(x-4)=-38x2+34x+3, ∵x=4-2 2=1 时,y=287.
∴DBHG=CBGH,即33=B6G, ∴BG=6,∴D(3,6);
如图 3,当∠BCD=90°, 过点 D 作 DK⊥y 轴交于点 K, ∵∠KCD+∠OCB=90°,∠KCD+∠CDK=90°, ∴∠CDK=∠OCB, ∴△OBC∽△KCD, ∴KOCB=OKCD,即K6C=33, ∴KC=6,∴D(3,-9);
解:(1)∵抛物线C:y=(x-2)2向下平移6个单位 长度得到抛物线C1, ∴C1∶y=(x-2)2-6, ∵将抛物线C1向左平移2个单位长度得到抛物线C2. ∴C2∶y=(x-2+2)2-6,即y=x2-6;
(2)过点A作AC⊥x轴于点C,过B作BD⊥AC于点D, 设A(a,(a-2)2-6),则BD=a-2,AC=|(a-2)2-6|, ∵∠BAO=∠ACO=90°, ∴∠BAD+∠OAC=∠OAC+∠AOC=90°, ∴∠BAD=∠AOC, ∵AB=OA,∠ADB=∠OCA, ∴△ABD≌△OAC(AAS), ∴BD=AC, ∴a-2=|(a-2)2-6|, 解得,a=4或a=-1(舍),或a=0(舍),或a=5, ∴A(4,-2)或(5,3);
中考总复习之等腰三角形与直角三角形
中考总复习之等腰三角形与直角三角形在中考数学的复习中,等腰三角形和直角三角形是两个非常重要的知识点。
它们不仅在几何题目中经常出现,而且在解决实际问题中也有着广泛的应用。
接下来,让我们系统地复习一下这两个重要的三角形类型。
一、等腰三角形(一)定义等腰三角形是指至少有两边相等的三角形。
相等的两条边称为这个三角形的腰,另一边称为底边。
两腰的夹角叫做顶角,腰和底边的夹角叫做底角。
(二)性质1、等腰三角形的两个底角相等(简写成“等边对等角”)。
例如,在等腰三角形 ABC 中,AB = AC,那么∠B =∠C。
2、等腰三角形的顶角平分线,底边上的中线,底边上的高相互重合(简写成“三线合一”)。
若 AD 是等腰三角形 ABC 的顶角平分线,则 AD 也是底边 BC 上的中线和高;反之亦然。
(三)判定1、有两条边相等的三角形是等腰三角形。
2、如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”)。
(四)常见题型1、计算角度:利用等腰三角形的性质,求出顶角或底角的度数。
例如,已知等腰三角形的一个底角为 70°,则顶角为 180° 70°× 2 =40°。
2、证明线段相等:通过证明三角形是等腰三角形,得出两条线段相等。
3、求边长:根据等腰三角形的性质和已知条件,计算出三角形的边长。
二、直角三角形(一)定义有一个角为 90°的三角形,叫做直角三角形。
直角所对的边称为斜边,其余两边称为直角边。
(二)性质1、直角三角形两直角边的平方和等于斜边的平方(勾股定理)。
若直角三角形的两条直角边分别为 a、b,斜边为 c,则 a²+ b²=c²。
2、在直角三角形中,斜边上的中线等于斜边的一半。
例如,在直角三角形 ABC 中,∠C = 90°,D 是斜边 AB 的中点,则 CD = 1/2 AB 。
3、直角三角形的两个锐角互余。
中考数学专题特训 等腰三角形与直角三角形(含详细参考答案)
中考数学专题复习等腰三角形与直角三角形【基础知识回顾】一、等腰三角形1、定义:有两边的三角形叫做等腰三角形,其中的三角形叫做等边三角形2、等腰三角形的性质:⑴等腰三角形的两腰等腰三角形的两个底角简称为⑵等腰三角形的顶角平分线、互相重合,简称为⑶等腰三角形是轴对称图形,它有条对称轴,是3、等腰三角形的判定:⑴定义法:有两边相等的三角形是等腰三角形⑵有两相等的三角形是等腰三角形,简称【赵老师提醒:1、等腰三角形的性质还有:等腰三角形两腰上的相等,两腰上的相等,两底角的平分线也相等2、同为等腰三角形腰和底角的特殊性,所以在题目中往常出现对边和角的讨论问题,讨论边时应注意保证讨论角时应主要底角只被围角】4、等边三角形的性质:⑴等边三角形的每个内角都都等于⑵等边三角形也是对称图形,它有条对称轴1、等边三角形的判定:⑴有三个角相等的三角形是等边三角形⑵有一个角是度的三角形是等边三角形【赵老师提醒:1、等边三角形具备等腰三角形的所有性质2、有一个角是直角的等腰三角形是三角形】二、线段的垂直平分线和角的平分线1、线段垂直平分线定义:一条线段且这条线段的直线叫做线段的垂直平分线2、性质:线段垂直平分线上的点到得距离相等3、判定:到一条线段两端点距离相等的点在角的平分线:1、性质:角平分线上的点到得距离相等2、判定:到角两边距离相等的【赵老师提醒:1、线段的垂直平分可以看作是的点的集合,角平分线可以看作是的点的2、要移用作一条已知线段的垂直平分线和已知角的角平分线】三、直角三角形:1、勾股定理和它的逆定理:勾股定理:若一个直角三角形的两直角边为a、b斜边为c则a、b、c满足逆定理:若一个三角形的三边a、b、c满足则这个三角形是直角三角形【赵老师提醒:1、勾股定理在几何证明和计算中应用非常广泛,要注意和二次根式的结合2、勾股定理的逆定理是判断一个三角形是直角三角形或证明线段垂直的主要依据,3、勾股数,列举常见的勾股数三组、、】2、直角三角形的性质:除勾股定理外,直角三角形还有如下性质:⑴直角三角形两锐角⑵直角三角形斜边的中线等于⑶在直角三角形中如果有一个锐角是300,那么它就对边是边的一半3、直角三角形的判定:除勾股定理的逆定理外,直角三角形还有如下判定方法:定义法:⑴有一个角是的三角形是直角三角形⑵有两个角是的三角形是直角三角形⑶如果一个三角形一边上的中线等于这边的这个三角形是直角三角形【赵老师提醒:直角三角形的有关性质在边形,中均有广泛应用,要注意这几条性质的熟练掌握和灵活运用】【重点考点例析】考点一:等腰三角形性质的运用例 1 (2012•襄阳)在等腰△ABC中,∠A=30°,AB=8,则AB边上的高CD的长是.分析:此题需先根据题意画出当AB=AC时,当AB=BC时,当AC=BC时的图象,然后根据等腰三角形的性质和解直角三角形,分别进行计算即可.解:(1)当AB=AC时,∵∠A=30°,∴CD=12AC=12×8=4;(2)当AB=BC时,则∠A=∠ACB=30°,∴∠ACD=60°,∴∠BCD=30°,∴CD=cos∠BCD•BC=cos30°×8=43;(3)当AC=BC时,则AD=4,∴CD=tan∠A•AD=tan30°•4=433;故答案为:433或43或4。
中考数学复习必备教案:等腰三角形
中考数学复习必备教案:等腰三⾓形中考数学复习必备:等腰三⾓形知识点回顾知识点⼀:等腰三⾓形的性质——等边对等⾓等腰三⾓形的两个底⾓ .例1:(2009年贵州黔东南州)如图,在△ABC 中,AB =AC ,点D 在AC 上,且BD =BC =AD ,则∠A 等于()A .30oB .40oC .45oD .36o分析:根据等边对等⾓的性质可知:∠ABC =∠C ,∠BDC =∠C ,∠BAD=∠ABD .因此就有∠ABC=∠C =∠BDC ,因此若设∠A =x ,则有∠BAD =∠ABD =x,∠BDC =∠ABC =∠C =2x .所以可列⽅程:x +2x +2x =180°可以解得x =36°.同步检测⼀:1.在△ABC 中,AB =AC ,①若∠A =70°,则∠B = °,∠C = °②若∠B =40°,则∠A = °2.(08嘉兴)已知等腰三⾓形的⼀个内⾓为50°,则这个等腰三⾓形的顶⾓为()A.50° B.80° C.50°或80° D.40°或65° 知识点⼆:等腰三⾓形的性质——三线合⼀等腰三⾓形的、、互相重合。
例2:如图,在△ABC 中,AD =AE ,BD =CE ,求证:AB =AC 解:过点A 作AF ⊥BC ∵AD =AE ,∴DF =EF ,∵BD =CE ,∴BF =CF ∴AF 垂直平分BC ∴AB =AC 同步检测⼆:1.在△ABC 中,AB =AC ,D 为BC 的中点,∠B =70°,BC =10㎝,则BD =,∠BAD = °知识点三:等腰三⾓形的判定——等⾓对等边在△ABC 中,如果∠A =∠B ,则有=例3:如图,已知BD 是∠ABC 的⾓平分线,DE ∥BC 交AB 于E ,求证:△BED 是等腰三⾓形.解:∵BD 是∠ABC 的⾓平分线∴∠ABD =∠CBD ∵DE ∥BC ∴∠CBD =∠BDE ∴∠ABD =∠BDE ∴BE =DE∴△BED 是等腰三⾓形同步检测三:1.在△ABC 中∠A =50°,∠B =80°,BC =10㎝,则AB =㎝知识点四:等边三⾓形的性质与判定等边三⾓形的三条边都相等,三个⾓都相等且都等于 °都相等的三⾓形是等边三⾓形;都相等的三⾓形是等边三⾓形;有⼀个⾓是的等腰三⾓形是等边三⾓形例4:如图,C 为线段AB 上⼀点,△ACD ,△CBE 是等边三⾓形,AE 与CD 交于点M ,BD 与CE 交于点N ,AE 交BD 于点O .求证:⑴AE =BD ⑵∠AOB =120° ⑶△CMN 是等边三⾓形分析:⑴根据等边三⾓形的性质可⽤SAS 证明△ACE ≌△DCB ,则得AE =BD 同时可得∠CEA =∠CBD ,⑵因此可由三⾓形的⼀个外⾓等于和它不相邻的两个内⾓之和得∠AOB =∠AEB +∠EBO =∠AEC +∠CEB +∠EBO =∠OBC +∠CEB +∠EBO =∠BEC +∠CBE =60°+60°=120°⑶易知∠DCE =60°,故只需证△MCE ≌△NCB 即可.同步检测四:1.若△ABC 是等边三⾓形,D 为AC 的中点,则∠DBC = ° 2.下列三⾓形:①有两个⾓等于60°的三⾓形;②有⼀个⾓为60°的等腰三⾓形;③三个外⾓(每个顶点处各取⼀个外⾓)均相等的三⾓形;④⼀腰上的中线也是这条腰上的⾼的等腰三⾓形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
考点1 等腰三角形的性质与判定 【名师指点】本考点主要考查等腰三角形的判定方法及等 腰三角形的性质.判定等腰三角形时,关键是两条相等的边 或角或利用“三线合一”的逆运用证明;利用等腰三角形 的相关性质解题时,常用等角对等边及“三线合一”的性 质,注意三线之间的相互转化.
5 <x<5 2
知识点3 等边三角形 1.等边三角形:三条边均相等的三角形是等边三角形.
2.等边三角形的性质: (1)等边三角形的三条边__相__等___,每个角都等于__6__0_°_. (2)等边三角形是轴对称图形,有___3__条对称轴. 3.等边三角形的判定: (1)三条边都相等的三角形是等边三角形. (2)三个角都相等的三角形是等边三角形. (3)有一个角为60°的_等__腰__三__角__形__是等边三角形. (4)有两个角为__6_0_°_的三角形是等边三角形.
(3)等腰三角形是轴对称图形,有___1____条对称轴.
知识点2 等腰三角形的判定 1.有两个边相等的三角形是等腰三角形. 2.有两个_____角_____相等的三角形是等腰三角形.
3.“三线合一法”: (1)一边上的高与这边上的中线重合的三角形是等腰 三角形. (2)一边上的高与这边所对角的平分线重合的三角形 是等腰三角形. (3)一边上的中线与这边所对角的平分线重合的三角 形是等腰三角形.
解:∵AB=AC,
∴∠ABC=∠ACB.
∵BD平分∠ABC,CE平分∠ACB,
1
1
∴∠ABD= ∠ABC,∠ACE= ∠ACB,
2
2
∴∠ABD=∠ACE.
∵AD⊥BD,AE⊥CE,
∴∠D=∠E=90°.
在△ADB与△AEC中,
D E, ABD ACE, AB AC,
∴△ADB≌△AEபைடு நூலகம், ∴AD=AE.
3 2n
证明:在正方形ABCD中,AD=BC,
∠ADC=∠BCD,
∵△CDE是等边三角形,
∴DE=CE,∠EDC=∠ECD,
∴∠ADE=∠BCE. 在△ADE和△BCE中,
AD BC, ADE BCE, DE CE,
∴△ADE≌△BCE.
第四章 几何初步与三角形 第3节 等腰三角形
点击图片放大观看
知识点1 等腰三角形的概念及性质
1.等腰三角形的定义:有___两__条__边___相等的三角形是等腰 三角形. 2.等腰三角形性质: (1)等腰三角形两条腰___相__等____,两个底角___相__等____, 简称:等边对等角. (2)等腰三角形的顶角__平__分__线___、底边上的___高__线_____ 和底边上的中线互相重合,简称“三线合一”.