2020版新高考理科数学专题强化训练:数列

合集下载

【高考调研】2020届高考数学总复习 第六章 数列配套单元测试(含解析)理 新人教A版

【高考调研】2020届高考数学总复习 第六章 数列配套单元测试(含解析)理 新人教A版

第六章 单元测试一、选择题(本大题共10小题,每小题5分,共50分.每小题中只有一项符合题目要求)1.若{a n }为等差数列,且a 7-2a 4=-1,a 3=0,则公差d = ( )A .-2B .-12C.12 D .2答案 B解析 由等差中项的定义结合已知条件可知2a 4=a 5+a 3,∴2d =a 7-a 5=-1,即d =-12.故选B. 2.在等比数列{a n }中,若a 3a 5a 7a 9a 11=243,则a 29a 11的值为( )A .9B .1C .2D .3答案 D解析 由等比数列性质可知a 3a 5a 7a 9a 11=a 57=243,所以得a 7=3,又a 29a 11=a 7a 11a 11=a 7,故选D.3.已知等差数列{a n }的前n 项和为S n ,a 1+a 5=12S 5,且a 9=20,则S 11=( )A .260B .220C .130D .110答案 D 解析 ∵S 5=a 1+a 52×5,又∵12S 5=a 1+a 5,∴a 1+a 5=0.∴a 3=0,∴S 11=a 1+a 112×11=a 3+a 92×11=0+202×11=110,故选D.4.各项均不为零的等差数列{a n }中,若a 2n -a n -1-a n +1=0(n ∈N *,n ≥2),则S 2 009等于 A .0 B .2 C .2 009 D .4 018答案 D解析 各项均不为零的等差数列{a n },由于a 2n -a n -1-a n +1=0(n ∈N *,n ≥2),则a 2n -2a n=0,a n =2,S 2 009=4 018,故选D.5.数列{a n }是等比数列且a n >0,a 2a 4+2a 3a 5+a 4a 6=25,那么a 3+a 5的值等于 A .5 B .10 C .15 D .20答案 A解析 由于a 2a 4=a 23,a 4a 6=a 25,所以a 2·a 4+2a 3·a 5+a 4·a 6=a 23+2a 3a 5+a 25=(a 3+a 5)2=25.所以a 3+a 5=±5.又a n >0,所以a 3+a 5=5.所以选A.6.首项为1,公差不为0的等差数列{a n }中,a 3,a 4,a 6是一个等比数列的前三项,则这个等比数列的第四项是( )A .8B .-8C .-6D .不确定答案 B解析 a 24=a 3·a 6⇒(1+3d )2=(1+2d )·(1+5d ) ⇒d (d +1)=0⇒d =-1,∴a 3=-1,a 4=-2,∴q =2. ∴a 6=a 4·q =-4,第四项为a 6·q =-8.7.设函数f (x )满足f (n +1)=2f n +n 2(n ∈N *),且f (1)=2,则f (20)=( )A .95B .97C .105D .192答案 B解析 f (n +1)=f (n )+n 2,∴⎩⎪⎨⎪⎧f 20=f 19+192,f 19=f 18+182,……f 2=f 1+12.累加,得f (20)=f (1)+(12+22+…+192)=f (1)+19×204=97.8.若a x -1,a y,a-x +1(a >0,且a ≠1)成等比数列,则点(x ,y )在平面直角坐标系内的轨迹位于( )A .第一象限B .第二象限C .第三象限D .第四象限答案 D解析 ∵成等比,∴(a y )2=ax -1·a-x +1.即2y =x -1-x +1,x -1>0,∴x >1.x -1<x +1,∴y <0,∴位于第四象限.9.已知等比数列{a n }的公比q <0,其前n 项的和为S n ,则a 9S 8与a 8S 9的大小关系是 A .a 9S 8>a 8S 9 B .a 9S 8<a 8S 9 C .a 9S 8≥a 8S 9 D .a 9S 8≤a 8S 9答案 A解析 a 9S 8-a 8S 9=a 9a 11-q 81-q -a 8a 11-q 91-q =a 8a 1q -q 9-1+q 91-q=-a 1a 8=-a 21q 7,因为a 21>0,q <0,所以-a 21q 7>0,即a 9S 8>a 8S 9,故选A.10.在等差数列{a n }中,前n 项和为S n ,且S 2 011=-2 011,a 1 007=3,则S 2 012的值为 A .1 006 B .-2 012 C .2 012 D .-1 006答案 C解析 方法一 设等差数列的首项为a 1,公差为d ,根据题意可得, ⎩⎪⎨⎪⎧S 2 011=2 011a 1+2 011× 2 011-12d =-2 011,a 1 007=a 1+1 006d =3,即⎩⎪⎨⎪⎧a 1+1 005d =-1,a 1+1 006d =3,解得⎩⎪⎨⎪⎧a 1=-4 021,d =4.所以,S 2 012=2 012a 1+2 012× 2 012-12d=2 012×(-4 021)+2 012×2 011×2 =2 012×(4 022-4 021)=2012. 方法二 由S 2 011=2 011a 1+a 2 0112=2 011a 1 006=-2 011, 解得a 1 006=-1,则S 2 012=2 012a 1+a 2 0122=2 012a 1 006+a 1 0072=2 012×-1+32=2 012.二、填空题(本大题共6小题,每小题5分,共30分,把答案填在题中横线上)11.若m ,n ,m +n 成等差数列,m ,n ,m ·n 成等比数列,则椭圆x 2m +y 2n=1的离心率为________.答案22解析 由题意知2n =m +m +n ,∴n =2m .又n 2=m ·m ·n ,∴n =m 2,∴m 2=2m . ∴m =2,∴n =4,∴a 2=4,b 2=2,c 2=2. ∴e =c a =22. 12.数列{a n },{b n }的前n 项和分别为S n 和T n ,若S n T n =2n 3n +1,则a 100b 100=________.答案199299解析a 100b 100=a 1+a 1992b 1+b 1992=S 199T 199=199299. 13.等差数列{a n }的前n 项和为S n ,且S 3=6,a 3=4,则公差d 等于________. 答案 2 解析 ∵S 3=a 1+a 3×32=6,而a 3=4,∴a 1=0.∴d =a 3-a 12=2.14.某人从2012年1月份开始,每月存入银行100元,月利率是3‰(不计复利),到2012年12月底取出的本利和应是________元.答案 1 223.4解析 应为1 200+0.3×12+0.3×11+…+0.3=1 200+0.3×12×132=1 223.4(元).15.已知各项都为正数的等比数列{a n }中,a 2·a 4=4,a 1+a 2+a 3=14,则满足a n ·a n +1·a n+2>19的最大正整数n 的值为________. 答案 4解析 设等比数列{a n }的公比为q ,其中q >0,依题意得a 23=a 2·a 4=4.又a 3>0,因此a 3=a 1q 2=2,a 1+a 2=a 1+a 1q =12,由此解得q =12,a 1=8,a n =8×(12)n -1=24-n ,a n ·a n +1·a n+2=29-3n.由于2-3=18>19,因此要使29-3n >19,只要9-3n ≥-3,即n ≤4,于是满足a n ·a n +1·a n+2>19的最大正整数n 的值为4. 16.等比数列{a n }的首项为a 1=1,前n 项和为S n ,若S 10S 5=3132,则公比q 等于________.答案 -12解析 因为S 10S 5=3132,所以S 10-S 5S 5=31-3232=-132,即q 5=(-12)5,所以q =-12. 三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)数列{a n }中,a 1=1,a n ,a n +1是方程x 2-(2n +1)x +1b n=0的两个根,求数列{b n }的前n 项和S n .答案 S n =nn +1解析 ∵a n ,a n +1是x 2-(2n +1)x +1b n=0的两根,∴a n +a n +1=2n +1,a n ·a n +1=1b n.∴a n +1+a n +2=2n +3. ∴a n +2-a n =2. ∴a 3-a 1=2,a 5-a 3=2,……a 2n -1-a 2n -3=2.∴a 2n -1-a 1=2(n -1).∴a 2n -1=2n -1,∴当n 为奇数时,a n =n . 同理可得当n 为偶数时a n =n . ∴a n =n . ∴b n =1a n ·a n +1=1nn +1=1n -1n +1. ∴S n =b 1+b 2+b 3+…+b n=1-12+12-13+13-14+…+1n -1n +1=1-1n +1=nn +1. 18.(本小题满分12分)成等差数列的三个正数的和等于15,并且这三个数分别加上2、5、13后成为等比数列{b n }中的b 3、b 4、b 5.(1)求数列{b n }的通项公式;(2)数列{b n }的前n 项和为S n ,求证:数列{S n +54}是等比数列.答案 (1)b n =54·2n -1=5·2n -3(2)略解析 (1)设成等差数列的三个正数分别为a -d ,a ,a +d . 依题意,得a -d +a +a +d =15,解得a =5. 所以{b n }中的b 3,b 4,b 5依次为7-d,10,18+d . 依题意,有(7-d )(18+d )=100, 解得d =2或d =-13(舍去). 故{b n }的第3项为5,公比为2.由b 3=b 1·22,即5=b 1·22,解得b 1=54.所以{b n }是以54为首项,2为公比的等比数列,其通项公式为b n =54·2n -1=5·2n -3.(2)数列{b n }的前n 项和S n =541-2n1-2=5·2n -2-54, 即S n +54=5·2n -2.所以S 1+54=52,S n +1+54S n +54=5·2n -15·2n -2=2.因此{S n +54}是以52为首项,公比为2的等比数列.19.(本小题满分12分)已知数列{x n }的首项x 1=3,通项x n =2n p +nq (n ∈N *,p ,q 为常数),且x 1,x 4,x 5成等差数列,求:(1)p ,q 的值;(2)数列{x n }的前n 项的和S n 的公式.解析 (1)由x 1=3,得2p +q =3,又x 4=24p +4q ,x 5=25p +5q ,且x 1+x 5=2x 4,得3+25p +5q =25p +8q ,解得p =1,q =1. (2)S n =(2+22+…+2n )+(1+2+…+n )=2n +1-2+n n +12.20.(本小题满分12分)已知{a n }是各项均为正数的等比数列,且a 1+a 2=2(1a 1+1a 2),a 3+a 4+a 5=64(1a 3+1a 4+1a 5).(1)求{a n }的通项公式;(2)设b n =(a n +1a n)2,求数列{b n }的前n 项和T n .解析 (1)设{a n }的公比为q ,则a n =a 1q n -1.由已知,有⎩⎪⎨⎪⎧a 1+a 1q =2⎝ ⎛⎭⎪⎫1a 1+1a 1q ,a 1q 2+a 1q 3+a 1q 4=64⎝ ⎛⎭⎪⎫1a 1q 2+1a 1q 3+1a 1q 4,化简,得⎩⎪⎨⎪⎧a 21q =2,a 21q 6=64.又a 1>0,故q =2,a 1=1. 所以a n =2n -1.(2)由(1)知,b n =⎝⎛⎭⎪⎫a n +1a n 2=a 2n +1a 2n +2=4n -1+14n -1+2.因此,T n =(1+4+…+4n -1)+(1+14+…+14n -1)+2n =1-4n1-4+1-14n 1-14+2n =13(4n -41-n)+2n +1.21.(本小题满分12分)某企业2010年的纯利润为500万元,因设备老化等原因,企业的生产能力将逐年下降.若不进行技术改造,预测从2011年起每年比上一年纯利润减少20万元,2011年初该企业一次性投入资金600万元进行技术改造,预测在未扣除技术改造资金的情况下,第n 年(2011年为第一年)的利润为500(1+12n )万元(n 为正整数).(1)设从2011年起的前n 年,若该企业不进行技术改造的累计纯利润为A n 万元,进行技术改造后的累计纯利润为B n 万元(须扣除技术改造资金),求A n ,B n 的表达式;(2)依上述预测,从2011年起该企业至少经过多少年,进行技术改造后的累计纯利润超过不进行技术改造的累计纯利润?思路 (1)A n 是一个等差数列的前n 项和,B n 是一个常数数列和一个等比数列的组合的前n 项和,根据数列的求和公式,就可以求出A n ,B n 的表达式.(2)建模B n >A n ,解这个关于n 的不等式.解析 (1)依题意知,A n 是一个以480为首项,-20为公差的等差数列的前n 项和,所以A n =480n +n n -12×(-20)=490n -10n 2,B n =500(1+12)+500(1+122)+…+500(1+12n )-600=500n +500(12+122+…+12n )-600=500n +500×12[1-12n]1-12-600=500n -5002n -100.(2)依题意得,B n >A n ,即500n -5002n -100>490n -10n 2,可化简得502n <n 2+n -10.∴可设f (n )=502n ,g (n )=n 2+n -10.又∵n ∈N *,∴可知f (n )是减函数,g (n )是增函数. 又f (3)=508>g (3)=2,f (4)=5016<g (4)=10.则当n =4时不等式成立,即4年.22.(本小题满分12分)已知数列{a n }的前n 项和为S n ,且满足S n +n =2a n (n ∈N *). (1)证明:数列{a n +1}为等比数列,并求数列{a n }的通项公式;(2)若b n =(2n +1)a n +2n +1,数列{b n }的前n 项和为T n .求满足不等式T n -22n -1>2 010的n的最小值.解析 (1)因为S n +n =2a n ,所以S n -1=2a n -1-(n -1)(n ≥2,n ∈N *).两式相减,得a n=2a n -1+1.所以a n +1=2(a n -1+1)(n ≥2,n ∈N *),所以数列{a n +1}为等比数列. 因为S n +n =2a n ,令n =1得a 1=1.a 1+1=2,所以a n +1=2n ,所以a n =2n -1.(2)因为b n =(2n +1)a n +2n +1,所以b n =(2n +1)·2n. 所以T n =3×2+5×22+7×23+…+(2n -1)·2n -1+(2n +1)·2n,① 2T n =3×22+5×23+…+(2n -1)·2n+(2n +1)·2n +1,②①-②,得-T n =3×2+2(22+23+ (2))-(2n +1)·2n +1=6+2×22-2n +11-2-(2n +1)·2n +1=-2+2n +2-(2n +1)·2n +1=-2-(2n -1)·2n +1.所以T n =2+(2n -1)·2n +1.若T n -22n -1>2 010, 则2+2n -1·2n +12n -1>2 010,即2n +1>2 010.由于210=1 024,211=2 048,所以n +1≥11,即n ≥10.所以满足不等式T n -22n -1>2 010的n 的最小值是10.1.已知数列{a n }是各项均为正数的等比数列,数列{b n }是等差数列,且a 6=b 7,则有 A .a 3+a 9≤b 4+b 10 B .a 3+a 9≥b 4+b 10 C .a 3+a 9≠b 4+b 10D .a 3+a 9与b 4+b 10的大小关系不确定 答案 B解析 记等比数列{a n }的公比为q ,由数列{b n }为等差数列可知b 4+b 10=2b 7.又数列{a n }是各项均为正数的等比数列,∴a 3+a 9=a 3(1+q 6)=a 6(1+q6q3)=b 7(1+q6q3),又1+q6q3=1q3+q 3≥2,当且仅当q =1时,等号成立,∴a 3+a 9≥b 4+b 10.故选B.2.已知a n =32n -11(n ∈N +),数列{a n }的前n 项和为S n ,则使S n >0的n 的最小值是A .5B .6C .10D .11答案 D解析 令f (x )=32x -11知f (x )关于(112,0)对称,∴a 1+a 10=a 2+a 9=a 3+a 8=a 5+a 6=0, 且a 6>a 7>a 8>a 9>a 10>…>0. ∴S 10=0,S 11>0,选D.3.数列{a n }中,S n 为其前n 项和,已知S 1=1,S 2=2,且S n +1-3S n +2S n -1=0(n ∈N *且n ≥2),则此数列为( )A .等差数列B .等比数列C .从第二项起为等差数列D .从第二项起为等比数列 答案 D解析 S n +1-3S n +2S n -1=0, ∴S n +1-S n =2S n -2S n -1,∴a n +1=2a n . 又a 1=1,a 2=1,∴从第二项起为等比数列.4.已知数列{a n }满足a 1=23,且对任意的正整数m ,n ,都有a m +n =a m +a n ,则a nn 等于A.12 B.23 C.32 D .2答案 B解析 令m =1,得a n +1=a 1+a n ,即a n +1-a n =a 1=23,可知数列{a n }是首项为a 1=23,公差为d =23的等差数列,于是a n =23+(n -1)·23=23n ,即a n n =23.故选B.5.设a 1,a 2,…,a 50是以-1,0,1这三个整数中取值的数列,若a 1+a 2+…+a 50=9且(a 1+1)2+(a 2+1)2+…+(a 50+1)2=107,则a 1,a 2,…,a 50当中取零的项共有A .11个B .12个C .15个D .25个答案 A解析 (a 1+1)2+(a 2+1)2+…+(a 50+1)2=a 21+a 22+…+a 250+2(a 1+a 2+…+a 50)+50=107,∴a 21+a 22+…+a 250=39,∴a 1,a 2,…,a 50中取零的项应为50-39=11个,故选A.6.已知等差数列{a n }满足a 1+a 2+a 3+…+a 101=0,则有 ( )A .a 1+a 101>0B .a 2+a 100<0C .a 3+a 99=0D .a 51=51答案 C解析 由题意,得a 1+a 2+…+a 101=a 1+a 1012×101=0.所以a 1+a 101=a 2+a 100=a 3+a 99=0.7.已知数列{a n },{b n }满足a 1=1,且a n ,a n +1是函数f (x )=x 2-b n x +2n的两个零点,则b 10=________.答案 64解析 a n +a n +1=b n ,a n ·a n +1=2n, ∴a n +1·a n +2=2n +1.∴a n +2=2a n .又∵a 1=1,a 1·a 2=2,∴a 2=2. ∴a 2n =2n,a 2n -1=2n -1(n ∈N *).∴b 10=a 10+a 11=64.8.已知S n 是等差数列{a n }的前n 项和,S 10>0并且S 11=0,若S n ≤S k 对n ∈N *恒成立,则正整数k 构成的集合为________.答案 {5,6}解析 等差数列中由S 10>0,S 11=0,得S 10=10a 1+a 102>0⇒a 1+a 10>0⇒a 5+a 6>0,S 11=11a 1+a 112=0⇒a 1+a 11=2a 6=0,故可知,等差数列{a n }是递减数列且a 6=0,所以S 5=S 6≥S n ,即k =5或6.∴集合为{5,6}.9.(2013·衡水调研)已知各项均为正数的数列{a n }的前n 项和为S n ,函数f (x )=12px2-(p +q )x +q ln x (其中p 、q 均为常数,且p >q >0),当x =a 1时,函数f (x )取得极小值,点(a n,2S n )(n ∈N *)均在函数y =2px 2-q x+f ′(x )+q 的图像上.(其中f ′(x )是函数f (x )的导函数)(1)求a 1的值;(2)求数列{a n }的通项公式; (3)记b n =4S n n +3·q n,求数列{b n }的前n 项和T n . 解析 (1)由题易得f (x )的定义域为(0,+∞).f ′(x )=px -(p +q )+q x =px 2-p +q x +q x =x -1px -qx.令f ′(x )=0,得x =1或x =qp. ∵p >q >0,∴0<q p<1.当x 变化时,f ′(x )、f (x )的变化情况如下表:(0,q p ) q p(q p,1) 1 (1,+∞)f ′(x ) +0 -0 +f (x )极大值极小值1(2)依题意,y =2px 2-q x+f ′(x )+q =2px 2+px -p , 2S n =2p ·a 2n +p ·a n -p (n ∈N *).∴2a 1=2p ·a 21+pa 1-p . 由a 1=1,得p =1. ∴2S n =2a 2n +a n -1.①∴当n ≥2时,2S n -1=2a 2n -1+a n -1-1. ②①-②得2a n =2(a 2n -a 2n -1)+a n -a n -1. ∴2(a 2n -a 2n -1)-(a n +a n -1)=0. ∴(a n +a n -1)(a n -a n -1-12)=0.由于a n +a n -1>0,∴a n -a n -1=12(n ≥2).∴{a n }是以a 1=1为首项,12为公差的等差数列.∴a n =1+(n -1)×12=n +12.(3)S n =n +n n -12·12=n 2+3n 4,∴b n =4S n n +3·q n =nq n .∴T n =q +2q 2+3q 3+…+(n -1)qn -1+nq n.③已知p >q >0,而由(2)知p =1,则q ≠1. ∴qT n =q 2+2q 3+3q 4+…+(n -1)q n +nqn +1.④由③-④,得(1-q )T n =q +q 2+q 3+…+q n -1+q n-nq n +1=q 1-q n 1-q-nq n +1.∴T n =q 1-q n 1-q 2-nq n +11-q. 10.将数列{a n }中的所有项按每一行比上一行多两项的规则排成如下数表:a 1a 2 a 3 a 4a 5 a 6 a 7 a 8 a 9…已知表中的第一列数a 1,a 2,a 5,…构成一个等差数列,记为{b n },且b 2=4,b 5=12.表中每一行正中间一个数a 1,a 3,a 7,…构成数列{c n },其前n 项和为S n .(1)求数列{b n }的通项公式;(2)若上表中,从第二行起,每一行中的数按从左到右的顺序均构成等比数列,公比为同一个正数,且a 13=1.①求S n ;②记M ={n |(n +1)c n ≥λ,n ∈N *},若集合M 的元素个数为3,求实数λ的取值范围. 解析 (1)设数列{b n }的公差为d ,则⎩⎪⎨⎪⎧b 1+d =4,b 1+4d =10,解得⎩⎪⎨⎪⎧b 1=2,d =2,所以b n =2n .(2)①设每一行组成的等比数列的公比为q .由于前n 行共有1+3+5+…+(2n -1)=n 2个数,且 32<13<42,所以a 10=b 4=8.所以a 13=a 10q 3=8q 3,又a 13=1,解得q =12.由已知可得c n =b n qn -1,因此c n =2n ·(12)n -1=n2n -2.所以S n =c 1+c 2+c 3+…+c n =12-1+220+321+…+n2n -2. 12S n =120+221+…+n -12n -2+n2n -1. 因此12S n =12-1+120+121+…+12n -2-n 2n -1=4-12n -2-n 2n -1=4-n +22n -1.解得S n =8-n +22n -2.②由①知,c n =n2n -2,不等式(n +1)c n ≥λ,可化为n n +12n -2≥λ.设f (n )=n n +12n -2,因为f (n +1)-f (n )=n +12-n2n -1,所以当n ≥3时,f (n +1)<f (n ).计算得f (1)=4,f (2)=f (3)=6,f (4)=5,f (5)=154.因为集合M 的元素个数为3,所以λ的取值范围是(4,5]. 11.已知数列{a n },a 1=1,a n =λa n -1+λ-2(n ≥2).(1)当λ为何值时,数列{a n }可以构成公差不为零的等差数列,并求其通项公式; (2)若λ=3,令b n =a n +12,求数列{b n }的前n 项和S n .解析 (1)a 2=λa 1+λ-2=2λ-2,a 3=λa 2+λ-2=2λ2-2λ+λ-2=2λ2-λ-2.∵a 1+a 3=2a 2,∴1+2λ2-λ-2=2(2λ-2), 得2λ2-5λ+3=0,解得λ=1或λ=32.当λ=32时,a 2=2×32-2=1,a 1=a 2,故λ=32不合题意舍去;当λ=1时,代入a n =λa n -1+λ-2可得a n -a n -1=-1. ∴数列{a n }构成首项为a 1=1,d =-1的等差数列. ∴a n =2-n .(2)当λ=3时,a n =3a n -1+1, 即a n +12=3(a n -1+12),即b n =3b n -1.∴数列{b n }构成首项为b 1=32,公比为3的等比数列.∴b n =32×3n -1=3n2.∴S n =321-3n1-3=34(3n-1). 12.已知等差数列{a n }的前n 项和为S n ,且S 4+a 2=2S 3,等比数列{b n }满足b 1=a 2,b 2=a 4.(1)求证:{b n }中的每一项均为{a n }中的项;(2)若a 1=12,数列{c n }满足:b n +1·c n =(-1)n(1+2log 2b n ),求数列{c n }的前n 项和T n .解析 (1)证明:设等差数列{a n }的公差为d ,由S 4+a 2=2S 3得4a 1+6d +a 1+d =6a 1+6d ,∴a 1=d .则a n =a 1+(n -1)d =na 1.∴b 1=2a 1,b 2=4a 1,等比数列{b n }的公比q =b 2b 1=2. 则b n =2a 1·2n -1=2na 1.∵2n∈N *,∴{b n }中的每一项均为{a n }中的项. (2)解析:∵a 1=12,∴b n =2n×12=2n -1.由b n +1·c n =(-1)n(1+2log 2b n ),得2n·c n =(-1)n[1+2(n -1)]=(-1)n(2n -1). ∴c n =-1n2n -12n=(2n -1)(-12)n.T n =(-12)+3(-12)2+5(-12)3+…+(2n -1)(-12)n ,-2T n =1+3(-12)+5(-12)2+…+(2n -1)(-12)n -1.两式相减,得-3T n =1+2(-12)+2(-12)2+…+2(-12)n -1-(2n -1)(-12)n=1-2+2·[1+(-12)+(-12)2+…+(-12)n -1]-(2n -1)(-12)n=-1+2·1--12n1--12-(2n -1)(-12)n=-1+43-43(-12)n -(2n -1)(-12)n=13-6n +13(-12)n ,∴T n =6n +19(-12)n -19. 13.已知数列{a n }中,a 1=2,a n +1-a n -2n -2=0,(n ∈N *). (1)求数列{a n }的通项公式; (2)设b n =1a n +1+1a n +2+1a n +3+…+1a 2n,若对任意的正整数n ,当m ∈[-1,1]时,不等式t 2-2mt +16>b n 恒成立,求实数t 的取值范围.解析 (1)由题意得a n -a n -1=2n (n ≥2), 累差叠加,得a n =n (n +1)(n ≥2). 又a 1=2,所以a n =n (n +1),(n ∈N *). (2)b n =1n +1n +2+1n +2n +3+…+12n2n +1=1n +1-12n +1=nn +12n +1=n2n 2+3n +1,b n =12n +1n+3,b n 的最大值为b 1=16, 所以t 2-2mt +16>16恒成立,m ∈[-1,1].构造g (m )=-2tm +t 2,即g (m )>0恒成立m ∈[-1,1]. 当t =0,不成立; 当t ≠0,g (m )是一次函数,⎩⎪⎨⎪⎧g -1>0,g1>0,解得t ∈(-∞,-2)∪(2,+∞).14.已知等差数列{a n }满足:a 3=7,a 5+a 7=26.{a n }的前n 项和为S n . (1)求a n 及S n ; (2)令b n =1a 2n -1(n ∈N *),求数列{b n }的前n 项和T n .答案 (1)a n =2n +1,S n =n (n +2) (2)T n =n4n +1解析 (1)设等差数列{a n }的首项为a 1,公差为d , 由于a 3=7,a 5+a 7=26, 所以a 1+2d =7,2a 1+10d =26, 解得a 1=3,d =2. 由于a n =a 1+(n -1)d ,S n =n a 1+a n2,所以a n =2n +1,S n =n (n +2).(2)因为a n =2n +1,所以a 2n -1=4n (n +1). 因此b n =14nn +1=14(1n -1n +1). 故T n =b 1+b 2+…+b n=14(1-12+12-13+…+1n -1n +1) =14(1-1n +1)=n4n +1. 所以数列{b n }的前n 项和T n =n4n +1. 15.设数列{a n }是等差数列,其前n 项和S n ,若S 4≥10,S 5≤15,求a 4的最大值. 解析 方法一 a 5=S 5-S 4≤5,S 5=a 1+a 2+…+a 5=5a 3≤15,a 3≤3,则a 4=a 3+a 52≤4,a 4的最大值为4.方法二 ∵⎩⎪⎨⎪⎧S 4=4a 1+6d ≥10,S 5=5a 1+10d ≤15⇒⎩⎪⎨⎪⎧-2a 1-3d ≤-5,a 1+2d ≤3⇒d ≤1.又∵S 5=a 1+a 2+a 3+a 4+a 5=5a 3≤15,∴a 3≤3. ∴a 4≤4.故a 4的最大值为4.方法三 本题也可利用线性规划知识求解.由题意得⎩⎪⎨⎪⎧4a 1+6d ≥10,5a 1+10d ≤15⇒⎩⎪⎨⎪⎧2a 1+3d ≥5,a 1+2d ≤3.a 4=a 1+3d .画出可行域⎩⎪⎨⎪⎧2a 1+3d ≥5,a 1+2d ≤3,求目标函数a 4=a 1+3d 的最大值,即当直线a 4=a 1+3d 过可行域内(1,1)点时截距最大,此时a 4=4.16.(2012·天津)已知{a n }是等差数列,其前n 项和为S n ,{b n }是等比数列,且a 1=b 1=2,a 4+b 4=27,S 4-b 4=10.(1)求数列{a n }与{b n }的通项公式;(2)记T n =a n b 1+a n -1b 2+…+a 1b n ,n ∈N *,证明:T n +12=-2a n +10b n (n ∈N *). 解析 (1)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q .由a 1=b 1=2,得a 4=2+3d ,b 4=2q 3,S 4=8+6d .由条件,得方程组⎩⎪⎨⎪⎧2+3d +2q 3=27,8+6d -2q 3=10,解得⎩⎪⎨⎪⎧d =3,q =2.所以a n =3n -1,b n =2n,n ∈N *. (2)方法一 由(1)得T n =2a n +22a n -1+23a n -2+…+2n a 1,① 2T n =22a n +23a n -1+…+2n a 2+2n -1a 1.②由②-①,得T n =-2(3n -1)+3×22+3×23+…+3×2n +2n +2=121-2n -11-2+2n +2-6n +2=10×2n-6n -10.而-2a n +10b n -12=-2(3n -1)+10×2n -12=10×2n-6n -10,故T n +12=-2a n +10b n ,n ∈N *.方法二 (1)当n =1时,T 1+12=a 1b 1+12=16,-2a 1+10b 1=16,故等式成立; (2)假设当n =k 时等式成立,即T n +12=-2a k +10b k ,则当n =k +1时,有T k +1=a k +1b 1+a k b 2+a k -1b 3+…+a 1b k +1=a k +1b 1+q (a k b 1+a k -1b 2+…+a 1b k ) =a k +1b 1+qT k=a k +1b 1+q (-2a k +10b k -12) =2a k +1-4(a k +1-3)+10b k +1-24 =-2a k +1+10b k +1-12. 即T k +1+12=-2a k +1+10b k +1. 因此n =k +1时等式也成立.由(1)和(2),可知对任意n ∈N *,T n +12=-2a n +10b n 成立.17.(2012·陕西)设{a n }是公比不为1的等比数列,其前n 项和为S n ,且a 5,a 3,a 4成等差数列.(1)求数列{a n }的公比;(2)证明:对任意k ∈N +,S k +2,S k ,S k +1成等差数列. 解析 (1)设数列{a n }的公比为q (q ≠0,q ≠1), 由a 5,a 3,a 4成等差数列,得2a 3=a 5+a 4. 即2a 1q 2=a 1q 4+a 1q 3.由a 1≠0,q ≠0,得q 2+q -2=0,解得q 1=-2,q 2=1(舍去),所以q =-2.(2)方法一 对任意k ∈N +,S k +2+S k +1-2S k =(S k +2-S k )+(S k +1-S k )=a k +1+a k +2+a k +1 =2a k +1+a k +1·(-2) =0,所以,对任意k ∈N +,S k +2,S k ,S k +1成等差数列. 方法二 对任意k ∈N +,2S k =2a 11-q k1-q,S k +2+S k +1=a 11-q k +21-q +a 11-q k +11-q=a 12-q k +2-q k +11-q,2S k -(S k +2+S k +1)=2a 11-q k1-q-a 12-q k +2-q k +11-q=a 11-q[2(1-q k)-(2-qk +2-q k +1)]=a 1q k 1-q(q 2+q -2)=0, 因此,对任意k ∈N +,S k +2,S k ,S k +1成等差数列.18.(2012·广东)设数列{a n }的前n 项和为S n ,满足2S n =a n +1-2n +1+1,n ∈N *,且a 1,a 2+5,a 3成等差数列.(1)求a 1的值;(2)求数列{a n }的通项公式;(3)证明:对一切正整数n ,有1a 1+1a 2+…+1a n <32.解析 (1)∵a 1,a 2+5,a 3成等差数列, ∴2(a 2+5)=a 1+a 3.又∵2a 1=2S 1=a 2-22+1,2(a 1+a 2)=2S 2=a 3-23+1, ∴a 2=2a 1+3,a 3=6a 1+13.因此4a 1+16=7a 1+13,从而a 1=1.(2)由题设条件知,n ≥2时,2S n -1=a n -2n+1, 2S n =a n +1-2n +1+1.∴2a n =a n +1-a n -2n,于是a n +1=3a n +2n (n ≥2).而由(1)知,a 2=2a 1+3=5=3a 1+2, 因此对一切正整数n ,有a n +1=3a n +2n. 所以a n +1+2n +1=3(a n +2n).又∵a 1+21=3,∴{a n +2n}是以3为首项,3为公比的等比数列. 故a n +2n=3n,即a n =3n-2n. (3)∵a n =3n-2n=3·3n -1-2n =3n -1+2(3n -1-2n -1)≥3n -1,∴1a n ≤13n -1. ∴1a 1+1a 2+…+1a n ≤1+13+132+…+13n -1=1-13n1-13<32. 19.(2012·湖北)已知等差数列{a n }前三项的和为-3,前三项的积为8. (1)求等差数列{a n }的通项公式;(2)若a 2,a 3,a 1成等比数列,求数列{|a n |}的前n 项和. 解析 (1)设等差数列{a n }的公差为d ,则a 2=a 1+d ,a 3=a 1+2d .由题意得⎩⎪⎨⎪⎧3a 1+3d =-3,a 1a 1+d a 1+2d =8.解得⎩⎪⎨⎪⎧a 1=2,d =-3或⎩⎪⎨⎪⎧a 1=-4,d =3.所以由等差数列的通项公式可得a n =2-3(n -1)=-3n +5或a n =-4+3(n -1)=3n -7.故a n =-3n +5或a n =3n -7.(2)当a n =-3n +5时,a 2,a 3,a 1分别为-1,-4,2,不成等比数列; 当a n =3n -7时,a 2,a 3,a 1分别为-1,2,-4,成等比数列,满足条件.故|a n |=|3n -7|=⎩⎪⎨⎪⎧-3n +7,n =1,2,3n -7,n ≥3.记数列{|a n |}的前n 项和为S n .当n =1时,S 1=|a 1|=4;当n =2时,S 2=|a 1|+|a 2|=5;当n ≥3时,S n =S 2+|a 3|+|a 4|+…+|a n |=5+(3×3-7)+(3×4-7)+…+(3n -7)=5+n -2[2+3n -7]2=32n 2-112n +10.当n =2时,满足此式. 综上,S n =⎩⎪⎨⎪⎧4,n =1,32n 2-112n +10,n >1.20.(2012·江西)已知数列{a n }的前n 项和S n =kc n-k (其中c ,k 为常数),且a 2=4,a 6=8a 3.(1)求a n ;(2)求数列{na n }的前n 项和T n .解析 (1)由S n =kc n -k ,得a n =S n -S n -1=kc n -kcn -1(n ≥2).由a 2=4,a 6=8a 3,得kc (c -1)=4,kc 5(c -1)=8kc 2(c -1).解得⎩⎪⎨⎪⎧c =2,k =2,所以a 1=S 1=2,a n =kc n -kcn -1=2n (n ≥2),于是a n =2n.(2)T n =∑i =1nia i =∑i =1ni ·2i,即T n =2+2·22+3·23+4·24+…+n ·2n ,T n =2T n -T n =-2-22-23-24-…-2n +n ·2n +1=-2n +1+2+n ·2n +1=(n -1)2n +1+2.21.(2012·安徽)数列{x n }满足x 1=0,x n +1=-x 2n +x n +c (n ∈N *). (1)证明:{x n }是递减数列的充分必要条件是c <0; (2)求c 的取值范围,使{x n }是递增数列.解析 (1)先证充分性,若c <0,由于x n +1=-x 2n +x n +c ≤x n +c <x n ,故{x n }是递减数列; 再证必要性,若{x n }是递减数列,则由x 2<x 1,可得c <0. (2)(ⅰ)假设{x n }是递增数列. 由x 1=0,得x 2=c ,x 3=-c 2+2c . 由x 1<x 2<x 3,得0<c <1. 由x n <x n +1=-x 2n +x n +c 知, 对任意n ≥1都有x n <c ,①注意到c -x n +1=x 2n -x n -c +c =(1-c -x n )(c -x n ),②由①式和②式可得1-c -x n >0,即x n <1-c . 由②式和x n ≥0还可得,对任意n ≥1都有c -x n +1≤(1-c )(c -x n ).③21 反复运用③式,得c -x n ≤(1-c )n -1(c -x 1)<(1-c )n -1.x n <1-c 和c -x n <(1-c )n -1两式相加,知 2c -1<(1-c )n -1对任意n ≥1成立.根据指数函数y =(1-c )n 的性质,得2c -1≤0,c ≤14.故0<c ≤14. (ⅱ)若0<c ≤14,要证数列{x n }为递增数列,即 x n +1-x n =-x 2n +c >0,即证x n <c 对任意n ≥1成立.下面用数学归纳法证明:当0<c ≤14时,x n <c 对任意n ≥1成立. (1)当n =1时,x 1=0<c ≤12,结论成立. (2)假设当n =k (k ∈N *)时结论成立,即x k <c .因为函数f (x )=-x 2+x +c 在区间(-∞,12]内单调递增,所以x k +1=f (x k )<f (c )=c ,这就是说当n =k +1时,结论也成立. 故x n <c 对任意n ≥1成立.因此,x n +1=x n -x 2n +c >x n ,即{x n }是递增数列.由(ⅰ)(ⅱ)知,使得数列{x n }单调递增的c 的范围是(0,14].。

2020版高考数学(理)刷题首选卷:专题突破练(4) 数列中的典型题型与创新题型

2020版高考数学(理)刷题首选卷:专题突破练(4) 数列中的典型题型与创新题型

专题突破练(4) 数列中的典型题型与创新题型一、选择题1.如果等差数列{a n }中,a 3+a 4+a 5=12,那么a 1+a 2+…+a 7等于( )A .14B .21C .28D .35答案 C解析 ∵a 3+a 4+a 5=12,∴3a 4=12,a 4=4.∴a 1+a 2+…+a 7=(a 1+a 7)+(a 2+a 6)+(a 3+a 5)+a 4=7a 4=28.故选C .2.在等比数列{a n }中,a 1=1,公比|q |≠1.若a m =a 1a 2a 3a 4a 5,则m 等于( )A .9B .10C .11D .12答案 C解析 a m =a 1a 2a 3a 4a 5=(a 1a 5)·(a 2a 4)·a 3=a 23·a 23·a 3=a 53=a 51·q 10.因为a 1=1,|q |≠1, 所以a m =a 51·q 10=a 1q 10,所以m =11.故选C . 3.在递减等差数列{a n }中,若a 1+a 5=0,则S n 取最大值时n 等于( )A .2B .3C .4D .2或3答案 D解析 ∵a 1+a 5=2a 3=0,∴a 3=0.∵d <0,∴{a n }的第一项和第二项为正值,从第四项开始为负值,故S n 取最大值时n 等于2或3.故选D .4.在等差数列{a n }中,首项a 1=0,公差d ≠0,若a k =a 10+a 11+…+a 100,则k =( )A .496B .469C .4914D .4915答案 D解析 因为数列{a n }是等差数列,所以a n =a 1+(n -1)d =(n -1)d ,因为a k=a 10+a 11+…+a 100,所以a k =100a 1+100×992d -9a 1+9×82d =4914d ,又a k =(k-1)d,所以(k-1)d=4914d,所以k=4915.故选D.5.已知数列{a n}的通项为a n=log n+1(n+2)(n∈N*),我们把使乘积a1·a2·a3·…·a n为整数的n叫做“优数”,则在(0,2018]内的所有“优数”的和为()A.1024 B.2012 C.2026 D.2036答案C解析设a1·a2·a3·…·a n=log23·log34·log45·…·log n+1(n+2)=log2(n+2)=k,k ∈Z,则0<n=2k-2≤2018,2<2k≤2020,1<k≤10,∴所有“优数”之和为(22-2)+(23-2)+…+(210-2)=22(1-29)1-2-18=211-22=2026.故选C.6.约瑟夫规则:将1,2,3,…,n按逆时针方向依次放置在一个单位圆上,然后从1开始,按逆时针方向,每隔一个数删除一个数,直至剩余一个数为止,删除的数依次为1,3,5,7,….当n=65时,剩余的一个数为() A.1 B.2 C.4 D.8答案B解析将1,2,3,…,65按逆时针方向依次放置在一个单位圆上,然后从1开始,按逆时针方向,每隔一个数删除一个数,首先删除的数为1,3,5,7,…,65(删除33个,剩余32个);然后循环,删除的数的个数分别为16,8,4,2,1,最后剩余2.故选B.7.已知数列{a n}中,a n+1=3S n,则下列关于{a n}的说法正确的是()A.一定为等差数列B.一定为等比数列C.可能为等差数列,但不会为等比数列D.可能为等比数列,但不会为等差数列答案C解析若数列{a n}中所有的项都为0,则满足a n+1=3S n,所以数列{a n}可能为等差数列,故B,D不正确;由a n+1=3S n,得a n+2=3S n+1,则a n+2-a n+1=3(S n +1-S n )=3a n +1,所以a n +2=4a n +1,当a 1≠0时,易知a n +1≠0,所以a n +2a n +1=4,由a n +1=3S n ,得a 2=3a 1,即a 2a 1=3,此时数列{a n }既不是等比数列又不是等差数列,故A 不正确,C 正确.故选C .8.(2018·江西南昌测试二)已知各项均为正数的递增数列{a n }的前n 项和为S n 满足2S n =a n +1,b n =a n a n +t,若b 1,b 2,b m 成等差数列,则t m 的最大值为( ) A .27 B .35 C .38 D .54答案 D解析 由题2S n =a n +1,则4S n =(a n +1)2,4S n +1=(a n +1+1)2,作差得a n +1-a n =2,2S 1=a 1+1⇒a 1=1,a n =2n -1,由b 1,b 2,b m 成等差数列,可得b m=2b 2-b 1,2m -12m -1+t =63+t -11+t ,分离m 化简得m =3+4t -1,故(t ,m )=(2,7),(3,5),(5,4),t m max =54.故选D .9.(2018·河南信阳高级中学模拟)给定函数y =f (x )的图象在下列四个选项中,并且对任意a 1∈(0,1),由关系式a n +1=f (a n )得到的数列{a n }满足a n +1<a n .则该函数的图象可能是( )答案 A解析 由题对于给定函数y =f (x )的图象在下列四个选项中,并且对任意a 1∈(0,1),由关系式a n +1=f (a n )得到的数列{a n }满足a n +1<a n .则可得到f (a n )<a n ,所以f (a 1)<a 1在∀a 1∈(0,1)上都成立,即∀x ∈(0,1),f (x )<x ,所以函数图象都在y =x 的下方.故选A .10.杨辉三角,是二项式系数在三角形中的一种几何排列.在欧洲,这个表叫做帕斯卡三角形.帕斯卡(1623~1662)是在1654年发现这一规律的,比杨辉要迟393年,比贾宪迟600年.右图的表在我国南宋数学家杨辉1261年所著的《详解九章算法》一书里就出现了,这又是我国数学史上的一个伟大成就.如图所示,在“杨辉三角”中,从1开始箭头所指的数组成一个锯齿形数列:1,2,3,3,6,4,10,5,…,则此数列前16项和为( )A .120B .163C .164D .165答案 C解析 考查每行第二个数组成的数列:2,3,4,5,…,归纳推理可知其通项公式为b n =n +1,其前8项和S 8=8×2+8×72×1=44;每行第三个数组成的数列:1,3,6,10,…,归纳推理可知其通项公式为c n =n (n +1)2=12(n 2+n ),其前8项和T 8=12×8×(8+1)×(2×8+1)6+(8+1)×82=120,据此可得题中数列前16项和为120+44=164.故选C .11.(2018·河南林州调研)设等差数列{a n }的前n 项和为S n ,且满足S 17>0,S 18<0,则S 1a 1,S 2a 2,…,S 15a 15中最大的项为( )A .S 7a 7B .S 8a 8C .S 9a 9D .S 10a 10答案 C解析 ∵等差数列{a n }中,S 17>0,且S 18<0,即S 17=17a 9>0,S 18=9(a 9+a 10)<0,∴a 9+a 10<0,a 9>0,∴a 10<0,∴等差数列{a n }为递减数列,故可知a 1,a 2,…,a 9为正,a 10,a 11,…为负;∴S 1,S 2,…,S 17为正,S 18,S 19,…为负,则S 1a 1>0,S 2a 2>0,…,S 9a 9>0,S 10a 10<0,S 11a 11<0,…,S 15a 15<0,又∵S 1<S 2<…<S 9,a 1>a 2>…>a 9,则S 9a 9最大.故选C .12.已知数列{a n }为等比数列,a 1∈(0,1),a 2∈(1,2),a 3∈(2,3),则a 4的取值范围是( )A .(3,4)B .(22,4)C .(2,9)D .(22,9)答案 D解析 设等比数列{a n }的公比为q ,由已知得⎩⎪⎨⎪⎧ 0<a 1<1, ①1<a 1q <2, ②2<a 1q 2<3. ③由①②得q =a 1q a 1>11=1;由①③得q 2=a 1q 2a 1>21=2;由②③得q =a 1q 2a 1q >1且q =a 1q 2a 1q <3,故2<q <3.因为a 4=a 1q 3=(a 1q 2)·q ,所以22<a 4<9.故选D . 二、填空题13.(2018·湖南张家界模拟)定义“等积数列”,在一个数列中,如果每一项与它后一项的积都为同一个常数,那么这个数列叫做等积数列,这个常数叫做该数列的公积.已知数列{a n }是等积数列且a 1=2,公积为10,则a 2018=________.答案 5解析 已知数列{a n }是等积数列且a 1=2,公积为10,可得a 2=5,a 3=2,a 4=5,a 5=2,…,由此奇数项为2,偶数项为5,所以a 2018=5.14.设数列{a n }满足a 2+a 4=10,点P n (n ,a n )对任意的n ∈N *,都有向量P n P n +1=(1,2),则数列{a n }的前n 项和S n =________.答案 n 2解析 ∵P n (n ,a n ),∴P n +1(n +1,a n +1),∴P n P n +1=(1,a n +1-a n )=(1,2),∴a n +1-a n =2,∴{a n }是公差d 为2的等差数列.又由a 2+a 4=2a 1+4d =2a 1+4×2=10,解得a 1=1,∴S n =n +n (n -1)2×2=n 2.15.(2018·湖北荆州中学模拟一)“斐波那契”数列由十三世纪意大利数学家斐波那契发现.数列中的一系列数字常被人们称之为神奇数.具体数列为:1,1,2,3,5,8,…,即从该数列的第三项数字开始,每个数字等于前两个相邻数字之和.已知数列{a n }为“斐波那契”数列,S n 为数列{a n }的前n 项和,若a 2020=M ,则S 2018=________.(用M 表示)答案 M -1解析 ∵数列为:1,1,2,3,5,8,…,即从该数列的第三项数字开始,每个数字等于前两个相邻数字之和,∴a n +2=a n +a n +1=a n +a n -1+a n =a n +a n -1+a n -2+a n -1=a n +a n -1+a n -2+a n -3+a n -2=…=a n +a n -1+a n -2+a n -3+…+a 2+a 1+1,则S 2018=a 2020-1=M -1.16.(2018·衡水金卷压轴卷二)已知曲线C 1的方程为(x -1)2+(y -2)2=1,过平面上一点P 1作C 1的两条切线,切点分别为A 1,B 1,且满足∠A 1P 1B 1=π3.记P 1的轨迹为C 2,过平面上一点P 2作C 2的两条切线,切点分别为A 2,B 2,且满足∠A 2P 2B 2=π3.记P 2的轨迹为C 3,按上述规律一直进行下去,…,记a n =|A n A n+1|min ,且S n 为数列{a n }的前n 项和,则满足S n -5n >0的最小正整数n 为________.答案 5解析 由题设可知轨迹C 1,C 2,C 3,…,C n 分别是半径为1,2,4,8,16,32,…,2n 的圆.因为a n =|A n A n +1|min ,所以a 1=1,a 2=2,a 3=4,a 4=8,…,a n =2n -1,所以S n =a 1+a 2+a 3+…+a n =1+2+4+…+2n -1=2n -12-1=2n -1.由S n -5n >0,得2n -1-5n >0⇒2n >5n +1,故最小的正整数n 为5.三、解答题17.(2018·山西考前适应训练)已知等比数列{a n }中,a n >0,a 1=164,1a n -1a n +1=2a n +2,n ∈N *. (1)求{a n }的通项公式;(2)设b n =(-1)n ·(log 2a n )2,求数列{b n }的前2n 项和T 2n .解 (1)设等比数列{a n }的公比为q ,则q >0,因为1a n -1a n +1=2a n +2,所以1a 1q n -1-1a 1q n =2a 1q n +1, 因为q >0,解得q =2,所以a n =164×2n -1=2n -7,n ∈N *.(2)b n =(-1)n ·(log 2a n )2=(-1)n ·(log 22n -7)2=(-1)n ·(n -7)2,设c n =n -7,则b n =(-1)n ·(c n )2.T 2n =b 1+b 2+b 3+b 4+…+b 2n -1+b 2n=-c 21+c 22+(-c 23)+c 24+…+(-c 22n -1)+c 22n=(-c 1+c 2)(c 1+c 2)+(-c 3+c 4)(c 3+c 4)+…+(-c 2n -1+c 2n )(c 2n -1+c 2n ) =c 1+c 2+c 3+c 4+…+c 2n -1+c 2n=2n [-6+(2n -7)]2=n (2n -13)=2n 2-13n .18.(2018·山东青岛统测)已知等差数列{a n }的公差为2,等比数列{b n }的公比为2,且a n b n =n ·2n .(1)求数列{a n }和{b n }的通项公式;(2)令c n =1a n ·log 2b n +3,记数列{c n }的前n 项和为T n ,试比较T n 与38的大小. 解 (1)∵a n b n =n ·2n ,∴⎩⎪⎨⎪⎧ a 1b 1=2,a 2b 2=8⇒⎩⎪⎨⎪⎧a 1b 1=2,(a 1+2)·2b 1=8, 解得a 1=2,b 1=1,∴a n =2+2(n -1)=2n ,b n =2n -1.(2)∵a n =2n ,b n =2n -1,∴c n =1a n ·log 2b n +3=12n (n +2)=141n -1n +2, ∴T n =c 1+c 2+c 3+c 4+…+c n -1+c n=141-13+12-14+13-15+14-16+…+1n -1-1n +1+1n -1n +2=141+12-1n +1-1n +2=38-141n +1+1n +2<38, ∴T n <38.19.(2018·广东三校联考二)设数列{a n }的前n 项和为S n ,点(a n ,S n )(n ∈N *)在直线2x -y -2=0上.(1)求证:数列{a n }是等比数列,并求其通项公式;(2)设直线x =a n 与函数f (x )=x 2的图象交于点A n ,与函数g (x )=log 2x 的图象交于点B n ,记b n =OA n →·OB n →(其中O 为坐标原点),求数列{b n }的前n 项和T n .解 (1)证明:∵点(a n ,S n )在直线2x -y -2=0上,∴2a n -S n -2=0.①当n =1时,2a 1-a 1-2=0,∴a 1=2.当n ≥2时,2a n -1-S n -1-2=0,②①-②,得a n =2a n -1.∴数列{a n }是首项为2,公比为2的等比数列,则a n =2n .(2)由(1)及已知易得A n (2n ,4n ),B n (2n ,n ),∴b n =OA n →·OB n →,∴b n =(n +1)·4n . 则T n =2×41 +3×42+4×43+…+(n +1)·4n ,③4T n =2×42+3×43+4×44+…+(n +1)·4n +1,④③-④,得-3T n =8+42+43+…+4n -(n +1)·4n +1=8+16(1-4n -1)1-4-(n +1)·4n +1, ∴T n =n 3+29·4n +1-89.20.(2018·湖南六校联考)已知函数f (x )=x 2+x +c (c 为常数),且x ∈-12,0时,f (x )的最大值为-14,数列{a n }的首项a 1=32,点(a n ,a n +1)在函数f (x )的图象上,其中n ≥1,n ∈Z .(1)证明:数列lg a n +12是等比数列;(2)记R n =a 1+12·a 2+12·…·a n +12,求R n .解 (1)证明:依题意,f (x )=x 2+x +c ,c 为常数,当x∈-12,0时,f′(x)≥0,f(x)单调递增,所以f(x)max=f(0)=c=-14,所以f(x)=x2+x-14.又点(a n,a n+1)在函数f(x)的图象上,所以a n+1=a2n+a n-14,即a n+1+12=a n+122,由于a1=32,易知a n +12>0,所以lg a n+1+12=2lg a n+12,又lg a1+12=lg 2≠0,所以数列lg a n+12是首项为lg 2,公比为2的等比数列.(2)由(1)知lg a n+12=2n-1·lg 2=lg 22n-1,所以a n+12=22n-1,所以R n=220·221·222·…·22n-1=220+21+22+…+2n-1=22n-1.21.(2019·宁夏六盘山高级中学模拟)已知函数y=f(x).对任意x∈R,都有f(x)+f(1-x)=2.(1)求f 12和f1n+fn-1n(n∈N*)的值;(2)数列{a n}满足a n=f(0)+f 1n+f2n+…+fn-1n+f(1)(n∈N*),求证:数列{an}是等差数列.解(1)由题设条件知f 12+f12=2,故f12=1.而1n+n-1n=1,故f1n+fn-1n=2.(2)证明:依题有a n=f(0)+f 1n+…+fn-1n+f(1),n∈N*,同理有a n=f(1)+f n-1n+…+f1n+f(0),n∈N*,上述两式对应相加得2a n=[f(0)+f(1)]+f1n +fn-1n+…+f1n+fn-1n+[f(0)+f(1)]=2(n+1),从而a n=n+1,n∈N*,而a n+1-a n=1,故{a n}为等差数列.。

2020版新高考复习理科数学教学案:数列含答案 (2)

2020版新高考复习理科数学教学案:数列含答案 (2)
答案:C
6.[20xx·惠州调研]已知各项均为正数的等比数列{an}中.a1=1,2a3.a5,3a4成等差数列.则数列{an}的前n项和Sn=( )
A.2n-1B.2n-1-1
C.2n-1D.2n
解析:通解:设{an}的公比为q(q>0).由题意知2a5=2a3+3a4.∴2a3q2=2a3+3a3q.∴2q2=2+3q.∴q=2或q=- (舍去).所以an=2n-1.
■备考工具——————————————
1.求数列的前n项和的方法
(1)公式法
①等差数列的前n项和公式
Sn= =na1+ .
②等比数列的前n项和公式
a.当q=1时.Sn=na1;
b.当q≠1时.Sn= = .
(2)分组求和:把一个数列分成几个可以直接求和的数列.
(3)裂项相消:把一个数列的通项分成两项差的形式.相加过程中消去中间项.只剩有限项再求和.
通项公式的推广
an=a1qn-1
(揭示首末两项的关系)
an=amqn-m
(揭示任意两项之间的关系)
(2)前n项和公式
Sn= 或Sn=
7.等比数列的性质
若{an}为等比数列.则
(1){a }. .{c·an}(c≠0)都是等比数列.
(2)各项及公比都不为0.
8.等比数列项的运算性质
若m+n=p+q(m.n.p.q∈N*).则am·an=ap·aq.
令n=101.则S101+a101=2×101-6+ .所以S101+(S101-S100)=196+ .得2S101-S100=196+ ②.
将①代入②得S100=2× -196- =396+ -196- =200.选B.
答Байду номын сангаас:B

2020届高考数学(理)一轮复习精品特训专题六:数列(8)数列的综合应用B

2020届高考数学(理)一轮复习精品特训专题六:数列(8)数列的综合应用B

数列(8)数列的综合应用B1、等比数列{}n a 的前n 项和11·3(2n n S c c +=+为常数),若23n n a S λ≤+恒成立,则实数λ的最大值是( )A .3B .4C .5D .62、等差数列{}n a 的前n 项和为n S ,若37101145,7,a a a a a +-=-=则13S =( ) A.152 B.154 C.156 D.1583、数列{}n a 满足1211,2a a ==并且1111()2(2)n n n n n a a a a a n -+-++=≥,则数列的第2012项为( ) A.10012 B. 201212 C. 12012 D. 11004、数列{}n a 满足:11n n a a λ+=-(N ,R n λ*∈∈且0)λ≠,若数列{}1n a -是等比数列,则λ的值等于( )A.1B.-1C.12D.25、设等比数列{}n a 的公比为q ,其前项之积为n T ,并且满足条件:11a >,201520152016201611,01a a a a -⋅><-.给出下列结论:(1)01q <<; (2)2015201710a a ⋅-> (3)2016T 的值是n T 中最大的;(4)使1n T >成立的最大自然数等于4030.其中正确的结论为( ) A.(1),(3) B.(2),(3)C.(2),(4)D.(1),(4)6、已知数列1111,,,,,12123123n+++++++,则其前n 项和等于( )A .1n n +B .21nn +C .11n +D .21n + 7、在等差数列{}n a 中,12012a =-,其前n 项和为n S ,2012102002201210S S -=,则 2019S =( ) A .8068B .2019C .-8027D .-20178、数列11111,2,3,4,24816的前n 项和为( )A.211(2)22n n n ++- B. 111(1)122n n n +++- C.211(2)22n n n -+- D.11(1)2(1)22n n n ++- 9、如图,点列{}{},n n A B 分别在某锐角的两边上,且*1122,,N n n n n n n A A A A A A n ++++=≠∈,112,n n n n B B B B +++=*2,N n n B B n +≠∈ (P Q ≠表示点P与 Q 不重合).若,n n n n d A B S =为△1n n n A B B +的面积,则()A. {}n S 是等差数列B. {}2n S 是等差数列 C. {}n d 是等差数列 D. {}2n d 是等差数列10、数列{}n a 的前n 项和2233n S n n =-+,则4510a a a +++等于( )A.171B.21C.10D.16111、数列{}n a 满足132nn n a a +=-,若n N +∈时,1n n a a +>,则1a 的取值范围是__________12、已知数列{}n a ,111,21(2,N )n n a a a n n n -+==+-≥∈,求数列{}n a 的通项公式n a =__________13、已知数列{}n a 的首项为7,且212n n n a a a +-=,若1112n n n b a a +=++,则数列{}n b 的前n 项和n S 为___________14、已知数列{}n a 中,111,,(2,N )n n a a a n n n +-=-=≥∈,设12321111...n n n n nb a a a a +++=++++,若对任意的正整数n ,当[]1,2m ∈时,不等式213n m mt b -+>恒成立,则实数t 的取值范围是______.15、已知数列{}n a 满足121111(1)(1)(1)n na a a a ---=*N ,n n S ∈是数列{}n a 的前n 项和. 1. 求数列{}n a 的通项公式;2. 若,30,p q a S 成等差数列,,18,p q a S 成等比数列,求正整数p ,q 的值; 3. 是否存在*N k ∈,{}n a 中的项?若存在,求出所有满足条件的k的值;若不存在,请说明理由.答案以及解析1答案及解析: 答案:C解析:由题意可知32c =-且3nn a =,可得211333223n nλ++⋅-≤,化简为31323n n λ⎛⎫≤+ ⎪⎝⎭,由于均值不等式等号不成立,所以由钩型函数可知,当1n =时, max 5λ=.选C.2答案及解析: 答案:C 解析:3答案及解析: 答案:C解析:等差中项判断数列是否为等差数列4答案及解析: 答案:D解析:由11n n a a λ+=-,得1212n n n a a a λλλ+⎛⎫-=-=- ⎪⎝⎭.由于数列{}1n a -是等比数列,所以21λ=,得2λ=.5答案及解析: 答案:D解析:由已知推得20151a <或20161a <.然后分析若20151a <,那么20161a >,若20150a <,则0q <结合等比数列的通项公式可得0q >.再由等比数列的性质逐一核对四个命题得答案.2015201610,1a a -<∴-可知:20151a <或20161a <.如果20151a <,那么20161a >,若20150a <,则0q <;又∵201520161a a q =,∴2016a 应与1a 异号,即20160a <,这假设矛盾,故0q >.若1q ≥,则20151a >且20161a >,与推出的结论矛盾,故01q <<,故(1)正确;又22015201720161a a a =<,故(2)错误;由结论(1)可知201520161,1,a a ><故数列从2016项开始小于1,则2015T 最大,故(3)错误;由结论(1)可知数列从2016项开始小于1,而123n n T a a a a =⋯,故当()22015n T a =时,求得1n T >对应的自然数为4030,故(4)正确.故选:D.6答案及解析: 答案:B 解析:7答案及解析: 答案:B 解析:8答案及解析: 答案:A 解析:9答案及解析: 答案:A解析:由题意,过点1231,,,...,,,...n n A A A A A +分别作直线11n B B +的垂线, 高分别记为1231,,,...,,,...,n n h h h h h +根据平行线的性质, 得1231,,,...,,,...n n h h h h h +成等差数列, 又111,2n n n n n n S B B h B B ++=⨯⨯为定值,所以{}n S 是等差数列. 故选A.10答案及解析: 答案:D 解析:11答案及解析: 答案:[2,)+∞ 解析:12答案及解析: 答案:2n 解析:13答案及解析:答案:2781n -- 解析:14答案及解析: 答案:1t < 解析:15答案及解析: 答案:1.因为*121111(1)(1)(1),N n nn a a a a ---=∈, 所以当1n =时,11111a a -=, 解得12a =,当2n ≥时, 将121111(1)(1)(1)n n a a a a ---=和121111(1)(1)(1)11n n a a a a ---=-- 两式相除可得,111n n na a a --=, 即()112n n a a n --=≥,所以数列{}n a 是首项为2,公差为1的等差数列,所以1n a n =+.2.因为,30,p q a S 成等差数列,,18,p q a S 成等比数列,所以26018p q p q a s a s +=⎧⎪⎨=⎪⎩ 于是46q p a S S =⎧⎪⎨=⎪⎩或546qp S a =⎧⎪⎨=⎪⎩当46q p a S S =⎧⎪⎨=⎪⎩时,16(3)542p q q +=⎧⎪⎨+=⎪⎩解得9q ⎨=⎩当546p q a S =⎧⎪⎨=⎪⎩时,154(3)62p a q +=⎧⎪⎨+=⎪⎩无正整数解,所以5,9p q ==.3. 假设存在满足条件的正整数k ,()*N ,m a m =∈1m =+,平方并化简得()()22222363m k +-+=,则()()22522163m k m k ++--=,所以225632211m k m k ++=⎧⎨--=⎩或225212213m k m k ++=⎧⎨--=⎩或22592217m k m k ++=⎧⎨--=⎩解得15,14m k ==或5,3m k ==或3,1m k ==-(舍去). 综上所述,3k =或14. 解析:。

2020高考数学(理科)二轮专题复习课标通用版 跟踪检测: 专题3 数列 第1部分 专题3 第2讲

2020高考数学(理科)二轮专题复习课标通用版 跟踪检测: 专题3 数列 第1部分 专题3 第2讲
7.已知数列{an}的前 n 项和 Sn=3+2n,则数列{an}的通项公式为________. 解析 因为 Sn=3+2n,所以 n≥2 时,an=Sn-Sn-1=2n-1,而 n=1 时,a1=S1=5 不适
合上式,所以 an=Error!
答案 an=Error!
1
1
8.(2019·广东深圳适应性考试)在数列{an}中,a1=2 019,an+1=an+nn+1(n∈N*),
2n =n2+1-2n.故选 A
项.
3.1-4+9-16+…+(-1)n+1n2=( )
nn+1 A. 2
nn+1 B.- 2
nn+1 C.(-1)n+1 2
D.以上均不正确
C 解析 当 n 为偶数时,1-4+9-16+…+(-1)n+1n2=-3-7-…-(2n-1)=-
n 3+2n-1 2
nn+1
2 =- 2 ;当 n 为奇数时,1-4+9-16+…+(-1)
n-1 [3+2n-1-1]
2
nn+1
n+1n2=-3-7-…-[2(n-1)-1]+n2=-
2
+n2= 2 .综上可得,原
nn+1 式=(-1)n+1 2 .故选 C 项.
4.已知数列{an}的前 n 项和 Sn=an-1(a≠0),则{an}( )
2×3 3 4
n n+1
则 3Tn= 30 +30+31+…+3n-3+3n-2,②
1 1-
3n-1
( ) 1 1
1 n+1
1 n+1 15
1+ + +…+
1-
②-①得 2Tn=6+ 3 32
3n-2 -3n-1=6+ 3 -3n-1= 2 -
2n+5
2·3n-1.

【新高考】数学 强化训练--专题04 如何由数列前n项和Sn求数列通项an(含答案解析)

【新高考】数学 强化训练--专题04 如何由数列前n项和Sn求数列通项an(含答案解析)

b1
6 , bn
Sn
1 an
4
n N*
.
(I)求数列an 的通项公式;
1 (Ⅱ)记数列
bn
的前 n 项和为 Tn ,来自明: Tn1 2.
16.(2020·福建省高三期末)记 Sn 为数列an 的前 n 项和.已知 an 0 , 6Sn an2 3an 4 .
(1)求an 的通项公式;
于( )
A. 2
B.0
C.2
D.4
5.(2020·河南省高三期末)已知数列an 满足 a1 4a2 7a3 3n 2 an 4n ,则
a2a3 a3a4 a21a22 ( )
5
A.
8
3
B.
4
二、填空题
C. 5 4
5
D.
2
6.(2020·山西省高三期末)已知数列 an 的前 n 项和为 Sn ,若 Sn 2 2n1 ,则 an ______.
31 A.
16
B. 31 2
1
C.
32
31
D.
32
3.(2020·全国高三专题练习)已知数列 an 的前 n 项和为 Sn ,若 3Sn 2an 3n ,则 a2018 ( )
A. 22018 1
B. 32018 6
C.
1 2
2018
7 2
D.
1 2018 3
10 3
4.(2020·海南省高三)已知数列 an 的前 n 项和为 Sn ,且 Sn1 Sn n2 25n n N * ,则 a12 a13 等
B. 32018 6
C.
1 2
2018
7 2
D.
1 2018 3

2020年高考数学(理)之数列 专题11 数列的通项( 叠加法、累乘法求通项)(解析版)

2020年高考数学(理)之数列 专题11 数列的通项( 叠加法、累乘法求通项)(解析版)

数列11 数列的通项( 叠加法、累乘法求通项)一、具体目标:掌握用不同的数学方法求不同形式数列的通项公式.通过数列通项公式的求解过程,利用数列的变化规律,恰当选择方法,是数列的研究和探索奠定基础. 二、知识概述: 1.数列的通项公式:(1)如果数列{}n a 的第n 项与序号n 之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式.即()n a f n =,不是每一个数列都有通项公式,也不是每一个数列都有一个个通项公式. (2)数列{}n a 的前n 项和n S 和通项n a 的关系:11(1)(2)n nn S n a S S n -=⎧=⎨-≥⎩.2.求数列的通项公式的注意事项:(1)根据数列的前几项求它的一个通项公式,要注意观察每一项的特点,观察出项与n 之间的关系、规律,可使用添项、通分、分割等办法,转化为一些常见数列的通项公式来求.对于正负符号变化,可用()1n-或()11n +-来调整.(2)根据数列的前几项写出数列的一个通项公式是不完全归纳法,它蕴含着“从特殊到一般”的思想.由不完全归纳法得出的结果是不可靠,要注意代值验证.(3)对于数列的通项公式要掌握:①已知数列的通项公式,就可以求出数列的各项;②根据数列的前几项,写出数列的一个通项公式,这是一个难点,在学习中要注意观察数列中各项与其序号的变化情况,分解所给数列的前几项,看看这几项的分解中.哪些部分是变化的,哪些是不变的,再探索各项中变化部分与序【考点讲解】号的联系,从而归纳出构成数列的规律,写出通项公式.3.数列通项一般有三种类型:(1)已知数列是等差或等比数列,求通项,破解方法:公式法或待定系数法;(2)已知S n ,求通项,破解方法:利用S n -S n -1= a n ,但要注意分类讨论,本例的求解中检验必不可少,值 得重视;(3)已知数列的递推公式,求通项,破解方法:猜想证明法或构造法。

4. 已知数列{}n a 的前n 项和n S ,求数列的通项公式,其求解过程分为三步: (1)先利用11a S =求出1a ;(2)用1n -替换n S 中的n 得到一个新的关系,利用=n a 1n n S S -- (2)n ≥便可求出当2n ≥时n a 的表达式; (3)对1n =时的结果进行检验,看是否符合2n ≥时n a 的表达式,如果符合,则可以把数列的通项公式合写;如果不符合,则应该分1n =与2n ≥两段来写.【注】该公式主要是用来求数列的通项,求数列通项时,一定要分两步讨论,结果能并则并,不并则分. 5. 递推公式推导通项公式方法: (1)叠加法:1()n n a a f n +-=叠加法(或累加法):已知()⎩⎨⎧=-=+n f a a a a n n 11,求数列通项公式常用叠加法(或累加法)即112211)()()(a a a a a a a a n n n n n +-++-+-=---Λ.(2)累乘法:已知()⎪⎩⎪⎨⎧==+n f a a a a nn 11求数列通项公式用累乘法. (3)待定系数法:1n n a pa q +=+(其中,p q 均为常数,)0)1((≠-p pq ) 解法:把原递推公式转化为:)(1t a p t a n n -=-+,其中pqt -=1,再利用换元法转化为等比数列求解. (4)待定系数法: nn n q pa a +=+1(其中,p q 均为常数,)0)1)(1((≠--q p pq ). (或1nn n a pa rq +=+,其中,,p q r 均为常数).解法:在原递推公式两边同除以1+n q ,得:111n n n n a a p q q q q++=⋅+,令n n n q a b =,得:q b q p b nn 11+=+,再按 第(3)种情况求解.(5)待定系数法:b an pa a n n ++=+1(100)p a ≠≠,, 1122332211a a a a a a a a a a a a n n n n n n n ⋅⋅⋅⋅⋅⋅=-----Λ解法:一般利用待定系数法构造等比数列,即令)()1(1y xn a p y n x a n n ++=++++,与已知递推式比较, 解出y x ,,从而转化为{}y xn a n ++是公比为p 的等比数列. (6)待定系数法:21(0,1,0)n n a pa an bn c p a +=+++≠≠解法:一般利用待定系数法构造等比数列,即令221(1)(1)()n n a x n y n z p a xn yn z ++++++=+++,与已知递推式比较,解出y x ,,从而转化为{}2n a xn yn z +++是公比为p 的等比数列. (7)待定系数法:n n n qa pa a +=++12(其中,p q 均为常数).解法:先把原递推公式转化为)(112n n n n sa a t sa a -=-+++其中,s t 满足s t pst q+=⎧⎨=-⎩,再按第(4)种情况求解.(8)取倒数法:1()()()nn n g n a a f n a t n +=+解法:这种类型一般是等式两边取倒数后换元转化为q pa a n n +=+1,按第(3)种情况求解.(11()()()0n n n n g n a t n a f n a a +++-=,解法:等式两边同时除以1n n a a +⋅后换元转化为q pa a n n +=+1,按第(3)种情况求解.).(9)取对数rn n pa a =+1)0,0(>>n a p解法:这种类型一般是等式两边取以p 为底的对数,后转化为q pa a n n +=+1,按第(3)种情况求解. 6. 以数列为背景的新定义问题是高考中的一个热点题型,考查频率较高,一般会结合归纳推理综合命题.常见的命题形式有新法则、新定义、新背景、新运算等.(1)准确转化:解决数列新定义问题时,一定要读懂新定义的本质含义,将题目所给定义转化成题目要 求的形式,切忌同已有概念或定义相混淆.(2)方法选取:对于数列新定义问题,搞清定义是关键,仔细认真地从前几项(特殊处、简单处)体会题意,从而找到恰当的解决方法. 类型1 )(1n f a a n n +=+解法:把原递推公式转化为)(1n f a a n n =-+,利用叠加法求解例1.设数列{}n a 中,112,1n n a a a n +==++,则通项n a = .【解析】法一:由题意可知:112,1n n a a a n +==++ 所以有()111n n a a n -=+-+,()1221n n a a n --=+-+,()2331n n a a n --=+-+,K ,3221a a =++,2111a a =++,1211a ==+将以上各式相加得:()()()123211n a n n n n =-+-+-+++++⎡⎤⎣⎦L()()()()11111111222n n n n n n n n --+⎡⎤-+⎣⎦=++=++=+ 故应填()112n n ++.法二:由题意11n n a a n +=++可得:11n n a a n +-=+, ()111n n a a n --=-+,()1221n n a a n ---=-+,()2331n n a a n ---=-+,K ,3221a a -=+,2111a a -=+,1211a ==+.将以上各式相加得:()()()123211n a n n n n =-+-+-+++++⎡⎤⎣⎦L()()()()11111111222n n n n n n n n --+⎡⎤-+⎣⎦=++=++=+ 故应填()112n n ++. 【答案】()112n n ++ 类型2 n n a n f a )(1=+ .解法:把原递推公式转化为)(1n f a a nn =+,利用叠乘法求解。

2020年高考数学(理)总复习:数列的求和及综合应用(解析版)

2020年高考数学(理)总复习:数列的求和及综合应用(解析版)

2020年高考数学(理)总复习:数列的求和及综合应用题型一 数列求和 【题型要点】(1)分组求和法:分组求和法是解决通项公式可以写成c n =a n +b n 形式的数列求和问题的方法,其中{a n }与{b n }是等差(比)数列或一些可以直接求和的数列.(2)裂项相消法:将数列的通项分成两个代数式子的差,即a n =f (n +1)-f (n )的形式,然后通过累加抵消中间若干项的求和方法.形如1+n n a a c(其中{a n }是各项均不为0的等差数列,c 为常数)的数列等.(3)错位相减法:形如{a n ·b n }(其中{a n }为等差数列,{b n }为等比数列)的数列求和,一般分三步:①巧拆分;②构差式;③求和.(4)倒序求和法:距首尾两端等距离的两项和相等,可以用此法,一般步骤:①求通项公式;②定和值;③倒序相加;④求和;⑤回顾反思.(5)并项求和法:先将某些项放在一起求和,然后再求S n .(6)归纳猜想法:通过对S 1,S 2,S 3,…的计算进行归纳分析,寻求规律,猜想出S n ,然后用数学归纳法给出证明.【例1】已知各项为正数的等比数列{a n }的前n 项和为S n ,数列{b n }的通项公式b n =⎩⎪⎨⎪⎧n ,n 为偶数,n +1,n 为奇数(n ∈N *),若S 3=b 5+1,b 4是a 2和a 4的等比中项. (1)求数列{a n }的通项公式; (2)求数列{a n ·b n }的前n 项和T n .【解析】 (1)∵数列{b n }的通项公式b n =⎩⎪⎨⎪⎧n ,n 为偶数,n +1,n 为奇数(n ∈N *),∴b 5=6,b 4=4,设各项为正数的等比数列{a n }的公比为q ,q >0, ∵S 3=b 5+1=7,∴a 1+a 1q +a 1q 2=7,① ∵b 4是a 2和a 4的等比中项,∴a 2·a 4=a 23=16,解得a 3=a 1q 2=4,②由①②得3q 2-4q -4=0,解得q =2,或q =-23(舍),∴a 1=1,a n =2n -1.(2)当n 为偶数时,T n =(1+1)·20+2·2+(3+1)·22+4·23+(5+1)·24+…+[[(n -1)+1]·2n-2+n ·2n -1=(20+2·2+3·22+4·23+…+n ·2n -1)+(20+22+…+2n -2),设H n =20+2·2+3·22+4·23+…+n ·2n -1,①2H n =2+2·22+3·23+4·24+…+n ·2n ,② ①-②,得-H n =20+2+22+23+…+2n -1-n ·2n=1-2n 1-2-n ·2n =(1-n )·2n -1,∴H n =(n -1)·2n +1,∴T n =(n -1)·2n+1+1-4·2n 1-4=⎪⎭⎫ ⎝⎛-32n ·2n +23.当n 为奇数,且n ≥3时,T n =T n -1+(n +1)·2n -1=⎪⎭⎫ ⎝⎛-35n ·2n -1+23+(n +1)·2n -1=⎪⎭⎫ ⎝⎛-322n ·2n -1+23,经检验,T 1=2符合上式, ∴T n =⎪⎪⎩⎪⎪⎨⎧+⋅⎪⎭⎫ ⎝⎛-+⋅⎪⎭⎫ ⎝⎛--为偶数为奇数n n n n n n ,32232,3223221【反思总结】(1)错位相减法适用于求数列{a n ·b n }的前n 项和,其中{a n }为等差数列,{b n }为等比数列. (2)所谓“错位”,就是要找“同类项”相减.要注意的是相减后所得部分,求等比数列的和,此时一定要查清其项数.(3)为保证结果正确,可对得到的和取n =1,2进行验证.题组训练一 数列求和已知等比数列{a n }的前n 项和为S n ,且6S n =3n +1+a (a ∈N *).(1)求a 的值及数列{a n }的通项公式;(2)设b n =(-1)n -1(2n 2+2n +1)(log 3a n +2)2(log 3a n +1)2,求{b n }的前n 项和T n .【解析】 (1)∵等比数列{a n }满足6S n =3n +1+a (a ∈N *),n =1时,6a 1=9+a ;n ≥2时,6a n =6(S n -S n -1)=3n +1+a -(3n +a )=2×3n .∴a n =3n -1,n =1时也成立,∴1×6=9+a ,解得a =-3,∴a n =3n -1.(2)b n =(-1)n -1(2n 2+2n +1)(log 3a n +2)2(log 3a n +1)2=(-1)n -1(2n 2+2n +1)n 2(n +1)2=(-1)n -1()⎥⎦⎤⎢⎣⎡++22111n n当n 为奇数时,T n =+⋅⋅⋅+⎪⎭⎫⎝⎛+-⎪⎭⎫ ⎝⎛+222231212111()⎥⎦⎤⎢⎣⎡++22111n n =1+1(n +1)2; 当n 为偶数时,T n =+⋅⋅⋅+⎪⎭⎫⎝⎛+-⎪⎭⎫ ⎝⎛+222231212111()⎥⎦⎤⎢⎣⎡++22111n n =1-1(n +1)2. 综上,T n =1+(-1)n-11(n +1)2. 题型二 数列与函数的综合问题 【题型要点】数列与函数的综合问题主要有以下两类:(1)已知函数条件,解决数列问题,此类问题一般利用函数的性质、图象研究数列问题; (2)已知数列条件,解决函数问题,解决此类问题一般要充分利用数列的范围、公式、求和方法对式子化简变形.【例2】已知数列{a n }的前n 项和为S n ,且S n =2n 2+2n . (1)求数列{a n }的通项公式;(2)若点(b n ,a n )在函数y =log 2x 的图象上,求数列{b n }的前n 项和T n . 【解】 (1)当n ≥2时,a n =S n -S n -1=2n 2+2n -[2(n -1)2+2(n -1)]=4n , 当n =1时,a 1=S 1=4=4×1, ∴数列{a n }的通项公式为a n =4n .(2)由点{b n ,a n }在函数y =log 2x 的图象上得a n =log 2b n ,且a n =4n ,∴b n =2an =24n =16n ,故数列{b n }是以16为首项,公比为16的等比数列.T n =16(1-16n )1-16=16n +1-1615.题组训练二 数列与函数的综合问题已知二次函数f (x )=ax 2+bx 的图象过点(-4n,0),且f ′(0)=2n (n ∈N *). (1)求f (x )的解析式;(2)若数列{a n }满足1a n +1=f ′⎪⎪⎭⎫ ⎝⎛na 1,且a 1=4,求数列{a n }的通项公式. 【解】 (1)由f ′(x )=2ax +b ,f ′(0)=2n ,得b =2n ,又f (x )的图象过点(-4n,0),所以16n 2a -4nb =0,解得a =12.所以f (x )=12x 2+2nx (n ∈N *).(2)由(1)知f ′(x )=x +2n (n ∈N *), 所以1a n +1=1a n +2n ,即1a n +1-1a n=2n .所以1a n -1a n -1=2(n -1), 1a n -1-1a n -2=2(n -2),…1a 2-1a 1=2,以上各式相加得1a n -14=n 2-n ,所以a n =1n 2-n +14,即a n =4(2n -1)2(n ∈N *). 题型三 数列与不等式的综合问题 【题型要点】(1)以数列为背景的不等式恒成立问题,多与数列求和相联系,最后利用数列或数列对应函数的单调性求解.(2)以数列为背景的不等式证明问题,多与数列求和有关,常利用放缩法或单调性法证明.(3)当已知数列关系时,需要知道其范围时,可借助数列的单调性,即比较相邻两项的大小即可.【例3】设f n (x )=x +x 2+…+x n -1,x ≥0,n ∈N ,n ≥2. (1)求f n ′(2);(2)证明:f n (x )在⎪⎭⎫⎝⎛32,0内有且仅有一个零点(记为a n ),且0<a n -12<13n⎪⎭⎫ ⎝⎛32.(1)【解】 方法一 由题设f n ′(x )=1+2x +…+nx n -1,所以f n ′(2)=1+2×2+…+(n -1)2n -2+n ·2n -1,①则2f n ′(2)=2+2×22+…+(n -1)2n -1+n ·2n ,②由①-②得,-f n ′(2)=1+2+22+…+2n -1-n ·2n=1-2n1-2-n ·2n =(1-n )2n -1, 所以f n ′(2)=(n -1)2n +1.方法二 当x ≠1时,f n (x )=x -x n +11-x-1,则f n ′(x )=[1-(n +1)x n ](1-x )+(x -x n +1)(1-x )2,可得f n ′(2)=-[1-(n +1)2n ]+2-2n +1(1-2)2=(n -1)2n +1.(2)[证明] 因为f n (0)=-1<0,f n ⎪⎭⎫ ⎝⎛32=32132132-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-n-1=1-2×n ⎪⎭⎫ ⎝⎛32≥1-2×232⎪⎭⎫ ⎝⎛>0,所以f n (x )在⎪⎭⎫ ⎝⎛32,0内至少存在一个零点,又f ′n (x )=1+2x +…+nx n -1>0,所以f n (x )在⎪⎭⎫ ⎝⎛32,0内单调递增,因此f n (x )在⎪⎭⎫⎝⎛32,0内有且仅有一个零点a n ,由于f n (x )=x -x n +11-x -1,所以0=f n (a n )=a n -a n +1n1-a n-1,由此可得a n =12+12a n +1n >12,故12<a n <23,所以0<a n -12=12a n +1n <12×132+⎪⎭⎫ ⎝⎛n =13n⎪⎭⎫ ⎝⎛32. 题组训练三 数列与不等式的综合问题1.已知等比数列{a n }满足a n +1+a n =10·4n -1(n ∈N *),数列{b n }的前n 项和为S n ,且b n =log 2a n .(1)求b n ,S n ;(2)设c n =b n +12,证明:c 1·c 2+c 2·c 3+…+c n ·c n +1<12S n +1(n ∈N *).【解】 (1)解 由题意知a 2+a 1=10,a 2+a 3=40,设{a n }的公比为q ,则a 2+a 3a 1+a 2=q (a 1+a 2)a 1+a 2=4,∴q =4.则a 1+a 2=a 1+4a 1=10,解得a 1=2,∴a n =2·4n -1=22n -1.∴b n =log 222n -1=2n -1.∴S n =n (b 1+b n )2=n (1+2n -1)2=n 2.(2)证明 法一∵c n =b n +12=2n -1+12=n ,∴S n +1=(n +1)2.要证明c 1·c 2+c 2·c 3+…+c n ·c n +1<12S n +1,即证1×2+2×3+…+n ×(n +1)<12(n +1)2,①当n =1时,1×2<12×(1+1)2=2成立.②假设当n =k (k ∈N *)时不等式成立, 即1×2+2×3+…+k ×(k +1)<12(k +1)2,则当n =k +1(k ∈N *)时,要证1×2+2×3+…+k ×(k +1)+(k +1)(k +2)<12(k +2)2,即证(k +1)(k +2)<12(k +2)2-12(k +1)2,即(k +1)(k +2)<k +32,两边平方得k 2+3k +2<k 2+3k +94显然成立,∴当n =k +1(k ∈N *)时,不等式成立. 综上,不等式成立.法二 ∵c n =b n +12=2n -1+12=n ,S n +1=(n +1)2,由基本不等式可知n (n +1)≤n +n +12=n +12,故1×2<1+12,2×3<2+12,…,n (n +1)≤n +12,∴1×2+2×3+3×4+…+n (n +1)<(1+2+3+…+n )+n 2=n 2+2n 2<n 2+2n +12=(n +1)22,即不等式c 1·c 2+c 2·c 3+…+c n ·c n +1<12S n +1(n ∈N *)成立.2.已知数列{a n }满足a 1=1,a n +1=a n 1+a 2n,n ∈N *,记S n ,T n 分别是数列{a n },{a 2n }的前n 项和.证明:当n ∈N *时,(1)a n +1<a n ; (2)T n =1a 2n +1-2n -1;(3)2n -1<S n <2n .【证明】 (1)由a 1=1及a n +1=a n1+a 2n 知,a n >0,故a n +1-a n =a n 1+a 2n -a n =-a 3n1+a 2n <0, ∴a n +1<a n ,n ∈N *. (2)由1a n +1=1a n +a n ,得1a 2n +1=1a 2n +a 2n +2,从而1a 2n +1=1a 2n +a 2n +2=1a 2n -1+a 2n -1+a 2n +2×2=…=1a 21+a 21+a 22+…+a 2n +2n ,又∵a 1=1,∴T n =1a 2n +1-2n -1,n ∈N *. (3)由(2)知,a n +1=1T n +2n +1,由T n ≥a 21=1,得a n +1≤12n +2,∴当n ≥2时,a n ≤12n =22n <2n +n -1=2(n -n -1),由此S n <a 1+2[(2-1)+(3-2)+…+(n -n -1)]=1+2(n -1)<2n ,n ≥2,又∵a 1=1,∴S n <2n .另一方面,由a n =1a n +1-1a n ,得S n =1a n +1-1a 1≥2n +2-1>2n -1.综上,2n -1<S n <2n .【专题训练】1.已知数列{a n }的前n 项和为S n ,且a 2=8, S n =a n +12-n -1.(1)求数列{a n }的通项公式; (2)求数列⎩⎨⎧⎭⎬⎫2×3na n a n +1的前n 项和T n .【解】 (1)因为S n =a n +12-n -1,故当n =1时,a 1=a 22-1-1=2;当n ≥2时,2S n =a n +1-2n -2,2S n -1=a n -2(n -1)-2,两式相减可得a n +1=3a n +2; 经检验,当n =1时也满足a n +1=3a n +2,故a n +1+1=3(a n +1),故数列{a n +1}是以3为首项,3为公比的等比数列,故a n +1=3n ,即a n =3n -1.(2)由(1)可知,2×3n a n a n +1=2×3n(3n -1)(3n +1-1) =13n-1-13n +1-1, 故T n =131-1-132-1+132-1-133-1+…+13n -1-13n +1-1=12-13n +1-1.2.已知数列{a n }的前n 项和为S n ,a 1=2,a n +1=S n +2. (1)求数列{a n }的通项公式;(2)已知b n =log 2a n ,求数列⎩⎨⎧⎭⎬⎫1b n b n +1的前n 项和T n .【解析】 (1)∵a n +1=S n +2,∴当n ≥2时,a n =S n -1+2,两式相减得,a n +1-a n =S n -S n -1=a n ,则a n +1=2a n ,所以a n +1a n =2(n ≥2),∵a 1=2,∴a 2=S 1+2=4,满足a 2a 1=2,∴数列{a n }是以2为公比、首项为2的等比数列,则a n =2·2n -1=2n ;(2)由(1)得,b n =log 2a n =log 22n =n , ∴1b n b n +1=1n (n +1)=1n -1n +1, ∴T n =⎪⎭⎫ ⎝⎛+-⋅⋅⋅+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-1113121211n n =1-1n +1=n n +1. 3.已知正项数列{a n }的前n 项和为S n ,且a 1=2,4S n =a n ·a n +1,n ∈N *. (1)求数列{a n }的通项公式;(2)设数列⎩⎨⎧⎭⎬⎫1a 2n 的前n 项和为T n ,求证:n 4n +4<T n <12.【解析】 (1)∵4S n =a n ·a n +1,n ∈N *, ∴4a 1=a 1·a 2,又a 1=2,∴a 2=4.当n ≥2时,4S n -1=a n -1·a n ,得4a n =a n ·a n +1-a n -1·a n .由题意知a n ≠0,∴a n +1-a n -1=4. ①当n =2k +1,k ∈N *时,a 2k +2-a 2k =4,即a 2,a 4,…,a 2k 是首项为4,公差为4的等差数列, ∴a 2k =4+(k -1)×4=4k =2×2k ; ②当n =2k ,k ∈N *时,a 2k +1-a 2k -1=4,即a 1,a 3,…,a 2k -1是首项为2,公差为4的等差数列, ∴a 2k -1=2+(k -1)×4=4k -2=2(2k -1). 综上可知,a n =2n ,n ∈N *.(2)证明:∵1a 2n =14n 2>14n (n +1)=14⎪⎭⎫ ⎝⎛+-111n n ,∴T n =1a 21+1a 22+…+1a 2n>14⎪⎭⎫ ⎝⎛+-⋅⋅⋅+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-1113121211n n =141-1n +1=n 4n +4. 又∵1a 2n =14n 2<14n 2-1=1(2n -1)(2n +1)=12⎪⎭⎫ ⎝⎛+--121121n n ,∴T n =1a 21+1a 22+…+1a 2n <12⎪⎭⎫ ⎝⎛+--+-+-+-12112171515131311n n =12⎪⎭⎫ ⎝⎛+-1211n <12. 即得n 4n +4<T n <12.4.已知数列{a n }与{b n }的前n 项和分别为A n 和B n ,且对任意n ∈N *,a n +1-a n =2(b n +1-b n )恒成立.(1)若A n =n 2,b 1=2,求B n ;(2)若对任意n ∈N *,都有a n =B n 及b 2a 1a 2+b 3a 2a 3+b 4a 3a 4+…+b n +1a n a n +1<13成立,求正实数b 1的取值范围;(3)若a 1=2,b n =2n ,是否存在两个互不相等的整数s ,t (1<s <t ),使A 1B 1,A s B s ,A t B t成等差数列?若存在,求出s ,t 的值;若不存在,请说明理由. 【解】 (1)因为A n =n 2,所以a n =⎩⎪⎨⎪⎧1,n =1,n 2-(n -1)2,n ≥2, 即a n =2n -1,故b n +1-b n =12(a n +1-a n )=1,所以数列{b n }是以2为首项,1为公差的等差数列,所以B n =n ·2+12·n ·(n -1)·1=12n 2+32n . (2)依题意B n +1-B n =2(b n +1-b n ),即b n +1=2(b n +1-b n ),即b n +1b n=2, 所以数列{b n }是以b 1为首项,2为公比的等比数列,所以a n =B n =1-2n1-2×b 1=b 1(2n -1), 所以b n +1a n a n +1=2nb 1(2n -1)·(2n +1-1), 因为b n +1a n a n +1=1b 1⎪⎭⎫ ⎝⎛---+1211211n n 所以b 2a 1a 2+b 3a 2a 3+b 4a 3a 4+…+b n +1a n a n +1=1b 1⎪⎭⎫ ⎝⎛---+12112111n ,所以1b 1⎪⎭⎫ ⎝⎛---+12112111n <13恒成立,即b 1>3⎪⎭⎫ ⎝⎛--+12111n ,所以b 1≥3.(3)由a n +1-a n =2(b n +1-b n )得:a n +1-a n =2n +1,所以当n ≥2时,a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 3-a 2)+(a 2-a 1)+a 1=2n +2n -1+…+23+22+2=2n +1-2, 当n =1时,上式也成立,所以A n =2n +2-4-2n , 又B n =2n +1-2,所以A n B n =2n +2-4-2n 2n +1-2=2-n 2n -1, 假设存在两个互不相等的整数s ,t (1<s <t ),使A 1B 1,A s B s ,A t B t 成等差数列,等价于121-1,s 2s -1,t 2t -1成等差数列, 即2s 2s-1=121-1+t 2t -1,即2s 2s -1=1+t 2t -1,因为1+t 2t -1>1,所以2s 2s -1>1,即2s <2s +1,令h (s )=2s -2s -1(s ≥2,s ∈N *),则h (s +1)-h (s )=2s -2>0所以h (s )递增, 若s ≥3,则h (s )≥h (3)=1>0,不满足2s <2s +1,所以s =2,代入2s 2s -1=121-1+t 2t -1得2t -3t -1=0(t ≥3),当t =3时,显然不符合要求; 当t ≥4时,令φ(t )=2t -3t -1(t ≥4,t ∈N *),则同理可证φ(t )递增,所以φ(t )≥φ(4)=3>0,所以不符合要求.所以,不存在正整数s ,t (1<s <t ),使A 1B 1,A s B s ,A t B t成等差数列.。

2020版高考数学(理)新增分大一轮人教通用版讲义:第六章 数列与数学归纳法 高考专题突破三第2课时含解析

2020版高考数学(理)新增分大一轮人教通用版讲义:第六章 数列与数学归纳法 高考专题突破三第2课时含解析

第2课时 数列的综合问题题型一 数列与函数例1 数列{a n }的前n 项和为S n ,2S n =a n +1-2n +1+1,n ∈N +,且a 1,a 2+5,19成等差数列.(1)求a 1的值;(2)证明⎩⎨⎧⎭⎬⎫a n 2n +1为等比数列,并求数列{a n }的通项公式; (3)设b n =log 3(a n +2n ),若对任意的n ∈N +,不等式b n (1+n )-λn (b n +2)-6<0恒成立,试求实数λ的取值范围.解 (1)在2S n =a n +1-2n +1+1,n ∈N +中, 令n =1,得2S 1=a 2-22+1,即a 2=2a 1+3,①又2(a 2+5)=a 1+19,②则由①②解得a 1=1.(2)当n ≥2时,由⎩⎪⎨⎪⎧2S n =a n +1-2n +1+1, ③2S n -1=a n -2n +1, ④ ③-④得2a n =a n +1-a n -2n ,则a n +12n +1+1=32⎝⎛⎭⎫a n 2n +1, 又a 2=5,则a 222+1=32⎝⎛⎭⎫a 121+1. ∴数列⎩⎨⎧⎭⎬⎫a n 2n +1是以32为首项,32为公比的等比数列, ∴a n 2n +1=32×⎝⎛⎭⎫32n -1,即a n =3n -2n . (3)由(2)可知,b n =log 3(a n +2n )=n .当b n (1+n )-λn (b n +2)-6<0恒成立时,即(1-λ)n 2+(1-2λ)n -6<0(n ∈N +)恒成立.设f (n )=(1-λ)n 2+(1-2λ)n -6(n ∈N +),当λ=1时,f (n )=-n -6<0恒成立,则λ=1满足条件;当λ<1时,由二次函数性质知不恒成立;当λ>1时,由于对称轴n =-1-2λ2(1-λ)<0, 则f (n )在[1,+∞)上单调递减,f (n )≤f (1)=-3λ-4<0恒成立,则λ>1满足条件,综上所述,实数λ的取值范围是[1,+∞).思维升华 数列与函数的交汇问题(1)已知函数条件,解决数列问题,此类问题一般利用函数的性质、图象研究数列问题;(2)已知数列条件,解决函数问题,解题时要注意数列与函数的内在联系,掌握递推数列的常见解法.跟踪训练1 (2018·葫芦岛模拟)已知数列{a n }满足a 1=1,2a n +1=a n ,数列{b n }满足b n =2-log 2a 2n +1.(1)求数列{a n },{b n }的通项公式;(2)设数列{b n }的前n 项和为T n ,求使得2T n ≤4n 2+m 对任意正整数n 都成立的实数m 的取值范围.解 (1)由a 1=1,a n +1a n =12,a n ≠0, ∴{a n }是首项为1,公比为12的等比数列, ∴a n =⎝⎛⎭⎫12n -1.∴b n =2-log 2⎝⎛⎭⎫122n =2n +2.(2)由(1)得,T n =n 2+3n ,∴m ≥-2n 2+6n 对任意正整数n 都成立.设f (n )=-2n 2+6n ,∵f (n )=-2n 2+6n =-2⎝⎛⎭⎫n -322+92, ∴当n =1或2时,f (n )的最大值为4,∴m ≥4.即m 的取值范围是[4,+∞).题型二 数列与不等式例2 已知数列{a n }中,a 1=12,其前n 项的和为S n ,且满足a n =2S 2n 2S n -1(n ≥2). (1)求证:数列⎩⎨⎧⎭⎬⎫1S n 是等差数列; (2)证明:S 1+12S 2+13S 3+ (1)S n <1. 证明 (1)当n ≥2时,S n -S n -1=2S 2n 2S n -1,整理得S n -1-S n =2S n ·S n -1(n ≥2), ∴1S n -1S n -1=2,从而⎩⎨⎧⎭⎬⎫1S n 构成以2为首项,2为公差的等差数列. (2)由(1)可知,1S n =1S 1+(n -1)×2=2n ,∴S n =12n. ∴当n =1时,1n S n =12<1, 方法一 当n ≥2时,1n S n =12n 2<12·1n (n -1)=12⎝⎛⎭⎫1n -1-1n ,∴S 1+12S 2+13S 3+…+1n S n <12+12⎝⎛⎭⎫1-12+12-13+…+1n -1-1n =1-12n <1. ∴原不等式得证.方法二 当n ≥2时,12n 2<12(n 2-1)=14⎝⎛⎭⎫1n -1-1n +1, ∴S 1+12S 2+13S 3+ (1)S n <12+14⎝⎛1-13+12-14+13-15+…+1n -2-1n + ⎭⎫1n -1-1n +1=12+14⎝⎛⎭⎫1+12-1n -1n +1, <12+14⎝⎛⎭⎫1+12=78<1. ∴原命题得证.思维升华 数列与不等式的交汇问题(1)函数方法:即构造函数,通过函数的单调性、极值等得出关于正实数的不等式,通过对关于正实数的不等式特殊赋值得出数列中的不等式;(2)放缩方法:数列中不等式可以通过对中间过程或者最后的结果放缩得到.跟踪训练2 已知数列{a n }为等比数列,数列{b n }为等差数列,且b 1=a 1=1,b 2=a 1+a 2,a 3=2b 3-6.(1)求数列{a n },{b n }的通项公式;(2)设c n =1b n b n +2,数列{c n }的前n 项和为T n ,证明:15≤T n <13. (1)解 设数列{a n }的公比为q ,数列{b n }的公差为d ,由题意得1+d =1+q ,q 2=2(1+2d )-6,解得d =q =2,所以a n =2n -1,b n =2n -1. (2)证明 因为c n =1b n b n +2=1(2n -1)(2n +3)=14⎝⎛⎭⎫12n -1-12n +3, 所以T n =14⎣⎡⎝⎛⎭⎫1-15+⎝⎛⎭⎫13-17+…+ ⎦⎤⎝⎛⎭⎫12n -3-12n +1+⎝⎛⎭⎫12n -1-12n +3 =14⎝⎛⎭⎫1+13-12n +1-12n +3=13-14⎝⎛⎭⎫12n +1+12n +3, 因为14⎝⎛⎭⎫12n +1+12n +3>0,所以T n <13. 又因为T n 在[1,+∞)上单调递增,所以当n =1时,T n 取最小值T 1=15, 所以15≤T n <13. 题型三 数列与数学文化 例3 我国古代名著《九章算术》中有这样一段话:“今有金锤,长五尺,斩本一尺,重四斤,斩末一尺,重二斤,中间三尺重几何.”意思是:“现有一根金锤,长5尺,头部1尺,重4斤,尾部1尺,重2斤,且从头到尾,每一尺的重量构成等差数列,问中间三尺共重多少斤.”( )A.6斤B.7斤C.8斤D.9斤答案 D解析 原问题等价于等差数列中,已知a 1=4,a 5=2,求a 2+a 3+a 4的值.由等差数列的性质可知a 2+a 4=a 1+a 5=6,a 3=a 1+a 52=3, 则a 2+a 3+a 4=9,即中间三尺共重9斤.思维升华 我国古代数学涉及等差、等比数列的问题很多,解决这类问题的关键是将古代实际问题转化为现代数学问题,掌握等差、等比数列的概念、通项公式和前n 项和公式.跟踪训练3 中国人在很早就开始研究数列,中国古代数学著作《九章算术》、《算法统宗》中都有大量古人研究数列的记载.现有数列题目如下:数列{a n }的前n 项和S n =14n 2,n ∈N +,等比数列{b n }满足b 1=a 1+a 2,b 2=a 3+a 4,则b 3等于( )A.4B.5C.9D.16答案 C解析 由题意可得b 1=a 1+a 2=S 2=14×22=1, b 2=a 3+a 4=S 4-S 2=14×42-14×22=3, 则等比数列{b n }的公比q =b 2b 1=31=3, 故b 3=b 2q =3×3=9.1.(2018·包头模拟)设数列{a n }的前n 项和为S n ,且S n =-a n +1.(1)求数列{a n }的通项公式;(2)若f (x )=12log x ,设b n =f (a 1)+f (a 2)+…+f (a n ),求数列⎩⎨⎧⎭⎬⎫1b n 的前n 项和T n .解 (1)由S n =-a n +1得S n +1=-a n +1+1,两式相减得,S n +1-S n =-a n +1+a n ,即 a n +1=-a n +1+a n ,即 a n +1a n =12(n ≥1), 所以数列{a n }是公比为12的等比数列, 又由a 1=-a 1+1得a 1=12, 所以a n =a 1q n -1=⎝⎛⎭⎫12n .(2)因为b n =f (a 1)+f (a 2)+…+f (a n )=1+2+…+n =n (n +1)2, 所以1b n =2n (n +1)=2⎝⎛⎭⎫1n -1n +1, 所以T n =2⎝⎛⎭⎫11-12+12-13+…+1n -1n +1 =2⎝⎛⎭⎫1-1n +1=2n n +1.2.已知等差数列{a n }的公差d ≠0,a 1=0,其前n 项和为S n ,且a 2+2,S 3,S 4成等比数列.(1)求数列{a n }的通项公式;(2)若b n =(2n +2)22n +S n +1,数列{b n }的前n 项和为T n ,求证:T n -2n <32. (1)解 由a 1=0得a n =(n -1)d ,S n =n (n -1)d 2, 因为a 2+2,S 3,S 4成等比数列,所以S 23=(a 2+2)S 4,即(3d )2=(d +2)·6d ,整理得3d 2-12d =0,即d 2-4d =0,因为d ≠0,所以d =4,所以a n =(n -1)d =4(n -1)=4n -4.(2)证明 由(1)可得S n +1=2n (n +1),所以b n =(2n +2)22n +2n (n +1)=4(n +1)22n (n +2)=2+2n (n +2)=2+⎝⎛⎭⎫1n -1n +2, 所以T n =2n +⎝⎛⎭⎫1-13+⎝⎛⎭⎫12-14+…+⎝⎛⎭⎫1n -1n +2 =2n +1+12-1n +1-1n +2, 所以T n -2n <32. 3.已知二次函数f (x )=ax 2+bx 的图象过点(-4n ,0),且f ′(0)=2n ,n ∈N +,数列{a n }满足1a n +1=f ′⎝⎛⎭⎫1a n ,且a 1=4.(1)求数列{a n }的通项公式;(2)记b n =a n a n +1,求数列{b n }的前n 项和T n .解 (1)f ′(x )=2ax +b ,由题意知b =2n ,16n 2a -4nb =0,∴a =12,则f (x )=12x 2+2nx ,n ∈N +.数列{a n }满足1a n +1=f ′⎝⎛⎭⎫1a n ,又f ′(x )=x +2n ,∴1a n +1=1a n +2n ,∴1a n +1-1a n=2n ,由累加法可得1a n -14=2+4+6+…+2(n -1)=n 2-n , 化简可得a n =4(2n -1)2(n ≥2),当n =1时,a 1=4也符合,∴a n =4(2n -1)2(n ∈N +).(2)∵b n =a n a n +1=4(2n -1)(2n +1)=2⎝⎛⎭⎫12n -1-12n +1,∴T n =b 1+b 2+…+b n =a 1a 2+a 2a 3+…+a n a n +1=2⎣⎡⎦⎤⎝⎛⎭⎫1-13+⎝⎛⎭⎫13-15+…+⎝⎛⎭⎫12n -1-12n +1=2⎝⎛⎭⎫1-12n +1=4n 2n +1. 4.已知{x n }是各项均为正数的等比数列,且x 1+x 2=3,x 3-x 2=2.(1)求数列{x n }的通项公式;(2)如图,在平面直角坐标系xOy 中,依次连接点P 1(x 1,1),P 2(x 2,2),…,P n +1(x n +1,n +1)得到折线P 1P 2…P n +1,求由该折线与直线y =0,x =x 1,x =x n +1所围成的区域的面积T n . 解 (1)设数列{x n }的公比为q .由题意得⎩⎪⎨⎪⎧x 1+x 1q =3,x 1q 2-x 1q =2. 所以3q 2-5q -2=0,由已知得q >0,所以q =2,x 1=1.因此数列{x n }的通项公式为x n =2n -1. (2)过P 1,P 2,…,P n +1向x 轴作垂线,垂足分别为Q 1,Q 2,…,Q n +1. 由(1)得x n +1-x n =2n -2n -1=2n -1, 记梯形P n P n +1Q n +1Q n 的面积为b n ,由题意得b n =(n +n +1)2×2n -1=(2n +1)×2n -2, 所以T n =b 1+b 2+…+b n=3×2-1+5×20+7×21+…+(2n -1)×2n -3+(2n +1)×2n -2,① 则2T n =3×20+5×21+7×22+…+(2n -1)×2n -2+(2n +1)×2n -1,② 由①-②,得-T n =3×2-1+(2+22+…+2n -1)-(2n +1)×2n -1 =32+2(1-2n -1)1-2-(2n +1)×2n -1. 所以T n =(2n -1)×2n +12.5.(2019·盘锦模拟)若正项数列{a n }的前n 项和为S n ,首项a 1=1,点P (S n ,S n +1)在曲线y =(x +1)2上.(1)求数列{a n }的通项公式a n ;(2)设b n =1a n ·a n +1,T n 表示数列{b n }的前n 项和,若T n ≥a 恒成立,求T n 及实数a 的取值范围.解 (1)由S n +1=(S n +1)2,得S n +1-S n =1, 所以数列{S n }是以S 1为首项,1为公差的等差数列, 所以S n =S 1+(n -1)×1,即S n =n 2,由公式a n =⎩⎪⎨⎪⎧ S 1,n =1,S n -S n -1,n ≥2, 得a n =⎩⎪⎨⎪⎧1,n =1,2n -1,n ≥2,所以a n =2n -1. (2)因为b n =1a n a n +1=1(2n -1)(2n +1)=12⎝⎛⎭⎫12n -1-12n +1, 所以T n =b 1+b 2+…+b n=12⎣⎡⎦⎤⎝⎛⎭⎫1-13+⎝⎛⎭⎫13-15+…+⎝⎛⎭⎫12n -1-12n +1 =12⎝⎛⎭⎫1-12n +1, 显然T n 是关于n 的增函数,所以T n 有最小值(T n )min =T 1=12×⎝⎛⎭⎫1-13=13. 由于T n ≥a 恒成立,所以a ≤13, 于是a 的取值范围是⎝⎛⎦⎤-∞,13.6.已知各项均不相等的等差数列{a n }的前三项和为9,且a 1,a 3,a 7恰为等比数列{b n }的前三项.(1)分别求数列{a n },{b n }的前n 项和S n ,T n ;(2)记数列{a n b n }的前n 项和为K n ,设c n =S n T n K n,求证:c n +1>c n (n ∈N +). (1)解 设数列{a n }的公差为d ,则⎩⎪⎨⎪⎧ 3a 1+3d =9,(a 1+2d )2=a 1(a 1+6d ), 解得⎩⎪⎨⎪⎧ a 1=2,d =1或⎩⎪⎨⎪⎧a 1=3,d =0(舍去), 所以a n =n +1,S n =n (n +3)2. 又b 1=a 1=2,b 2=a 3=4,所以b n =2n ,T n =2n +1-2. (2)证明 因为a n ·b n =(n +1)·2n ,所以K n =2·21+3·22+…+(n +1)·2n ,① 所以2K n =2·22+3·23+…+n ·2n +(n +1)·2n +1,② ①-②得-K n =2·21+22+23+…+2n -(n +1)·2n +1, 所以K n =n ·2n +1. 则c n =Sn T n K n =(n +3)(2n -1)2n +1,c n +1-c n =(n +4)(2n +1-1)2n +2-(n +3)(2n -1)2n +1 =2n +1+n +22n +2>0,所以c n +1>c n (n ∈N +).。

2020届高考数学(理)一轮必刷题 专题32 数列的综合问题(解析版)

2020届高考数学(理)一轮必刷题 专题32 数列的综合问题(解析版)

考点32 数列的综合问题1.(北京市房山区2019年高考第一次模拟测试理)《九章算术》中有如下问题:今有蒲生一日,长三尺,莞生一日,长1尺.蒲生日自半,莞生日自倍.问几何日而长等?意思是:今有蒲第一天长高3尺,莞第一天长高1尺,以后蒲每天长高前一天的一半,莞每天长高前一天的2倍.若蒲、莞长度相等,则所需时间为()(结果精确到0.1.参考数据:lg2=0.3010,lg3=0.4771.)A.天B.天C.天D.天【答案】C【解析】设蒲的长度组成等比数列{a n},其a1=3,公比为,其前n项和为A n,则A n=.莞的长度组成等比数列{b n},其b1=1,公比为2,其前n项和为B n.则B n,由题意可得:,整理得:2n+=7,解得2n=6,或2n=1(舍去).∴n=≈2.6.∴估计2.6日蒲、莞长度相等.故选:C.2.(新疆乌鲁木齐市2018届高三第三次诊断性测验)已知数列,满足,,,则数列的前10项的和为A.B.C.D.【答案】D【解析】由a n+1﹣a n2,所以数列{a n}是等差数列,且公差是2,{b n}是等比数列,且公比是2.又因为=1,所以a n =+(n ﹣1)d =2n ﹣1. 所以b 2n ﹣1=•22n ﹣2=22n ﹣2.设,所以=22n ﹣2,所以4,所以数列{∁n }是等比数列,且公比为4,首项为1.由等比数列的前n 项和的公式得:其前10项的和为(410﹣1).故选:D .3.(安徽省“皖南八校”2018届高三第三次(4月)联考)删去正整数数列 中的所有完全平方数,得到一个新数列,这个数列的第2018项是( ) A .B .C .D .【答案】B 【解析】由题意可得,这些数可以写为:,第个平方数与第个平方数之间有个正整数,而数列共有项,去掉个平方数后,还剩余个数,所以去掉平方数后第项应在后的第个数,即是原来数列的第项,即为,故选B.4.(华大新高考联盟2018届高三上学期11月教学质量测评理)已知等比数列{}n a 的前n 项和为n S ,3123S a a =+,则42S S =( ) A .2 B .3C .4D .5【答案】B 【解析】由3123S a a =+可得312a a =,所以22q =,又因为2123434421212113a a a a a a S q S a a a a ++++==+=+=++,所以选B.5.(湖南省2017届高三高考冲刺预测卷六理)最近各大城市美食街火爆热开,某美食店特定在2017年元旦期间举行特大优惠活动,凡消费达到88元以上者,可获得一次抽奖机会.已知抽奖工具是一个圆面转盘,被分为6个扇形块,分别记为1,2,3,4,5,6,其面积成公比为3的等比数列(即扇形块2是扇形块1面积的3倍),指针箭头指在最小的1区域内时,就中“一等奖”,则一次抽奖抽中一等奖的概率是( ) A .140B .1121C .1364D .11093【答案】C 【解析】由题意,可设1,2,3,4,5,6 扇形区域的面积分别为,3,9,27,81,243x x x x x x ,则由几何概型得,消费88 元以上者抽中一等奖的概率1392781243364x P x x x x x x ==+++++ ,故选C. 6.(湖北省钟祥市2019届高三高考第一次模拟考试理)对于实数x ,[x]表示不超过x 的最大整数,已知正数列{a n }满足S n =12(a n n 1a +),n ∈N*,其中S n 为数列{a n }的前n 项的和,则[12121111S S S ++⋯+]=______.【答案】20 【解析】由题可知0n S >,当1n >时,1111[()]2n n n n n S S S S S --=-+-化简可得2211n n S S --=,当22111,1n S a === 所以数列2{}n S 是以首项和公差都是1的等差数列,即2n n S n S =∴=又1n >时,22nS =<<=记12121111S S S S =++一方面21]1)20S >-=>另一方面1(21)]11)21S <+++-=+=所以2021S << 即[]20S = 故答案为207.(北京市朝阳区2019届高三第一次(3月)综合练习一模)天坛公园是明、清两代皇帝“祭天”“祈谷”的场所.天坛公园中的圜丘台共有三层(如图1所示),上层坛的中心是一块呈圆形的大理石板,从中心向外围以扇面形石(如图2所示).上层坛从第一环至第九环共有九环,中层坛从第十环至第十八环共有九环,下层坛从第十九环至第二十七环共有九环;第一环的扇面形石有9块,从第二环起,每环的扇面形石块数比前一环多9块,则第二十七环的扇面形石块数是______;上、中、下三层坛所有的扇面形石块数是_______.【答案】243 3402 【解析】第一环的扇面形石有9块,从第二环起,每环的扇面形石块数比前一环多9块, 则依题意得:每环的扇面形石块数是一个以9为首项,9为公差的等差数列, 所以,a n =9+(n -1)×9=9n , 所以,a 27=9×27=243, 前27项和为:1272727()27(9243)22a a S ++===3402.格谦教育收集整理,更多优惠资料请搜索淘宝店铺:格谦教育 https://8.(江苏省南京师大附中2018届高三高考考前模拟考试)在数列{a n }中,若a 4=1,a 12=5,且任意连续三项的和都是15,则a 2018=______. 【答案】9【解析】分析:将a n +a n+1+a n+2=15中n 换为n+1,可得数列{a n }是周期为3的数列.求出a 2,a 1,即可得到a 2018详解:由题意可得a n +a n+1+a n+2=15,将n 换为a n+1+a n+2+a n+3=15,可得a n+3=a n ,可得数列{a n 是周期为3的数列.故,由a n +a n+1+a n+2=15,n 取1可得,故,故答案为9.9.(湖北省武昌2018届元月调研考试)对任一实数序列,定义新序列,它的第项为,假设序列的所有项都是,且,则__________.【答案】100. 【解析】 设序列的首项为,则序列,则它的第n 项为,因此序列A 的第项,则是关于的二次多项式,其中的系数为,因为,所以必有,故。

高考数学压轴专题2020-2021备战高考《数列》真题汇编及答案

高考数学压轴专题2020-2021备战高考《数列》真题汇编及答案
【详解】
∵ 是方程 的两根,∴ .
∵ 是等差数列,∴ ,∴ ,
∴ ,又∵ 是递减数列,
∴ 对 恒成立,
则 ,∴ ,
∴ 对 恒成立,
∴ .
故选:B.
【点睛】
本题主要考查等差中项的应用,考查数列的单调性和数列不等式的恒成立问题,意在考查学生对这些知识的理解掌握水平.
3.已知数列 为等比数列,前 项和为 ,且 , ,若数列 也是等比数列,则 ()
所以 ( )
由题得 ,所以 ( ).
所以
所以 .
所以 .
故选:B
【点睛】
本题主要考查数列通项的求法,考查数列前 项和与 的关系,意在考查学生对这些知识的理解掌握水平.
17.根据下面的程序框图,输出的 的值为()
A.1007B.1009C.0D.-1
【答案】A
【解析】
【分析】
按照程序框图模拟运行即可得解.
A. B. C. D.
【答案】C
【解析】
【分析】
设等比数列 的公比为 ,写出 .由数列 是等比数列,得 ,求出 ,即求 .
【详解】
设等比数列 的公比为 , ,

, , ,
也是等比数列, ,即
解得 , .
故选:C.
【点睛】
本题考查等比数列的性质,属于基础题.
4.《周髀算经》中有这样一个问题:从冬至日起,依次小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气其日影长依次成等差数列,冬至、立春、春分日影长之和为31.5尺,前九个节气日影长之和为85.5尺,则小满日影长为()
A. 钱B. 钱C. 钱D. 钱
【答案】C
【解析】
【分析】
依题意设甲、乙、丙、丁、戊所得钱分别为a﹣2d,a﹣d,a,a+d,a+2d,由题意求得a=﹣6d,结合a﹣2d+a﹣d+a+a+d+a+2d=5a=10求得a=2,则答案可求.

2020年高考数学压轴题专题复习: 数列与不等式的综合问题【解析版】

2020年高考数学压轴题专题复习: 数列与不等式的综合问题【解析版】

第二章 数列与不等式专题 数列与不等式的综合问题纵观近几年的高考命题,考查常以数列的相关项以及关系式,或数列的前n 项和与第n 项的关系入手,结合数列的递推关系式与等差数列或等比数列的定义展开,求解数列的通项、前n 项和,有时与参数的求解、数列不等式的证明等加以综合.数列与不等式的结合,一般有两类题:一是利用基本不等式求解数列中的最值;二是与数列中的求和问题相联系,证明不等式或求解参数的取值范围,此类问题通常是抓住数列通项公式的特征,多采用先求和后利用放缩法或数列的单调性证明不等式,求解参数的取值范围. 本专题通过例题说明此类问题解答规律与方法.①函数方法:即构造函数,通过函数的单调性、极值等得出关于正实数的不等式,通过对关于正实数的不等式特殊赋值得出数列中的不等式;②放缩方法:数列中不等式可以通过对中间过程或者最后的结果放缩得到; ③比较方法:作差或者作商比较.【压轴典例】例1.(2013·全国高考真题(理))设△A n B n C n 的三边长分别为a n ,b n ,c n ,△A n B n C n 的面积为S n ,n=1,2,3,… 若b 1>c 1,b 1+c 1=2a 1,a n +1=a n ,b n +1=2n n c a +,c n +1=2n nb a +,则( ) A .{S n }为递减数列 B .{S n }为递增数列C .{S 2n -1}为递增数列,{S 2n }为递减数列D .{S 2n -1}为递减数列,{S 2n }为递增数列 【答案】B 【解析】因为11b c >,不妨设111142,33a a b c ==,13()22p a b c a =++=;故211S ==; 21a a =,112125326a ab a +==,112147326a a c a +==,2216S a ==; 显然21S S >;同理,31a a =,112159428a a b a +==,113137428a a c a +==,231S ==,显然32S S >.例2. (2018·江苏高考真题)已知集合*{|21,}A x x n n N ==-∈,*{|2,}n B x x n N ==∈.将AB 的所有元素从小到大依次排列构成一个数列{}n a .记n S 为数列{}n a 的前n 项和,则使得112n n S a +>成立的n 的最小值为________. 【答案】27 【解析】设=2kn a ,则12[(211)+(221)+(221)][222]k k n S -=⨯-⨯-+⋅-++++()11221212212(12)222212k k kk k ---++⨯--=+=+--由112n n S a +>得2211211522212(21),(2)20(2)140,22,6k k k k k k k -+---+->+-->≥≥ 所以只需研究5622n a <<是否有满足条件的解,此时25[(211)+(221)+(21)][222]n S m =⨯-⨯-+-++++25122m +=+-,+121n a m =+,m 为等差数列项数,且16m >. 由25122212(21),2450022,527m m m m m n m ++->+-+>∴≥=+≥,得满足条件的n 最小值为27. 例3.(2018·浙江高考模拟)设数列的前项和分别为,其中,使成立的最大正整数__________,__________.【答案】 6. 114. 【解析】根据题意,数列{a n }中,a n =-3n+20,则数列{a n }为首项为17,公差为-3的等差数列,且当n≤6时,a n >0,当n >7时,a n <0,又由b n =|a n |,当n≤6时,b n =a n ,当n >7时,b n =-a n , 则使T n =S n 成立的最大正整数为6,T 2018+S 2018=(a 1+a 2+……+a 6+a 7+a 8+……+a 2018)+(b 1+b 2+……+b 6+b 7+b 8+……+b 2018)=(a 1+a 2+……+a 6+a 7+a 8+……+a 2018)+(a 1+a 2+……+a 6-a 7-a 8-……-a 2018) =2(a 1+a 2+……+a 6)=,故答案为:6,114 例4.(2019·江西师大附中高考模拟(文))数列{}n a 中的项按顺序可以排成如图的形式,第一行1项,排1a ;第二行2项,从左到右分别排2a ,3a ;第三行3项,……依此类推,设数列{}n a 的前n 项和为n S ,则满足2019n S >的最小正整数n 的值为( )A .20B .21C .26D .27【答案】B 【解析】第一行为4,其和为4,可以变形为:1232T =⨯-;第二行为首项为4,公比为3的等比数列,共2项,其和为:()22241323213T -==⨯--;第三行为首项为4,公比为3的等比数列,共3项,其和为()33341323213T -==⨯--;依此类推:第n 行的和:232nn T =⨯-;则前6行共:12345621+++++=个数 前6行和为:()()()()26267212322322322333123152172S =⨯-+⨯-+⋅⋅⋅+⨯-=⨯++⋅⋅⋅+-=-=满足2019n S >而第六行的第6个数为:543972⨯=,则202197212002019S S =-=<∴满足2019n S >的最小正整数n 的值为:21本题正确选项:B例5.(2019·内蒙古高考模拟(理))数列()11n a n n =+的前n 项和为n S ,若1S ,m S ,n S 成等比数列()1m >,则正整数n 值为______. 【答案】8 【解析】∵()11111n a n n n n ==-++,∴11111122311n nS n n n =-+-++-=++, 又1S ,m S ,n S 成等比数列()1m >,∴()21m n S S S =⋅, 即()221211m n n m =⋅++,()22211m n n m =++, ∴()2221m m <+,即2210m m --<,解得1212m -<<+,结合1m 可得2m =, ∴8n =,故答案为8.例6.(2016·天津高考真题(理))已知{}是各项均为正数的等差数列,公差为d ,对任意的,是和的等比中项.(Ⅰ)设求证:数列{}是等差数列;(Ⅱ)设求证:【答案】(Ⅰ)详见解析(Ⅱ)详见解析 【解析】(Ⅰ)证明:由题意得,有,因此,所以是等差数列.(Ⅱ)证明:所以.例7.(2016·四川高考真题(理))已知数列{}的首项为1,为数列{}的前n 项和,,其中q>0,.(Ⅰ)若成等差数列,求数列{a n }的通项公式;(Ⅱ)设双曲线的离心率为,且,证明:.【答案】(Ⅰ);(Ⅱ)详见解析.【解析】(Ⅰ)由已知,两式相减得到.又由得到,故对所有都成立.所以,数列是首项为1,公比为q的等比数列.从而.由成等差数列,可得,即,则,由已知,,故.所以.(Ⅱ)由(Ⅰ)可知,.所以双曲线的离心率.由解得.因为,所以.于是,故.例8.(2016·浙江高考真题(理))设数列满足,.(Ⅰ)证明:,;(Ⅱ)若,,证明:,.【答案】(Ⅰ)证明见解析;(Ⅱ)证明见解析.【解析】(Ⅰ)由得,故,,所以,因此.(Ⅱ)任取,由(Ⅰ)知,对于任意,,故.从而对于任意,均有.由的任意性得.①否则,存在,有,取正整数且,则,与①式矛盾.综上,对于任意,均有.【压轴训练】1.(2019·安徽高考模拟(理))设是等差数列,下列结论一定正确的是()A.若,则B.若,则C.若,则D.若,则【答案】C【解析】若a1+a2>0,则2a1+d>0,a2+a3=2a1+3d>2d,d>0时,结论成立,即A不正确;对于B选项,当,分别为-4,-1,2时,满足a1+a3<0,但a2+a3=1>0,故B不正确;又{a n }是等差数列,0<a 1<a 2,2a 2=a 1+a 3>2,∴a 2,即C 正确;若a 1<0,则(a 2﹣a 1)(a 2﹣a 3)=﹣d 2≤0,即D 不正确. 故选:C .2.(2018·浙江高考模拟)已知等差数列的前项和是,公差不等于零,若成等比数列,则A .B .C .D .【答案】C 【解析】 由成等比数列.可得,可得(,即,∵公差不等于零,故选:C .3.(2019·山东高考模拟(文))已知正项等比数列{}n a 满足5432a a a +=,若存在两项m a ,n a ,使得18m n a a a =,则91m n+的最小值为__________. 【答案】2 【解析】正项等比数列{}n a 满足5432a a a +=, 432111=+2a q a q a q ∴,整理,得210+2q q -=,又0q >,解得,12q =, 存在两项m a ,n a 使得18m n a a a =, 2221164m n a q a +-∴=,整理,得8m n +=,∴9119119()()(10)88m n m n m n m n n m +=++=++ 19(102)28m n n m+=, 则91m n+的最小值为2. 当且仅当9m n n m=取等号,又m ,*n N ∈.8m n +=, 所以只有当6m =,2n =时,取得最小值是2. 故答案为:24.(2019·湖南师大附中高考模拟(理))已知等比数列{a n }的前n 项积为T n ,若124a =-,489a =-,则当T n 取最大值时,n 的值为_____. 【答案】4 【解析】设等比数列{a n }的公比为q ,因为124a =-,489a =-,可得341127a q a ==,解得13q =,则()()()1112312(2131)(32424)n n nnn n n T a a a a q-+++⋅⋅⋅+-=⋅⋅⋅=-=-, 当T n 取最大值时,可得n 为偶数,函数13xy =()在R 上递减, 又由2192T =,4489T =,66983T =,可得246T T T <>,当6n >,且n 为偶数时,6n T T <, 故当4n =时,T n 取最大值.5.(2019·安徽高考模拟(理))已知数列的各项均为正数,记为的前项和,若,,则使不等式成立的的最小值是________.【答案】11 【解析】由可得,则()()=0,又数列的各项均为正数,∴,即,可得数列{a n }是首项为公比为q =2的等比数列,∴,则n>10,又,∴n 的最小值是11,故答案为11.6.(2019·甘肃天水一中高考模拟(文))已知数列{}n a 满足11a =,0n a >,11n n a a +=,那么32n a <成立的n 的最大值为______ 【答案】5 【解析】11n n a a +=, 所有{}na 11a =,公差d 1=n n a =,2n a n = 解232n a n =<,得n 42<所以32n a <成立的n 的最大值为5 故答案为:57.(2019·河北高考模拟(理))已知数列{}n a 的前n 项和为n S ,且()2119*2n n n nS S n N +-+=∈,若24a <-,则n S 取最小值时n =__________.【答案】10 【解析】由21192n n n nS S +-+=,()21(1)1912n n n n S S ----+=,两式作差可得:1110(2)n n S S n n +--=-≥,即110(2)n n a a n n ++=-≥,由110n na a n ++=-,219n n a a n +++=-,两式作差可得:21(2)n n a a n +-=≥,则328a a +=-,24a <-,故234a a <-<,进一步可得:4567891011,,,a a a a a a a a <<<<,又10110a a +=,则10110a a <<,且111212130a a a a <+<+<,则n S 取最小值时10n =.8.(2019·河南高考模拟(理))记首项为11(0)a a >,公差为d 的等差数列{}n a 的前n 项和为n S ,若1212a d =-,且1n n n S a S λ+≤+,则实数λ的取值范围为__________. 【答案】19,121⎡⎤⎢⎥⎣⎦【解析】由1n n n S a S λ+≤+,得11n n n n S S a a λ++-=≤. 因为10a >,所以0d <,()12312n a a n d n d ⎛⎫=+-=-⎪⎝⎭. 所以当111n ≤≤时,0n a >,当12n ≥时,0n a <. (1)当111n ≤≤时,由1n n a a λ+≥得1211223n n n n n a a d d a a a n λ++≥==+=+-. 因为221911223212321n +≤+=-⨯-,所以1921λ≥.(2)当12n ≥时,由1n n a a λ+≥得121223n n a a n λ+≤=+-. 因为211223n +>-,所以1λ≤.综上所述,λ的取值范围是19,121⎡⎤⎢⎥⎣⎦. 9.(2019·四川重庆南开中学高考模拟(理))在正项递增等比数列{}n a 中,51a =,记12...n n S a a a =+++,12111...n nT a a a =+++,则使得n n S T ≤成立的最大正整数n 为__________. 【答案】9【解析】由题得11111(1)(1)(1)11(1)1n nn nq q a q a q q q a q q--⋅-≤=---,因为数列是正项递增等比数,所以10,1a q >>,所以2111n a q -≤.因为51a =,所以44281111,,a q a q a q --=∴=∴=,所以81901,,9n n q qq q n ---⋅≤∴≤∴≤.所以使得n n S T ≤成立的最大正整数n 为9. 故答案为:910.(2017·吉林高考模拟(理))已知数列{}n a 满足()113,31.2n n a a a n N *+==-∈ (1)若数列{}n b 满足12n n b a =-,求证:{}n b 是等比数列; (2)若数列{}n c 满足312log ,n n n n c a T c c c ==+++,求证:()1.2n n n T ->【答案】(1) 见解析;(2)见解析. 【解析】(1) 由题可知()*n N∈,从而有13n n b b +=,11112b a =-=,所以{}n b 是以1为首项,3为公比的等比数列.(2) 由(1)知13n n b -=,从而1132n n a -=+,11331log 3log 312n n n c n --⎛⎫=+>=- ⎪⎝⎭,有()12101212n n n n T c c c n -=+++>+++-=,所以()12n n n T ->.11.(2019·江苏金陵中学高考模拟)已知各项均为正整数的数列{a n }的前n 项和为S n ,满足:S n ﹣1+ka n =ta n 2﹣1,n≥2,n∈N *(其中k ,t 为常数).(1)若k =12,t =14,数列{a n }是等差数列,求a 1的值; (2)若数列{a n }是等比数列,求证:k <t . 【答案】(1)a 1=(2)见解析 【解析】(1)∵k=12,t =14,∴2111124n n n S a a -+=-(n≥2),设等差数列{a n }的公差为d ,令n =2,则212211a a a 124+=-,令n =3,则2123311124a a a a ++=-,两式相减可得:()()()2332321124a a a a a a +=+-,∵a n >0,∴a 3﹣a 2=2=d .由212211124a a a +=-,且d =2,化为2112a a -﹣4=0,a 1>0.解得a 1=(2)∵S n ﹣1+ka n =ta n 2﹣1①,n≥2,n∈N *,所以S n +ka n+1=2n 1ta +﹣1②, ②-①得a n +ka n+1﹣ka n =2n 1ta +﹣2n ta ,∴a n =(a n+1﹣a n )[t (a n+1+a n )﹣k], 令公比为q >0,则a n+1=a n q ,∴(q ﹣1)k+1=ta n (q 2﹣1), ∴1=(q ﹣1)[ta n (q+1)﹣k];∵对任意n≥2,n∈N *, 1=(q ﹣1)[ta n (q+1)﹣k]成立;∴q≠1,∴a n 不是一个常数; ∴t=0,∴S n ﹣1+ka n =﹣1,且{a n }是各项均为正整数的数列,∴k<0, 故k <t .12.(2019·天津高考模拟(理))已知单调等比数列{}n a ,首项为12,其前n 项和是n S ,且3312a S +,5S ,44a S +成等差数列,数列{}n b 满足条件1231(2)n b na a a a =(1)求数列{}n a 、{}n b 的通项公式; (2)设1n n nc a b =-,记数列{}n c 的前n 项和是n T . ①求n T ;②求正整数k ,使得对任意*n N ∈,均有k n T T ≥.【答案】(1)12nn a ⎛⎫= ⎪⎝⎭,(1)n b n n =+;(2)①.1112n n T n =-+;②.4k =. 【解析】(1)设11n n a a q -=.由已知得53344122S a S a S =+++,即5341222S a S =+, 进而有()543122S S a -=.所以53122a a =,即214q =,则12q =±.由已知数列{}n a 是单调等比数列,且112a =,所以取12q =.数列{}n a 的通项公式为12nn a ⎛⎫= ⎪⎝⎭. 1231(2)n b na a a a =,(1)2322222222n b n nn+∴⨯⨯⨯⨯==,则(1)n b n n =+.即数列{}n b 的通项公式为(1)n b n n =+. (2)①.由(1)可得:1111112(1)21n n n n n c a b n n n n ⎛⎫=-=-=-- ⎪++⎝⎭, 分组求和可得:1111112112n n nT n n ⎛⎫=---=- ⎪++⎝⎭. ②由于11111111(1)(2)222122(1)(2)n n n n n n n n T T n n n n ++++++--=--+=++++, 由于12n +比()()12n n ++变化快,所以令10n n T T +->得4n <. 即1234,,,T T T T 递增,而456,,n T T T T 递减.所以,4T 最大.即当4k =时,k n T T ≥.13.(2019·安徽高考模拟(文))已知数列为等差数列,且公差,其前项和为,,且,,成等比数列. (1)求等差数列的通项公式;(2)设,记数列的前项和为,求证.【答案】(1);(2)证明见解析.【解析】 (1)由题意得: ,解得:,∴(2)由(1)得,∴ ∴14.(2019·广东高考模拟(理))已知数列{}n a 满足11*121(22)2()n n n a a a n N n-++++=∈.(1)求12,a a 和{}n a 的通项公式;(2)记数列{}n a kn -的前n 项和为n S ,若4n S S ≤对任意的正整数n 恒成立,求实数k 的取值范围. 【答案】(1) 1a 4= 26;a = 22n a n =+ (2) 125[,].52【解析】(1)由题意得111222?2n n n a a a n -++++=,所以23112124,222,a a a =⨯=+=⨯得26;a =由111222?2n n n a a a n -++++=,所以()2121221?2n n n a a a n --+++=-(2n ≥),相减得()1+12?21?2n n n n a n n -=--,得22,1n a n n =+=当也满足上式. 所以{}n a 的通项公式为22n a n =+.(2)数列{}n a kn -的通项公式为()2222,n a kn n kn k n -=+-=-+ 是以4k -为首项,公差为2k -的等差数列,若4n S S ≤对任意的正整数n 恒成立,等价于当4n =时,n S 取得最大值,所以()()4544220,55220.a k k a k k ⎧-=-+≥⎪⎨-=-+≤⎪⎩解得125.52k ≤≤ 所以实数k 的取值范围是125,.52⎡⎤⎢⎥⎣⎦ 15.(2017·浙江高考模拟)已知无穷数列{}n a 的首项112a =,*1111,2n n n a n N a a +⎛⎫=+∈ ⎪⎝⎭. (Ⅰ)证明: 01n a <<;(Ⅱ) 记()211n n nn n a a b a a ++-=, n T 为数列{}n b 的前n 项和,证明:对任意正整数n , 310n T <. 【答案】(Ⅰ)见解析;(Ⅱ)见解析. 【解析】(Ⅰ)证明:①当1n =时显然成立;②假设当n k = ()*k N ∈时不等式成立,即01k a <<, 那么当1n k =+时,11112k k k a a a +⎛⎫=+ ⎪⎝⎭ > 1·12=,所以101k a +<<, 即1n k =+时不等式也成立.综合①②可知, 01n a <<对任意*n N ∈成立. (Ⅱ)12211n n n a a a +=>+,即1n n a a +>,所以数列{}n a 为递增数列. 又1111112n n n n n a a a a a +⎛⎫-=-+ ⎪⎝⎭ 112n n a a ⎛⎫=- ⎪⎝⎭,易知1n n a a ⎧⎫-⎨⎬⎩⎭为递减数列, 所以111nn a a +⎧⎫-⎨⎬⎩⎭也为递减数列, 所以当2n ≥时,111n n a a +-22112a a ⎛⎫≤- ⎪⎝⎭154245⎛⎫=- ⎪⎝⎭ 940= 所以当2n ≥时, ()211n n nn n a a b a a ++-== ()()11111940n n n n n n a a a a a a +++⎛⎫--<- ⎪⎝⎭当1n =时, 11934010n T T b ===<,成立; 当2n ≥时, 12n n T b b b =+++ < ()()()32431994040n n a a a a a a +⎡⎤+-+-++-⎣⎦()12994040n a a +=+- ()2999942731140404040510010a ⎛⎫<+-=+-=< ⎪⎝⎭ 综上,对任意正整数n , 310n T <16.(2017·浙江高考模拟)已知数列{}n a 满足: 11p ap +=, 1p >, 11ln n n na a a +-=.(1)证明: 11n n a a +>>; (2)证明:12112n nn n a a a a ++<<+; (3)证明:()1211121121ln 122n n n n n a a a p p ----⨯<⋯<⨯+. 【答案】(1)证明见解析;(2)证明见解析;(3)证明见解析. 【解析】(1)先用数学归纳法证明1n a >. ①当1n =时,∵1p >,∴111p a p+=>; ②假设当n k =时, 1k a >,则当1n k =+时, 1111ln 1k k k k k a a a a a +--=>=-. 由①②可知1n a >. 再证1n n a a +>.111ln ln ln n nn nn n n n na a a a a a a a a +----=-=, 令()1ln f x x x x =--, 1x >,则()'ln 0f x x =-<, 所以()f x 在()1,+∞上单调递减,所以()()10f x f <=,所以1ln 0ln n n nna a a a --<,即1n n a a +>.(2)要证12112n nn n a a a a ++<<+,只需证2111ln 2n n n n n a a a a a -+<<+, 只需证()2210,{1220,n n n n n na lna a a lna a -+<+-+>其中1n a >, 先证22ln 10n n n a a a -+<,令()22ln 1f x x x x =-+, 1x >,只需证()0f x <. 因为()()'2ln 2221220f x x x x x =+-<-+-=, 所以()f x 在()1,+∞上单调递减,所以()()10f x f <=. 再证()1ln 220n n n a a a +-+>,令()()1ln 22g x x x x =+-+, 1x >,只需证()0g x >,()11'ln 2ln 1x g x x x x x +=+-=+-, 令()1ln 1h x x x =+-, 1x >,则()22111'0x h x x x x -=-=>,所以()h x 在()1,+∞上单调递增,所以()()10h x h >=,从而()'0g x >,所以()g x 在()1,+∞上单调递增,所以()()10g x g >=, 综上可得12112n nn n a a a a ++<<+. (3)由(2)知,一方面, 1112n n a a ---<,由迭代可得()1111111122n n n a a p --⎛⎫⎛⎫-<-= ⎪⎪⎝⎭⎝⎭,因为ln 1x x ≤-,所以111ln 12n n n a a p -⎛⎫≤-< ⎪⎝⎭,所以()1212ln ln ln ln n n a a a a a a ⋯=++⋯+ 0111111222n p -⎡⎤⎛⎫⎛⎫⎛⎫<++⋯+⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦ 111112121212nn n p p -⎛⎫- ⎪-⎝⎭=⨯=⨯-;另一方面,即11112n n n na a a a ++-->, 由迭代可得111111111212n n nn a a a a p ----⎛⎫⎛⎫>⨯= ⎪ ⎪+⎝⎭⎝⎭.因为1ln 1x x ≥-,所以1ln 1n n a a ≥- 11112n p -⎛⎫> ⎪+⎝⎭,所以()01112121111ln ln ln ln 1222n n n a a a a a a p -⎡⎤⎛⎫⎛⎫⎛⎫⋯=++⋯+>⨯++⋯+⎢⎥ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦112112n n p --=⨯+;综上,()1211121121ln 122n n n n n a a a p p ----⨯<⋯<⨯+.。

2020届高考数学(江苏专用)二轮复习专项强化练(九)数列 Word版含答案

2020届高考数学(江苏专用)二轮复习专项强化练(九)数列 Word版含答案

专项强化练(九) 数 列A 组题型一 等差、等比数列的基本运算1.设S n 是等差数列{a n }的前n 项和,若a 2=7,S 7=-7,则a 7的值为________. 解析:因为等差数列{a n }满足a 2=7,S 7=-7,所以S 7=7a 4=-7,a 4=-1,所以d =a 4-a 24-2=-4,所以a 7=a 2+5d =-13.答案:-132.(2018·盐城高三模拟)设数列{a n }的前n 项和为S n ,若S n =2a n +n (n ∈N *),则数列{a n }的通项公式为a n =________.解析:S n =2a n +n (n ∈N *) ①,当n =1时,得a 1=-1,当n ≥2时,S n -1=2a n -1+n -1 ②,①-②,得a n =2a n -2a n -1+1(n ≥2),即a n -1=2(a n -1-1)(n ≥2),则数列{a n -1}是以-2为首项,2为公比的等比数列,则a n -1=-2×2n -1=-2n,a 1=-1符合上式.所以数列{a n }的通项公式为a n =1-2n.答案:1-2n3.已知等比数列{a n }的各项均为正数,若a 4=a 22,a 2+a 4=516,则a 5=________.解析:法一:设等比数列{a n }的首项为a 1(a 1>0),公比为q (q >0),由题意⎩⎪⎨⎪⎧a 1q 3=a 1q2,a 1q +a 1q 3=516,解得⎩⎪⎨⎪⎧a 1=12,q =12,所以a 5=a 1q 4=132.法二:(整体思想)依题意由⎩⎪⎨⎪⎧a 4=a 22,a 2+a 4=516,得16a 22+16a 2-5=0,即(4a 2+5)(4a 2-1)=0,又等比数列{a n }各项均为正数,所以a 2=14,从而a 4=116,从而由q 2=a 4a 2=14,又q >0,所以q =12,a 5=a 4q =116×12=132.答案:132[临门一脚]1.等差、等比数列的通项公式及前n 项和公式,共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了用方程的思想解决问题.2.在等差、等比混合后考查基本量的计算容易造成公式和性质混淆,从而造成计算失误.3.等差、等比数列的通项公式:等差数列{a n }的通项公式为a n =a 1+(n -1)d =a m +(n -m )d ;等比数列{a n }的通项公式为a n =a 1qn -1=a m qn -m(a 1≠0,q ≠0).4.等差、等比数列的前n 项和: (1)等差数列的前n 项和为:S n =n a 1+a n2=na 1+n n -12d =d 2n 2+⎝ ⎛⎭⎪⎫a 1-d 2n (二次函数).特别地,当d ≠0时,S n 是关于n 的二次函数,且常数项为0,即可设S n =an 2+bn (a ,b 为常数).(2)等比数列的前n 项和为:S n =⎩⎪⎨⎪⎧na 1,q =1,a 11-q n 1-q=a 1-a n q1-q ,q ≠1,特别地,若q ≠1,设a =a 11-q,则S n =a -aq n,要注意对q 是否等于1讨论.题型二 等差、等比数列的性质1.(2019·东台中学模拟)已知S n 是等差数列{a n }的前n 项和,若a 3+a 6+a 12=2 019,则S 13=________.解析:法一:设等差数列{a n }的公差为d ,因为a 3+a 6+a 12=2 019,所以(a 1+2d )+(a 1+5d )+(a 1+11d )=2 019,即a 1+6d =673,所以S 13=13a 1+a 132=13[a 1+a 1+12d ]2=13(a 1+6d )=8 749.法二:因为a 3+a 6+a 12=2 019,所以3a 7=2 019,所以a 7=673,所以S 13=13a 1+a 132=13a 7=8 749.答案:8 7492.设S n 是等比数列{a n }的前n 项和,若S 4S 2=3,则S 6S 4=________.解析:设S 2=k ,S 4=3k ,由数列{a n }为等比数列,得S 2,S 4-S 2,S 6-S 4为等比数列,∴S 2=k ,S 4-S 2=2k ,S 6-S 4=4k ,∴S 6=7k ,∴S 6S 4=7k 3k =73. 答案:733.若等比数列{a n }的各项均为正数,且a 10a 11+a 9a 12=2e 5,则ln a 1+ln a 2+…+ln a 20=________.解析:因为a 10a 11+a 9a 12=2a 10a 11=2e 5,所以a 10a 11=e 5.所以ln a 1+ln a 2+…+ln a 20=ln(a 1a 2…a 20)=ln[(a 1a 20)·(a 2a 19)·…·(a 10a 11)]=ln(a 10a 11)10=10ln(a 10a 11)=10ln e 5=50ln e =50.答案:504.已知数列{a n }是等差数列,且a n >0,若a 1+a 2+…+a 100=500,则a 50·a 51的最大值为________.解析:法一:设等差数列{a n }的公差为d (d ≥0),由题意得,100a 1+4 950d =500,所以a 1=5-49.5d ,所以a 50·a 51=(a 1+49d )·(a 1+50d )=(5-0.5d )·(5+0.5d )=-0.25d 2+25.又d ≥0,所以当d =0时,a 50·a 51有最大值25.法二:由等差数列的性质知,50(a 50+a 51)=500,即a 50+a 51=10,所以由基本不等式得a 50·a 51≤⎝⎛⎭⎪⎫a 50+a 5122=25,当且仅当a 50=a 51=5时取等号,所以a 50·a 51有最大值25.答案:255.已知两个等差数列{a n }和{b n }的前n 项和分别为A n 和B n ,若A n B n =7n +45n +3,则使得a nb n为整数的正整数n 的个数是________.解析:由a n b n =na n nb n =n a 1+a 2n -12n b 1+b 2n -12=A 2n -1B 2n -1=72n -1+452n -1+3=7n +19n +1=7n +1+12n +1=7+12n +1.因此n ∈N *,a n b n∈N *,故n +1=2,3,4,6,12,即n 共有5个. 答案:5 [临门一脚]1.若序号m +n =p +q ,在等差数列中,则有a m +a n =a p +a q ;特别的,若序号m +n =2p ,则a m +a n =2a p ;在等比数列中,则有a m ·a n =a p ·a q ;特别的,若序号m +n =2p ,则a m ·a n =a 2p ;该性质还可以运用于更多项之间的关系.2.在等差数列{a n }中,S k ,S 2k -S k ,S 3k -S 2k ,…成等差数列,其公差为kd ;其中S n 为前n 项的和,且S n ≠0(n ∈N *);在等比数列{a n }中,当q ≠-1或k 不为偶数时S k ,S 2k -S k ,S 3k -S 2k ,…成等比数列,其中S n 为前n 项的和(n ∈N *).题型三 数列的综合问题1.已知等比数列{a n }的前4项和为5,且4a 1,32a 2,a 2成等差数列,若b n =1log 23a n +1,则数列{b n b n +1}的前10项和为________.解析:由4a 1,32a 2,a 2成等差数列,可得4a 1+a 2=3a 2,则2a 1=a 2,则等比数列{a n }的公比q =a 2a 1=2,则数列{a n }的前4项和为a 11-241-2=5,解得a 1=13,所以a n =13×2n -1,b n=1log 23a n +1=1n ,则b n b n +1=1nn +1=1n -1n +1,其前10项和为⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝⎛⎭⎪⎫110-111=1011.答案:10112.(2019·苏州中学模拟)对于无穷数列{a n }与{b n },记A ={x |x =a n ,n ∈N *},B ={x |x=b n ,n ∈N *},若满足条件A ∩B =∅且A ∪B =N *,则称数列{a n }与{b n }是无穷互补数列.已知数列{a n }满足a 1=3,且对任意的i ,j ∈N *,都有a i +j =a i a j ,数列{b n }满足对任意的n ∈N *,都有b n <b n +1.若数列{a n }与{b n }是无穷互补数列,则b 2 020=________.解析:在数列{a n }中,对任意的i ,j ∈N *,都有a i +j =a i a j ,令i =n ,j =1,则a n +1=a 1a n .因为a 1=3,所以a n +1=3a n ,所以数列{a n }是首项为3,公比为3的等比数列,所以a n=3n .因为36=729<2 020,37=2 187>2 020,所以小于等于2 020的正整数中有6个是数列{a n }中的项,所以由无穷互补数列的定义可知b 2 020=2 020+6=2 026.答案:2 0263.(2018·南京四校联考)已知数列{a n }的前n 项和S n =8n -n 2,令b n =a n a n +1a n +2(n ∈N *),设数列{b n }的前n 项和为T n ,当T n 取得最大值时,n =________.解析:法一:当n =1时,a 1=7;当n ≥2时,a n =S n -S n -1=9-2n ,经检验,n =1时也符合,故a n =9-2n ,则b n =a n a n +1a n +2=(9-2n )(7-2n )(5-2n ),当T n 取得最大值时,应满足{b n }的前n 项均为非负项.令b n ≥0得,n ≤2.5或3.5≤n ≤4.5,又n ∈N *,所以n =1,2,4,而T 1=105,T 2=120,T 4=120,故当T n 取得最大值时,n =2或4.法二:由S n =8n -n 2知,数列{a n }为等差数列,且a n =9-2n ,即7,5,3,1,-1,-3,-5,-7,…,枚举知,T 1=105,T 2=120,T 3=117,T 4=120,T 5=105,…,故当T n 取得最大值时,n =2或4.答案:2或44.在等差数列{a n }中,首项a 1=3,公差d =2,若某学生对其中连续10项进行求和,在漏掉一项的前提下,求得余下9项的和为185,则此连续10项的和为________.解析:由已知条件可得数列{a n }的通项公式a n =2n +1,设连续10项为a i +1,a i +2,a i +3,…,a i +10,i ∈N ,设漏掉的一项为a i +k,1≤k ≤10,由a i +1+a i +10×102-a i +k =185,得(2i +3+2i +21)×5-2i -2k -1=185,即18i -2k =66,即9i -k =33,所以34≤9i =k +33≤43,3<349≤i ≤439<5,所以i =4,此时,由36=33+k 得k =3,所以a i +k =a 7=15,故此连续10项的和为200.答案:200 [临门一脚]1.数列求和的方法主要有错位相减法、倒序相加法、公式法、拆项并项法、裂项相消法等.2.根据递推关系式求通项公式的方法有累加法,累积法,待定系数法,取倒数、取对数等.3.数列单调性可以用定义研究,也可以构造函数进行研究,要注意数列和所构造函数的定义域的差别.B 组1.设S n 为等差数列{a n }的前n 项和,若a 2=1,a 4=5,则S 5=________.解析:法一:由等差数列的通项公式,得5=1+2d ,则d =2,a 1=-1,S 5=5×(-1)+5×42×2=15.法二:S 5=5a 1+a 52=5a 2+a 42=5×62=15. 答案:152.(2019·连云港模拟)已知数列{a n }中,a 1=a ,a 2=2-a ,a n +2-a n =2,若数列{a n }单调递增,则实数a 的取值范围为________.解析:由a n +2-a n =2可知数列{a n }的奇数项、偶数项分别递增,若数列{a n }单调递增,则必有a 2-a 1=(2-a )-a >0且a 2-a 1=(2-a )-a <a n +2-a n =2,可得0<a <1,故实数a 的取值范围为(0,1).答案:(0,1)3.在等比数列{a n }中,若a 1=1,a 3a 5=4(a 4-1),则a 7=________.解析:法一:设等比数列{a n }的公比为q ,因为a 1=1,a 3a 5=4(a 4-1),所以q 2·q 4=4(q 3-1),即q 6-4q 3+4=0,q 3=2,所以a 7=q 6=4.法二:设等比数列{a n }的公比为q, 由a 3a 5=4(a 4-1)得a 24=4(a 4-1),即a 24-4a 4+4=0,所以a 4=2,因为a 1=1,所以q 3=2,a 7=q 6=4.答案:44.记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,则{a n }的公差为________. 解析:设等差数列{a n }的公差为d ,则由⎩⎪⎨⎪⎧a 4+a 5=24,S 6=48,得⎩⎪⎨⎪⎧a 1+3d +a 1+4d =24,6a 1+6×52d =48,即⎩⎪⎨⎪⎧2a 1+7d =24,2a 1+5d =16,解得d =4.答案:45.已知等比数列{a n }的前n 项和为S n ,公比q =3,S 3+S 4=533,则a 3=________.解析:因为等比数列{a n }的公比q =3,所以S 3+S 4=2S 3+a 4=2⎝ ⎛⎭⎪⎫1+13+19a 3+3a 3=539a 3=533,所以a 3=3. 答案:36.设公差不为0的等差数列{a n }的前n 项和为S n .若S 3=a 22,且S 1,S 2,S 4成等比数列,则a 10=________.解析:设等差数列{a n }的公差为d (d ≠0),由S 3=a 22得3a 2=a 22,解得a 2=0或a 2=3.又由S 1,S 2,S 4成等比数列可得S 22=S 1S 4.若a 2=0,则S 1=S 2=a 1≠0,S 2=S 4=a 1,a 2+a 3+a 4=3a 3=0,a 3=0,则d =0,故a 2=0舍去;若a 2=3,则S 1=3-d ,S 2=6-d ,S 4=12+2d ,有(6-d )2=(3-d )(12+2d )(d ≠0),得d =2,此时a 10=a 2+8d =19.答案:197.在等差数列{a n }中,满足3a 4=7a 7,且a 1>0,S n 是数列{a n }的前n 项和,若S n 取得最大值,则n =________.解析:因为3a 4=7a 7,所以3(a 1+3d )=7(a 1+6d ), 所以a 1=-334d >0,所以d <0,所以a n =a 1+(n -1)d =d4(4n -37),当n ≤9时,a n >0,当n ≥10时,a n <0, 所以使S n 取得最大值的n =9. 答案:98.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯________盏.解析:每层塔所挂的灯数从上到下构成等比数列,记为{a n },则前7项的和S 7=381,公比q =2,依题意,得S 7=a 11-271-2=381,解得a 1=3.答案:39.(2019·泰州中学模拟)已知S n 是等差数列{a n }的前n 项和,若a 1=-2 014,S 2 0142 014-S 2 0082 008=6,则S 2 019=________. 解析:由等差数列的性质可得⎩⎨⎧⎭⎬⎫S n n 也为等差数列.设其公差为d ,则S 2 0142 014-S 2 0082 008=6d=6,∴d =1.故S 2 0192 019=S 11+2 018d =-2 014+2 018=4,∴S 2 019=4×2 019=8 076.答案:8 07610.设数列{}a n 满足a 1=1,(1-a n +1)(1+a n )=1(n ∈N *),则∑k =1100(a k a k +1)的值为________.解析:因为(1-a n +1)(1+a n )=1,所以a n -a n +1-a n a n +1=0,从而1a n +1-1a n=1,1a 1=1,所以数列⎩⎨⎧⎭⎬⎫1a n 是以1为首项,1为公差的等差数列,所以1a n =1+n -1=n ,所以a n =1n,故a n a n+1=1nn +1=1n -1n +1,因此∑k =1100(a k a k +1)=⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1100-1101=1-1101=100101. 答案:10010111.已知S n 是等比数列{a n }的前n 项和,若存在m ∈N *,满足S 2m S m =9,a 2m a m =5m +1m -1,则数列{a n }的公比为________.解析:设数列{a n }的公比为q ,若q =1,则S 2m S m =2,与题中条件矛盾,故q ≠1.因为S 2mS m=a 11-q 2m1-q a 11-q m1-q=q m +1=9,所以q m =8.所以a 2m a m =a 1q 2m -1a 1q m -1=q m =8=5m +1m -1,所以m =3,所以q 3=8,所以q =2.答案:212.(2019·金陵中学模拟)已知等差数列{a n }的前n 项和为S n ,a 1=1,S 2 0192 019-S 99=2 010.若S m +S p +S r =504(正整数m ,p ,r 互不相等),对于满足条件的m ,p ,r ,m +p +r 的值构成的集合为________.解析:设等差数列{a n }的公差为d ,则S n =na 1+n n -12d ,S n n =a 1+n -12d .因为S 2 0192 019-S 99=2 010,所以⎝ ⎛⎭⎪⎫a 1+2 019-12d -⎝ ⎛⎭⎪⎫a 1+9-12d =1 005d =2 010,所以d =2,所以a n =2n -1,S n =n 2.因为S m +S p +S r =504为偶数,所以m ,p ,r 中有两个奇数、一个偶数或m ,p ,r 均为偶数.①若m ,p ,r 中有两个奇数、一个偶数,不妨设m =2x +1,p =2y +1,r=2z ,其中x ,y ∈N ,z∈N *,则(2x +1)2+(2y +1)2+4z 2=504,所以2(x 2+x +y 2+y +z 2)=251,等式左边为偶数,右边为奇数,矛盾.②若m ,p ,r 均为偶数,不妨设m =2m 1,p =2p 1,r =2r 1,其中m 1,p 1,r 1∈N *,则m 21+p 21+r 21=126,继续奇偶分析知m 1,p 1,r 1中有两个奇数、一个偶数或m 1,p 1,r 1均为偶数.易得当m 1,p 1,r 1均为偶数时,不成立.当m 1,p 1,r 1中有两个奇数、一个偶数时,不妨设m 1=2m 2+1,p 1=2p 2+1,r 1=2r 2,其中m 2,p 2∈N ,r 2∈N *,则m 22+m 2+p 22+p 2+r 22=31,因为m 2(m 2+1)+p 2(p 2+1)为偶数,所以r 2为奇数,且r 2的所有可能取值为1,3,5.不妨设0≤m 2<p 2,当r 2=1时,m 22+m 2+p 22+p 2=30,得m 2=0,p 2=5;当r 2=3时,m 22+m 2+p 22+p 2=22,得m 2=1,p 2=4;当r 2=5时,m 22+m 2+p 22+p 2=6,得m 2=0,p 2=2.综上所述,S 2+S 4+S 22=504,S 6+S 12+S 18=504,S 2+S 10+S 20=504.所以对于满足条件的m ,p ,r ,m +p +r 的值构成的集合为{28,32,36}.答案:{28,32,36}13.设S n 是等比数列{a n }的前n 项和,a n >0,若S 6-2S 3=5,则S 9-S 6的最小值为________. 解析:法一:当q =1时,S 6-2S 3=0,不合题意,所以q ≠1,从而由S 6-2S 3=5得a 11-q 61-q -2a 11-q 31-q =5,从而得a 11-q =5-q 6+2q 3-1=5-q 3-12<0,故1-q <0,即q >1,故S 9-S 6=a 11-q 91-q -a 11-q 61-q =5-q 3-12·(q 6-q 9)=5q 6q 3-1,令q 3-1=t >0,则S 9-S 6=5t +12t=5⎝⎛⎭⎪⎫t +1t+2≥20,当且仅当t =1,即q 3=2时等号成立. 法二:因为S 6=S 3(1+q 3),所以由S 6-2S 3=5得S 3=5q 3-1>0,从而q >1,故S 9-S 6=S 3(q 6+q 3+1)-S 3(q 3+1)=S 3q 6=5q6q 3-1,以下同法一.答案:2014.已知数列{b n }的每一项都是正整数,且b 1=5,b 2=7<b 3,数列{a n }是公差为d (d ∈N *)的等差数列,且有a 7=6,则使得数列{ab n }是等比数列的d 的值为________.解析:法一:ab 1=a 5=6-2d ,ab 2=a 7=6,易知d ≠3,等比数列{ab n }的公比q =66-2d=33-d ,ab n =(6-2d )·⎝ ⎛⎭⎪⎫33-d n -1,又ab n =6+(b n -7)d ,所以6+(b n -7)d =(6-2d )⎝ ⎛⎭⎪⎫33-dn -1,所以6+(b 3-7)d =(6-2d )·⎝⎛⎭⎪⎫33-d 2,即6+(b 3-7)d =183-d ,由b 3>7,得3-d >0,由d ∈N *得d =1或2,当d =1时,b n =4⎝ ⎛⎭⎪⎫32n -1+1,不合题意,当d =2时,b n =3n -1+4,符合题意,所以所求d 的值为2.法二:由数列{ab n }是等比数列得ab 1ab 3=a 2b 2,而ab n =a 7+(b n -7)d ,所以,由b 1=5,b 2=7得,(6-2d )·[6+(b 3-7)d ]=36,易知d ≠3,解得b 3-7=63-d>0,由d ∈N *得,d =1或2,当d =1时,b n =4⎝ ⎛⎭⎪⎫32n -1+1,不合题意,当d =2时,b n =3n -1+4,符合题意,所以所求d 的值为2.答案:2。

(通用版)2020版高考数学大二轮复习专题四数列4.2.2求数列的通项及前n项和课件理

(通用版)2020版高考数学大二轮复习专题四数列4.2.2求数列的通项及前n项和课件理

所以,{an}的通项公式为 an=3n,{bn}的通项公式为 bn=3n.
-2-
考向一 考向二 考向三
(2)a1c1+a2c2+…+a2nc2n =(a1+a3+a5+…+a2n-1)+(a2b1+a4b2+a6b3+…+a2nbn)
=
n×3+������
(������ -1) 2
×6
+(6×31+12×32+18×33+…+6n×3n)
=3n2+6(1×31+2×32+…+n×3n).
记 Tn=1×31+2×32+…+n×3n,

则 3Tn=1×32+2×33+…+n×3n+1,

②-①得,2Tn=-3-32-33-…-3n+n×3n+1=-3(11--33������
)+n×3n+1=(2������
-1)3������ 2
+1
求a1c1+a2c2+…+a2nc2n(n∈N*).
解 (1)设等差数列{an}的公差为 d,等比数列{bn}的公比为 q.依题
意,得
3������ = 3 + 3������2 = 15
2+������4, ������.解得
������ ������
= =
33,,故
an=3+3(n-1)=3n,bn=3×3n-1=3n.
由题意得 ������42 = ������2������9, ������3 = 7,

新高考数学数列多选题专项训练专项练习附解析(1)

新高考数学数列多选题专项训练专项练习附解析(1)

一、数列多选题1.已知数列0,2,0,2,0,2,,则前六项适合的通项公式为( ) A .1(1)n n a =+- B .2cos 2n n a π= C .(1)2sin 2n n a π+= D .1cos(1)(1)(2)n a n n n π=--+-- 答案:AC【分析】对四个选项中的数列通项公式分别取前六项,看是否满足题意,得出答案.【详解】对于选项A ,取前六项得:,满足条件;对于选项B ,取前六项得:,不满足条件;对于选项C ,取前六项得:,解析:AC【分析】对四个选项中的数列通项公式分别取前六项,看是否满足题意,得出答案.【详解】对于选项A ,1(1)n n a =+-取前六项得:0,2,0,2,0,2,满足条件;对于选项B ,2cos2n n a π=取前六项得:0,2,0,2,0,2--,不满足条件; 对于选项C ,(1)2sin 2n n a π+=取前六项得:0,2,0,2,0,2,满足条件; 对于选项D ,1cos(1)(1)(2)n a n n n π=--+--取前六项得:0,2,2,8,12,22,不满足条件;故选:AC2.设数列{}n a 满足1102a <<,()1ln 2n n n a a a +=+-对任意的*n N ∈恒成立,则下列说法正确的是( )A .2112a <<B .{}n a 是递增数列C .2020312a <<D .2020314a << 答案:ABD【分析】构造函数,再利用导数判断出函数的单调性,利用单调性即可求解.【详解】由,设,则,所以当时,,即在上为单调递增函数,所以函数在为单调递增函数,即,即,所以 ,解析:ABD【分析】构造函数()()ln 2f x x x =+-,再利用导数判断出函数的单调性,利用单调性即可求解.【详解】由()1ln 2n n n a a a +=+-,1102a <<设()()ln 2f x x x =+-,则()11122x f x x x-'=-=--, 所以当01x <<时,0f x ,即()f x 在0,1上为单调递增函数, 所以函数在10,2⎛⎫ ⎪⎝⎭为单调递增函数,即()()102f f x f ⎛⎫<< ⎪⎝⎭,即()131ln 2ln ln 1222f x <<<+<+=, 所以()112f x << , 即11(2)2n a n <<≥, 所以2112a <<,2020112a <<,故A 正确;C 不正确; 由()f x 在0,1上为单调递增函数,112n a <<,所以{}n a 是递增数列,故B 正确;2112a <<,所以 23132131113ln(2)ln ln 222234a a a e =+->+>+=+> 因此20202020333144a a a ∴<><>,故D 正确 故选:ABD【点睛】 本题考查了数列性质的综合应用,属于难题.3.已知S n 是等差数列{}n a (n ∈N *)的前n 项和,且S 5>S 6>S 4,以下有四个命题,其中正确的有( )A .数列{}n a 的公差d <0B .数列{}n a 中S n 的最大项为S 10C .S 10>0D .S 11>0答案:AC【分析】由,可得,且,然后逐个分析判断即可得答案【详解】解:因为,所以,且,所以数列的公差,且数列中Sn 的最大项为S5,所以A 正确,B 错误,所以,,所以C 正确,D 错误,故选:AC解析:AC【分析】由564S S S >>,可得650,0a a ,且650a a +>,然后逐个分析判断即可得答案【详解】解:因为564S S S >>,所以650,0a a ,且650a a +>,所以数列的公差0d <,且数列{}n a 中S n 的最大项为S 5,所以A 正确,B 错误,所以110105610()5()02a a S a a +==+>,11111611()1102a a S a +==<, 所以C 正确,D 错误,故选:AC4.等差数列{}n a 的前n 项和为n S ,1385a a S +=,则下列结论一定正确的是( ) A .100a =B .911a a =C .当9n =或10时,n S 取得最大值D .613S S = 答案:ABD【分析】由题意利用等差数列的通项公式、求和公式可得,结合等差数列的性质,逐一判断即可得出结论.【详解】∵等差数列的前项和为,,∴,解得,故,故A 正确;∵,,故有,故B 正确;该数解析:ABD【分析】由题意利用等差数列的通项公式、求和公式可得19a d =-,结合等差数列的性质,逐一判断即可得出结论.【详解】∵等差数列{}n a 的前n 项和为n S ,1385a a S +=,∴()111875282a a d a d ⨯++=+,解得19a d =-, 故10190a a d =+=,故A 正确; ∵918a a d d d =+=-=,11110a a d d =+=,故有911a a =,故B 正确; 该数列的前n 项和()21119222n n n n S na d d d n -=+=-⋅ ,它的最值,还跟d 的值有关,故C 错误; 由于61656392S a d d ⨯=+=-,131131213392S a d d ⨯=+=-,故613S S =,故D 正确,故选:ABD.【点睛】思路点睛:利用等差数列的通项公式以及前n 项和公式进行化简,直接根据性质判断结果.5.朱世杰是元代著名数学家,他所著的《算学启蒙》是一部在中国乃至世界最早的科学普及著作.《算学启蒙》中涉及一些“堆垛”问题,主要利用“堆垛”研究数列以及数列的求和问题.现有100根相同的圆形铅笔,小明模仿“堆垛”问题,将它们全部堆放成纵断面为等腰梯形的“垛”,要求层数不小于2,且从最下面一层开始,每一层比上一层多1根,则该“等腰梯形垛”应堆放的层数可以是( )A .4B .5C .7D .8 答案:BD【分析】依据题意,根数从上至下构成等差数列,设首项即第一层的根数为,公差即每一层比上一层多的根数为,设一共放层,利用等差数列求和公式,分析即可得解.【详解】依据题意,根数从上至下构成等差解析:BD【分析】依据题意,根数从上至下构成等差数列,设首项即第一层的根数为1a ,公差即每一层比上一层多的根数为1d =,设一共放()2n n ≥层,利用等差数列求和公式,分析即可得解.【详解】依据题意,根数从上至下构成等差数列,设首项即第一层的根数为1a ,公差为1d =,设一共放()2n n ≥层,则总得根数为:()()111110022n n n d n n S na na --=+=+= 整理得120021a n n=+-, 因为1a *∈N ,所以n 为200的因数,()20012n n +-≥且为偶数, 验证可知5,8n =满足题意.故选:BD.【点睛】关键点睛:本题考查等差数列的求和公式,解题的关键是分析题意,把题目信息转化为等差数列,考查学生的逻辑推理能力与运算求解能力,属于基础题.6.已知无穷等差数列{}n a 的前n 项和为n S ,67S S <,且78S S >,则( ) A .在数列{}n a 中,1a 最大B .在数列{}n a 中,3a 或4a 最大C .310S S =D .当8n ≥时,0n a <答案:AD【分析】由已知得到,进而得到,从而对ABD 作出判定.对于C,利用等差数列的和与项的关系可等价转化为,可知不一定成立,从而判定C 错误.【详解】由已知得:,结合等差数列的性质可知,,该等差解析:AD【分析】由已知得到780,0a a ><,进而得到0d <,从而对ABD 作出判定.对于C,利用等差数列的和与项的关系可等价转化为160a d +=,可知不一定成立,从而判定C 错误.【详解】由已知得:780,0a a ><,结合等差数列的性质可知,0d <,该等差数列是单调递减的数列,∴A 正确,B 错误,D 正确,310S S =,等价于1030S S -=,即45100a a a ++⋯+=,等价于4100a a +=,即160a d +=, 这在已知条件中是没有的,故C 错误.故选:AD.【点睛】本题考查等差数列的性质和前n 项和,属基础题,关键在于掌握和与项的关系.7.设等差数列{}n a 的前n 项和为n S ,若39S =,47a =,则( )A .2n S n =B .223n S n n =-C .21n a n =-D .35n a n =-答案:AC【分析】利用等差数列的前项和公式、通项公式列出方程组,求出,,由此能求出与.【详解】等差数列的前项和为.,,,解得,,.故选:AC .【点睛】本题考查等差数列的通项公式求和公解析:AC【分析】利用等差数列{}n a 的前n 项和公式、通项公式列出方程组,求出11a =,2d =,由此能求出n a 与n S .【详解】等差数列{}n a 的前n 项和为n S .39S =,47a =, ∴31413239237S a d a a d ⨯⎧=+=⎪⎨⎪=+=⎩, 解得11a =,2d =,1(1)221n a n n ∴+-⨯=-=.()21212n n n S n +-== 故选:AC .【点睛】本题考查等差数列的通项公式求和公式的应用,考查等差数列的性质等基础知识,考查运算求解能力,是基础题.8.已知等差数列{}n a 的前n 项和为S n (n ∈N *),公差d ≠0,S 6=90,a 7是a 3与a 9的等比中项,则下列选项正确的是( )A .a 1=22B .d =-2C .当n =10或n =11时,S n 取得最大值D .当S n >0时,n 的最大值为21 答案:BC【分析】分别运用等差数列的通项公式和求和公式,解方程可得首项和公差,可判断A ,B ;由配方法,结合n 为正整数,可判断C ;由Sn>0解不等式可判断D .【详解】由公差,可得,即,①由a7是a解析:BC【分析】分别运用等差数列的通项公式和求和公式,解方程可得首项和公差,可判断A ,B ;由配方法,结合n 为正整数,可判断C ;由S n >0解不等式可判断D .【详解】由公差60,90d S ≠=,可得161590a d +=,即12530a d +=,①由a 7是a 3与a 9的等比中项,可得2739a a a =,即()()()2111628a d a d a d +=++,化简得110a d =-,②由①②解得120,2a d ==-,故A 错,B 对; 由()()22121441201221224n S n n n n n n ⎛⎫=+-⨯-=-=--+ ⎪⎝⎭ *n N ∈,可得10n =或11时,n S 取最大值110,C 对;由S n >0,解得021n <<,可得n 的最大值为20,D 错;故选:BC【点睛】本题考查等差数列的通项公式和求和公式的运用,考查方程思想和运算能力,属于基础题.9.已知数列{}n a 满足:13a =,当2n ≥时,)211n a =-,则关于数列{}n a 说法正确的是( )A .28a =B .数列{}n a 为递增数列C .数列{}n a 为周期数列D .22n a n n =+答案:ABD【分析】由已知递推式可得数列是首项为,公差为1的等差数列,结合选项可得结果.【详解】得,∴,即数列是首项为,公差为1的等差数列,∴,∴,得,由二次函数的性质得数列为递增数列,解析:ABD【分析】由已知递推式可得数列2=,公差为1的等差数列,结合选项可得结果.【详解】 )211n a =-得)211n a +=,1=,即数列2=,公差为1的等差数列,2(1)11n n =+-⨯=+,∴22n a n n =+,得28a =,由二次函数的性质得数列{}n a 为递增数列,所以易知ABD 正确,故选:ABD.【点睛】本题主要考查了通过递推式得出数列的通项公式,通过通项公式研究数列的函数性质,属于中档题.10.无穷数列{}n a 的前n 项和2n S an bn c =++,其中a ,b ,c 为实数,则( )A .{}n a 可能为等差数列B .{}n a 可能为等比数列C .{}n a 中一定存在连续三项构成等差数列D .{}n a 中一定存在连续三项构成等比数列答案:ABC【分析】由可求得的表达式,利用定义判定得出答案.【详解】当时,.当时,.当时,上式=.所以若是等差数列,则所以当时,是等差数列, 时是等比数列;当时,从第二项开始是等差数列. 解析:ABC【分析】由2n S an bn c =++可求得n a 的表达式,利用定义判定得出答案.【详解】当1n =时,11a S a b c ==++.当2n ≥时,()()221112n n n a S S an bn c a n b n c an a b -=-=++-----=-+. 当1n =时,上式=+a b .所以若{}n a 是等差数列,则0.a b a b c c +=++∴=所以当0c 时,{}n a 是等差数列, 00a cb ==⎧⎨≠⎩时是等比数列;当0c ≠时,{}n a 从第二项开始是等差数列.故选:A B C【点睛】本题只要考查等差数列前n 项和n S 与通项公式n a 的关系,利用n S 求通项公式,属于基础题.。

2020届高考数学(理)一轮必刷题 专题28 数列的概念与简单表示法(解析版)

2020届高考数学(理)一轮必刷题 专题28 数列的概念与简单表示法(解析版)

考点28 数列的概念与简单表示法1、数列{a n }满足a n +a n +1=12(n ∈N *),a 2=2,S n 是数列{a n }的前n 项和,则S 21为( )A .5B .72C .92D .132【答案】B【解析】∵a n +a n +1=12,a 2=2,∴a n =⎩⎪⎨⎪⎧-32,n 为奇数,2,n 为偶数.∴S 21=11×⎝⎛⎭⎫-32+10×2=72. 2、给定数列1,2+3+4,5+6+7+8+9,10+11+12+13+14+15+16,…,则这个数列的一个通项公式是( ) A.a n =2n 2+3n-1 B.a n =n 2+5n-5 C.a n =2n 3-3n 2+3n-1 D.a n =2n 3-n 2+n-2【答案】C【解析】当n=1时,a 1=1,代入四个选项,排除A 、D;当n=2时,a 2=9,代入B 、C 选项,B 、C 都正确;当n=3时,a 3=35,代入B 、C 选项,B 错误,C 正确,所以选C .3、在数列{a n }中,a 1=1,a n a n -1=a n -1+(-1)n (n ≥2,n ∈N *),则a 3a 5的值是( )A.1516 B .158C .34D .38【答案】C【解析】由已知得a 2=1+(-1)2=2,∴2a 3=2+(-1)3,a 3=12,∴12a 4=12+(-1)4,a 4=3,∴3a 5=3+(-1)5,∴a 5=23,∴a 3a 5=12×32=34.4、意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,8, 13,….该数列的特点是:前两个数都是1,从第三个数起,每一个数都等于它前面两个数的和,人们把这样的一列数所组成的数列{a n }称为“斐波那契数列”,则(a 1a 3-)(a 2a 4-)(a 3a 5-)…(a 2 015a 2 017-)=( ) A.1 B.-1 C.2 017 D.-2 017【答案】B【解析】∵a 1a 3-=1×2-12=1,a 2a 4-=1×3-22=-1,a 3a 5-=2×5-32=1,…,a 2 015a 2 017-=1.∴(a 1a 3-)(a 2a 4-)(a 3a 5-)·…·(a 2 015a 2 017-)=11 008×(-1)1 007=-1. 5、已知数列{a n }的前n 项和S n =2a n -1,则满足a nn ≤2的正整数n 的集合为( )A .{1,2,3}B .{2,3,4}C .{1,2,3,4}D .{1,2,3,4,5}【答案】C【解析】因为S n =2a n -1,所以当n ≥2时,S n -1=2a n -1-1,两式相减得a n =2a n -2a n -1,整理得a n =2a n -1.又a 1=2a 1-1,所以a 1=1,故a n =2n -1.又a n n ≤2,即2n -1≤2n ,所以有n ∈{1,2,3,4}.6、已知数列{a n }满足a 1=2,a n +1=1+a n1-a n (n ∈N *),则a 2 018的值为( )A .-8B .-3C .-4D .13【答案】B【解析】由a 1=2,a n +1=1+a n 1-a n (n ∈N *)得,a 2=-3,a 3=-12,a 4=13,a 5=2,可见数列{a n }的周期为4,所以a 2 018=a 504×4+2=a 2=-3.7、已知数列{a n }的前n 项和为S n ,若3S n =2a n -3n ,则a 2 018= ( )A.22 018-1B.32 018-6C. 2 018-D. 2 018-【答案】A【解析】由题意可得3S n =2a n -3n ,3S n+1=2a n+1-3 (n+1), 两式作差可得3a n+1=2a n+1-2a n -3, 即a n+1=-2a n -3,则a n+1+1=-2(a n +1), 结合3S 1=2a 1-3=3a 1可得a 1=-3,a 1+1=-2, 则数列{a n +1}是首项为-2,公比为-2的等比数列, 据此有a 2 018+1=(-2)×(-2)2 017=22 018,∴a 2 018=22 018-1.故选A .8、已知数列{a n }与{b n }的通项公式分别为a n =-n 2+4n +5,b n =n 2+(2-a )n -2a .若对任意正整数n ,a n <0或b n <0,则a 的取值范围为( )A .(5,+∞)B .(-∞,5)C .(6,+∞)D .(-∞,6)【答案】A【解析】由a n =-n 2+4n +5=-(n +1)(n -5)可知,当n >5时,a n <0.由b n =n 2+(2-a )n -2a =(n +2)(n -a )<0及已知易知-2<n <a ,为使当0<n ≤5时,b n <0,只需a >5.故选A. 9、在数列{a n }中,已知a 1=1,a n +1=2a n +1,则其通项公式a n =( ) A .2n -1 B .2n -1+1C .2n -1D .2(n -1)【答案】A【解析】由a n +1=2a n +1,可求a 2=3,a 3=7,a 4=15,…,验证可知a n =2n -1.10、若数列{a n }满足(n -1)a n =(n +1)a n -1(n ≥2)且a 1=2,则满足不等式a n <462的最大正整数n 为( ) A .19 B .20 C .21 D .22【答案】B【解析】由(n -1)a n =(n +1)a n -1得,a n a n -1=n +1n -1,则a n =a 1×⎝⎛⎭⎫a 2a 1×⎝⎛⎭⎫a 3a 2×…×⎝⎛⎭⎫a n a n -1=2×31×42×…×n +1n -1=n (n +1).又a n <462,即n (n +1)<462,所以n 2+n -462<0,即(n -21)(n +22)<0,因为n >0,所以n <21.故所求的最大正整数n =20.11、数列{a n }满足a 1=,a n+1-1=a n (a n -1)(n ∈N +),且S n =+…+,则S n 的整数部分的所有可能值构成的集合是( ) A.{0,1,2} B.{0,1,2,3} C.{1,2} D.{0,2}【答案】A【解析】对a n+1-1=a n (a n -1)两边取倒数,得-=, S n =++…+=-+-+…+-=3-,由a n+1-a n =≥0,a n+1≥a n ,a n 为递增数列,a 1=,a 2=,a 3=,其中S 1=,整数部分为0,S 2=3-=,整数部分为0,S 3=,整数部分为1,由于S n <3,故选A .12、在一个数列中,如果每一项与它的后一项的和为同一个常数,那么这个数列叫做等和数列,这个常数叫做该数列的公和,已知数列{a n }是等和数列,且a 1=2,公和为5,那么a 18= . 【答案】3【解析】由题意得a n +a n+1=5⇒a n+2+a n+1=5⇒a n =a n+2,所以a 18=a 2=5-a 1=3.13、已知数列{a n }的通项公式a n =⎩⎪⎨⎪⎧2·3n -1n 为偶数,2n -n 为奇数,则a 3a 4=________.【答案】 54【解析】由题意知,a 3=2×3-5=1,a 4=2×34-1=54,∴a 3a 4=54.14、数列{a n }的前n 项和为S n .若S 2=4,a n+1=2S n +1,n ∈N +,则S 5= . 【答案】121【解析】由于解得a 1=1.由a n+1=S n+1-S n =2S n +1,得S n+1=3S n +1, 所以S n+1+=3S n +,所以是以为首项,3为公比的等比数列,所以S n +=×3n-1,即S n =,所以S 5=121.15、已知数列{a n }的前n 项和S n =13a n +23,则{a n }的通项公式a n =________.【答案】⎝⎛⎭⎫-12n -1 【解析】当n =1时,a 1=S 1=13a 1+23,∴a 1=1; 当n ≥2时,a n =S n -S n -1=13a n -13a n -1,∴a n a n -1=-12.∴数列{a n }是首项a 1=1,公比q =-12的等比数列,故a n =⎝⎛⎭⎫-12n -1. 16、在数列{a n }中,a 1=0,a n+1=,则S 2 019= . 【答案】0【解析】∵a 1=0,a n+1=,∴a 2==,a 3===-, a 4==0,即数列{a n }的取值具有周期性,周期为3,且a 1+a 2+a 3=0,则S 2 019=S 3×673=0. 17、已知数列{a n }的前n 项和为S n ,S n =2a n -n ,则a n = .【答案】2n-1【解析】当n ≥2时,a n =S n -S n-1=2a n -n-2a n-1+(n-1), 即a n =2a n-1+1,∴a n +1=2(a n-1+1).又a 1=S 1=2a 1-1,∴a 1=1.∴数列{a n +1}是以首项为a 1+1=2,公比为2的等比数列,∴a n +1=2·2n-1=2n , ∴a n =2n -1.18、已知数列{a n },{b n },S n 为数列{a n }的前n 项和,且满足a 2=4b 1,S n =2a n -2,nb n +1-(n +1)b n =n 3+n 2(n ∈N *).(1)求数列{a n }的通项公式; (2)求数列{b n }的通项公式.【答案】(1) 2n (2) n 3-n 2+2n 2,n ∈N *【解析】(1)当n =1时,S 1=2a 1-2,则a 1=2.当n ≥2时,由⎩⎪⎨⎪⎧S n =2a n -2,S n -1=2a n -1-2得a n =2a n -2a n -1,则a n =2a n -1,n ≥2.综上,数列{a n }是以2为首项,2为公比的等比数列,故a n =2n ,n ∈N *. (2)∵a 2=4b 1=4,∴b 1=1.∵nb n +1-(n +1)b n =n 3+n 2,∴b n +1n +1-b nn =n ,故b n n -b n -1n -1=n -1,…,b 33-b 22=2,b 22-b 11=1,n ≥2, 将上面各式累加得b n n -b 11=1+2+3+…+(n -1)=n n -2,∴b n =n 3-n 2+2n2,n ∈N *.19、设数列{a n }的前n 项和为S n .已知a 1=a (a ∈R 且a ≠3),a n +1=S n +3n ,n ∈N *. (1)设b n =S n -3n ,求数列{b n }的通项公式; (2)若a n +1≥a n ,n ∈N *,求a 的取值范围. 【答案】(1) (a -3)2n -1 (2) [-9,3)∪(3,+∞)【解析】(1)由题意知,S n +1-S n =a n +1=S n +3n ,即S n +1=2S n +3n ,由此得S n +1-3n +1=2S n +3n -3n +1=2(S n -3n ),又S 1-31=a -3(a ≠3),故数列{S n -3n }是首项为a -3,公比为2的等比数列,因此,所求通项公式为b n =S n -3n =(a -3)2n -1,n ∈N *.(2)由(1)知S n =3n +(a -3)2n -1,n ∈N *,于是,当n ≥2时,a n =S n -S n -1=3n +(a -3)2n -1-3n -1-(a -3)2n -2=2×3n -1+(a -3)2n -2,所以a n +1-a n =4×3n -1+(a -3)2n -2=2n -2⎣⎡⎦⎤12·⎝⎛⎭⎫32n -2+a -3, 当n ≥2时,a n +1≥a n ⇔12·⎝⎛⎭⎫32n -2+a -3≥0⇔a ≥-9. 又a 2=a 1+3>a 1.综上,所求的a 的取值范围是[-9,3)∪(3,+∞).20、已知{a n }是公差为d 的等差数列,它的前n 项和为S n ,S 4=2S 2+4,数列{b n }中,b n =1+a na n .(1)求公差d 的值;(2)若a 1=-52,求数列{b n }中的最大项和最小项的值;(3)若对任意的n ∈N *,都有b n ≤b 8成立,求a 1的取值范围. 【答案】(1) 1 (2) 3 -1 (3) (-7,-6)【解析】(1)∵S 4=2S 2+4,∴4a 1+3×42d =2(2a 1+d )+4,解得d =1.(2)∵a 1=-52,∴数列{a n }的通项公式为a n =-52+(n -1)=n -72,∴b n =1+1a n =1+1n -72.∵函数f (x )=1+1x -72在⎝⎛⎭⎫-∞,72和⎝⎛⎭⎫72,+∞上分别是单调减函数, ∴b 3<b 2<b 1<1,当n ≥4时,1<b n ≤b 4,∴数列{b n }中的最大项是b 4=3,最小项是b 3=-1. (3)由b n =1+1a n ,得b n =1+1n +a 1-1.又函数f (x )=1+1x +a 1-1在(-∞,1-a 1)和(1-a 1,+∞)上分别是单调减函数,且x <1-a 1时,y <1;当x >1-a 1时,y >1.∵对任意的n ∈N *,都有b n ≤b 8, ∴7<1-a 1<8,∴-7<a 1<-6, ∴a 1的取值范围是(-7,-6).。

新高考数学数列经典题型专题提升-第7讲 数列求和错位相减法(解析版)

新高考数学数列经典题型专题提升-第7讲 数列求和错位相减法(解析版)

公差不为零的等差数列,且 b1 , b3 , b11 成等比数列.
(1)求数列{an} 与{bn} 的通项公式.
(2)若 Cn
bn an
,数列{cn} 的前 n 项和为 Tn
, Tn
m 恒成立,求 m
的范围.
【解答】解:(1) Sn 2an 2, (n N * ) ,可得 a1 S1 2a1 2 ,解得 a1 2 ,
(2)由(1)得 anbn (4n 3) 3n1
Sn 11 5 31 9 32 (4n 7) 3n2 (4n 3) 3n1 ①
两边都乘以 9,得
3Sn 1 31 5 32 9 33 (4n 7) 3n1 (4n 3) 3n ②
① ②,得 2Sn 1 4(31 32 3n1) (4n 3) 3n
Tn 2 (2n 1) 2n1 .
8.(2021 秋•长春月考)设数列{an} 的前 n 项和为 Sn , an1 SnSn1(n N * ) , a1 1 .

2
(n 4)g(1 )2n1 2 ,
32
3
B 3n 4g(1 )2n1 8 ,
92
9
T2n c1 c2 c2n
(c1 c3 c2n1) (c2 c4 c6 c2n )
AB
1 2
(2n
1 1)g22n1
3n 9
4g( 1 )2n1 2
8 9
25 ( 1 3n 4)g(1 )2n1 . 18 4(2n 1) 9 2
两式相减可得 3Sn 1 (2) (2)2 (2)3 (2)n1 ng(2)n
1 (2)n ng(2)n , 1 (2)
化简可得
Sn
1
(1
3n)g(2)n 9

统编教材部编版人教版高考数学复习专题04 数 列(新高考地区专用)(原卷版附解析答案)

统编教材部编版人教版高考数学复习专题04  数 列(新高考地区专用)(原卷版附解析答案)

专题04 数 列一.等比数列前n 项和规律n n n n 11111n n a (1q )a a q a a S q S =A-Aq 1q 1q 1q 1q --===-⇔----简记:,指数次数只能为n 次方常数与指数函数的系数成相反数二.单一条件口算结果-----实质考查等比或等差中项1.无论是等差还是等比数列,如果只知道一个条件是取法确定具体的数列,那么可以处理为非0的常数数列,因为非0的常数数列即是等差也是等比数列。

(常数数列:每一项都是相同的){}{}n n n n 12n 12n-1n n n n 12n 12n-1n n n m n n n n-12.a n S ,b n ,(a a )(2n 1)S 2a a S An B a A(2n 1)B 2(1)=(2)(b b )(2n 1)T 2b b T Cn D b C(2m 1)D2S An B An B kn=n T Cn D Cn D knS An B kn S [A --+-+-+====+-+-+++=⇒++=+=等差数列的前项和等差数列的前项和T 则()推导:等差数列的前项和为无常数的二次函数()()n n m m a k[A(2n 1)B](n 1)B]kn a A(2n 1)Bb k[A(2m 1)B]b C(2m 1)D⎧⎪−−−→=-+⎨-+⎪⎩-+=-+∴=-+相减同理可得 三.公式法口算通项----a n =S n -S n-1(n ≥2)21122n-11n -n n n 2(1)(2)n 1⇔⇔⎧⎪≥⎨⎪⎩-≥=∴n n n 模型1:无常数项的二次函数S =An +Bn a =2An+(B-A)系数2倍,常数后前推导过程:=1时,S =A+B 即a =A+BS =An +Bn(1)时,S =A(n-1)+B(n-1)(2)得a =2An+(B-A)(n 2)令时,a =A+B a =2An+(B-A)21122n-11+ n=1n +n +n +n 2+(1)(2)n 1+ n=1⎧⎪⇔⇔⎨≥⎪⎩⎧⎪≥⎨⎪⎩-≥=∴n n n A+B C 模型2:有常数项的二次函数S =An +Bn C a =2An+(B-A) n 2推导过程:=1时,S =A+B+C 即a =A+B CS =An +Bn C(1)时,S =A(n-1)+B(n-1)C(2)得a =2An+(B-A)(n 2)令时,a =A+B A+B C a =2An+(⎧⎪⎨≥⎪⎩B-A) n 2nn n 111nn 1n-1n 11n 1n=1A B A n n A Bn 2A B(1)(2)A 1n 1 n=1A ----⎧⎪⇔+⇔⎨≥⎪⎩⎧+⎪≥⎨+⎪⎩-≥⇒=∴n n n k(A-1)模型3:指数型函数S =k a =k(A-1) n 2推导过程:=1时,S =A+B 即a =A+BS =k (1)时,S =k (2)得a =k(A-1)(n 2)指数函数的次数减令时,a =k(A-1)k(A-1)a =k(A-1) ⎧⎪⇒⎨≥⎪⎩当分段两者n=1结果相同时,合并为一式n 2{}n 1n n 111n n n-1n 1n n n 1n+1n 1n 1n 11k a B ()1k k 1n a B 1ka Bn 2a Ba k (1)(2)a a =a k+1a k 1=a kka k 1=a q 1k -----⇔+⇔⋅--+-+⎧⎪≥⎨+⎪⎩⎧⎪-⇔⎨-⎪⎩∴-∴⋅=-n n n n B 模型4:指数型函数S =k a =推导过程:B=1时,S =k 即a =S =k (1)时,S =k (2)不是固定的,右边的k 与下标同步得a =k -k 即a 是以首项,公比为的等比数列B a n 1k ()k 1-⋅-记得检验首项四.口算错位相减法的结果nn n 1n (1)a (dn t)q 2n d A 1q S Bq (An B)q A t B 1q +⎧⎪=+⇒⎨⎪⎩⎧=⎪-⎪∴=-+⇔⎨+⎪=⎪-⎩乘法模型,除的话改成乘法通项公式:()指数函数的指数为,非n 变成n五.斐波那数列---黄金分割数列---nn 1a 0.618a +≈n n-1n-2n n n n n 21. a =a +a 112.a [((]5223.:S a 1+≥≥+-=-=-特征:F(n)=F(n-1)+F(n-2) n 3或n 3通项:规律4. 数列特点:0 1 1 2 3 5 8 13 21 34...三个数据为一组,第一数据为偶数,第二、三个数据为奇数技巧1 等比数列前n 项和规律【例1】(2020·福建省厦门第六中学)已知等比数列{}n a 的前n 项和()232nn S λλ=+-⋅(λ为常数),则λ=( ) A .2- B .1-C .1D .2【举一反三】1.(2020·安徽含山(理))已知等比数列{a n }的前n 项和S n =3n +2+3t ,则t =( ) A .1 B .﹣1 C .﹣3 D .﹣92.(2020·安徽屯溪一中)已知等比数列{}n a 的前n 项和为1136n n S x -=⋅-,则x 的值为( ) A .13B .13-C .12D .12-技巧2 单一条件口算结果【例2-1】(1)(2020·宁夏高三其他(文))n S 为等差数列{}n a 的前n 项和,若150S =,则8a =( ). A .-1B .0C .1D .2(2)(2020·山西省长治市第二中学校高三月考(理))已知各项为正数的等比数列{}n a 满足2589a a a =﹐则3334353637log log log log log a a a a a ++++的值为( ) A .73B .83C .3D .103【例2-2】(2020·河南)已知等差数列{}n a ,{}n b 的前n 项和分别为n S 和n T ,且521n n S n T n +=-,则76a b =( ) A .67B .1211C .1825D .1621【举一反三】1.设n S 是等差数列{}n a 的前n 项和,若1353a a a ++=,则5S = A .5 B .7C .9D .112.(2020·广东云浮·)在正项等比数列{}n a 中,若63a =,则313233311log log log log a a a a ++++=( ).A .5B .6C .10D .113.(2020·浙江宁波)已知数列{}n a 是等差数列,数列{}n b 是等比数列,若26102a a a π++=,2588b b b =,则4837sina ab b +的值是( ) A .12B .12-CD.4.(2020·全国高三其他(理))已知数列{}n a ,{}n b 为等差数列,其前n 项和分别为n S ,n T ,422n n S n T n +=+,则59a b =( ) A .3811B .109C .1110D .2技巧3 公式法口算通项【例3】(2020·南京市秦淮中学高三其他)已知数列{}n a 的前n 项和223n S n n =-+,则数列{}n a 的通项公式为______.【举一反三】1.(2020·湖南湘潭·高考模拟(文))已知数列{}n a 的前n 项和公式为221n S n n =-+,则数列{}n a 的通项公式为___.2.(2020·山西大同·高三一模(文))已知n S 为数列{}n a 的前n 项和,若111,23+==+n n a a S ,则数列{}n a 的通项公式为___________.技巧4 错位相减法口算结果【例4】(2020·江西东湖·南昌二中高三其他(文))已知数列{}n a 的前n 项和为n S ,点(n ,*)()n S n N ∈在函数2y x 的图象上,数列{}n b 满足1110,363n n b b b +==+, (1)求{}n a 的通项公式;(2)若(3)n n n c a b =-,求数列{}n c 的前n 项和n T .【举一反三】1.(2020·河南高三其他(文))已知数列{}n a 的前n 项和为n S ,且(1)2n n n n S a --=. (1)求数列{}n a 的通项公式; (2)如果数列12n n b -=,求数列{}n n a b 的前n 项和n T .2.(2019·甘肃天水·高考模拟(文))在正项等比数列{n a }中,11a =且3542,,3a a a 成等差数列.(1)求数列的通项公式; (2)若数列{n b }满足n nnb a =,求数列{n b }的前n 项和n S .技巧5 斐波那数列【例5】(2020·吉林前郭尔罗斯县第五中学)“斐波那契”数列是由十三世纪意大利数学家斐波那契发现的.数列中的一系列数字常被人们称为神奇数.具体数列为:1,1,2,3,5,8,13,…,即从该数列的第三项开始,每个数字都等于前两个相邻数字之和.已知数列{}n a 为“斐波那契”数列,n S 为数列{}n a 的前n 项和,若2020a m =,则2018S =( ) A .2mB .212m - C .1m - D .1m +【举一反三】1.(2020·河北高三月考)数列1、1、2、3、5、8、13、21、34、称为斐波那契数列,是意大利著名数学家斐波那契于1202年在他撰写的《算盘全书》中提出的,该数列的特点是:从第三项起,每一项都等于它前面两项的和.在该数列的前2020项中,偶数的个数为( ) A .505 B .673C .674D .10102.(2019·福建高三(理))斐波那契螺旋线,也称“黄金螺旋线”.如图,矩形ABCD 是以斐波那契数为边长的正方形拼接而成的,在每个正方形中作一个圆心角为90︒的圆弧,这些圆弧所连成的弧线就是斐波那契螺旋线的一部分.在矩形ABCD 内任取一点,该点取自阴影部分的概率为( )A .8πB .4π C .14D .341.(2020·湖北黄州·黄冈中学高三其他(理))已知数列{}n a 为等差数列,n S 为其前n 项和,6353a a a +-=,则7S =( ) A .42 B .21 C .7D .32.(2020·甘肃高三其他(文))已知等比数列{}n a 的前n 项和为2n n S a =+,则a=( )A .0B .2-C .1-D .13.(2020·辽源市田家炳高级中学校高二期末(理))斐波那契螺旋线,也称“黄金螺旋线”,是根据斐波那契数列1,1,2,3,5,画出来的螺旋曲线.如图,白色小圆内切于边长为1的正方形,黑色曲线就是斐波那契螺旋线,它是依次在以1,2,3,5为边长的正方形中画一个圆心角为90︒的扇形,将其圆弧连接起来得到的.若在矩形 ABCD 内随机取一点,则此点取自阴影部分的概率是( )A .191160π+ B .192160π+ C .19180π+ D .19280π+4.(2020·安徽高三月考(理))裴波那契数列(Fibonacci sequence )又称黄金分割数列,因为数学家列昂纳多·裴波那契以兔子繁殖为例子引入,故又称为“兔子数列”,在数学上裴波那契数列被以下递推方法定义:数列{}n a 满足:121a a ==,21++=+n n n a a a ,现从该数列的前40项中随机抽取一项,则能被3整除的概率是( ) A .14B .13C .12D .235.(2020·黑龙江哈尔滨市第六中学校高三(文))意大利数学家斐波那契的《算经》中记载了一个有趣的问题:已知一对兔子每个月可以生一对兔子,而一对兔子出生后在第二个月就开始生小兔子.假如没有发生死亡现象,那么兔子对数依次为:1,1,2,3,5,8,13,21,34,55,89,144……,这就是著名的斐波那契数列,它的递推公式是12(3,Ν)n n n a a a n n *--=+≥∈,其中11a =,21a =.若从该数列的前100项中随机地抽取一个数,则这个数是偶数的概率为( ) A .13B .33100C .12D .671008.(2020·江西高三(文))意大利数学家斐波那契的《算经》中记载了一个有趣的问题:已知一对兔子每个月可以生一对兔子,而一对兔子出生后在第二个月就开始生小兔子.假如没有发生死亡现象,那么兔子对数依次为:1,1,2,3,5,8,13,21,34,55,89,144……,这就是著名的斐波那契数列,它的递推公式是()*123,n n n a a a n n N--=+≥∈,其中11a =,21a =.若从该数列的前120项中随机地抽取一个数,则这个数是奇数的概率为( )A .13B .23C .12D .347.(2020·嘉祥县第一中学高三其他)设数列{}n a ,{}n b 均为等差数列,它们的前n 项和分别为n S ,n T ,若2334n n S n T n -=+,则55a b =( ) A .719 B .1531C .1734D .19378.(2020·合肥一六八中学高三其他(理))已知数列{}n a 为等差数列,且满足251115a a a ++=,则数列{}n a 的前11项和为( )A .40B .45C .50D .559.(2019·河南高二月考)两等差数列{}n a ,{}n b 的前n 项和分别为n S ,n T ,且12n n S n T n+=,则85(a b = ) A .45B .67C .89D .210.(多选)(2020·福建省永泰县第一中学高三月考)斐波那契数列,又称黄金分割数列、兔子数列,是数学家列昂多·斐波那契于1202年提出的数列.斐波那契数列为1,1,2,3,5,8,13,21,……,此数列从第3项开始,每一项都等于前两项之和,记该数列为(){}F n ,则(){}F n 的通项公式为( )A .(1)1()2n nF n -+=B .()()()11,2F n F n F n n +=+-≥且()()11,21F F ==C .()1122n nF n ⎡⎤⎛⎫⎛⎫⎥=- ⎪ ⎪ ⎪ ⎪⎥⎝⎭⎝⎭⎦D .()1122n nF n ⎡⎤⎛⎛⎫⎥=+ ⎪ ⎪⎥⎝⎭⎝⎭⎦12.(2020·福建漳州·高三其他(文))若n S 是等差数列{}n a 的前n 项和,且918S =,则5a =__________.13.(2020·陕西渭南·(理))已知数列{a n }的前n 项和S n =n (n +1)+2,其中*n N ∈,则a n =_____.14.(2020·湖北高三月考(理))设n S 为数列{}n a 的前n 项和,若257n n S a =-,则n a =____15.(2020·浙江高三其他)已知数列{}n a 的前n 项和()2*21n S n n n N=+-∈,则1a=____________;数列{}n a 的通项公式为n a =____________.16.(2020·浙江高三月考)十三世纪意大利数学家列昂纳多·斐波那契从兔子繁殖规律中发现了“斐波那契数列”,斐波那契数列{}n a 满足以下关系:11a =,21a =,()123--=+≥∈*n n n a a a n ,n N ,记其前n 项和为n S ,设2020a m =(m 为常数),则20182020S a -=______;1352019+++⋅⋅⋅+=a a a a ______.17.(2020·陕西西安中学)斐波那契数列(Fibonaccisequence),又称黄金分割数列,因数学家列昂纳多斐波那契(LeonardodaFibonacci)以兔子繁殖为例子而引入,故又称为“兔子数列”.它是这样一个数列:1,1,2,3,5,8,13,21,34,55……在数学上,斐波那契数列以如下递推的方法定义:a 1=1,a 2=1,n n 1n 2a a a --=+(n ≥3,n ∈N *),记其前n 项和为S n ,设a 2019=t (t 为常数),则2017201620152014S S S S +--=________(用t 表示),20172019S a -=________(用常数表示).18.(2020·全国高三其他(理))已知数列{}n a 的前n 项和为n S ,且21nn S =+.(1)求{}n a 的通项公式;(2)若()21n n b n a =-,求数列{}n b 的前n 项和n T .19.(2020·河南高二其他(文))设等差数列{}n a 的前n 项和为n S ,且424S S =,2121a a =+.(1)求数列{}n a 的通项公式; (2)设数列{}n b 满足()214n n na b -=, 求数列{}n b 的前n 项和n R .专题04 数 列二.等比数列前n 项和规律n n n n 11111n n a (1q )a a q a a S q S =A-Aq 1q 1q 1q 1q --===-⇔----简记:,指数次数只能为n 次方常数与指数函数的系数成相反数二.单一条件口算结果-----实质考查等比或等差中项1.无论是等差还是等比数列,如果只知道一个条件是取法确定具体的数列,那么可以处理为非0的常数数列,因为非0的常数数列即是等差也是等比数列。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题强化训练(十七) 数 列1.[2019·唐山摸底]已知数列{a n }的前n 项和为S n ,S n =3a n -12. (1)求a n ;(2)若b n =(n -1)a n ,且数列{b n }的前n 项和为T n ,求T n . 解:(1)由已知可得,2S n =3a n -1,① 所以2S n -1=3a n -1-1(n ≥2),② ①-②得,2(S n -S n -1)=3a n -3a n -1, 化简得a n =3a n -1(n ≥2), 在①中,令n =1可得,a 1=1,所以数列{a n }是以1为首项,3为公比的等比数列, 从而有a n =3n -1. (2)b n =(n -1)3n -1,T n =0×30+1×31+2×32+…+(n -1)×3n -1,③ 则3T n =0×31+1×32+2×33+…+(n -1)×3n .④ ③-④得,-2T n =31+32+33+…+3n -1-(n -1)×3n =3-3n 1-3-(n -1)×3n =(3-2n )×3n -32. 所以T n =(2n -3)×3n +34. 2.[2019·安徽示范高中]设数列{a n }的前n 项和为S n ,且满足S n=2-a n ,n =1,2,3,….数列{b n }满足b 1=1,且b n +1=b n +a n .(1)求数列{b n }的通项公式;(2)设c n =n (3-b n ),数列{c n }的前n 项和为T n ,求T n . 解:(1)∵n =1时,a 1+S 1=a 1+a 1=2,∴a 1=1.∵S n =2-a n ,即a n +S n =2,∴a n +1+S n +1=2.两式相减得a n +1-a n +S n +1-S n =0,即a n +1-a n +a n +1=0,故有2a n +1=a n ,由S n =2-a n ,知a n ≠0, ∴a n +1a n=12(n ∈N *).∴{a n }是首项为1,公比为12的等比数列,其通项公式为a n =⎝ ⎛⎭⎪⎫12n -1.∵b n +1=b n +a n (n =1,2,3,…),∴b n +1-b n =⎝ ⎛⎭⎪⎫12n -1,∴b 2-b 1=1,b 3-b 2=12,b 4-b 3=⎝ ⎛⎭⎪⎫122,…,b n -b n -1=⎝ ⎛⎭⎪⎫12n -2(n =2,3,…).将这n -1个等式相加得,b n -b 1=1+12+⎝ ⎛⎭⎪⎫122+…+⎝ ⎛⎭⎪⎫12n -2=1-⎝ ⎛⎭⎪⎫12n -11-12=2-⎝ ⎛⎭⎪⎫12n -2. 又b 1=1,∴b n =3-⎝ ⎛⎭⎪⎫12n -2(n =2,3,…),当n =1时也满足上式,∴b n =3-⎝ ⎛⎭⎪⎫12n -2(n ∈N *).(2)∵c n =n (3-b n )=2n ⎝ ⎛⎭⎪⎫12n -1,∴T n =2[⎝ ⎛⎭⎪⎫120+2×⎝ ⎛⎭⎪⎫121+3×⎝ ⎛⎭⎪⎫122+…+(n -1)×⎝ ⎛⎭⎪⎫12n -2+n ×⎝ ⎛⎭⎪⎫12n -1].①12T n =2[⎝ ⎛⎭⎪⎫121+2×⎝ ⎛⎭⎪⎫122+3×⎝ ⎛⎭⎪⎫123+…+(n -1)×⎝ ⎛⎭⎪⎫12n -1+n ×⎝ ⎛⎭⎪⎫12n ].② ①-②得,12T n =2[⎝ ⎛⎭⎪⎫120+⎝ ⎛⎭⎪⎫121+⎝ ⎛⎭⎪⎫122+…+⎝ ⎛⎭⎪⎫12n -1]-2×n ×⎝ ⎛⎭⎪⎫12n (n ∈N *),T n =4×1-⎝ ⎛⎭⎪⎫12n1-12-4×n ×⎝ ⎛⎭⎪⎫12n =8-(8+4n )×12n (n =1,2,3,…).3.[2019·洛阳统考]已知等差数列{a n }的公差d ≠0,若a 3+a 9=22,且a 5,a 8,a 13成等比数列.(1)求数列{a n }的通项公式;(2)设b n =(a n +1)2a n a n +1,求数列{b n }的前n 项和S n .解:(1)设数列{a n }的首项为a 1,依题意,⎩⎪⎨⎪⎧2a 1+10d =22(a 1+7d )2=(a 1+4d )(a 1+12d ), 解得a 1=1,d =2,∴数列{a n }的通项公式为a n =2n -1.(2)b n =(a n +1)2a n a n +1=4n 2(2n -1)(2n +1)=4n 24n 2-1=1+1(2n -1)(2n +1)=1+12⎝ ⎛⎭⎪⎫12n -1-12n +1,∴S n =1+12×⎝ ⎛⎭⎪⎫1-13+1+12×⎝ ⎛⎭⎪⎫13-15+…+1+12⎝ ⎛⎭⎪⎫12n -1-12n +1=n +12⎝ ⎛⎭⎪⎫1-12n +1=2n 2+2n 2n +1.4.[2019·石家庄质检]已知{a n }是首项为1的等比数列,各项均为正数,且a 2+a 3=12.(1)求数列{a n }的通项公式;(2)设b n =1(n +2)log 3a n +1,求数列{b n }的前n 项和S n .解:(1)设{a n }的公比为q ,由a 2+a 3=12及a 1=1,得q +q 2=12, 解得q =3或q =-4. 因为{a n }的各项均为正数,所以q >0,所以q =3,所以a n =3n -1. (2)b n =1(n +2)log 3a n +1=1n (n +2)=12⎝ ⎛⎭⎪⎫1n -1n +2, 所以S n =12⎝⎛⎭⎪⎫1-13+12-14+…+1n -1-1n +1+1n -1n +2 =34-2n +32(n +1)(n +2).5.[2019·济南质量评估]已知数列{a n }是递增的等差数列,满足a 2+a 3+a 4=15,a 2是a 1和a 5的等比中项.(1)求数列{a n }的通项公式;(2)设b n =1a n a n +1,求数列{b n }的前n 项和S n .解:(1)设数列{a n }的公差为d ,由a 2+a 3+a 4=15得a 3=5,由a 2是a 1和a 5的等比中项,得a 22=a 1·a 5, 所以(5-d )2=(5-2d )(5+2d ),解得d =0或d =2, 因为数列{a n }为递增数列,所以d =2. 又a 3=5,所以a 1=1,所以a n =2n -1.(2)b n =1a n a n +1=1(2n -1)(2n +1)=12⎝ ⎛⎭⎪⎫12n -1-12n +1,所以S n =12⎝ ⎛⎭⎪⎫1-13+13-15+…+12n -1-12n +1 =12⎝ ⎛⎭⎪⎫1-12n +1=n2n +1. 6.[2019·郑州质量预测一]已知数列{a n }为等比数列,首项a 1=4,数列{b n }满足b n =log 2a n ,且b 1+b 2+b 3=12.(1)求数列{a n }的通项公式;(2)令c n =4b n ·b n +1+a n ,求数列{c n }的前n 项和S n .解:(1)由b n =log 2a n 和b 1+b 2+b 3=12得 log 2(a 1a 2a 3)=12, ∴a 1a 2a 3=212.设等比数列{a n }的公比为q ,∵a 1=4,∴a 1a 2a 3=4·4q ·4q 2=26·q 3=212, 计算得q =4.∴a n =4·4n -1=4n .(2)由(1)得b n =log 24n =2n ,c n =42n ·2(n +1)+4n =1n (n +1)+4n =1n -1n +1+4n .设数列{1n (n +1)}的前n 项和为A n ,则A n =1-12+12-13+…+1n -1n +1=nn +1,设数列{4n }的前n 项和为B n ,则 B n =4-4n ·41-4=43(4n-1),∴S n =n n +1+43(4n -1).7.[2019·长沙四校一模]已知S n 是等比数列{a n }的前n 项和,a 3=12,S 3=32.(1)求数列{a n }的公比;(2)对于数列{S n }中任意连续的三项,按照某种顺序排列,是否成等差数列?解:(1)设等比数列{a n }的公比为q (q ≠0), 由a 3=12,得a 1=a 3q 2=12q 2,a 2=a 3q =12q . 由S 3=32,得a 1+a 2+a 3=32,所以12q 2+12q +12=32,解得q =1或q =-12.(2)当q =1时,a 1=12,S n =12n ,S n +1=12(n +1),S n +2=12(n +2),2S n +1=S n +S n +2,即S n ,S n +1,S n +2成等差数列,所以当q =1时,数列{S n }中任意连续的三项S n ,S n +1,S n +2成等差数列.当q =-12时,a 1=2,S n =2⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫-12n 1+12=43⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫-12n , S n +1=43⎣⎢⎡⎦⎥⎤1-⎝⎛⎭⎪⎫-12n +1=43⎣⎢⎡⎦⎥⎤1+12×⎝⎛⎭⎪⎫-12n ,S n +2=43⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫-12n +2=43⎣⎢⎡⎦⎥⎤1-14×⎝ ⎛⎭⎪⎫-12n ,S n +S n +1=43⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫-12n + 43⎣⎢⎡⎦⎥⎤1+12×⎝ ⎛⎭⎪⎫-12n =83-23×⎝ ⎛⎭⎪⎫-12n ,2S n +2=83⎣⎢⎡⎦⎥⎤1-14×⎝⎛⎭⎪⎫-12n =83-23×⎝⎛⎭⎪⎫-12n ,所以2S n +2=S n +S n +1,即S n ,S n +2,S n +1成等差数列,所以当q =-12时,数列{S n }中任意连续的三项S n ,S n +1,S n +2,按照顺序S n ,S n +2,S n +1排列,成等差数列.8.[2019·河北九校联考]已知{a n }是各项都为正数的数列,其前n 项和为S n ,且S n 为a n 与1a n的等差中项.(1)求数列{a n }的通项公式;(2)设b n =(-1)na n,求数列{b n }的前n 项和T n .解:(1)由题意知,2S n =a n +1a n,即2S n a n -a 2n =1,①当n =1时,由①式可得S 1=1; 当n ≥2时,a n =S n -S n -1,代入①式,得 2S n (S n -S n -1)-(S n -S n -1)2=1,整理得S 2n -S 2n -1=1.所以{S 2n }是首项为1,公差为1的等差数列, S 2n =1+n -1=n .因为{a n}的各项都为正数,所以S n=n,所以a n=S n-S n-1=n-n-1(n≥2),又a1=S1=1,所以a n=n-n-1.(2)b n=(-1)na n=(-1)nn-n-1=(-1)n(n+n-1),当n为奇数时,T n=-1+(2+1)-(3+2)+…+(n-1+n-2)-(n+n-1)=-n;当n为偶数时,T n=-1+(2+1)-(3+2)+…-(n-1+n-2)+(n+n-1)=n.所以{b n}的前n项和T n=(-1)n n.。

相关文档
最新文档