第三章,大气圈与气候系统
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3· 潜热输送 海面和陆面的水分蒸发使地面热量得以输送到大气层 中。一方面水汽凝结成雨滴或雪时,放出潜热给空气;另 一方面雨滴或雪降到地面不久又被蒸发,这个过程交替进 行。全球表面年平均潜热输送约为2760MJ/m2,占辐射平 衡的84%,可见,地-气间能量交换主要是通过潜热输送 完成的。 4· 感热输送 大气获得热能后依据本身温度向外辐射,称为大气辐 射。其中一部分外逸到宇宙空间,一部分向下投向地面, 即为大气逆辐射。大气逆辐射的存在使地面实际损失略少 于长波辐射放出的能量,地面得以保持一定的温暖程度。 这种保温作用,通常称为“温室效应”据计算,如果没有 大气,地面平均温度将是-18oC,而不是现在的150C。
不百度文库温度条件下水面上的饱和水汽 压/hPa
2·绝对湿度和相对湿度 单位容积空气所 含的水气质量通常以g/cm3表示,称为绝对 湿度(a)或水汽密度。绝对湿度不能直接 测定,但可间接算出。
a=289e/T (g /m3) 式中,e为水汽压(mm);T为绝对温度。大气的 实际水汽压e与同温度饱和水汽压E之比,称为相对湿度 (f),用百分数表示。 f=e /T×100% 由于E随温度而变,所以相对湿度取决于e和T,其中T 往往起主导作用。当e一定时,温度降低则相对湿度增大; 温度升高相对湿度减小。夜间多云、雾、霜、露,天气 转冷时容易产生云等都是相对湿度增大的结果
第三章 大气圈与气候系统
大气的组成和热能 大气的水分和降水 大气运动和天气系统 气候的形成 气候变化
大气圈与气候系统
连续包围地球的气态物质称为大气,大 气是自然环境的重要组成部分和最活跃的 因素,在地理环境和能量转化中充当着十 分重要的角色,大气层中天气系统的生成 与消亡,以及发展和运动,是全球气候的 基础。
2· 二氧化碳 只占大气容积的0.03%,多集中在20km高度 以下,主要由有机物燃烧、腐烂和生物呼吸过程 产生。二氧化碳对太阳短波吸收很少,但能强烈 吸收地表长波辐射,致使从地表辐射的热量不易 散失到太空。对地球有保温作用,但近年来随着 工业的发展和人口的增长,全球二氧化碳含量逐 年增加,改变了大气热平衡,导致地面和低层大 气平均温度升高,引起严重的气候问题。
不同纬度辐射差额的变化
四、气温
气温是大气热力状况的数量量度。空气中 分子运动的平均动能与绝对温度T成正比。 气温的周期性变化 日变化 年变化
气温的水平分布
气温的垂直分布
第二节 大气水分和降水
• 大气湿度 • 蒸发和凝结
• 水汽的凝结现象
• 大气降水
一、大气的湿度
(一) 湿度的概念和表示方法
2·气压的垂直分布 气压大小取决于所在水 平面的大气质量,随高度的 上升,大气柱质量减少,所 以气压随高度升高而降低。 其一般情况如图所示:
气压随高度的实际变化与气温和气压条件有关。再气 压相同条件下,气柱温度愈高,单位气压高度差 愈大,气 压垂直梯度愈小;在相同气温下,气压愈高单 位气压高度 差愈大,气压垂直梯度愈大。
(一) 干洁空气的成分及其性质
通常把除水汽、液体和固体杂质外的 整个混合气体称为干洁空气。简称干空气。 它是地球大气得主体,主要成分是氮、氧、 氩、二氧化碳等,此外还有少量氢、氖、 氪、氙、臭氧等稀有气体。
1· 氮和氧 N 2约占大气容积的78%。常温下,N 2 的化学性质不活泼,不能被植物直接利用 只能通过植物的根瘤菌,部分固定于土壤 中。N 2对太阳辐射远紫外区0.03~0.13 具有选择性吸收。02占地球大气质量的23 %,按体积比占21%。除了游离态外,氧 还以硅酸盐、氧化物、水等化合物形式存 在。
三、大气的热能
地球气候系统的能源主要是太阳辐射, 它从根本决定地球、 大气的热状况,从而 支配其他的能量传输过程。地球气候系统 内部也进行着辐射能量交换。因此,需要 研究太阳、地球及大气的辐射能量交换和 其他地-气系统的辐射平衡
(一) 太阳辐射
太阳是离地球最近的一个恒星,其表面温度约为 6000K,内部温度更高,所以太阳不停地向外辐射巨大的 能量。太阳辐射能主要是波长在0.4~0.76 m的可见光, 约为总能量的50%;其次是波长大于0.76 m的红外辐射, 约占总辐射能的43%;波长小于0.4 m的紫外辐射约占7 %。相对于地球来说,太阳辐射的波长较短,故称太阳辐 射为短波辐射。表示太阳辐射能强弱的物理量,即单位时 间内垂直投射在单位面积上的太阳辐射能,称为太阳辐射 强度。 在日地平均距离(1.496×108)上,大气顶界垂直于 太阳光线的单位面积上每分钟接受的太阳辐射,称为太阳 常数。
大气层保护着生物免受辐射,还为动植 物维持生命提供着需要。
第一节 大气的组成和热能
一、大气的成分
地球大气是多种物质的混合物,由干洁空气、 水汽、悬浮尘粒或杂质组成。 定常成分:N2 O2 Ar 和微量惰性气体 Ne Kr Xe He 等 可变成分(气体在大气中的比例随时间地点而 变):水汽 二氧化碳 臭氧 碳、硫、氮的化合物 等
3· 臭氧 主要分布在10~40km的高度处,极大 值在20~25km附近,称为臭氧层。臭氧虽 在大气中的含量很少,但具有强烈吸收紫 外线的能力。研究表明,人们大量使用氮 肥以及作冷冻剂和除臭剂使用的碳氟化合 物(氟利昂)所造成的污染是平流层的臭 氧遭到破坏。臭氧层的破坏能引起一系列 不利于人类的气候生物效应,因而受到广 泛关注。
不同性质地面对太阳的反射率
(二) 大气能量及其保温效应
大气本身对太阳辐射直接吸收很少,而水、陆植被等下 垫面却能吸收太阳辐射,并经潜热和感热转化供给大气。 大气获得能量的具体结构为: 1·对太阳辐射的直接吸收 大气中吸收太阳辐射的物质 主要是臭氧、水汽和液态水。 2·对地面辐射的吸收 地表吸收了到达大气上界太阳辐 射能的50%,变成热能,温度升高,而后以大于3 m的长 波(红外)向外辐射。这种辐射能量的75%~95%被大气 吸收,只有少部分波长为8.5~12 m的辐射能通过“大气 窗”逸回宇宙空间。
二、大气的结构
(一)大气质量 1、 大气上界 大气按其物理性质来说是不均匀的,特 别是在铅直方向变化急剧。在很高的高度 上空气十分稀薄,气体分子之间的距离很 大。在理论上,当压力为零或接近于零的 高度为大气顶层,但这种高度不可能出现。 因为在很高的高度渐渐到达星际空间,不 存在完全没有空气分子的地方。
(三) 地-气系统的辐射平衡
辐射平衡有年变化和日变化。在一日内 白天收入的太阳辐射超过支出的长波辐射, 辐射平衡为正值,夜间为负值。正转负和 负转正的时刻分别在日没前与日出后1小时。 在一年内,北半球夏季辐射平衡因太阳辐 射增多而加大;冬季则相反,甚至出现负 值。纬度愈高,辐射平衡保持正值的月份 愈少。
大气上界太阳辐射能量曲线及到达地表的典 型能量曲线
太阳辐射经过大气削弱后到达地面有两 部分:一是直接辐射,二是经大气散射后 到达地面的部分散射辐射,两者之和即为 太阳辐射总量,称为总辐射。 有明显的日变化和年变化 受云的影响(纬度变化)
到达地面的总辐射一部分被地面吸收转 变成热能,一部分被反射。反射部分占辐射 量的百分比,称为反射率。反射率随地面性 质和状态不同二者有很大差别
(二)水汽
(三) 固、液体杂质
大气悬浮固体杂质和液体微粒,也可称为气 溶胶粒子。除由水汽变成的水滴和冰晶外,主要 是大气尘埃和其他杂质。 大的水溶性气溶胶粒子最易使水气凝结,是 成云致雨的重要条件。气溶胶粒子能吸收部分太 阳辐射并散射辐射,从而改变大气透明度。它对 太阳辐射的影响和增大散射辐射、大气长波逆辐 射,都有可能破坏地球的辐射平衡。
三、大气的分层
按照分子组成,大气可分为两层,即均质层和非均质层。
均质层为从地表至85km高度的大气层,除水汽有较大变 动外,其组成较均一。
85km高度以上为非均质层,其中又可分为氮层、原子氧 层、氦层和氢层按大气化学核物理性质,非均质层可分为光 化层和离子层。光化层具有分子、原子和自由基组成的化学 物质,其中包括约在20km高度处03浓度最大处的臭氧层。 离子层包含大量离子。又反射无线电波能力。从下而上,又 分为D、E、F1、F2和G层。
二、蒸发和凝结
蒸发面上出现蒸发还是凝结取决于实际 水汽压于饱和水汽压的关系。当e>E ,出 现蒸发;e<E,则出现凝结。饱和水汽压和 实际水汽压都是不断变化的通常饱和水汽 压变化更为明显和迅速。
(一)蒸发及其影响因素
1·影响蒸发的因素 其影响因素主要包括蒸发面的温 度、性质、性状、空气湿度、风等。 2·蒸发量 实际工作中,一般以水层厚度(mm)表示 蒸发速度,称为蒸发量。蒸发量的变化与气温变化一致, 一日内,午后蒸发量最大;日出前蒸发量最小。一年内, 夏季蒸发量大,冬季小。蒸发量的空间变化受气温、海陆 分布、降水量等因素的影响。
在气象学中按照温度和运动情况,将大 气圈分为五层
对流层 平流层
中间层
暖层
散逸层
大 气 的 垂 直 分 布
(四)、标准大气
人们根据高空探测数据和理论,规定了一种特性随高 度平均分布的大气模式,称为“标准大气”或“参考大气”。 标准大气模式假定空气是干燥的,在86km以下是均匀混 合物,平均摩尔质量为28.964kg/mol,且处于静力学平 衡和水平成层分布。在给定温度,高度廓线及边界条件 后,通过对静力学方程和状态方程求积分,就得到压力 和密度值。
3·露点温度 一定质量的湿空气,若气 压保持不变,而令其冷却,则饱和水 汽压E随温度降低而减小。当 E=e时, 空气达到饱和。湿空气等压降温达到 饱和时的温度就是露点温度Td,简称 露点。
(二)湿度的变化与分布
相对湿度能够直接反映空气距饱和的程度, 在气候资料分析中应用广泛。 相对湿度日变化通常与气温日变化相反。 相对湿度分布随距海远近与纬度高低而有 不同。
气象学家认为,只要发生在最大高度上 的某种现象与地面气候有关,便可定义这 个高度为大气上界。因此,过去曾把极光 出现的最大高度(1200km)定为大气上界。 物理学家、化学家则从大气物理、化学特 征出发,认为大气上界至少高于1200km, 但不超过3200km,因为在这个高度上离心 力以超过重力,大气密度接近星际气体密 度。所以在高层大气物理学中,常把大气 上界定在3000km。
大气从海洋、湖泊、河流以及潮湿土壤 的蒸发或植物的蒸腾作用中获得水分。水 分进入大气后,通过分子扩散和气流的的 传递而散布于大气中,使之具有不同的潮 湿度。常用多个湿度参量表示水气含量。
1·水汽压和饱和水汽压 大气压力是大气 中各中气体压力的总和。大气中水汽所产 生的那部分压力叫水汽压(e)地面的水汽 压随纬度的升高而减小。赤道平均26hPa, 350N约为13hPa,650N约为4hPa极低附近 约为1~2hPa。 水汽压随高度的变化经验公式 ez=e0×10 –bz
三、水汽的凝结现象
2· 大气质量 大气高度虽然不易确定,大气质量却可 以从理论上求得。假定大气是均质的,则 大气高度约为8000m,整个大气柱的质量 为
m0=p0 H=1.125×10-3×8×105 =1013.3g/cm2
p0为标准情况下(T=0oC,气压为 1013.25hPa)大气密度。
(二) 大气压力
1· 气压 定义从观测高度到大气上界上单位面 积上(横截面积1cm2)铅直空气柱的重量 为大气压强,简称气压。 地面的气压值在980~1040hPa之间变 动,平均为1013hPa。气压有日变化和年 变化,还有非周期变化。气压非周期变化 常与大气环流和和天气系统有关,且变化 幅度大。
北半球大陆各纬度平均蒸发量
(二)蒸发和凝结的条件
凝结是发生在f≥100%(e≥E)过饱和情况下的与蒸发相 反的过程,在地面和大气中均可以产生。大气中的水汽发 生凝结,需具备一定的条件,既要使水汽达到饱和或过饱 和,还需有凝结核。 大气降温过程主要有四种:绝热冷却、辐射冷却、平流冷 却以及混合冷却 凝结核主要起的作用:一是对水汽的吸附作用;二是使形 成的粒滴比单纯水分子形成的粒滴大,有利于水汽继续凝 结。