. 向量和矩阵范数 向量范数

合集下载

向量和矩阵范数

向量和矩阵范数

|| x ||
|| b ||
➢ 设 精b确,A有误差 ,得到的A 解为
,即 x x
|| A || || A1 || 是关键
( A 的A误的A差状)放态(大数x因(条子件,数称x),)为 b
记为cond (A) ,
A(x x) A(x x) b (A A)x (A A) x b
I A 1 1
1 || A ||

证明: ① 若不然,则
(I A有)x非零0解,即存在非零向量 使得
x0
Ax0 x0
|| Ax0 || 1 || x0 ||
|| A || 1 ✓
② (I A)1 A(I A)1 (I A)(I A)1 I
(I A)1 I mA(I A)1
,即
A(x x) b b
x x
绝对误差放大因子
x A1 b
|| x |||| A1 || || b ||
相对误差放大因子
又 || b || || Ax || || A || || x || 1 || A || || x || || b ||
|| x || || A || || A1 || || b ||
主要性质
性质1:‖-x‖=‖x‖
性质2:|‖x‖-‖y‖|≤‖x-y‖
性质3: 向量范数‖x‖是Rn上向量x的连续函数.
范数等价:设‖·‖A 和‖·‖B是R上任意两种范数,若存在
常数 C1、C2 > 0 使得
,则称
‖·‖A 和‖·‖B 等价。
定理1.4.1 Rn 上一切范数都等价。
定义2:设{xk}是Rn上的向量序列, 令 xk=(xk1,xk2,…,xkn)T, k=1,2,….,
|| A1A |||| A1 || || A || 1 )

数值分析向量,矩阵范数,矩阵的条件数

数值分析向量,矩阵范数,矩阵的条件数

§8 向量,矩阵范数,矩阵的条件数一 、 向量、矩阵范数为了讨论线性方程组近似解的误差估计与研究解方程组迭代法的收敛性,需要在)(nn nRR ⨯或中引进向量序列(或矩阵序列)极限概念。

为此,这就需要对量空间n R (或n n R ⨯矩阵空间)元素的“大小”引进某种度量即向量范数(或矩阵范数)即距离的概念。

(一)向量范数:向量范数是3R 中向量长度概念的推广。

},{1为复数i n nx x x x x C ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡== 称为n 维复向量空间。

},)({为复数ij n n ij n n a a A A C ⨯⨯==称为n n ⨯复矩阵空间。

(2)设nn nCA C x ⨯∈∈,,称T n Hx x x x=≡),,(1 为x 的共轭转置,T H A A =称为A 共轭转置矩阵。

在许多应用中,对向量的范数(对向量的“大小”的度量)都要求满足正定条件,齐次条件和三角不等式,下面给出向量范数的抽象定义。

nR x ∈(或nC x ∈)的某个实值非负函数x x N ≡)(,如果满足下述条件(1)正定性 00,0=⇒⇐=≥x x x (2)齐次性 x ax α=其中R ∈α(或C ∈α)(3)三角不等式 )(,,nn C R y x y x y x ∈∈∀+≤+或,称x x N ≡)(是n R 上(或n C )一个向量范数(或为模)。

由三角不等式可推出不等式 (4)y x y x -≤- 下面给出矩阵计算中一些常用向量范数。

设)(),,(1nn T n C x R x x x ∈∈=或(1)向量的“∞”范数 i n i x x x N ≤≤∞∞=≡1max )((2)向量的“1”范数 ∑==≡ni i x xx N 111)((3)向量的“2”范数 2/1122/122)(),()(∑===≡ni i x x x xx N(4)向量的能量范数 设n n R A ⨯∈为对称正定阵2/1),()(x Ax xx N R x AA n =≡→∈∀称为向量的能量范数。

《向量和矩阵的范数》PPT课件

《向量和矩阵的范数》PPT课件

h
1
三种常用范数 给定 x (x1, x2 , , xn )T
n
1-范数:
x 1
x1
x2
xn xi
i 1
2-范数: x 2
x12 x22
1
xn2
n
i 1
xi2
2
? 范数: x max{ x1 , x2 ,
,
xn
}
max{
1in
xi
}
h
2
一般范数 给定 x (x1, x2 , , xn )T
1
(n max 1in
xi
p)p
故有 x x n p x
p

p
1
, n p
1limxFra bibliotekxp
p
h
4
范数的等价性 对于任意向量 x R n ,如果存在正数
c1, c2 ,均有
x
p c1
x, q
x q c2
x
,则称范数
p
x

p
x 等价。 q
范数的等价关系具有传递性。如果范数 x 与 x 等价,
(5) I 1,其中 I 为单位阵。
h
14
矩阵范数的另一个等价定义
设 A R nn , x Rn ,矩阵 A 的范数 A max Ax
x 1
h
15
常用的矩阵范数
设 A[aij]nn常用的矩阵范数有行(无穷)范数和列(一)范数。
例如
A
3 0
2
4
n
A
maxaij
1in j1
n
A 1
maxaij
Rnn 上的矩阵序列 A(k) 是收敛于A 的充要条件为

Chapter1_2_向量范数与矩阵范数

Chapter1_2_向量范数与矩阵范数

设 b 精确,A有误差 A ,得到的解为 x x ,即 || A || || A1 || 是关键 的误差放大因子,称为 ( A A的状态数(条件数), b A)( x x) 记为cond (A) , A( x x) A( x x) b ( A A) x ( A A) x b ( A A) x Ax x A1 A( x x) A( I A1 A) x Ax || x || || A1 || || A || || x x || x ( I A1 A)1 A1 Ax || A || 1 (只要 A充分小,使得
算子范数 ( operator norm ),又称为从属的矩阵范数: 由向量范数 || · p 导出关于矩阵 A Rnn 的 p 范数: ||
利用Cauchy 不等式 则 || AB || p || A || p || B || p || Ax || p || A || p max max || Ax || p y | ||x || || y || |x 2 x0 | |x | |p 1 || x || p || Ax || p || A || p || 2 || p x
命题(P26,推论1) 若A对称,则有: || A ||2 ( A)
证明:|| A ||2 max ( A A) max ( A )
T 2
A对称
若 是 A 的一个特征根,则2 必是 A2 的特征根。
max ( A2 ) 2 ( A) 对某个 A 的特征根 成立
又:对称矩阵的特征根为实数,即 2(A) 为非负实数, 所以2-范数亦称为 故得证。 谱范数。

向量与矩阵的范数

向量与矩阵的范数

那么
n
X X H *
xi
X 1
i 1
矩阵旳谱半径及其性质
定义:设 A C mn ,A 旳 n 个特征值为 1, 2, , n ,我们称
( A) max{ 1 , 2 , , n }
为矩阵 A 旳谱半径。 例 1 :设 A C mn ,那么
( A) A
这里 A 是矩阵 A 旳任何一种范数。
F
F
于是有
AB A B
F
F
F
例 4 :对于任意 A C nn ,定义
A
[Tr
(
AH
A)]
1 2
证明如此定义旳 A 是矩阵 A 旳范数。
证明: 首先注意到这么一种基本事实,

[Tr( AH
1
A)] 2
(
m
n
aij
2
)
1 2
i1 j1
由一种例题可知此定义满足范数旳性质。
Frobenious范数旳性质:
(1)' n
1
(2)' n
2
1
2
(3)' n
2
引理(Hoider不等式):设
a1, a2, , an T , b1, b2, , bn T Cn

n
n
aibi (
ai p ) 1 p ( n
bi
q)
1 q
i 1
i 1
i 1
其中 p 1,
q1 且
1p
是矩阵范数。
证明:非负性,齐次性和三角不等式轻易 证得。目前我们考虑乘法旳相容性。设
A C nn , B C nn ,那么
n
n
AB

向量和矩阵的范数

向量和矩阵的范数

向量和矩阵的范数一、引言向量和矩阵是线性代数中最基本的概念之一,而范数则是线性代数中一个非常重要的概念。

范数可以用来度量向量或矩阵的大小,也可以用来衡量它们之间的距离。

在本文中,我们将讨论向量和矩阵的范数。

二、向量范数1. 定义向量范数是一个函数,它将一个向量映射到一个非负实数。

它满足以下条件:(1)非负性:对于任意的向量x,有||x||≥0;(2)齐次性:对于任意的标量α和向量x,有||αx||=|α|·||x||;(3)三角不等式:对于任意的向量x和y,有||x+y||≤||x||+||y||。

2. 常见范数(1)L1范数:也称为曼哈顿距离或城市街区距离。

它定义为所有元素绝对值之和:||x||1=∑i=1n|xi| 。

(2)L2范数:也称为欧几里得距离。

它定义为所有元素平方和再开平方根:||x||2=(∑i=1nxi^2)1/2 。

(3)p范数:它定义为所有元素p次方和的p次方根:||x||p=(∑i=1n|xi|^p)1/p 。

(4)无穷范数:它定义为所有元素绝对值中的最大值:||x||∞=ma xi|xi| 。

三、矩阵范数1. 定义矩阵范数是一个函数,它将一个矩阵映射到一个非负实数。

它满足以下条件:(1)非负性:对于任意的矩阵A,有||A||≥0;(2)齐次性:对于任意的标量α和矩阵A,有||αA||=|α|·||A||;(3)三角不等式:对于任意的矩阵A和B,有||A+B||≤||A||+||B||。

2. 常见范数(1)Frobenius范数:也称为欧几里得范数。

它定义为所有元素平方和再开平方根:||A||F=(∑i=1m∑j=1naij^2)1/2 。

(2)一范数:它定义为每列元素绝对值之和的最大值:||A||1=maxj(∑i=1m|aij|) 。

(3)二范数:它定义为矩阵A的最大奇异值:||A||2=σmax(A) 。

(4)∞范数:它定义为每行元素绝对值之和的最大值:||A||∞=maxi(∑j=1n|aij|) 。

第五章 向量范数和矩阵范数

第五章  向量范数和矩阵范数
T
n
,由
|| x ||1 º | x1 | + | x2 | + L + | xn |
定义的 || ||1 是 F n 上的向量范数,称为1-范数或 l1 范数或和范数,也被风趣地称为Manhattan范数。
遗憾的是,当
0 p1
2
时,由
1/ p
骣 p || x || p º 琪 | x | 琪 å i 琪 琪 桫
2 2
2
在广义实数范围内,P能否取到正无穷大呢?具体而
言,如何计算这种范数呢?
例 9 对任意
x ( x1 , x2 , , xn ) F || x ||¥ º lim || x || p
T
n
,由
也就是
p?
?
|| x ||¥ º max | xi |
i
定义的|| || 是 F n上的向量范数,称为 -范数或 l 范数或极大范数。
由于
A
为Hermite正定矩阵,故存在酉矩阵 U ,使得
U T AU = Λ = diag ( λ1 , λ 2 , L , λ n ) 这里 A 的特征值 λ i ( i = 1, 2, L , n) 都为正数。
从而有 此时
A = UΛU T = U Λ ? Λ U T º BT B
|| x || A xT Ax xT BT Bx ( Bx )T Bx || Bx ||2
x ( x1 , x2 , , xn ) F
T
n 1/ p
n
,由
骣 p || x || p º 琪 | x | 琪 å i 琪 琪 桫
i= 1
, p³ 1
定义的 || || p 是 F n 上的向量范数,称为p -范数或 l p 范数。

向量与矩阵的范数

向量与矩阵的范数

a12 a1n A 1 max ai j 列范数 1j n i1 n a22 a2n A max aij 行范数 1i n j1 T an2 ann A 2 λm a x( A A) AF
|λ | || X ||= ||λ X ||= || A X || ≤|| A || || X ||
由X ≠0 ,所以 || X || >0 ,
计算方法三⑤
故有:
|λ | ≤|| A ||
所以特征值的最大值≤||A||,即ρ(A)≤||A||
18/35
定理3.7 设A为任意n阶方阵,则对任意 矩阵范数||A||,有: ρ(A)≤||A|| 定理3.8 设A为n阶对称方阵,则有: ||A||2= ρ(A)
1 2 3 A 4 5 6 7 8 0
计算方法三⑤
14/35
例6. 计算矩阵A的各种范数
1 2 A= 3 4 2 3 4 1 3 4 1 2 4 1 2 9
解:A=[1,2,3,4;2,3,4,1;3,4,1,2;4,1,2,9]; n1=norm(A,1), n2=norm(A), n3=norm(A,inf),n4=norm(A, 'fro') n1=16,n2=12.4884,n3=16,n4=13.8564
解: E A ( 1) ( 2)
2
(A) 2
计算方法三⑤
17/35
矩阵范数与谱半径之间的关系为: ρ(A) ||A|| 定理3.7设A为任意n阶方阵,则对任意矩阵范 数||A||,有: ρ(A)≤||A||
证:设λ为A的任意一个特征值, X为对应的特征向量 AX= λ X 两边取范数,得: || A X || = ||λ X || =|λ | || X ||

第3章 范数

第3章 范数
n
1
2
例题:设x = (3,12,0,4 ) , 计算 x 1 , x ∞ , x
T
2
x 1 = 3 + 12 + 0 + 4 = 19 x

= max{3,12,0,4} = 12
x 2 = 32 + (12) 2 + 0 2 + (4) 2 = 13
向量和矩阵的范数
2 矩阵范数 定义
任一矩阵A ∈ R n×n,都对应于一个实数N ( A)( N ( A)为R n×n上的实值函数 ), N ( A) = A ,且满足以下条件:
1≤i ≤ n
( A的特征值按模的最大值)
为矩阵的谱半径。
若λi为实数,则λi 是指绝对值 若λi为复数(λi = a + bi),则λi 是指模, λi = a 2 + b 2
例题
1 0 1 设A = 2 2 1, 计算A的谱半径。 1 0 0 λ 1 0 1
解: λI A) = 2 det( 1
几种矩阵范数
设x ∈ R n , A ∈ R n×n , 则
(1) A 1 = max ∑ aij
1≤ j ≤ n n
( A的列范数 )
(2) A ∞ = max ∑ aij
1≤i ≤ n j =1
i =1 n
( A的行范数 )
(3) A 2 = λmax ( AT A) (其中λmax ( AT A)表示矩阵AT A的绝对值( 模)最大的特征值)
a11 a12 a13 三阶方阵A = a21 a22 a23 则A的行列式 a31 a32 a33 det( A) = a11a22 a33 + a21a32 a13 + a12 a23a31 a13 a22 a31 a12 a21a33 a23 a32 a11

向量范数和矩阵范数

向量范数和矩阵范数
向量范数和矩阵范数在数值计算、线性代数和机器学习等领域中具有广泛的应用,它们可 以用于衡量向量和矩阵的大小、距离和相似度等概念。
2. L1范数:对于n维向量x=(x1, x2, ..., xn),它的L1范数定义为 ||x||1 = |x1| + |x2| + ... + |xn|。它表示向量各个元素的绝对值之和。
向量范数和矩阵范数
3. 无穷范数(L∞范数):对于n维向量x=(x1, x2, ..., xn),它的无穷范数定义为 ||x||∞ = max(|x1|, |x2|, ..., |xn|)。它表示向量各个元素的绝对值的最大值。
矩阵范数是对矩阵进行度量或衡量的方式,它是一个将矩阵映射到非负实数的函数。常见 的矩阵范数有谱范数、F范数和1-范数。
1. 谱范数:对于n×n矩阵A,它的谱范数定义为 ||A||2 = max(σ),其中σ是A的特征值的 模的最大值。谱范数衡量了矩阵的最大特征值的大小,表示矩阵的最大奇异值。
向量范数和矩阵范数
2. F范数:对于m×n矩阵A,它的F范数定义为 ||A||F = √(∑∑|aij|^2),其中aij表示A的第i 行第j列的元素。F范数衡量了矩阵所有元素的平方和的平方根。
3. 1-范数:对于m×n矩阵A,它的1-范数定义为 ||A||1 = max(∑|aij|),其中∑表示对所有 列求和。1-范数衡量了矩阵列向量绝对值之和的最大值。
向量范数和矩阵范数
向量范数是对向量进行度量或衡量的方式,它是一个将向量映射到非负实数的函数。常见 的向量范数有欧几里得范数(L2范数)、L1范数和无穷范数(L∞范 ..., xn),它的欧几里得范数定义为 ||x||2 = √(x1^2 + x2^2 + ... + xn^2)。它表示向量的长度或大小,也可以理解为向量的2范数。

第五章 向量与矩阵的范数

第五章 向量与矩阵的范数

A
F
= ( ∑∑ aij )
2 i =1 j =1
X
2
= ( ∑ xi )
i =1
n
2 12
= (X X )
H
12
根据Hoider不等式可以得到 不等式可以得到 根据
AX ≤
m 2 2
=
n
∑ ∑
i =1
m
n
2
j =1
a ij x
n
j

2 j

m
i =1
( ∑ a ij x j ) 2
j =1
n
∑ [( ∑
AB = n max
i, j i ,k
∑a
k =1 k, j
n
ik kj
b ≤ n max ∑ aik bkj
i, j k =1
n
≤ n ⋅ n max aik max bkj = n max aik ⋅ n max bkj
i ,k k, j
= A B
因此 的范数。 A 为矩阵 A 的范数。
例3
p
= ( ∑ ai )
p i =1
n
1
p
∑a
i =1
n
i
(2)2-范数 ) -
α 2 = ( ∑ ai ) = (α α )
2 12 H i =1
n
12
也称为欧氏范数。 也称为欧氏范数。 欧氏范数 (3)∞ -范数 α ∞ = lim α ) p →∞ 定理
p
α

= max ai
1≤i ≤ n
证明 令
第五章
向量与矩阵的范数
定义: 定义: 设 V 是实数域 R (或复数域 C )上 维线性空间, 的 n 维线性空间,对于 V 中的任意一个向量 α 按照某一确定法则对应着一个实数,这个 按照某一确定法则对应着一个实数, 范数, 实数称为 α 的范数,记为 α ,并且要求 范数满足下列运算条件: 范数满足下列运算条件: (1)非负性:当 )非负性: 有且仅有当 α = 0, (2) 齐次性: ) 齐次性: 意数。 意数。

数值分析5-5(向量和矩阵的范数)

数值分析5-5(向量和矩阵的范数)

n
1
A F ( xij 2 )2
i , j1
称为Frobennius-范数
举例:
A
1 3
2 4
计算A的各种范数.
解:
n
A


max
1in
j1
aij
max{1 2,3 4} 7
n
A
1

max
1 jn
i 1
|
aij
|

max{1

3,2
x p ( xi p ) p
i 1
称为∞-范数或最大范数 称为1-范数 称为2-范数
称为p-范数
举例:计算向量 x=(1, -2, 3)T的各种范数.
解:
n
x 1 | xi | 6
i 1
n
1
x 2 ( xi 2 )2 14
i 1
x

max
1in
xi
3
3. 向量范数的性质
3) x y x y , x, y Rn(三角不等式)
则称‖x‖为向量的范数
2. 常用的向量范数
在 Rn上的向量x =(x1,…,xn)T∈Rn ,三种常 用的范数为:
x


max
1in
xi
n
x 1 | xi |
i 1
n
1
x 2 ( xi 2 )2
i 1
n
1
第五章 解线性方程组的直接法 §5 向量和矩阵的范数
一、向量的范数
二、矩阵的范数 三、小结
一、向量的范数
1. 向量范数的定义
设对任意向量 x∈Rn,按一定的规则有一实 数与之对应,记为‖x‖,若‖x‖满足

向量和矩阵的范数

向量和矩阵的范数

一、向量的范数定义1 设x=(x1 ,x2,…,x n )n ,y=(y1 ,y2,…,y n )n∈R n (或C n )。

将实数(或复数),称为向量x,y的数量积。

将非负实数或称为向量x的欧氏范数。

对向量x,y的数量积有:1. (αx,y)=α(x,y).α为实数(或(x,αy)=(x,y),α为复数);2. (x,y)=(y,x)[(x,y)=(,)];3. (x1 +x2 ,y)=(x1 ,y)+(x2 ,y);4. (Cauchy-Schwarz不等式)(5.1)等式当且仅当x与y线形相关时成立。

对向量x的欧氏范数有:1. ‖x‖2≥0, ‖x‖2 =0当且仅当x=0时成立;2. ‖αx‖2=|α|‖x‖2,任意的α∈R(或α∈C),3. ‖x+y‖2≤‖x‖2 +‖y‖2 (三角不等式),(5.2)注(5.1)和(5.2)有下面的事实得到(x+ty,x+ty)=(x,x)+2(x,y)t+(y,y)t2≥0由一元二次方程根的判别定理可知(5.1)成立;取t=1,再利用(5.1)得即得(5.2)。

定义2(向量的范数) 如果向量x∈R n (或C n )的某个实值函数N(x)=‖x‖, 满足条件:(1) ‖x‖≥0(‖x‖=0当且仅当x=0)(正定条件),(2) ‖αx‖=|α|·‖x‖,任意的α∈R(或α∈C),(3) ‖x+y‖≤‖x‖+‖y‖(三角不等式),则称N(x)是R n (或C n )上的一个向量范数(或模)。

下面我们给出几种常用的向量范数。

1. 向量的∞-范数(最大范数):(5.3)2. 向量的1-范数:3. 向量的2-范数:(5.4)4. 向量的p-范数:(5.5)例6 计算向量x=(1,-2,3)T的各种范数。

解:定理6(N(x)的连续性) 设非负函数N(x)=‖x‖为R n上任一向量范数,则N(x)是x的分量x1 ,x2,…,x n的连续函数。

证明设其中e i=(0,…,1,0,…,0)T, . 只须证明当x→y时N(x)→N(y)即成。

向量与矩阵范数

向量与矩阵范数
(3) 若 A 是对称矩阵,则 ( A) A 2
9
算子范数性质
算子范数的性质
定理:设 || ·|| 是 Rn 上的任一向量范数,其对应的 算子范数也记为 || ·|| ,则有
Ax A x
定理:设 || ·|| 是任一算子范数,则 ( A) A
定理:对任意 >0, 总存在一算子范数 || ·|| ,使得
1 n
3
范数性质
范数的性质
(1) 连续性 设 f 是 Rn 上的任意一个范数,则 f 关于 x 的每个分
量是连续的
(2) 等价性 设 || · ||s 和 || ·||t 是 Rn 上的任意两个范数,则存在 常数 c1 和 c2 ,使得对任意的 xRn 有
c1 x s x t c2 x
p xi , p [1, ) ,是 Rn 上向量范数 i 1
n 1 p
p
2
向量范数
常见的向量范数 ① 1-范数 ② 2-范数
x 1 xi
i 1 n
n 2 x 2 xi i 1
1 2
③ 无穷范数(最大范数)
x

max xi
8
矩阵范数性质
矩阵范数的性质
(1) 连续性:设 f 是 Rnn 上的任一矩阵范数,则 f 关于 A
的每个分量是连续的
(2) 等价性:设 || ·||s 和 || ·||t 是 Rnn 上的任意两个矩阵 范数,则存在常数 c1 和 c2 ,使得对任意的 A Rnn 有
c1 A s A t c2 A s
本讲内容
向量范数
向量范数的定义 常见的向量范数
向量范数的性质

范数

范数

向量的1-范数的最大值称为矩阵的行范数。
14
§6 误差分析
一个实际问题化为数学问题,初始数据往往会 有误差(观测误差和舍入误差),即有扰动,从 而使计算结果产生误差。 向量的误差可用向量范数表示:设x 是x的近似 矩阵, x x 、x x / x 分别称为x 的关于
* * * * *
范数 的绝对误差与相对误差。
16
方程组的状态与条件数
x1 x2 2 x1 2 例:方程组 . x1 1.00001x2 2 x2 0 x1 x2 2 x1 1 而方程组 . x1 1.00001x2 2.00001 x2 1 比较这两个方程组可以看出,他们只是右端项有微小的差 1 别,最大相对误差为 105 , 但它们的解却大不相同,解分量 2 1 的相对误差至少为 。 2
x A1 A( x x ) A1 A ( x x ) x( 1 A1 A ) A1 A x x
x A
1 1
如果 A充分小,使得 A1 A 1, 则由上式得

A A
A A
1
A
A
1 A
1 A A
1
A
A
上式表明,当系数矩阵有扰动时,解的扰动仍与 A A1 有关。一般地, A A1 越大,解的扰动也越大。
15
矩阵的误差可用矩阵算子范数表示:设A 是A的 近似矩阵,A A 、A A / A 分别称为A 的关
* * * *
*
于范数 的绝对误差与相对误差。 由于范数等价,用何种向量范数都是合理 的。关键是容易计算。 理论分析,谱范数是非常有效的。但在计算 上行范数和列范数更方便。 比较:向量1-范数--列范数, 向量-范数--行范数。

向量范数与矩阵范数

向量范数与矩阵范数

任2种范数在刻画收敛性时等价
定理1.2 对 Rn 上的任意二种向量范数|| ·||a ,|| ·||b ,
均有与向量 x 无关的常数 m 与 M (0<m<M),使 下列的关系成立
m x x M x , x Rn.
a
b
a
证明略.
意义:向量x的某一种范数可以任意小(大)时, 该向量的其它任何一种范数也会任意小(大)。
|1| | 2 | | 3 |,
A
1

max

|
5
|

|1|

|
8
|,


14,
| 2 | | 0 | | 2 |
1 5 2
A 2 1
0

3 8 2
|1| | 5 | | 2 |,
A


max

|
2
|

|1|

|
0
|,

13,
| 3 | | 8 | | 2 |
A F
12 22 32

52

12
82




22

02
22

112,
14 21 4
AT
A


21
90
26
4 26 8
❖定义 Rn 上的实值函数‖·‖称为向量范数,如果 对任意的 x, y∈Rn, 它均满足下列3条性质:
(1)正定性: || x ||,且 0 x 0;|| x || 0
(2)齐次性:对 k ,有R
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(5) I 1 ,其中I 为单位阵。
好运动者健,好思考者智,好助人
10
者乐好读书者博,好旅游者悦,好
矩 阵 范 数 的 另 一 个 定 义 设 A R n n , 矩 阵A
A sup Ax
x 1 xR n
的范数
好运动者健,好思考者智,好助人
11
者乐好读书者博,好旅游者悦,好
4 常用的矩阵范数
9
者乐好读书者博,好旅游者悦,好
矩阵范数的性质
(1)A Rnn ,A 0 ,当且仅当 A 0 ,A 0 (非负性)。
(2) R ,有 A A (齐次性)。 (3)A, B Rnn ,有 A B A B (三角不等
式)。 (4)A, B Rnn ,AB A B(乘积不等式)。
好运动者健,好思考者智,好助人
2
者乐好读书者博,好旅游者悦,好
3 三种范数 给定R n 中的 x ( x1, x2 ,L , xn )T
n
x 1
x1

x2
L

xn

xi
i 1
1
x 2
x12 x22 L
xn2


n

i 1
xi2

2
x

max{ x1
,
x2
好运动者健,好思考者智,好助人
16
者乐好读书者博,好旅游者悦,好
定 义 设 A R nn , 如 果 存 在 R 使
Ax x 则 称 为 A 的 一 个 特 征 值 。 x 就 是 特 征 值 对 应 的 特 征 向 量 。
好运动者健,好思考者智,好助人
17
者乐好读书者博,好旅游者悦,好
设 A[aij]nn常用的矩阵范数有行(无穷)范数和列(一)范数。
n
A
maxaij
1in j1
n
A 1
maxaij
1jn i1
例如
A

3 0
2
4

A m3 a x 2 ,0 {4 } 5
A m3 a 0 , x 2 {4 } 6 1
A

1

0
2
1

x

1

0

1
Ax


0

好运动者健,好思考者智,好助人
8
者乐好读书者博,好旅游者悦,好
由矩阵范数的定义
有相容性条件
Ax A m ax
x0 x x R n , A R nn , A x A x
好运动者健,好思考者智,好助人
谱半径
定 义 6: 对 于 R n n 上 的 矩 阵 A , 设 A 的 特 征 值 为 1, 2 ,L , n , 称 ( A ) m a x { 1, 2 ,L , n} 为 矩 阵 A 的 谱 半
径。
好运动者健,好思考者智,好助人
18
者乐好读书者博,好旅游者悦,好
x x M x



好运动者健,好思考者智,好助人
6
者乐好读书者博,好旅游者悦,好
3.4.2 矩阵范数
定义 矩阵 A Rnn 的范数 Ax
A max x0 x
m ax 的含义是取遍所有不为 0 的 x,比值为最大的。
好运动者健,好思考者智,好助人
7
者乐好读书者博,好旅游者悦,好
说明
( 3) x, y R n ,有 x y x y ( 三 角 不 等 式 ),
好运动者健,好思考者智,好助人
1
者乐好读书者博,好旅游者悦,好
2 范数的性质 已知 x (x1, x2,L , xn)T x x , x 0, x 1 ,
x x y xy 证 x xyy xy y
k
k
按不同方式规定的范数,其值一般不同。
但 在 各 种 范 数 下 ,考 虑 向 量 序 列 收 敛 性 时 结 论 时 一 致 的 ,一 致 的 含 义
是收敛都收敛,且有相同的极限。
提 出 各 种 范 数 是 为 解 不 同 问 题 时 用 的 ,即 对 某 一 个 问 题 可 能 是 某 一 种
好运动者健,好思考者智,好助人
12
者乐好读书者博,好旅游者悦,好
4 常用的矩阵范数
n
A


max
1i n
j 1
aij
(行范数)
n
A m ax 1 1 j n i1
aij
(列范数)
A 2
max ( AT A) ( 谱 范 数 )
其 中 max ( AT A) 表 示AT A 的 最 大 特 征 值 。
谱半径的性质
对 于 R n n 上 的 矩 阵 A , 有 ( A) A 。
若 对 于 R n n 上 的 矩 阵 A 有 A 1 , 则 I A 为
非奇异阵,且
I A 1 1
1 A

给定
A R nn , 则
lim A k 0
k






(A) 1 , 其 中 Ak ( k 1,2,L ) 表 示 A 的 k 次 幂 。
是收敛的,称A为矩阵序列 A(k) 的收敛极限。
好运动者健,好思考者智,好助人
15
者乐好读书者博,好旅游者悦,好
矩阵的收敛
记矩阵序列 A(k) 是收敛于A为:limA(k) A 。 k
Rnn 上的矩阵序列 A(k) 是收敛于A 的充要条件为
lkimai(jk) aij 。 其中ai(jk) 和aij 分别表示A(k) 和A的第i 行第 j 列的元素。
,L
,
xn
}

max{
1 i n
xi
}
好运动者健,好思考者智,好助人
3
者乐好读书者博,好旅游者悦,好
例 求 x (1 , 0 , 1 , 2 ) T 的 三 种 范 数 。
好运动者健,好思考者智,好助人
4
者乐好读书者博,好旅游者悦,好
4 收敛性
定 义 称 R n 中 的 向 量 序 列 x ( k ) 在 范 数 意 义 下 收 敛 于 R n 中 的
3.4 向量和矩阵的范数 3.4.1 向量范数
向量范数用来度量向量长度。
定 义 向 量 x R n 的 范 数x 是 一 个 实 数 , 且
满足
( 1)x 0 ,当 且 仅 当 x 0 时 ,x 0 ( 非 负 性 )。
( 2) R , 有 x x ( 齐 次 性 )。
好运动者健,好思考者智,好助人
19
者乐好读书者博,好旅游者悦,好
范数方便,而另一种范数不方便。
好运动者健,好思考者智,好助人
5
者乐好读书者博,好旅游者悦,好
向量范数的等价定理

, 总 存 在 与x m
对 一 切 x Rn成 立 。
给 定 x R n , 对 于R n 上 的 任 意 两 种 范 数
无 关 的 正 常 数 m ,M , 使 关 系 式
好运动者健,好思考者智,好助人
13
者乐好读书者博,好旅游者悦,好

好运动者健,好思考者智,好助人
14
者乐好读书者博,好旅游者悦,好
矩阵的收敛
Rnn上的任意两种矩阵范数 ,Leabharlann 是等价的。

定义5: A(k) 为Rnn上的矩阵序列,若存在Rnn上的
矩阵A,使得:lim A(k) A 0 成立,则称矩阵序列A(k) k
向 量 x , 如 果 lim x (k ) x 0 。 这 里 是 向 量 的 任 一 种 范 数 。 k 在 R n 中 , 若 在 某 一 种 范 数 意 义 下 向 量 序 列 x ( k ) 收 敛 , 则 在 任 何 范
数 意 义 下 该 向 量 序 列 仍 收 敛 , 即 lim x (k ) x* lim x (k ) x* 0 。
相关文档
最新文档