数学分析论文(第一版)
数学分析(3)论文
云南大学数学分析习作课(3)论文题目:利用幂级数求和函数问题的探究学院:数学与统计学院专业:数学与应用数学姓名、学号:王茂银 *********** 任课教师:黄辉老师时间: 2012年12月14日摘要如何对幂级数进行求和?幂级数是一种较简单的函数项级数,在幂级数理论中,对给定幂级数讨论其收敛性,求收敛幂级数的和函数是重要内容之一,幂级数求和的求解是一类难度较大技巧性较高的问题,更好地了解和掌握幂级数求和的方法和技巧对于学习幂级数具有更好的指导意义和学习价值,求幂级数和函数的方法与技巧是多种多样的,一般要综合运用求导、拼凑、分解等来求解,因此它是一个难度较大、技巧较高的有趣的数学问题。
关键词:幂级数;和函数;收敛;级数。
一、幂级数的基本概念1、幂级数的定义 设()(1,2,3)n u x n =是定义在数集X 上的一个函数列,则称12()()(),n u x u x u x x X ++++∈为定义在X 上的函数项级数,记为1()n n u x ∞=∑。
具有形如200102000()()()()n nn n n a x x a a x x a x x a x x ∞=-=+-+-++-+∑的函数项级数称为在点0x 处的幂级数。
特别地,在00()nn n a x x ∞=-∑中,令0x x x -=,即上述形式化为20120n n n n n a x a a x a x a x ∞==+++++∑称为在0点的幂级数。
2、幂级数的和函数若对幂级数中的x ∀都有230123()a a x a x a x s x ++++=,则称()s x 为幂级数的和函数。
幂级数的部分和记为230123()nn n s x a a x a x a x a x =+++++且部分和()n s x 有如下性质lim ()()nn s x s x →∞=二、幂级数收敛的判别幂级数求和是建立在级数收敛的基础上的,所以需先判断一个级数是否收 敛,可以通过以下定理判断级数收敛性。
学年论文-数学分析七大定理的相互证明
云南大学课题名称:数学分析七大定理的相互证明学院:数学与统计专业:信息与计算科学指导教师:何清海学生姓名:段飞龙学生学号:20101910050目录摘要………………………………………………………………………………………关键词……………………………………………………………………………………前言………………………………………………………………………………………结论………………………………………………………………………………………参考文献…………………………………………………………………………………摘要:数学分析中的单调有界性定理、闭区间套定理、确界存在性定理、有限覆盖定理、Weierstrass聚点定理、致密性定理以及柯西收敛准则,虽然他们的数学形式不同,但他们都描述了实数集的连续性,在数学分析中有着举足轻重的作用。
关键词:单调有界性定理闭区间套定理确界存在性定理有限覆盖定理Weierstrass聚点定理致密性定理柯西收敛准则前言:一、七大定理定理 1 单调有界性定理(1)、上确界上确界的定义“上确界”的概念是数学分析中最基本的概念。
考虑一个实数集合M. 如果有一个实数S ,使得M 中任何数都不超过S,那么就称S 是M 的一个上界。
在所有那些上界中如果有一个最小的上界,就称为M 的上确界。
一个有界数集有无数个上界和下界,但是上确界却只有一个。
上确界的数学定义有界集合S ,如果β满足以下条件①对一切S x ∈,有β≤X ,即β是S 的上界;②对任意βα<,存在S x ∈,使得α>x ,即β又是S 的最小上界, 则称β为集合S 的上确界,记作S sup =β(同理可知下确界的定义)在实数理论中最基本的一条公理就是所谓的确界原理:“任何有上界(下界)的非空数集必存在上确界(下确界)”。
上确界的证明(1)每一个 X x ∈满足不等式m x ≤ ;(2) 对于任何的 0>ε, 存在有X x ∈', 使ε->M x ' 则数{}x M sup = 称为集合X 的上确界。
数学分析反证法的应用论文
丽水学院2012届学生毕业论文数学分析中反证法的应用理学院数学082 董泽刚指导师:胡亚红摘要:本文研究了数学分析中不同问题的反证法。
对数学分析中的反证法进行总结研究,共分为数列极限的唯一性和收敛性,函数的连续、有界、极限和单调性,导数和积分,级数等四个部分,各部分之间并非完全独立。
本文对理解数学分析的基本概念,掌握数学分析的基本理论和技巧很有好处。
关键词:反证法;命题;应用在数学解题中经常使用反证法,牛顿曾经说过:“反证法是数学家最精当的武器之一”。
具体、简单的命题;或者直接证明难以下手的命题,改变其思维方向,从结论入手进行反面思考,问题可能解决得十分干脆。
它不仅是解决问题的有力手段,而且推动了数学的发展,开辟了数学领域的新天地.数学是在归纳、发现、推广中发展的。
反证法在数学的发展中功不可没。
反证法不但在数学的发展和证明中有同等重要的作用,而且,在学习、领会和深入钻研数学的时候,也离不开反证法.因为条件的强弱,使用范围的宽窄,都需要用反证法作对比,才能加深理解,如果命题有错误,证明有漏洞,也只有靠反证法去证实,并从反证法中得到修补的启示。
反证法是一种重要的反证手段,往往会成为数学殿堂的基石。
学会构造反证法是一种重要的数学技能。
反证法的重要性要想充分的发挥出来,关键还在于具体的作出所需的反证法。
至于反证法的作法,也如证明一样,因题而异,方式多变。
1 反证法的基本思想反证法是一种间接的证明方法,它的基本思想是“否定-推理-矛盾-肯定”,这种证明方法之所以令学生难以理解,是因为在证明过程中,每一步的结论到下一步完全符合逻辑,但每一步的结论却其实不能发生,从逻辑的观点来看,反证法实际上是通过证明与命题A→,显然这个等价命题的条件中含A→逻辑等价的命题为真,从而间接证明了命题BBA→的结论的否定B,反证法历史悠久,曾被用来解决数学中许多重要结论. 有命题B所谓反证法是指通过证明论题的否定论题不真实而肯定论题真实的方法.通常包括以下三个步骤:(l)反设—假定原命题的结论不成立;(2)归谬—根据反设进行严密推理,直到得出矛盾;(3)结论—肯定原命题正确。
数学分析小论文
数学分析小论文数学分析小论文有关数学的小论文应该怎么去写呢?以下是小编整理的数学分析小论文,欢迎参考阅读!数学分析小论文1生活中,处处都有数学的身影,超市里,餐厅里,家里,学校里………都离不开数学。
我也有几次对数学的亲身经历呢,我挑其中两件事来给大家说一说。
记得三年级,有一次,我和妈妈逛超市,超市现在正在搞春节打折活动,每件商品的折数各不相同。
我一眼就看中了一袋旺旺大礼包,净含量是628克,原价35元,现在打八折,可是打八折怎么算呢?我问妈妈。
妈妈告诉我,打八折就是乘以0。
8,也就是35*0。
8=28(元)。
我恍然大悟。
我准备把这袋旺旺大礼包买下来,可是,妈妈告诉我,可能后面的旺旺大礼包更便宜,要去后面看看。
走着走着,果然,我又看见了卖旺旺大礼包的,净含量是650克,原价40元,现在也打八折。
这下,我犯了愁,净含量不同,原价也不同,哪个划算呢?我又问妈妈。
妈妈告诉我35*0。
8=28(元),40*0。
8=32(元),一袋是628克,现价28元,另一袋是650克,现价32元。
用28/628≈0。
045,32/650≈0。
049,0。
049>0。
045,所以第二袋划算一点儿,于是,我们买下了第二袋。
通过这次购物,我知道了怎样计算打折数,怎样计算哪种物品更划算一些。
记得四年级,有一次,我和一个朋友出去玩,朋友的妈妈给我们俩出了一道题:1~100报数,每人可以报1个数,2个数,3个数,谁先报到100,谁就获胜。
话音刚落,我便思考怎样才能获胜,我想:这肯定是一道数学策略问题,不能盲目地去报,里面肯定有数学问题,用1+3=4,100/4=25,我不能当第一个报的,只能当最后一个报的,她报X个数,我就报(4—X)个数,就可以获胜,我抱着疑惑的心理去和她报数,显然,她没有思考获胜的策略,我用我的方法去和她报数,到了最后,我果然报到了100,我获胜了。
原来这道数学问题是一道典型的对策问题,需要思考,才能获胜。
《数学分析》范文
《数学分析》范文《数学分析》主要研究实数域上的函数和它们的性质。
它首先介绍了实数的基本性质,包括实数的有序性、稠密性以及实数的最大和最小界等等。
接着,《数学分析》引入了函数的概念,学习了实数到实数的映射关系。
函数是数学中非常重要的概念,它可以描述现实世界中的各种关系,如时间与距离的关系、温度与压力的关系等等。
在函数的基础上,《数学分析》引入了极限的概念。
极限是数学分析中非常关键的一个概念,它可以用来描述函数在其中一点的局部行为。
通过极限的研究,我们可以了解到函数的趋势、变化率等等重要的性质。
比如,当自变量趋向于一些值时,函数的取值是否有界、是否趋向于一些特定的值等等。
极限的研究是数学分析的核心内容之一微分和积分则是数学分析中的两个重要操作。
微分是研究函数的局部变化率的工具,它可以用来求得函数的导数。
导数可以告诉我们函数在其中一点的斜率或变化率,从而帮助我们描述函数的几何特征。
而积分则是计算函数在其中一区间上的总量的工具,它可以用来求得函数的原函数。
原函数可以帮助我们计算函数在其中一区间上的面积、体积等等。
除了以上的基础概念之外,数学分析还涉及到级数、微分方程等更深入的内容。
级数是无穷多项相加的运算,它可以用来研究数列的和、函数的展开式等等。
微分方程则是研究函数与其导数之间的关系的数学方程,它在自然科学、工程学等领域中具有广泛的应用。
总之,《数学分析》是一门重要的数学学科,其内容涵盖了函数、极限、微分、积分等各个方面。
通过学习《数学分析》,我们可以掌握一些基本的数学工具,如函数的性质、函数的极限、函数的导数等等。
同时,我们还可以学到一些基本的数学思维方法,如严密的证明思路、逻辑推理等等。
通过《数学分析》的学习,我们可以提高自己的数学分析能力,并且为将来的数学研究打下坚实的基础。
数学分析论文
数学分析论⽂本⽂利⽤MATLAB 软件,分别运⽤波尔查诺⼆分法和Gauss消元法,对“捕鱼业的持续收获”模型和“⽜奶的⽣产计划”模型进⾏数值分析,从⽽得到最好经济效应下的捕鱼强度E,以及最优的⽜奶⽣产⽅案。
关键词:MATLAB,捕鱼业的持续收获,⽜奶的⽣产计划1MATLAB简介 (1)1.1 基本功能 (1)1.2 特点 (2)1.3 优势 (2)2捕鱼业的持续收获 (5)2.1 背景 (5)2.2 模型建⽴ (5)2.2.1 得到捕捞平衡点 (5)2.2.2 效益模型的建⽴ (6)2.3 算法原理——波尔查诺⼆分法 (6)2.4 利⽤MATLAB编程 (7)2.4.1 编写⼆分法计算的函数⽂件 (7)2.4.2 编写检验函数⽂件 (9)2.4.3 调⽤主函数 (9)2.5 结论分析 (9)3⽜奶的⽣产计划 (10)3.1 背景 (10)3.2 模型建⽴ (10)3.2.1 问题提出 (10)3.2.2 问题分析 (10)3.2.3 基本模型 (10)3.2.4 模型分析与假设 (11)3.3 算法原理——Gauss消元法 (12)3.4利⽤MATLAB编程 (14)3.4.1 编写⾼斯消元法函数 (14)3.4.2 编写⽅程组信息 (15)3.4.3 运⾏主程序 (15)3.5 结论分析 (15)总结 (16)参考⽂献 (17)1MATLAB简介1.1 基本功能MATLAB是由美国mathworks公司发布的主要⾯对科学计算、可视化以及交互式程序设计的⾼科技计算环境。
它将数值分析、矩阵计算、科学数据可视化以及⾮线性动态系统的建模和仿真等诸多强⼤功能集成在⼀个易于使⽤的视窗环境中,为科学研究、⼯程设计以及必须进⾏有效数值计算的众多科学领域提供了⼀种全⾯的解决⽅案,并在很⼤程度上摆脱了传统⾮交互式程序设计语⾔(如C、Fortran)的编辑模式,代表了当今国际科学计算软件的先进⽔平。
MATLAB和Mathematica、Maple并称为三⼤数学软件。
概率论数数理统计论文1
2.1.1 随机事件内涵 随机事件是指在随机试验中,可能出现也可能不出现,而在大量重复试验中具有某种 规律性的事件叫做随机事件(简称事件)。随机事件通常用大写英文字母 A、B、C 等表示。 在概率论中,把具有以下三个特征的试验称为随机试验: (1) 可以在相同的条件下重复地进行 (2) 每次试验的可能结果不止一个,并且能事先明确试验的所有可能结果; (3) 进行一次试验之前不能确定哪一个结果 会出现. 2.1.2 随机现象 自然界所观察到的现象叫做随机现象, 随机现象可分为确定性现象和随机现象。 其中确 定性现象是指在一定条件下必然发生的现象,比如太阳不会从西边升起,人一定会死等。显 著特征是出现的结果取决于条件; 随机现象是指在一定条件下可能出现也可能不出现的现象, 比如在相同条件下掷一枚均匀的硬币,观察正反两面出现的情况:P(A)=正面或者 P(A) =反面 2.2 古典概型 17世纪,随着赌博在西欧的盛行,的正是源自赌博的问题。 研究这些赌博问题的意义, 并不在于解决了这些问题 本身,而在于人们借助对这些问题的研究,开始逐步深入理解概率的某些性质,并最终导致 概率论的诞生。 最著名的是帕斯卡与费马的通信, 他们之间的通信开创了用数学方法研究和 思考 概率问题的先河,他们被认为是概率论的启幕者。尤其是帕斯卡的工作蕴涵了概 率论“数学期望”的重要思想。这种思想成为后来惠更斯概率论工作中的一个基本思想,并 在以后相当长的时间里在古典概率论的研究中起着重要的作用。 因此读概率论发展历史的研 究既有着重要意义, 也充满了乐趣, 于是笔者对概率论几个重要时期的发展进行了简要总结 归纳。 2.2.1 古典概型内涵 古典概型是指(1)试验的样本空间只包含有限个样本点;(2)试验中每个基本事件发生 的可能性相同;同时具备以上条件的试验叫做古典概型。其样本空间可以表示为: Ω ={a1,a2,a3,a4„„an},他的每一个基本事件发生的概率都相同,为 1/n。 2.2.2 几种典型的古典概型
数学分析论文
目录摘要 (1)关键词 (1)Abstract (1)Key words (1)前言 (1)1立体体积 (1)2曲面的面积 (2)3物体的重心 (3)4物体的转动惯量 (6)5物体的引力 (7)结语 (8)参考文献 (8)重庆三峡学院数学分析课程论文重积分的应用院系:数学与统计学院专业:数学与应用数学(师范)姓名:李林年级:2009级学号:200904014215指导老师:王平(教授)2011年5月重积分的应用李林摘 要:重积分主要用来解决实际问题,在本文中,我总结一下学习中遇到的重积分的应用,比如求空间立体的体积,空间物体的质量及在几何和物理方面的应用,并用实例加以说明.关键词:重积分;曲面面积;重心;转动惯量;引力;应用引言学习重积分,主要掌握重积分的计算和应用,用重积分的思想解决实际问题,而计算又涵盖在应用中,我归纳其应用如下:1 具体应用 1.1.立体体积曲顶柱体的顶为连续曲面()y x f z ,=,()D y x ∈,,则其体积为()dxdyy x f V D⎰⎰=,占有空间有界域 Ω 的立体的体积为⎰⎰=Ddxdydz V .例1 求曲面1:221++=y x z S 任一点的切平面与曲面222:y x z S +=所围立体的体积V .解 曲面1S 在点()000,,z y x 的切平面方程为22000122y x y y x x z --++=. 它与曲面22y x z +=的交线在xoy 面上的投影为()()12020=-+-y y x x (记所围域为D ).[]⎰⎰----++=∴Ddxdy y x y x y y x x V 22202000122()()()[]⎰⎰-+--=Ddxdy y y x x 221.令θcos 0r x x =- θs i n 0r y y =-. 原式θπrdrd r D⋅-=⎰⎰2dr r d ⎰⎰-=1320πθπ2π=.例2 求半径为a 的球面与半顶角为α的内接锥面所围成的立体的体积.解 在球坐标系下空间立体所占区域为.⎪⎩⎪⎨⎧≤≤≤≤≤≤Ωπθαϕϕ200cos 20:a rdr d d r dv ϕθϕsin 2=.则立体体积为⎰⎰⎰Ω=dxdydz Vr d r d a ⎰⎰⎰=παϕϕθ20c o s202s i n⎰=αϕϕϕπ033s i n c o s 316d a()απ43c o s 134-=a . 1.2.曲面的面积设光滑曲面()y x f z S ,:=,()D y x ∈,,则面积A 可看成曲面上各点()z y x M ,,处小切平面的面积dA 无限积累而成.设它在D 上的投影为σd ,则dA d ⋅=γσcos()()y x f y x fyx,,11cos 22++=γ.()()∂++=d y x f y x f dA y x ,,122(称为面积元素).故有曲面面积公式()()∂++=⎰⎰d y x f y x f A Dy x ,,122.即dxdy y z x z A D⎰⎰⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂+=221. 若光滑曲面方程为()z y g x ,=,()yz D z y ∈,,则有dydz y z x z A yzD ⎰⎰⎪⎪⎭⎫⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂+=221. 若光滑曲面方程为()x z h y ,=,()zx D x z ∈,,则有dydz y z x z A yzD ⎰⎰⎪⎪⎭⎫⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂+=221. 若光滑曲面为隐式()0,,=z y x F ,且0≠z F ,则z x F F x z-=∂∂,zy F F y z -=∂∂,()xy D y x ∈,.dxdy F F F F A xyD zz y x ⎰⎰++=∴222.例3求半径为a 的球的表面积. 解 利用球坐标方程 设球面方程为a r =.球面面积元素为θϕϕd d a dA sin 2=.⎰⎰==∴πππϕϕθ022024sin a d d aA .例4 计算双曲抛物面xy z =被柱面222R y x =+所截出的面积A . 解 曲面在xoy 面上投影为222:R y x D ≤+,则dxdy z z A Dy x ⎰⎰++=221.dxdy y x A D⎰⎰++=221r d rr d R⎰⎰+=πθ2021 ()⎥⎦⎤⎢⎣⎡-+=1132232Rπ.1.3. 物体的重心设空间有n 个质点,分别位于()k k k z y x ,,,其质量反别为()n k m k ,2,1 =,由力学知,该质点系的重心坐标为∑∑===nk knk kk mmx x 11.∑∑===nk knk kk mmy y 11.∑∑===nk knk kkmmz z 11.设物体占有空间域Ω,有连续密度函数()z y x ,,ρ则采用 大化小 常代变 取极限 可求出其重心公式 即:把Ω分成n 小块,在第k 块上任取一点()k k k ζηξ,,,将第k 块看作质量集中于点()k k k ζηξ,,的质点,此质点系的重心坐标就近似该物体的重心坐标.若()()∑∑==∆∆≈nk kk k knk kk k kk v v x 11,,,,ζηξρζηξρξ 令各小区域的最大直径0→λ,即得()()⎰⎰⎰⎰⎰⎰ΩΩ=dxdydzz y x dxdydz z y x x x ,,,,ρρ.同理可得()()⎰⎰⎰⎰⎰⎰ΩΩ=dxdydzz y x dxdydz z y x y y ,,,,ρρ.()()⎰⎰⎰⎰⎰⎰ΩΩ=dxdydzz y x dxdydz z y x z z ,,,,ρρ.当()≡z y x ,,ρ常数时,则有:Vxdxdydzx ⎰⎰⎰Ω=.Vydxdydzy ⎰⎰⎰Ω=.Vzdxdydzz ⎰⎰⎰Ω=(⎰⎰⎰Ω=dxdydz V 为Ω的体积).若物体为占有xoy 面上区域D 的平面薄片,其面密度为()y x ,μ,则它的重心()()⎰⎰⎰⎰=DDdxdyy x dxdyy x x x ,,μμ()()⎰⎰⎰⎰=DDdxdyy x dxdyy x y y ,,μμ.当=ρ常数时,则有Axdxdyx D⎰⎰=Ay d x d yy D⎰⎰=(A 为D 的面积).例5 求位于两圆θsin 2=r 和θsin 4=r 之间均匀薄片的重心. 解 利用对称性可知0=x .而⎰⎰=Dydxdy A y 1θθπd r d rDs i n 312⎰⎰=dr r d ⎰⎰=θθπθθρsin 4sin 220sin 31θθππd ⎰=04s i n 956 θθππd ⎰⋅=204s i n 2956 2212956ππ⋅⋅⋅= 37=.例6 一个炼钢炉为旋转体形,剖面壁线的方程为()2239z z x -=,30≤≤z 若炉内储有高为h 的均匀钢液,不计炉体的自重,求它的重心.解 利用对称性可知重心在z 轴上 故其坐标为0==y x ,Vzdxdydzz ⎰⎰⎰Ω=.采用柱坐标,则炉壁方程为()2239z z r -=,. 因此⎰⎰⎰Ω=dxdydz V ⎰⎰⎰⎰Ω=zdxdy dz h 0()dz z z h239-=⎰π⎪⎭⎫ ⎝⎛+-=23412299h h h π. ⎰⎰⎰⎰⎰⎰⎰ΩΩ=zdxdy zdz zdxdydz h()dz z z h22039-=⎰π⎪⎭⎫ ⎝⎛+-=23512339h h h π. 225409043060hh h h h z +-+-=∴. 1.4. 物体的转动惯量因质点系的转动惯量等于各质点的转动惯量之和,故连续体的转动惯量可用积分计算. 设物体占有空间区域Ω,有连续分布的密度函数()z y x ,,ρ,该物体位于()z y x ,,处的微元对z 的转动惯量为()()dv z y x y x dI z ,,22ρ+=因此物体对z轴的转动惯量()()⎰⎰⎰Ω+=dxdydz z y x y x I z ,,22ρ.类似可得对x 轴的转动惯量()()⎰⎰⎰Ω+=dxdydz z y x z yI x ,,22ρ. 对y 轴的转动惯量()()⎰⎰⎰Ω+=dxdydz z y x z xI y ,,22ρ.对原点的转动惯量()()⎰⎰⎰Ω++=dxdydz z y x z y xo ,,222ρ.如果物体是平面薄片,面密度为()y x ,μ,()D y x ∈,则转动惯量的表达式是二重积分.()dxdy y x y I x ,2μ⎰⎰Ω=()dxdy y x x I y ,2μ⎰⎰Ω=()()dxdy y x y x I o ,22μ⎰⎰Ω+=.例7 求半径为a 的均匀半圆薄片对其直径的转动惯量.解 建立坐标系如图所示 ⎩⎨⎧≥≤+0:222y a y x D .⎰⎰=Dx dxdy y I 2μθθμdrd r D23sin ⎰⎰=dr r d a⎰⎰=0302sin θθμπ2212414πμ⋅⋅⋅=a . 半圈薄片的质量μπ221a M =241Ma I x =∴. 例8 求均匀球体对于过球心的一条轴l 的转动惯量.解 取球心为原点, z 轴为l 轴,设球所占域为2222:a z y x ≤++Ω,则()dxdydzy x I z ρ⎰⎰⎰Ω+=22()θϕϕθϕθϕρd drd r r r sin sin sin cos sin 2222222⋅+=⎰⎰⎰Ωdr r d d a⎰⎰⎰=040320sin ϕϕθρππ1322525⋅⋅⋅=a πρM a 252=(ρπ334a M =).1.5. 物体的引力设物体占有空间区域Ω,其密度函数()z y x ,,ρ连续,物体对位于原点的单位质量质点的引力()z y x F F F F ,,=.利用元素法,引力元素在三坐标轴上的投影分别是()dv rxz y x GdF x 3,,ρ=()dv r yz y x GdF y 3,,ρ=()dv rz z y x G dF z 3,,ρ=222z y x r ++=G 为引力常数. 在上积分即得各引力分量:()dv rxz y x G F x ⎰⎰⎰Ω=3,,ρ()dv r yz y x G F y ⎰⎰⎰Ω=3,,ρ()dv rzz y x G F z ⎰⎰⎰Ω=3,,ρ.对xoy 面上的平面薄片D ,它对原点处的单位质量质点的引力分量为()σρμd xy x G F Dx ⎰⎰⎰=3,. ()σρμd y y x G F Dy ⎰⎰⎰=3, (22y x +=ρ). 例9 设密度函数为μ,半径为R 的圆形薄片222R y x ≤+,0=z ,求它对于位于点()a M ,0,00()0>a 处的单位质量质点的引力.解 由对称性知引力()z F F ,0,0= d a d d G dF z ⋅-=2σμ()23222a y x d Ga ++-=σμ()⎰⎰++-=∴Dz a y x d Ga F 23222σμ()⎰⎰+-=Rarrdrd Ga 0232220πθμ⎪⎪⎭⎫⎝⎛-+=a a R Ga 11222μπ. 例10 求半径为R 的均匀球2222R z y x ≤++对位于点()()R a a M >,0,00的单位质量质点的引力.解 利用对称性知引力分量0==y x F F()[]dv a z y xaz G F z 23222-++-=⎰⎰⎰Ωρ()()[]⎰⎰⎰-++-=-zD RRa z y xdxdydz a z G 23222ρ()()[]⎰⎰⎰---+-=220232220z R R Ra z rrdrd dz a z G πθρ()dz a az R z a a z G RR⎪⎪⎭⎫⎝⎛+----=⎰-222112ρπ ()⎥⎦⎤⎢⎣⎡+----=⎰-222122a az R d a z a R G R R ρπ2a M G -=(ρπ343R M =为球的质量).参考文献:1王贵鹏. 数学分析[M]. 北京: 高等教育出版社, 2001年6月.2 田国华. 数学分析辅导及习题全解[M]. 北京: 人民日报出版社, 2007年8月.3 闫晓红,王贵鹏. 数学分析全程导学及学习习题全解[M]. 北京: 中国时代经济出版社,2006年3月.4 强文久,李元章,黄雯荣. 数学分析的基本概念与方法[M]. 上海: 高等教育出版社, 1989年4月.5 刘玉莲,傅沛仁,林钉,苑德馨. 数学分析讲义[M]. 北京: 高等教育出版社, 2008年4月.The application of the heavy integralLiLin(Second class of Grand 2009, mathematics and applied mathematics college of mathematics and ststistics Chongqing Three Gorges University (404000))Abstract : Heavy integral is mainly used to solve practical problems, in this article, I encountered in the study summarized the application, such as heavy points for three-dimensional volume, space objectsin the quality and the applications of geometry and physics, and some examples to illustrate. Key words: Heavy integral; Surface area; Gravity; Inertia; Gravity;Application.10。
大一数学论文范文2000字(49篇)
大一数学论文范文2000字(49篇)我国的中学数学新课程已进入全面实施阶段。
新的高中数学课程标准强调要拓宽学生的数学知识面,改善学生的学习方式,关注学生的学习情感和情绪体验,培养学生进行探究性学习的习惯和能力。
数学建模活动是一种使学生在探究性活动中受到数学教育的学习方式,是运用已有的数学知识解决问题的教与学的双边活动,是学生围绕一些数学问题自主探究、学习的过程。
新的高中数学课程标准要求把数学探究、数学建模的思想以不同的形式渗透在各模块和专题内容之中,突出强调建立科学探究的学习方式,让学生通过探究活动来学习数学知识和方法,增进对数学的理解,体验探究的乐趣。
五、数学建模教学与素质教育数学建模问题贴近实际生活,往往一个问题有很多种思路,有较强的趣味性、灵活性,能激发学生的学习兴趣,可以触发不同水平的学生在不同层次上的创造性,使他们有各自的收获和成功的'体验。
由于给了学生一个纵情创造的空间,就为学生提供了展示其创造才华的机会,从而促进学生素质能力的培养和提高,对中学素质教育起到积极推动作用。
1.构建建模意识,培养学生的转换能力_曾说过:“由一种形式转化为另一种形式不是无聊的游戏而是数学的杠杆,如果没有它,就不能走很远。
”由于数学建模就是把实际问题转换成数学问题,因此如果我们在数学教学中注重转化,用好这根有力的杠杆,对培养学生思维品质的灵活性、创造性及开发智力、培养能力、提高解题速度是十分有益的。
学生对问题的研究过程,无疑会激发其学习数学的主动性,且能开拓学生的创造性思维能力,养成善于发现问题、独立思考的习惯。
教材的每一章都由一个有关的实际问题引入,可直接告诉学生,学了本章的教学内容及方法后,这个实际问题就能用数学模型得到解决,这样,学生就会产生创新意识。
2.注重直觉思维,培养学生的想象能力3.灌输“构造”思想,培养学生的创新能力“一个好的数学家与一个蹩脚的数学家之间的差别,就在于前者有许多具体的例子,而后者则只有抽象的理论。
数学分析研究论文.
中国某某大学(本科) 数学分析研究论文数信小组题目:函数的极值和最值的研究学院:数学与计算科学学院年级:2011级指导老师:X X(教授)完成时间:2014年6月8日函数极值与最值研究摘要:在实际问题中, 往往会遇到一元函数.二元函数,以及二元以上的多元函数的最值问题和极值问题等诸多函数常见问题。
求一元函数的极值,主要方法有:均值等式法,配方法,求导法等。
求一元函数的最值,主要方法有:函数的单调性法,配方法,判别式法,复数法,导数法,换元法等。
求二元函数极值,主要方法有:条件极值拉格朗日乘数法,偏导数法等。
求二元函数最值,主要方法有:均值不等式法,换元法,偏导数法等。
对于多元函数,由于自变量个数的增加, 从而使该问题更具复杂性,求多元函数极值方法主要有:条件极值拉格朗日法, 等,对于多元函数最值问题与一元函数类似可以用极值来求函数的最值问题.主要方法有:向量法,均值不等式法,换元法,消元法,柯西不等式法,数形结合法等,关键词:函数,极值,最值,极值点,方法技巧.Abstract: in practical problems,often encounter a unary function. The function of two variables, and multiplefunctions of two yuan more than the most value questionand extremum problems and many other functions of common problems. Extremum seeking a binary function,the main methods are: inequality extremum method,distribution method, derivation etc.. The value for theelement function, the main methods are: monotone method, function method, the discriminant method,complex method, derivative method, substitution methodetc.. For two yuan value function, the main methods are:conditional extremum of Lagrange multiplier method etc..Ask two yuan to the value function, the main methods are:mean inequality method, substitution method, partial derivative method etc.. For multivariate function, due to the increased number of variables,so that the more complicated the problem, find the function extreme value method mainly has: conditional extremum of multivariate Lagrange method, directional derivative, for multivariate function most value the most value problem with the function of one variable can be used to find the function extreme value is similar. The main methods are: vector method, the mean value inequality method, substitution, elimination method, the method of Cauchy inequality, the combination method,Keywords: function, extreme value, the value, extreme points, methods and techniques引言作为函数性质的一个重要分支和基本工具,函数极值和最值在数学与其他科学领域,如数学建模优化问题、概率统计等学科都有广泛应用。
数学分析中的极限问题毕业论文终稿
数学分析中的极限问题毕业论文目录摘要 (1)关键词 (1)Abstract (1)Key words. (1)引言 (1)1.综述 (2)1.1极限的产生与发展 (2)1.2极限问题的类型 (3)2.常见的极限求解方法 (3)2.1简单求极限的方法 (3)2.2利用两个重要极限公式求极限 (4)2.3利用洛必达法则求极限 (5)2.4利用极限的四则运算法则求极限 (6)2.5利用等价无穷小替换求极限 (6)2.6利用定积分求极限 (7)2.7利用泰勒公式求极限 (8)2.8两边夹法则求极限 (9)2.9利用单侧极限求极限 (10)2. 10利用中值定理求极限 (11)小结 (12)参考文献 (13)数学分析中的极限问题学生:** 学号:*********数学与计算机科学系数学与应用数学专业指导教师:** 职称:**摘要:极限是数学分析这门学科的基础,通过极限思想、借助极限工具使数学分析容更加严谨,贯穿整个数学分析的始末. 本文主要是对数学分析中的极限的产生与发展,以及常见极限的若干常规解法进行了讨论和研究. 本文的重点在第二章,具体介绍了运用四则运算法则、两个重要极限、两边夹法则、等价无穷小替换等方法求解极限.关键词:四则运算法则;洛比达法则;泰勒公式;两边夹法则.Abstract: Limit is the basis of mathematical analysis of the subject, through the of though with the tools of limit, make the content more rigorous mathematical analysis, through the mathematical analysis of events. This article is mainly to limit the emergence and development of mathematical analysis, as well as the common limit of conventional method are disscussed and studied. In the second chapther, the focus of this article, using the laws of arthmetic are analysised in detail, two important limits,between law and equivalent infinitesimal substitution method to solve the limit. Key words:four arithmetic operations; the derivation rule; Taylor formula; both sides grip rule.引言极限是描述数列和函数在无限过程中的变化趋势的重要概念,是从近似认识精确,从有限认识无限,从量变认识质变的一种数学方法,能够通过旧事物的量的变化规律,去计算新事物的量. 因此,极限具有由此达彼的重大创新作用. 同时,极限是研究微积分的理论基础和基本手段,它一直贯穿于该学科的始终. 极限的思想方法不仅在整个分析学的建立和发展中起着基本作用,而且还广泛应用于其他数学分支和自然科学. 同时,考研数学中也少不了有关于极限的题目.极限的思想方法作为人类发现数学问题并解决数学问题的一种重要手段,随着科学技术的不断发展,社会生产力的不断提高,在数学的发展史上将发挥越来越重要的作用. 因此,探讨如何求极限、怎样使求极限变得容易,是一个非常具有现实意义的重要问题. 求极限不仅要准确理解极限的概念、性质和极限存在的条件,而且还要清楚认识各种极限的类型,并熟练应用多种求极限的基本方法.众所周之,求极限的方法繁多且变化灵活,不易掌握. 本文在总结各种常用的求极限方法的同时,更重要的是,也会提出一些创新的极限求解方法,希望能够开拓思路,起到抛砖引玉的作用.1.综述1.1极限的产生与发展早在两千多年前,我国的惠施就在庄子的《天下篇》中有一句著名的话:“一尺之棰,日取其半,万世不竭”,惠施提出了无限变小的过程,这是我国古代极限思想的萌芽.我国三国时期的大数学家徽(约225年~295年)的割圆术,通过不断倍增圆接正多边形的边数来逼近圆周,徽计算了圆接正3072边形的面积和周长,从而推得3.1410243.142704π<<.在国外一千多年以后欧洲人安托尼兹才算到同样精确度的小数.π这扇窗口闪烁着我国古代数学家的数学水平和才能的光辉.徽的割圆术不仅仅是先导,而且是一面旗帜,为研究复杂的逼近数列打开了先河.16世纪前后,欧洲资本主义的萌芽和文艺复兴运动促进了生产力和自然科学的发展. 17世纪,牛顿和莱布尼兹在总结前人经验的基础上,创立了微积分. 随着微积分应用的更加广泛和深入,遇到的数量关系也日益复杂,例如研究天体运行的轨道等问题已超出直观围.在这种情况下,微积分的薄弱之处也越来越暴露出来,严格的极限定义就显得十分迫切需要. 经过近百年的争论,直到19世纪上半叶人们通过对无穷级数的研究和总结,明确的认识了极限的概念.德国著名数学家维尔斯特拉斯通过静态刻板的定义,描述了无限的过程,刻画了极限,对于数列{}n a 如果找到一个实数a ,无论预先指定多么小的正数ε,都能够在数列中找到一项n a ,使得这一项后面的所有项与a 的差的绝对值都小于ε,就把这个实数a 叫做数列{}n a 的极限. 1.2极限问题的类型数列极限定义 设{}n a 为实数数列,a 为定数,任意ε>0,总存在正整数N ,使得当n N >时,有n a a ε-<,则称数列{}n a 收敛于a ,定数a 称为数列{}n a 的极限.不等式n a a ε-<刻画了n a 与a 的无限接近程度,ε愈小,表示接近得愈好;而正数ε可以任意地小,说明n a 与a 可以接近到任何程度. 然而,尽管ε有其任意性,但一经给出正整数,N ε就暂时地被确定下来,以便依靠它来求出ε,又ε既是任意小的正数,那么2ε, ε的平方等等同样也是任意小的正数,因此定义中不定式n a a ε-<中的ε可用2ε, ε的平方等来代替. 同时,正由于ε是任意小正数,我们可限定ε小于一个确定的正数.函数极限定义 设函数()f x 在点0x 的某一去心邻域有定义,如果存在常数A ,对于任意给定的正数ε,总存在正整数d ,当x 满足不等式00x x d <-<时,对应的函数值()f x 都满足不等式()f x A ε-<,那么常数A 就叫做函数()f x 当0x x →时的极限,记作0lim ()x x f x A →=.2.常见的极限求解方法数列极限的求法可谓是多种多样,通过归纳和总结,本章将介绍几种常见的极限求解方法,这些方法均有各自的特点,因为这些常见的方法是研究极限求解的基础,需要我们去深刻的理解并扎实的掌握.我们罗列出一些常用的求法. 2.1简单求极限的方法我们知道,在同一趋近过程中,无穷大量的倒数是无穷小量;有界量乘以无穷小量等于无穷小量;有限个(相同类型)无穷小量之和 、差、积仍为无穷小量,以及利用函数的连续性可以求出某些函数的极限.例1 求极限2147lim32x x x x →--+. 解 当1x →时,分母的极限为0,而分子的极限不为0,可以先求出所给函数的倒数的极限2132132lim04747x x x x →-+-+==--, 利用无穷小量的倒数是无穷大量,故 2147lim32x x x x →-=∞-+. 例2 求极限201sinlimsin x x x x→.解 运用极限运算的四则运算法则,有200001sin11limlim sin lim lim sin sin sin sin x x x x x x x x x x x x x x x→→→→=⋅⋅=⋅, 因为0lim1sin x xx→=,当0x →时,x 为无穷小量,1sinx为有界量,所以 01lim sin 0x x x→⋅=, 故201sin lim0sin x x x x→=.2.2利用两个重要极限公式求极限 我们所熟悉的两个重要极限是 (i)lim ()0x af x →=则sin ()lim1()x a f x f x →=,(ii)lim ()0x af x →=则1()lim(1())f x x af x e →+=,其中,第一个重要极限是“00”型;第二个重要极限是“1∞”型.利用重要极限求函数极限时,关键在于把要求的函数极限化成重要极限的标准型或者它们的变形,这就要抓住重要极限公式的特征,并且能够根据它们的特征,辨认它们的变形,有时会利用到归结原则.例3 求极限10lim(12).xx x →+解 1112220lim(12)lim[(12)(12)]x x xx x x x x e →→+=+⋅+=.例4 求极限211lim(1)nn n n →∞+-.解 2111(1)(1)(n )n n e n n n+-<+→→∞,当1n >时,有2221112221111(1)(1)(1)n n n n n n n n n n n n n-------+-=+≥+,而由归结原则(取2,(n 2,3,)1n n x n ==⋅⋅⋅-)有2221122111lim(1)lim(1)lim(1)n n n n n n n n n n e n n n---→∞→∞→∞--+=+=+=, 于是,由数列极限的迫敛性得211lim(1)nn e n n→∞+-=. 2.3利用洛必达法则求极限定理1 若函数()f x 与()g x 满足 (i) 0lim ()lim ()0();x x x x f x g x →→==∞(ii) 在点0x 的某空心邻域0()U x 两者都可导,且()0g x ≠; (iii) 0()lim()x x f x A g x →'='(A 可为实数,也可为+∞或-∞),则 00()()limlim ()()x x x x f x f x A g x g x →→'=='. 例5 求极限1220(12)limln(1)xx e x x →-++. 解 利用22ln(1)~(0)x x x +→,得 11132222220000(12)(12)(12)(12)limlim limlimln(1)22xxxxx x x x e x e x e x e x x x x--→→→→-+-+-+++===+.应用洛必达法则计算待定型极限需要注意的问题(1)审查计算的极限是不是待定型,如果不是待定型就不能运用洛必达法则,因为它不满足洛必达法则的条件. (2)除计算“”或者“∞∞”两种待定型外,计算其它五种待定型00"0,1,0,,"∞⋅∞∞∞-∞都要用对数或代数运算将它们化为待定型“0”或者“∞∞”,然后再应用洛比达法则.(3)在求极限的过程中,有可约的因子或者极限不是零的因子,可以先约去或从极限符号取出.(4)要特别注意,一般来说,应用洛必达法则计算待定型极限都比较简单.但是对少数的待定型极限应用洛比达法则,并不简单.2.4利用极限的四则运算法则求极限定理2(极限的四则运算法则) 若0lim ()x x f x A →=, 0lim ()x x g x B →=,则(i) 0lim ()lim ()x x x x f x g x A B →→±=±,(ii)0lim[()()]lim ()lim ()x x x x x x f x g x f x g x A B →→→⋅=⋅=⋅,(iii)若0B ≠,则000lim ()()lim ()lim ()x xx x x x f x f x A g x g x B→→→==, 综上所述,函数的和、差、积、商的极限等于函数极限的和、差、积、商.例6 求极限2223lim 4x x x x →+++.解 2223lim 4x x x x →+++=222lim(23)lim(4)x x x x x →→++=+116. 2.5利用等价无穷小替换求极限以下是当0x →时常用的等价无穷小关系sin ~,tan ~,arcsin ~,arctan ~,11~,1~,log (1x)~,ln 11~ln 1~,2(1)1~,ln(1)~.x a x x x x x x x x x x e x n aa x a x x x x x -+-+-+αα等价无穷小代换法 设,,,ααββ'' 都是同一极限过程中的无穷小量,且有~,~,limαααβββ''''存在,则 βαlim 也存在,且有limlim ααββ'='. 例7求极限321(1cos )n n ⋅-.解 因为lim1n →∞=,故321(1cos)n n ⋅-221(1cos )n n ⋅-=2411n n ⋅⋅=1=.例8求极限0lim1x x e →-解 有等价无穷小关系 tan ~,1~ln (0).x x x a x a x -→lim1x x e →-0x →=0x →=21.2x →===2.6利用定积分求极限由于定积分是积分和的极限,因此,某些和式问题可以化为定积分的计算,使运算得以完成.例9 求极限2222221lim 12(n 1)n n nnn n n n →∞⎡⎤++++⎢⎥+++-⎣⎦.解 222222112(n 1)n nnn n n n +++++++-2221111112111()1()1()n n n n n ⎡⎤⎢⎥=+++⎢⎥---⎢⎥+++⎣⎦.可取函数21()1f x x =+,[0,1],x ∈上述和式恰好是21()1f x x =+,在[]0,1上n 等分的积分和,所以2222222221201lim 12(n 1)1111lim 112111()1()1()1.14n n n n n n n n n n n n n n dx x π→∞→∞⎡⎤++++⎢⎥+++-⎣⎦⎡⎤⎢⎥=+++⎢⎥---⎢⎥+++⎣⎦==+⎰2.7利用泰勒公式求极限常用泰勒公式展开235211224221211();2!!sin (1)();3!5!(21)!cos 1(1)();2!4!(2)!ln(1)(1)();2nxn n n n nn n nn n x x e x x n x x x x x x n x x x x x n x x x x x nοοοο--+-=+++⋅⋅⋅++=-++⋅⋅⋅+-+-=-++⋅⋅⋅+-++=-+⋅⋅⋅+-+22(1)(1)(1)(1)1();2!!11().1n n n n n x x x x x n x x x x x--⋅⋅⋅-++=+++⋅⋅⋅++=+++⋅⋅⋅++-αααααααοο例10求极限00)x a →>.解利用泰勒公式,当0x →时1()2xo x =++,于是 0limx x→x →= 01211()()1()22limx x x o x o x a a x→⎤++--⋅-⎥⎣⎦=0()2lim x x o x a x →+=0x →==. 例11 求极限2602cos 2lim x x x e e x x x -→+--.解 应用泰勒公式,将函数x e ,x e -,cos x 展开到6x 项,有2345661(),1!2!3!4!5!6!xx x x x x x e x ο=+++++++2345661(),1!2!3!4!5!6!xx x x x x x ex ο-=-+-+-++2466cos 1().2!4!6!x x x x x ο=-+-+将它们代入上式,整理,得66266004()2cos 246!lim lim 6!xxx x x x e e x x x x ο-→→++--==. 2.8两边夹法则求极限当极限不易求出时,可考虑将所求极限变量,做适当的放大或缩小,是放大或缩小的新变量,易于求极限,且二者的极限值相等,则原极限存在,切等于此公共值.例11 求极限01lim x x x →⎡⎤⎢⎥⎣⎦.解 因为1x ⎡⎤⎢⎥⎣⎦是对1x 取整,则1111(0)x x x x⎡⎤-<≤≠⎢⎥⎣⎦, 当0x >时,111x x x ⎡⎤-<≤⎢⎥⎣⎦,当0x <时,111x x x ⎡⎤->≥⎢⎥⎣⎦, 故1lim 1x x x →⎡⎤=⎢⎥⎣⎦. 例12 设1!2!!,!n n x n ++⋅⋅⋅+=求极限lim .n n x →∞解 当分子2n >时,有2!1!2!(2)!(1)!n n n n -<++⋅⋅⋅+-+-(2)(2)!(1)!!n n n n <--+-+2(1)!!n n <-+,因此,当2n >时,211n x n<<+, 所以lim 1n n x →∞=.2.9利用单侧极限求极限可以用单侧极限求解的问题类型如下(1) 求含xa 的函数x 趋向无穷的极限,或求含1xa 的函数x 趋于0的极限; (2) 求含取整函数的函数极限; (3) 分段函数在分段点处的极限;(4) 含偶次方根的函数以及arctan x 的函数,x 趋向无穷的极限.这种方法还能使用于求分段函数在分段点处的极限,首先必须考虑分段点的左、右极限,如果左、右极限都存在且相等,则函数在分界点处的极限存在,否则极限不存在.例13 设函数21sin ,0()1,0x x f x xx x ⎧>⎪=⎨⎪+≤⎩ ,求()f x 在0x =的极限. 解 由于1lim sin 1x x x+→=,20lim(1)1x x -→+=,故00lim ()lim ()1x x f x f x +-→→==, 从而lim ()1x f x →=.2. 10利用中值定理求极限拉格朗日(Lagrange )中值定理 若函数()f x 满足如下条件 (i) ()f x 在闭区间,a b 上连续 ; (ii) ()f x 在开区间(,)a b 可导, 则在(,)a b 至少存在一点ξ,使得()()()f b f a f b aξ-'=- .例14 求函数极限30sin(sin )sin lim x x xx →- .解 因为sin(sin )sin x x -[](sin )cos (sin )x x x x x θ=-⋅⋅-+ (01)θ<<,所以30sin(sin )sin limx x xx→- []3(sin )cos (sin )lim x x x x x x xθ→-⋅⋅-+=20cos 1lim3x x x →-=0sin lim 6x x x →-=16=-积分中值定理 若()f x 在[,]a b 上连续,则至少存在一点[,]a b ξ∈,使得()()()b af x dx f b a ξ=-⎰.例15 求极限sin lim ,n p nn xdx x+→∞⎰p 为某实数. 解 由积分中值定理,得sin sin n p n nnx dx p x ξξ+=⋅⎰,因为n ξ为介于n 与n p +之间的某值,则111n n n p ξ≤≤+ 或 111n n n pξ≥≥+, 而sin 1n ξ≤,由无穷小量与有界量的乘积仍为无穷小量及迫敛性得sin lim 0n p nn xdx x+→∞=⎰. 定理(推广的积分第一中值定理) 若函数()f x 与()g x 在[],a b 上连续,且()g x 在[],a b 上不变号,则至少有一点[],a b ξ∈,使得()()()()b baaf xg x dx f g x dx ξ=⎰⎰.例16 求函数极限40lim sin n n xdx π→∞⎰.解 由题 ()sin ,()1,n f x x g x ==均在[0,]4π上连续,且()g x 不变号,由推广的积分第一中值定理40limsin nn xdx π→∞⎰40lim sin nn dx πξ→∞=⎰ limsin (0)4n n πξ→∞=⋅-lim(sin )04n n πξ→∞==.小结以上所求极限的方法各有条件、各具特色,因此各种类型所采用的技巧方法都不尽相同,我们必须根据其条件来判断极限的类型,进而根据类型来找到解决问题的方法.当然,有些题目有可能可以用多种方法来解决,此时,我们不可以死搬硬套,要从繁琐中找复杂,在复杂中找简单,而关于如何做到这一点,就必须在做题中不断总结、摸索、领悟各种方法的精髓,才能熟练而有灵活的掌握与运用各种求极限的方法.参考文献[1] 林源渠,方企勤. 数学分析解题指南.[M].:大学,2003.[2] 郝涌,学志,陶有德. 数学分析选讲.[M].:国防工业,2010.[3] 同济大学应用数学系. 高等数学.[M].:高等教育,1996.[4] 玉琏,奎元,伟,吕风. 数学分析讲义学习辅导书.[M].:高等教育,2003.[5] 清华,昊.数学分析容、方法与技巧.[M].华中科技大学, 2003.[6] 华东师大学数学系. 数学分析上册第三版.[M].高等教育,2001.[7] 钱. 数学分析解题精粹.[M].:崇文书局,2003.[8] 梁昌洪. 话说极限.[M].:高等教育,2009.。
数学分析毕业论文
数学分析毕业论文数学分析毕业论文在数学领域中,数学分析是一门重要的学科,它研究的是数学中的极限、连续、微积分等概念与方法。
作为一个数学专业的学生,我选择了数学分析作为我的毕业论文的主题,旨在深入研究数学分析的理论与应用,探索其中的奥秘与美妙。
首先,我将从数学分析的基础概念入手。
数学分析的核心概念有极限、连续和微积分等。
极限是数学分析的基石,它描述了函数在某一点的趋近性质。
通过极限的概念,我们可以研究函数的连续性和可导性,进而探索函数的性质和行为。
连续是数学分析中一个重要的概念,它描述了函数在某一区间上的无间断性。
连续函数具有许多有趣的性质,如介值定理和最值定理等。
微积分是数学分析的重要分支,它研究的是函数的变化率和积分。
通过微积分,我们可以求解曲线的斜率、曲线下的面积以及函数的最值等问题。
接下来,我将探讨数学分析在实际问题中的应用。
数学分析在物理学、工程学和经济学等领域中有着广泛的应用。
在物理学中,数学分析可以用来描述物体的运动和变化。
通过微分方程和积分方程,我们可以建立物理模型并求解出相应的物理量。
在工程学中,数学分析可以用来优化工程设计和解决实际问题。
例如,通过最优化理论和约束条件,我们可以确定最佳的工程方案和决策。
在经济学中,数学分析可以用来研究市场供求关系和经济增长等问题。
通过微分方程和微分方程组,我们可以建立经济模型并预测经济走势。
此外,我还将讨论数学分析中的一些经典问题和定理。
例如,柯西收敛准则、泰勒级数展开和黎曼积分等。
这些经典问题和定理不仅有着重要的理论意义,也具有广泛的应用价值。
通过研究这些问题和定理,我们可以深入理解数学分析的内涵和深度。
最后,我将对数学分析的未来发展进行展望。
随着科技的进步和社会的发展,数学分析在理论和应用方面仍有许多挑战和机遇。
例如,随机分析、非线性分析和复分析等新兴领域的发展,将为数学分析提供更加丰富和广阔的研究空间。
同时,数学分析在人工智能、大数据和量子计算等领域的应用也将得到进一步的拓展和深化。
关于数学分析的论文
关于数学分析的论文一、教学中的常见问题1、学习兴趣不足在数学教学过程中,学习兴趣不足的问题尤为突出。
由于数学本身具有较强的逻辑性和抽象性,学生在学习过程中容易感到枯燥乏味,进而影响学习效果。
一方面,教材内容的编排和教学方法的选择可能导致学生对数学学习缺乏兴趣;另一方面,学生自身的学习动机、兴趣点和个性特点也会影响他们对数学学习的热情。
(1)教材内容方面:部分教材内容过于理论,缺乏实际应用背景,使得学生在学习过程中难以感受到数学的实用价值,从而降低学习兴趣。
(2)教学方法方面:传统的“灌输式”教学方式使得学生在课堂上被动接受知识,缺乏主动探究和实践的机会,导致学习兴趣不高。
(3)学生个体差异方面:不同学生的兴趣点和学习能力存在差异,而教师在教学过程中往往难以兼顾每个学生的需求,从而影响整体学习兴趣。
2、重结果记忆,轻思维发展在数学教学中,部分教师过于关注学生的考试成绩,强调对公式、定理的记忆,而忽视了对学生思维能力的培养。
这种现象导致学生在面对问题时,往往只会套用公式、定理,缺乏独立思考和解决问题的能力。
(1)课堂教学方面:教师在课堂上过于注重知识传授,缺乏引导学生进行思考、探究的过程,使得学生难以形成自己的思维方式。
(2)作业与评价方面:作业和考试内容多以计算和套用公式为主,忽视了对学生分析、综合、解决问题能力的考查,导致学生重结果记忆,轻思维发展。
3、对概念的理解不够深入概念是数学知识的基石,对概念的理解程度直接影响着学生的学习效果。
然而,在实际教学过程中,学生对概念的理解往往不够深入,表现在以下方面:(1)教师教学方面:部分教师在教学中对概念的引入和阐述不够清晰,导致学生对概念的理解停留在表面。
(2)学生学习方面:学生在学习过程中,往往只关注概念的字面意思,缺乏对内涵和外延的深入挖掘,使得对概念的理解不够全面。
(3)教材编排方面:部分教材对概念的讲解不够详细,缺乏实例和练习,使得学生难以在实际操作中加深对概念的理解。
数学分析论文(第一版)
函数概念是全部数学概念中最重要的概念之一,纵观300年来函数概念的发展,众多数学家从集合、代数、直至对应的角度不断赋予函数概念以新的思想,从而推动了整个数学的发展。
本论文将通过对函数的诞生与发展、函数在各个领域的应用及函数在未来的发展进行研究,从而让我们对函数有进一步的认识。
了解函数的诞生背景1.早期函数的概念——几何观念下的函数十七世纪伽俐略在《两门新科学》一书中,几乎全部包含函数或称为变量关系的这一概念,用文字和比例的语言表达函数的关系。
1673年前后笛卡尔在他的解析几何中,已注意到一个变量对另一个变量的依赖关系,但因当时尚未意识到要提炼函数概念,因此直到17世纪后期牛顿、莱布尼兹建立微积分时还没有人明确函数的一般意义,大部分函数是被当作曲线来研究的。
1673年,莱布尼兹首次使用“function” (函数)表示“幂”,后来他用该词表示曲线上点的横坐标、纵坐标、切线长等曲线上点的有关几何量。
与此同时,牛顿在微积分的讨论中,使用“流量”来表示变量间的关系。
2.十八世纪函数概念——代数观念下的函数1718年约翰•贝努利在莱布尼兹函数概念的基础上对函数概念进行了定义:“由任一变量和常数的任一形式所构成的量。
”他的意思是凡变量x和常量构成的式子都叫做x的函数,并强调函数要用公式来表示。
1755,欧拉把函数定义为“如果某些变量,以某一种方式依赖于另一些变量,即当后面这些变量变化时,前面这些变量也随着变化,我们把前面的变量称为后面变量的函数。
”18世纪中叶欧拉给出了定义:“一个变量的函数是由这个变量和一些数即常数以任何方式组成的解析表达式。
”他把约翰•贝努利给出的函数定义称为解析函数,并进一步把它区分为代数函数和超越函数,还考虑了“随意函数”。
不难看出,欧拉给出的函数定义比约翰•贝努利的定义更普遍、更具有广泛意义。
3.十九世纪函数概念——对应关系下的函数1821年,柯西从定义变量起给出了定义:“在某些变数间存在着一定的关系,当一经给定其中某一变数的值,其他变数的值可随着而确定时,则将最初的变数叫自变量,其他各变数叫做函数。
数学分析的毕业论文
数学分析的毕业论文数学分析的毕业论文数学分析是数学的一个重要分支,它研究的是数学对象的性质和变化规律。
作为数学专业的学生,我在大学期间学习了数学分析的相关知识,并对其产生了浓厚的兴趣。
在即将毕业之际,我决定以数学分析为主题撰写我的毕业论文,以探索更深入的数学领域。
一、引言在引言部分,我将简要介绍数学分析的背景和重要性。
数学分析作为数学学科的核心内容,具有广泛的应用价值。
它不仅为其他学科提供了重要的理论基础,也在实际问题的解决中发挥着重要作用。
在本文中,我将重点研究数学分析的一些基本概念和定理,并探讨它们在实际问题中的应用。
二、基本概念和定理的介绍在这一部分,我将详细介绍数学分析中的一些基本概念和定理。
首先,我将介绍实数和实数集的概念,以及实数的基本性质。
接着,我将介绍极限和连续的概念,并讨论它们的性质和应用。
此外,我还将介绍导数和微分的概念,并探讨它们在函数研究中的重要性。
最后,我将介绍积分的概念和性质,以及它在数学分析中的应用。
三、实际问题的数学建模和分析在这一部分,我将探讨数学分析在实际问题中的应用。
数学分析作为一门应用性很强的学科,可以通过建立数学模型来解决实际问题。
我将以一些具体的实际问题为例,介绍如何利用数学分析的方法进行建模和分析。
例如,我可以选择研究一个物体的运动问题,通过分析其位移、速度和加速度的关系,来推导出物体的运动规律。
此外,我还可以选择研究一个经济问题,通过建立数学模型来分析市场供求关系和价格变动的规律。
四、数学分析的发展和前景在这一部分,我将探讨数学分析的发展和前景。
数学分析作为数学学科的核心内容,一直在不断发展和完善。
随着科学技术的进步和应用领域的拓展,数学分析的研究和应用也将越来越广泛。
在未来,数学分析将继续发挥重要作用,并为其他学科的发展提供理论支持。
同时,数学分析的研究也将面临一些挑战和困难,需要不断探索和创新。
五、结论在结论部分,我将总结本文的主要内容,并对数学分析的研究进行回顾和展望。
如何撰写数学分析论文(一)
数学分析精品课程系列讲座如何撰写数学分析论文(一)郎开禄(2010年3月24日)第一章学术论文§1.何谓学术论文学术论文是对某科学领域中的某个问题进行探讨、研究,表述其研究成果的文章。
学术论文,也称科学论文、研究论文。
一.学术论文1.可以是在某学科领域中经过自己的观察、实验、实践,有新的发现、发明、创造,陈述新的见解或主张;2.可以是把一些分散的材料系统化,用新的观点或用新的方法加以论证,得出新的结论;3.可以是推翻某学科领域中的某种旧的观点,提出新的见解。
二.学术论文的特征学术论文的显著特征:论文内容必须具有新发现、新发明、新创造或新推进。
三.学术论文的功能学术论文的功能:1.促进社会发展.2.进行学术交流.3.为人材考核提供一定的依据.4.训练提高科研能力和写作能力.总体上讲,撰写学术论文,可以提高作者调动和运用知识的能力,掌握分析研究问题的方法,可以提高科研能力、科研水平及理论思维水平。
研读学术论文,则可以从中获取较为密集的、系统的、深广的知识,从而大大提高读者的知识水平和理论水平.§2.学术论文的性质一.科学性1.学术论文应本着科学的态度,运用科学的原理和方法,去阐明新的科学问题.2.学术论文引用的观点和材料要有科学性.二.理论性1.每一门学科都有独特的研究领域,也都有各自的专门的学术语言、理论概念及理论体系.2.学术论文应以正确的理论为基石,表述有一定的理论深度的科学研究成果.三.创造性1.论文一定要有新意.2.创造性或创新性、创见性、独创性,是科学研究和学术论文的生命,是衡量学术论文价值的根本标志.四.规范性1.学术论文行文格式上要规范.2.学术论文语言表达上要规范.§3.学术论文的分类一.科研专业论文科研专业论文,是记述创新性研究工作成果的书面文章。
这种文章是指:1.学科领域中专业技术人员表述科研的研究成果.2.某些实验性理论性或观测性的新知识的科学记录.3.某些已知原理应用于实际并取新进展的科学总结.二.学业论文(一).学年论文学业论文指在校学生撰写的学术论文,它包括学年论文和毕业论文.在校学生在老师的指导下,通过撰写学年论文和毕业论文,培养科学研究的能力,同时借以考察同学掌握知识的深度、广度及解决问题的能力。
培养和提高高中生数学分析和解决问题能力策略论文
培养和提高高中生数学分析和解决问题能力的策略新课标明确指出:高中数学课程对于提高分析和解决问题的能力,形成理性思维,发展智力和创新思维起着基础性作用。
分析和解决问题的能力是指能阅读,理解对问题进行陈述的材料;能综合应用所学数学知识,思想和方法解决问题,包括解决在相关学科,生产,生活中的数学问题,并能用数学语言正确地加以表述,建立恰当的数学模型,利用对模型的求解的结果加以解释。
在它是逻辑思维能力,运算能力,空间想象能力等基本数学能力的综合体现。
由于高考数学科的命题原则是在考查基础知识的基础上,注重对数学思想和方法的考查,注重数学能力的考查,强调了综合性。
1.立足新教材,注意挖掘教材的内涵我们认为,新教材更加注重学生的认识规律,及学生的学习兴趣。
新知识的引入借助实例,不仅有助于学生认识数学的应用价值,增强应用意识,更能激发学生的求知欲望,集中学生的注意力,提高课堂效率。
通过对新教材的研究,来改变教师脑海中原有模式,发现新问题,采取新方法,新策略,打破旧框框,找到更加合理的授课方法。
因此,教师应在吃透教材的基础上,精心选择出课本中的典型题目,并努力创设出问题解决的各种情境,设计新颖的教学过程,激发学生主动参与到问题解决活动的过程中,让学生在发现,猜想,探索,验证等思维活动过程中受到不同层次的思维训练,真正体验到成功者的喜悦与满足,激发学生的创新意识,发展学生的创造能力,从而把枯燥的数学知识转化为激发学生求知欲望的刺激物,引发学生产生进取心。
立足新教材,也不完全局限于新教材,有些地方作适当的补充,如实例引入时,我们适当增加学生比较好理解的实例,教材跨度大的地方,我们依据学生的情况加入过渡知识,如新教材在不讲极限来讲导数,我们便要对教材进行适当的处理。
要善于从日常的教学中教会学生学习的方法,培养他们的能力,这就是新教材“新”的地方。
2.吃透新教材的“思考”与“探索”新教材中的“思考”与“探索”是新,旧教材较明显的一个区别,新教材中的“思考”与“探索”不仅有助于学生加深对知识的理解,同时对培养学生的发现问题,探索问题,分析,归纳能力有极大的帮助,我们利用集体备课时间专门对此类问题进行深刻的探讨,各抒己见,力争在教学中尽量多地去设计“思考”与“探索”,目的在于培养学生的思维能力,交流和合作的能力,进而提高分析问题和解决问题的能力。
《数学分析一》研究性教学总结
《数学分析(一)》研究性教学总结数学分析是连接初等数学与高等数学的桥梁,是数学类专业最重要的基础课之一。
数学分析在数学专业中的地位是由其本身丰富的内容,严密完整的体系以及对后继课程的深刻影响所决定的,它是进一步学习复变函数论、常微分方程、微分几何、概率论、实变函数与泛函分析等后继课程的阶梯。
分析功底是否扎实,对学生学习这些专业课有举足轻重的影响。
《数学分析》课程基本的内容有:极限理论、连续性理论、一元函数微分学、一元函数积分学、级数理论、多元函数微分学、多元函数积分学等。
而数学分析(一)的任务则主要是打基础,分七章内容,从数学分析的基本工具—极限入手,导出连续、导数、微分等概念,主要讲述一元微分和实数完备性,内容整体多而难教难学。
基于课程内容的特点,我们设定了具体的教学方案和教学要求,将课程内容进行了分类,具体地说,分为四个层次: A-本课程最基本的内容,包括教学重点,要求学生深刻理解、熟练掌握;B-本课程的基本内容,要求学生理解和掌握;C-本课程的一般内容,包括后续课程中会进一步学习的内容,要求学生了解;D-选学内容,供优秀的学生选读。
在教学过程中注重引导学生如何学习,让学生掌握如何“学习”,即如何发现问题、分析问题、解决问题的能力,从而学会学习。
主要做法有: 以学生为本,积极进行教学改革。
从学生实际出发,不断更新和调整教学方法教学内容,如改进一些定理命题的证明和调整或补充一些新的例题,特别是增加近年来的考研题。
在教学过程中,注重实际应用背景知识及几何直观的解释,强调概念与方法的来源,不同概念间的内在联系,使抽象概念的引入具体生动;采取探究式教学法,加强逻辑思维能力的培养与训练;开展讨论式教学,训练学生由“学”到“教”的思维模式,培养学生讲课及语言表达的能力;采取一题多解、举一反三的教学方法,强化习题练习,训练学生的解题方法,培养灵活运用的能力。
为方便学生课前预习、课堂听课和课后复习,特别是为帮助学生在课堂上做到“记”和“听”有机结合,编写了《数学分析讲义》(上册)等材料。
数学分析极限论文
数学分析中求极限的方法总结熊伟 1303090119 数学0901摘要:数学分析是以极限为工具来研究函数的学科,掌握求极限的方法对学习数学分析有很大帮助,然而求极限的题型多变,技巧性强,本文总结了几种一般的求极限方法,并对专用于求数列极限和函数极限以及两者通用的方法进行归类总结,同时为每种方法相应的举例对方法加以说明.关键词:极限 、数列极限 、函数极限 、方法 、总结在我们所学过的数学分析中有数列极限和函数极限两种,我将用于专门求数列极限或函数极限,两者通用的方法进行了如下归纳.1 求数列极限的方法定义法 这是求数列极限最基本的方法.设{n x }是数列,A 为常数,0>∀ε,∃正整数N ,当N n >有ε<-A x n 成立,称{n x }以A 为极限或{n x }收敛于A ,记作A x n n =∞→lim .[1]例1 证明0)1(lim=-∞→nnn 证明:0>∀ε,取1]1[+=εN ,则当N n >时,有ε<--0)1(nn0)1(lim=-∴∞→n n n 2 求函数极限的方法2.1 定义法 设)(x f y =在)(00x O 内有定义,A 为常数,0>∀ε,0>∃δ,当δ<-<00x x 时,有ε<-A x f )(,称)(x f 在0x 点收敛于A ,记作A x f x x =→)(lim 0.[1]例2 求证211lim=--→x x x x证明:0>∃δ,取εδ=,则当δ<-<10x 时,有ε<-<+-=-=---1111211x x x x x x2.2 两个重要极限的应用.1sin lim0=→x x x e xx x =+∞→)11(lim例3 求)0,(sin sin lim 0≠→n m nx mx x 解:原式n mnx nx nx mx mx mx x ==→sin **sin lim 0例4 求n n n )111(lim ++∞→ 解:原式=11])111[(lim ++∞→++n nn x n =1lim1])111[(lim ++∞→∞→++n nn x n n e = 3 以下方法求数列极限和函数极限均适用,方法均以数列为例举出,将n x 和n y 相应的替换为)(x f 和)(x g 可得求函数极限的方法. 3.1 利用极限的夹逼准则求极限. 例5 求)12111(lim 222n n n n n ++++++∞→解:设原式的=A , 那么122+≤≤+n n A n n n 又 1lim2=+∞→nn n n ,11lim2=+∞→n n n1)12111(lim 222=++++++∴∞→nn n n n3.2利用极限的四则运算,此法一般参杂在其他方法中使用. 例6 求)(lim 2n n n n -+∞→解:∞→n lim (n n +2-n)=∞→n limnnn n ++2=)111(lim ++∞→n n =2. 3.3利用泰勒公式求极限,在含有xe ,正余弦的极限中注意此方法. 例7 求)1(11sin lim 2x x e x x ----=→解: )(!2122x o x x e x+++= )(sin 2x o x x += )(21)1(222x o x x +-=- ∴2!21sin 22x x x e x==-- )(2)1(1222x o x x +=-- 1021021lim )(21)(21lim)(2)(2lim )1(11sin lim 0222202222020=++=++=++=----∴→→→→x x x xx xx o x x o x o x x o x x x e 3.4利用洛必达法则求解,首先介绍使用洛必达法则的前提. 必须是00或∞∞型才能用洛必达法则,若是∞-∞,∞*0,00,∞1,0∞等待定型,则用通分,取倒数或取对数的方法将其转化为00或∞∞型. 例8 求xx xx x x sin cos lim0--→解:原式3)sin cos 2(lim sin cos sin sin lim cos 1sin cos 1lim 000=+=++=-+-=→→→xxx x x x x x x x x x x x x此外,还有一个简便的方法,在我们了解函数图像大体趋势时,可根据函数图像上升或下降的速度来判断极限是0还是∞.应注意的是,当函数x 无限趋近于某一数时,这两个函数图像同增或同减.以上是我总结的几种求极限的方法。
数学分析的毕业论文
数学分析的毕业论文数学分析是数学中的一门基础性学科,它主要研究数列、函数、极限等概念及其相关的理论方法。
数学分析在科学研究和工程技术中都有着重要的应用,因此,它一直是数学学科的重要分支之一。
本篇毕业论文将基于数学分析的基础知识,探讨一下函数极限在数学中的应用及其相关的定理。
一、函数极限的应用函数极限是数学分析中的一个重要概念,它是指当自变量x接近一定的值时,函数f(x)的值会趋向于一个常数L。
具体来说,若存在常数L,对于任意给定的正数ε,都存在正数δ,使得当0<|x-a|<δ时,就有|f(x)-L|<ε成立,则称函数f(x)在x=a 处收敛于L。
函数极限的应用非常广泛,它可以用来描述函数在某一点的行为方式,例如函数的连续性、导数、积分等。
另外,在物理学、经济学、工程学等领域中,函数极限的应用也非常重要。
例如在物理学中,当进行一些物理量的测量时,通过获得一系列渐进趋向的数值,可以使用函数极限的概念来精确地计算物理量的值。
二、函数极限的基本定理在数学分析中,函数极限的基本定理包括了极限的四个基本法则:算术、夹逼、单调性和介值原理。
1.算术法则对于两个函数f(x)和g(x),如果它们在x=a处收敛于L和M,则有:①f(x)+g(x)在x=a处收敛于L+M。
②kf(x)在x=a处收敛于kL,其中k为实数。
③f(x)×g(x)在x=a处收敛于LM。
④f(x)/g(x)在x=a处收敛于L/M(其中,g(x)≠0)。
这表示了求和、差、积、商等四则运算在极限运算中也是可行的。
2.夹逼法则夹逼法则也称为挤压定理,它是证明函数极限的有力工具之一。
它的基本思想是,如果一个函数f(x)始终位于两个收敛函数g(x)和h(x)之间,且两个函数的极限相等,则f(x)也收敛于相同的极限值。
它的数学表达式如下:假设f(x)、g(x)和h(x)是三个函数,并满足以下条件:①g(x)≤f(x)≤h(x),其中x在某个区间(a,∞)中。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数概念是全部数学概念中最重要的概念之一,纵观300年来函数概念的发展,众多数学家从集合、代数、直至对应的角度不断赋予函数概念以新的思想,从而推动了整个数学的发展。
本论文将通过对函数的诞生与发展、函数在各个领域的应用及函数在未来的发展进行研究,从而让我们对函数有进一步的认识。
了解函数的诞生背景1.早期函数的概念——几何观念下的函数十七世纪伽俐略在《两门新科学》一书中,几乎全部包含函数或称为变量关系的这一概念,用文字和比例的语言表达函数的关系。
1673年前后笛卡尔在他的解析几何中,已注意到一个变量对另一个变量的依赖关系,但因当时尚未意识到要提炼函数概念,因此直到17世纪后期牛顿、莱布尼兹建立微积分时还没有人明确函数的一般意义,大部分函数是被当作曲线来研究的。
1673年,莱布尼兹首次使用“function” (函数)表示“幂”,后来他用该词表示曲线上点的横坐标、纵坐标、切线长等曲线上点的有关几何量。
与此同时,牛顿在微积分的讨论中,使用“流量”来表示变量间的关系。
2.十八世纪函数概念——代数观念下的函数1718年约翰•贝努利在莱布尼兹函数概念的基础上对函数概念进行了定义:“由任一变量和常数的任一形式所构成的量。
”他的意思是凡变量x和常量构成的式子都叫做x的函数,并强调函数要用公式来表示。
1755,欧拉把函数定义为“如果某些变量,以某一种方式依赖于另一些变量,即当后面这些变量变化时,前面这些变量也随着变化,我们把前面的变量称为后面变量的函数。
”18世纪中叶欧拉给出了定义:“一个变量的函数是由这个变量和一些数即常数以任何方式组成的解析表达式。
”他把约翰•贝努利给出的函数定义称为解析函数,并进一步把它区分为代数函数和超越函数,还考虑了“随意函数”。
不难看出,欧拉给出的函数定义比约翰•贝努利的定义更普遍、更具有广泛意义。
3.十九世纪函数概念——对应关系下的函数1821年,柯西从定义变量起给出了定义:“在某些变数间存在着一定的关系,当一经给定其中某一变数的值,其他变数的值可随着而确定时,则将最初的变数叫自变量,其他各变数叫做函数。
”在柯西的定义中,首先出现了自变量一词,同时指出对函数来说不一定要有解析表达式。
不过他仍然认为函数关系可以用多个解析式来表示,这是一个很大的局限。
1822年傅里叶发现某些函数也可以用曲线表示,也可以用一个式子表示,或用多个式子表示,从而结束了函数概念是否以唯一一个式子表示的争论,把对函数的认识又推进了一个新层次。
1837年狄利克雷突破了这一局限,认为怎样去建立x与y之间的关系无关紧要,他拓广了函数概念,指出:“对于在某区间上的每一个确定的x值,y都有一个或多个确定的值,那么y叫做x的函数。
”这个定义避免了函数定义中对依赖关系的描述,以清晰的方式被所有数学家接受。
这就是人们常说的经典函数定义。
4.现代函数概念——集合论下的函数等到康托创立的集合论在数学中占有重要地位之后,维布伦用“集合”和“对应”的概念给出了近代函数定义,通过集合概念把函数的对应关系、定义域及值域进一步具体化了,且打破了“变量是数”的极限,变量可以是数,也可以是其它对象。
1914年豪斯道夫在《集合论纲要》中用不明确的概念“序偶”来定义函数,其避开了意义不明确的“变量”、“对应”概念。
库拉托夫斯基于1921年用集合概念来定义“序偶”使豪斯道夫的定义很严谨了。
从几何观念下的函数一直到集合论下的函数,是伟大的数学家们一起努力的成果,虽然他们没有给出确定的概念,不过函数的思想已经深深地印在了人们的脑海。
回顾函数从诞生到现在的发展今日的数学大厦是历经数千年、数代数学家不断建设完善的结果.。
其中函数概念从17 世纪被引入以来,也伴随着数学思想的发展,经历了数次演变,逐渐从模糊走向严密。
对于数学和科学来说,函数是一个最重要、最有意义的数学概念,是人类心智发展的一个重要标志。
作为最能深刻刻画现代数学发展的一个数学概念,认真地考察函数概念的起源、演变及其发展,不仅能够进一步加深对函数概念的认识与把握,也是深入了解数学思想和整个数学理论发展的重要途径。
结合函数的萌芽及我们对函数的学习,我们知道函数的定义有三种,那下面我们一起回顾一下函数的三种定义:(一)函数的变量说定义:一般地,设在一个变化过程中有两个变量x与y,如果变量y随着x的变化而变化,那么说x是自变量,y是因变量,则称y是x的函数。
其中x的取值范围叫做函数的定义域,与x的值对应的y 的值的集合叫做值域。
例:一辆汽车的油箱中现有汽油50L,如果不再加油,那么油箱中的油量y(单位:L)随行驶里程x(单位:km)的增加而减少,平均耗油量为0.1L/km。
(1)写出表示y与x的函数关系式;(2)指出自变量x的取值范围;(3)汽车行驶200km时,油箱中还有多少汽油?这就是利用函数的概念解决我们生活中的问题的一个例子,其实这样的例子还有很多,所以函数的定义的引入对我们解决问题起了很关键的作用。
在这个定义中,强调的是变化,一个量随着另一个量的变化。
这个定义是函数的基础定义,也是我们在刚开始接触函数时所学的定义,在这个函数的顶一下,最常见的是一次函数、二次函数等。
那我们现在以一次函数为例,研究一下它有哪些性质:一次函数表达式y=kx+b(k≠0,b≠0) y=kx+b(k≠0,b=0)名称一次函数正比例函数函数图像经过的点(0,b) (0,0)单调性在整个x轴上是单调递增函数在整个x轴上是单调递增函数际生活中的函数例子:例1:汽车油箱中原有50L油,如果行驶中每小时用油5L,求油箱中的油量y随时间x的变化的函数解析式,并写出自变量x的取值范围,y是x的一次函数吗?例2:某风景区集体门票的收费标准是:20人以内(含20人),每人25元;超过20人的,超过的部分,每人10元.(1)写出应收门票费y(元)与游览人数x(人)之间的关系式;(2)某班54名学生去该风景区游览时,购门票花了多少钱?(二)函数的对应说:设A为非空实数集,如果存在一个对应规律ƒ,对A中每一个元素x按照对应规律ƒ,存在R中的唯一的一个实数y与之对应,则称对应规律ƒ是定义在A上的函数,表示为ƒ:A→R,集合A称为函数ƒ的定义域,元素x所对应的y的值得集合称为函数ƒ的值域。
(三)函数的关系说:设ƒ是集合X与集合Y的关系,即ƒ∈X×Y。
如果还满足(x1,y1)∈ƒ,(x1,x2) ∈ƒ,则y1=y2,那么称ƒ是集合X到集合Y的函数。
我们在了解了函数的三种定义之后,那我们下面来看看我们在学习中经常用到的一些初等函数,了解一下它们的图像、性质及其应用。
(1)幂函数y=x^a (a为实数)定义域:随a的不同而不同,但无论a取什么值,x^a在(0,∞)内总有定义。
值域:随a的不同而不同单调性:若a>0,函数在(0,∞)内单调增加;若a<0,函数在(0,∞)内单调减少。
奇偶性:因为随着a的不同,它的函数表达式也会不同,所以他们的奇偶性要根据不同的函数表达式来判断,但是我们必须知道下列函数的奇偶性:常见幂函数的图像.(2)指数函数 y=a^x,(a>0且a≠1)定义域:(-∞,+ ∞) 值域:(0,+ ∞) 单调性:若a>1 函数单调增加;若0<a<1 函数单调减少奇偶性:非奇非偶函数周期性:不是周期函数指数函数的图像:(3)对数函数定义域:(0,+∞)值域:(-∞,+∞)单调性:a>1时,函数单调增加;0<a<1时,函数单调减少奇偶性:非奇非偶函数周期性:不是周期函数对数函数的图像:(4)三角函数正弦函数:y=sinx定义域:(-∞,+ ∞) 值域:[-1,1]有界性:[-1,1]单调性:(-∏/2+2k∏, ∏/2+2k∏)单调递增,( ∏/2+2k∏,3∏/2+2k∏)单调递减奇偶性:奇函数周期性:以2k∏为周期的周期函数;余弦函数:y=cosx定义域:(-∞,+ ∞) 值域:[-1,1]有界性:[-1,1] 有界函数单调性:(-∏+2k∏, 2k∏)单调递增,( 2k∏,2∏+2k∏)单调递减奇偶性:偶函数周期性:以2k∏为周期的周期函数;正切函数:y=tanx定义域:x≠∏/2+2k∏值域:(-∞,+∞)单调性:(-∏/2+2k∏, ∏/2+2k∏)单调递增奇偶性:偶函数周期性:以k∏为周期的周期函数;那这些基本初等有哪些应用呢?下面我们看一下下面这些例子:例1:牛奶保鲜时间因储藏时温度的不同而不同,假定保鲜时间与储藏温度之间的函数关系是一种指数型函数,若牛奶放在0ºC的冰箱中,保鲜时间是200h,而在1ºC的温度下则是160h.(1) 写出保鲜时间y关于储藏温度x的函数解析式;(2) 利用(1)的结论,指出温度在2ºC和3ºC的保鲜时间.例2:19.光线通过一块玻璃,其强度要损失10%,把几块这样的玻璃重叠起来,设光线原来的强度为k,通过x块玻璃以后强度为y.(1)写出y关于x的函数关系式;(2)通过多少块玻璃以后,光线强度将减弱到原来的13 以下.(lg3≈0.477 1)例3:某种放射性物质不断变化为其它物质,每经过一年,剩留的该物质是原来的 ,若该放射性物质原有的质量为a 克,经过x 年后剩留的该物质的质量为y 克.(1) 写出y 随x 变化的函数关系式;(2) 经过多少年后,该物质剩留的质量是原来的 ?在了解了函数从诞生到现在的发展过程之后,我们继续学习函数在各个领域内的应用,从而让我们对函数有进一步的了解。
清楚函数在各个领域的应用对于函数的应用,我们先来看看函数的重要性。
首先,函数是现代数学最重要的概念之一,描述变量之间的关系,那为什么研究函数很重要呢?还要从数学的起源说起。
各个古文明都掌握一些数学的知识,数学的起源也很多很多,但是一般认为,现代数学是承接古希腊数学的。
古希腊的很多数学家同时又是哲学家,例如毕达哥拉斯,芝诺,这样数学和哲学有很深的亲缘关系。
古希腊的最有生命力的哲学观点就是世界是变化和亚里斯多德的因果观念,这两个观点一直被人广泛接受。
前面谈到,函数描述变量之间的关系,浅显的理解就是一个变了,另一个或者几个怎么变,这样,用函数刻画复杂多变的世界就是顺理成章的了,数学成为理论和现实世界的一道桥梁。
然后再来看看这个关系,运用哲学的观点是世界的事物普遍存在联系的,而数学的函数就是很多事物关系连接的那个点,这样,函数的重要性就不言而喻了。
关于函数在各个领域的应用实在是太多太多,如数学本身、物理、社会生活、经济、生物工程、地理坏境、气象环境监测、历史考古、化学放射性物质与化学计量学、航空航天、计算机应用、高科技领域、建筑方面等等。
在这里,我们主要讲讲函数与数学本身、物理、社会生活、经济等的应用。