数量性状的遗传

合集下载

遗传学第十二章-数量性状的遗传

遗传学第十二章-数量性状的遗传

04
数量性状遗传的研究方法
统计分析方法
01
方差分析
通过比较不同群体或个体的变异 程度,确定数量性状是否受遗传 控制。
相关分析
02
03
通径分析
研究两个或多个数量性状之间的 关联程度,揭示它们之间的遗传 关系。
通过建立数量性状之间的因果关 系模型,解释不同性状之间的遗 传路径和效应。
分子生物学技术
基因定位
利用分子标记技术将数量性状基因定位到染色 体上的具体位置。
基因克隆
通过分子克隆技术分离和克隆数量性状基因, 研究其结构和功能。
转基因技术
将数量性状基因导入其他生物体,研究其表达和功能。
基因组学技术
基因组关联分析
利用全基因组关联分析技术,研究数量性状 基因与遗传变异之间的关系。
基因组编辑技术
数量性状与质量性状
质量性状是指在一个群体内存在明显 不同的、确定的类型,如人的血型。
数量性状的特征
连续变异
数量性状在群体内的变异呈连续分布,而非离散的。
受多基因控制
数量性状通常由多个基因共同作用,而非单一基因决 定。
环境与遗传交互作用
数量性状的表现不仅受遗传因素影响,还受到环境因 素的影响,两者之间存在交互作用。
等。
03
医学研究
研究人类数量性状的遗传规律, 有助于了解疾病的发生、发展和
遗传机制。
02
农业育种
通过遗传规律改良作物和动物品 种,提高产量、品质和抗逆性。
04
生物进化研究
数量性状的遗传规律是生物进化 的基础,研究数量性状的遗传有 助于深入了解生物进化机制。
03
数量性状遗传的机制
基因互作

数量性状遗传

数量性状遗传
❖基因型值是各种基因效应值总和 G=A+D P=A+D+E
数量性状遗传
第31页
加性-显性-上位性遗传模型
❖ 对于一些性状, 不一样基因座位上基因 还可能存在互作效应, 即上位性效应。
❖ 基因型值包含加性效应、显性效应和上 位性效应

G=A+D+I

P=A+D+I+E
数量性状遗传
第32页
现以 P G E 表示三者平均数, 则各项方差能够推 算以下.
P P2
2
G E
GE
G G E E 2
G G2 2G GE E E E2
数量性状遗传
第33页
• 表型离均差平方和
• 基因型离均差平方和
• 环境影响造成离均差平 方和
• 基因型与环境条件互作 效应
P P2
G G2
E E2
G GE E
数量性状遗传
第34页
• 若基因型与环 境之间没有互 作,即 :
G GE E 0
• 则表型离差平 方和等于基因 型离差平方和 加环境引发离 差平方和
数量性状遗传
第35页
上式两边都除以n或n-1:
P P2 G G2 E E2
n
n
n
P P2
VP
n
G G 2
VG
n
E E 2
VE
n
VP VG VE
数量性状遗传
第36页
VP VG VE
❖ 回交(back cross)是F1与亲本之一杂交。 ❖ F1与两个亲本回交得到群体记为B1.B2。
❖ B1表示F1与纯合亲本AA回交子代群体,
❖ F1 Aa ×P1 AA ,遗传组成是 1/2AA+1/2Aa

数量性状的遗传

数量性状的遗传

2
20/64
4
1
15/64
0
6/64
1/64
15/64
5
6/64
6
1/64
四、数量性状的遗传规律
1. F1的亲本值介乎两亲本之间。 2. F2平均值与F1的平均值接近。 3. F2的变异幅度比F1的变异幅度
更大,且F2的极端类型与亲本 的变异接近。
微效多基因概念
英国学者Mather 提出了“微效多基因”的 概念来补充孟德尔的概念,其要点如下:
1. 数量性状的遗传也受一系列基因所支配。 2. 这些基因对表现型的影响是微小的,相互
独立的,但以积累的方式发生作用。
3. 等位基因之间的显隐性关系通常不存在, 但他们也按照基本的遗传规律,有分离和 重组,连锁和交换。
这一理论为后来一系列试验所证实。
五、数量性状与选择
根据一般经验,如选出某个优良性 状,其后代平均来讲也应该偏向这 个优良性状。
♂ \♀ ab aB Ab AB
AaBbXAaBb
ab
aB
Ab
aabb aaBb Aabb
aaBb aaBB AaBb
Aabb AaBb AAbb
AaBb AaBB AABb
AB AaBb AaBB AABb AABB
0
1/16
1
4/16
2
6/16
3
4/16
4
1/16
例二:玉米果穗长度实验
由上表可见,子二代的表现型决定于基因型 中大写字母的数目,可分为五类。 1. Aabb,占1/16,与短穗亲本相同; 2. Aabb、aaBb,占4/16; 3. AAbb、aaBB、AaBb,占6/16,其表型介乎 两亲本之间,与F1植株一样。 4. AABb、AaBB,占4/16; 5. AABB、占1/16,其表型与长穗亲本一样。

数量性状的遗传名词解释

数量性状的遗传名词解释

数量性状的遗传名词解释数量性状,是指在自然界或人工条件下产生的各种特征以数量的方式表现出来的遗传性状。

它指的是通过对种群中大量个体进行测量或计量,将结果以数量化的形式呈现出来的遗传特征。

数量性状通常具有连续变异的特征,即在一个种群中存在着一系列不同的表现形式,而不是像离散性状那样只有几个确定的表型。

在数量性状的研究中,有一些重要的遗传名词需要加以解释。

其中包括基因型、表型、遗传方差、环境方差、遗传相关等。

基因型是指个体在基因水平上的遗传组成。

它决定了个体对特定数量性状的表现。

每个数量性状通常由多个基因共同决定,因此基因型的组合将决定这些基因在个体上的表现形式。

表型是指个体在外部表现上的特征。

它受到基因型和环境的共同影响。

数量性状的表型通常呈现连续性变化,这是因为数量性状通常受到多种基因的共同作用,以及环境因素的影响。

例如,人体身高就是一种典型的数量性状,它受到多基因的影响,同时还受到营养、运动等环境因素的调节。

遗传方差是指数量性状中由基因所引起的表型变异程度。

它可以通过研究个体间的表型差异以及表型与基因型之间的关系来估计。

遗传方差的大小反映了数量性状中遗传因素的重要程度。

如果遗传方差较大,说明遗传因素在数量性状的表达中起到了重要作用,反之则说明环境因素的贡献较大。

环境方差是指数量性状中由环境因素所引起的表型变异程度。

环境方差通常通过比较同一种群中不同个体之间的差异来估计。

环境方差的大小表示了环境对数量性状的影响程度。

如果环境方差较大,说明环境因素在数量性状的表达中起到了重要作用,反之则说明遗传因素的贡献较大。

遗传相关是指在同一种群中不同数量性状之间的遗传联系。

它反映了一种或多种数量性状随着基因型的变化而变化的程度。

通过研究数量性状之间的遗传相关,可以了解不同数量性状之间的遗传关系及其对进化和适应的影响。

例如,身高和体重之间的遗传相关可以帮助我们理解这两个数量性状在人类进化中是如何相互影响的。

以上介绍了数量性状的遗传名词解释,包括基因型、表型、遗传方差、环境方差和遗传相关等概念。

数量性状的遗传

数量性状的遗传

基因型方差可进一步分解成三个组成部分 ,VG=VA+VD+VI
VA:基因加性方差,是指由基因累累加加效效应应引引起起的的遗遗传传变变异异,,是是能能稳稳定定
遗传的方差组分。
VD:显性方差,是由等位基因互作效应引引起起的的遗遗传传变变异异,,是是产产生生杂杂种种
优势的主要方差组分。
VII:上上位位性方差,是由非等位基因互作效应引起的遗传变异,被认为
1、多基因遗传的特点
❖ 两个极端变异(纯种)的个体杂交 ❖ 两个中间类型的子1代个体之间杂交 ❖ 子1代随机杂交的群体
20 15 15
6
6
1
1
高 0’ 1’ 2’ 3’ 4’ 5’ 6’ 矮
例如小麦子粒颜色的遗传动态
P F1 F2 0R 白色
红R1R1R2R2 白r1r1r2r2
R1r1R2r2 红
1
4
6
4
4R
3R
2R
深红 中深红 中红
1 1R
淡红
P 红R1R1R2R2R3R3 白r1r1r2r2r3r3
F1
R1r1R2r2R3r3 红
F2 1
6 15 20 15 6 1
6R 5R 4R 3R 2R 1R 0R
最深红 深红 次深红 中红 中淡红 淡红 白色
多基因假说的要点
瑞典遗传学家尼尔迩·埃尔通过对小麦籽粒颜色 的遗传研究,提出了数量性状遗传的多基因假说。
高血压
遗传力 0.34 0.12 0.45 0.53 0.80 0.65 0.62
第三节数量性状的重复率
一、重复力的概念 一个个体的同一个数量性状,常常可以在一生中 不同时间多次度量,即重复度量,而且每次的数量 值不完全相同,如牛的泌乳量、母猪的产仔数、绵 羊的剪毛量等性状。重复度量通常有两种情况:一 种是时间上的重复度量,譬如成年泌乳奶牛每年可 以测得一个305天的泌乳量,成年母猪每胎可以记录 一个产仔数;另一种是空间上的重复度量,如绵羊 的剪毛量可以从绵羊身体的两侧对称部位同时获得 两个测量数据。

遗传学第十章 数量性状遗传

遗传学第十章 数量性状遗传

• 表型方差 = 遗传(基因型)方差 + 环境方差
• VPhenotype = VGenetics + VEnvironment
数量性状的遗传率
遗传率H2=遗传方差/表型方差 =VG /(VG+VE〕
遗传率: 遗传方差在全部方差中所 占比率, 用于定量描述遗传变 异在表型变异中所起的作用
数量性状的遗传率(Heritability)
F2 5.07
H2b=VG/VP=(VF2-VE)/VF2 5.07 = -(0.67 + 3.56 + 2.31 )/3 5.07 =57%
狭义遗传率:h2=VA/VP=(1/2 VA)/VF2
• 要求出VA,需用F1个体回交两个亲本: • F1(Aa) X P1(AA)得B1; • F1(Aa) X P2(aa)得B2。 • B1,B2的表型方差分别计算如下
• 如果控制同一性状有n对基因:A,a;B,b;…N,n • 则F2的遗传方差: • VG=1/2 aa2+1/2 ab2+…+1/2 an2 … (VA) • +1/4 da2+1/4 db2+…+1/4 dn2 ... (VD)
• 设:VA为加性效应产生的方差 • VD为显性效应产生的方差 • 则表型方差VF2=1/2 VA+1/4 VD+VE(表型方差 可由观察值来计算。)
h2N>50%高遗传率
h2N=20-50%中遗传率
h2N <20% 低遗传率
遗传率高,选择较容易;遗传率低,选择较难。
平均显性程度
控制某一性状的所有等位基因显性的平均程度。
d/a= VD/VA
显性的遗传方差的求法

数量性状的遗传

数量性状的遗传

第十章数量性状的遗传10.1 数量性状遗传的特点10.1.1数量形状遗传的特点数量性状(quantitative characters)是指在一个群体内的各个体间表现为连续变异的性状,如动植物的高度或长度等。

数量性状较易受环境的影响,在一个群体内各个个体的差异一般呈连续的正态分布,难以在个体间明确地分组。

生物界的另一类性状如红与白、有与无等称质量性状。

质量性状比较稳定,不易受环境条件的影响,它们在群体内的分布是不连续的,杂交后代的个体可以明确地分组,因而可以计算杂交子代各组个体数目的比率,分析基因分离、基因重组以及基因连锁等遗传行为。

数量性状在生物全部性状中占有很大的比重,一些极为重要的经济性状(如作物产量、生育期、籽粒重、乳牛泌乳量、羊毛长度等)都是数量性状。

研究数量性状遗传规律的学科称为数量遗传学数量性状特征:①个体间的差异是连续的,例如用穗长有差别的两个玉米品种进行杂交,则子一代(F1)植株的穗长介于两亲本之间,子二代(F2)植株的变异幅度扩大,子代各个植株的穗长呈连续的变异,因而无法求出穗长的分离比率而只能用一定尺度测量性状的表型值,再用统计学方法加以分析(见图);②容易受环境的影响,甚至纯合的亲本或基因型一致的子一代的表型也呈现连续变异。

所以子二代的变异一方面来自基因重组,另一方面则来自环境的影响。

10.1.2数量性状与质量性状生物体的性状分成数量性状和质量性状,两者既有区别也有联系。

联系表现为:1)控制性状的基因都存在于染色体,都遵循遗传规律。

2)某些性状既有数量性状特点,又有质量性状特点,因区分着眼点不同而异。

3)同一性状因杂交亲本类型或有差异的基因数不同,可能表现为数量或质量性状。

4)某些基因可能同时影响数量性状与质量性状,或者对某一性状起主基因的作用对另一性状起微效基因的作用数量性状与质量性状之间还存在明显的区别,主要表现为:1)变异的表现:质量性状的差别非常明显,是“非此即彼”的关系,彼此之间的差异是质的差异。

数量性状的遗传—数量性状遗传的特征(遗传学课件)

数量性状的遗传—数量性状遗传的特征(遗传学课件)
动物(畜禽)的大多数经济性状都是数量性状,例如产 蛋量、增重速度、产奶量、饲料报酬、胴体瘦肉率,及毛 皮动物的毛长、细度和密度等。
所以数量性状在农业中显得特别重要。 (三)人类
人的身高、体重、胖瘦、寿命……
三、认识数量性状
特点:变异不容易分为截然不同的组别,其间有 一系列的过渡类型,只有数量的不同,没有质的 差别。
10
0
5
6
7
8
9 10 11 12 13 14 15 16 17 18 19 20 21
《遗传学》
知识目标
学习目标
一、 二、 三、
知道 清楚 数量 数量
熟悉 数量 性状
性状 性状 与质
的概 的遗 量性
念 传特 状的

区别
能力目标
能用分析 数量性状 的方法分 析育种与 生产中的 实际问题
Gregor Mendel 1822-1884
(一)数量性状与质量性状的区别
五、数量性状与质量性状的关系 (二)数量性状与质量性状的相对性 1、数量性状与质量性状的区别不是绝对的; 2、生物的性状都有其质和量两个方面,只是在一 定条件下质和量表现出主次关系。 3、在不易区分一个性状是质量性状或数量性状时, 就必须根据F1或F2遗传动态特征来作出判断。
30
亲 本 25
20
玉米穗长遗传的柱形图
15
10
5
0
5
6
7
8
9 10 11 12 13 14 15 16 17 18 19 20 21
18
16
F 14 1 12
10
8 6 4
2 0
5
6
7
8
9 10 11 12 13 14 15 16 17 18 19 20 21

数量性状的遗传

数量性状的遗传

第五章 数量性状的遗传畜禽的大多数经济性状属于数量性状。

掌握数量性状的遗传规律和遗传参数对种畜生产中种畜群的生产性能的保持、对地方品种经济性能的提高、对新品种新品系的培育等工作都是十分必要的。

数量性状的遗传是有规律所循的,虽然在不同群体、在不同条件下、因估计方法不同,得到的参数有所变化,但遗传参数反映的数量性状的基本遗传规律的趋势是一定的。

第一节 数量性状的遗传基础质量性状的变异一般遵从孟德尔遗传规律,但数量性状的遗传规律与质量性状的遗传规律有一定区别。

数量性状是由大量的、效应微小而类似的、可加的基因控制,呈现连续变异,数量性状的表现还受到大量复杂环境因素的影响。

一、Nilsson-Ehle 假说及其发展生物的性状按照其表现和对其研究的方式,可大致分为质量性状、数量性状和阈性状。

质量性状的变异通常可以区分为几种明显不同的类型,遵从孟德尔遗传规律。

畜禽重要质量性状的遗传规律已经在上一章中进行了阐述。

在动物生产中所关注的绝大多数经济性状呈连续性变异,其在个体间表现的差异只能用数量来区分,这类性状称为数量性状,如奶牛的产奶量、鸡的产蛋量、肉用家畜的日增重、饲料转化率、羊的产毛量等。

与质量性状相比较,数量性状主要有以下特点:①性状变异程度可以用度量衡度量;②性状表现为连续性分布;③性状的表现易受到环境的影响;④控制性状的遗传基础为多基因系统。

遗传基础为多基因控制,而表现为非连续性变异的性状称为阈性状。

如羊的产羔数、肉质的分类、对疾病抗性的有无等。

严格说来,鸡的产蛋数、猪的窝产仔数等也属于这一类性状,但其表型状态过多,作为阈性状分析过于复杂,通常近似的将其作为数量性状来看待。

数量性状在畜牧生产中占有非常重要的地位。

但是,到目前为止,对数量性状的遗传基础的解释主要还是基于Yule (1902,1906)首次提出、由Nilsson-Ehle (1908)总结完善、并由Johannsen (1909)和East (1910)等补充发展的多因子假说,也称为多基因假说或Nilsson-Ehle 假说。

第五章 数量性状的遗传

第五章 数量性状的遗传
16
三、狭义遗传率的估算方法
利用F1分别与两亲本回交,所得子代为B1、B2,求出VB1、 VB2来估算hN2
hN2=VA*/Vp×100%,即
其推导过程为:
(1)设一对基因(A,a)构成的三种基因型AA、Aa、aa, 假定其理论值分别为α 、d、-α ,那么两亲本的平均值(中亲 值)=[α +(-α )]/2=0 用图来表示三者的关系为:aa
从图表中可以看出:①F1的穗长介于两个亲本之间,呈中间型,为不 完全显性;②F2的穗长呈连续变异,表现为数量遗传;③由于环境的影响, 使基因型纯合的亲本(P1,P2)各个体间的穗长也呈连续分布。④F2群体 不仅有基因分离造成的基因型差异,又有环境的影响,使其表现型产生更 大差异而呈连续变化,且变异范围比亲本和F1更为广泛。
因此杂种的选配和推广也应建立在对目标区域的生态土壤以及农业生产管理水平的充分分析研究基4646代必然出现性状分离和重组产生f代在生长势生活力抗逆性和产量等各方面均显著下降的现象
第五章 数量性状的遗传
本章重点: 数量性状的特征、多基因假 说、遗传率、近亲繁殖的遗传效应和杂种 优势。 本章难点:数量性状的研究方法、遗传率 的估算及其应用和杂种优势的遗传理论。
4
二、数量性状遗传的多基因假说
数量性状与质量性状的遗传规律有所不同,1908年尼尔 逊· 埃尔( Nilson-Ehle )提出多基因假说对数量性状的遗传进 行了解释。 多基因假说的主要内容:认为数量性状是许多彼此独立 的基因作用的结果,每个基因对性状表现的效果较微弱,但其 遗传方式仍然服从孟德尔的遗传规律。 同时还假定 (1)各基因的效应相等; (2)各个等位基因的表现为不完全显性或无显性,或表现为 增效和减效作用; (3)各基因的作用是累加的。

遗传学——数量性状的遗传

遗传学——数量性状的遗传

即 VF2 = VG + VF1 代入公式: H广
2=
∴ VG = VF2 - VF1
VG VF2 - VF1 = ×100% VG + V E VF2
例:测量矮脚母鸡与芦花公鸡和它们的 杂种的体重,得到下列的平均体重和表 型方差:
矮脚鸡 芦花鸡 F1 F2 B1 B2 平 均 1.4斤 6.6 3.4 3.6 2.5 4.8 方 差 0.1 0.5 0.3 1.2 0.8 1.0
如: 一对基因差别 3:1 两对基因差别 15:1
(2) 由于杂交亲本之间相差的基因对数不同:
如植株高度为数量性状,但孟德尔的豌豆杂 交实验中高植株和矮植株,也表现为质量性状 的遗传方式。 如: 水稻株高的遗传
(2) 水稻株高的遗传
相差三对基因的亲本杂交: P: T1T1T2T2T3T3 × t1t1t2t2t3t3 ↓ F1: T1t1T2t2T3t3
2)穗长与大写字 母数目成正相关 (累加) 。
数量性状和质量性状的区别
基因 控制 数量 性状 质量 性状 多 基因 单 基因 变异 分布 正态 分布 二项 分布 表型 受环境 遗传 分布 影响 规律 连续 分散 大 小 性状 特点 研究 对象 群体 个体和 群体
非孟德 易 尔遗传 度量 孟德尔 不易 度量 遗传
(3). 阈性状(threshold character): 性状达到某一特定值表现为正 常,达不到则为不正常,如血压, 血糖含量等。
1.2 数量性状与质量性状
(1) 由于区分性状的方法不同: 如小麦粒色遗传,如果采用非红 即白的区分方法,则表现为质量性状; 如果再加以细分,就表现为数量性状的 特点。
回交一代平均表型方差: 1/2(VB1 +VB2) = ¼ VA + ¼ VD +VE ∵ VF2= ½ VA + ¼ VD+ VE ∴ VF2 - 1/2(VB1 +VB2) = 1/4VA (加性的遗传方差) 或: 2VF2 - (VB1 +VB2) = ½VA 令: a2 = VA d2 = VD

数量性状的遗传

数量性状的遗传

数量性状的遗传数量性状指的是一个生物体的某种性状具有连续性质,在一个种群中表现出一定的变异程度,且受多种基因和环境因素的影响。

例如人体身高、体重等就是数量性状。

数量性状由多个基因的作用所决定,被称为多基因性状。

与单基因性状不同的是,多基因性状不符合孟德尔遗传定律。

数量性状的遗传规律经过长时间的探究,现已初步得出。

从基因层面探究数量性状的遗传数量性状的基因型及其表现形式比较复杂,同一基因型的个体之间也会存在表现形式的差异。

基因由两条相同或不同的基因座构成,分别来自父母亲。

在数量性状的遗传中,每个基因座所对应的基因影响数量性状的大小和表现型。

同时,多个基因座共同作用于数量性状,这种作用关系被称为加性效应(additive effect)。

数量性状的遗传规律主要有:性状值=基因值+环境值,基因型对数量性状的影响呈现正态分布,且受到染色体上多个基因的影响。

数量性状的遗传模式数量性状的遗传规律有三种模式:常染色体显性遗传、常染色体隐形遗传以及性联遗传。

常染色体显性遗传的表现形式是当一个自由基因突变,双等位基因后者扰动的时候,显性基因造成的表现现象。

例如,人体的眼睛颜色就是常染色体显性遗传的一种表现。

常染色体隐性遗传与常染色体显性遗传类似,不同的是表现基因是一种隐性基因。

这种遗传模式表现突变基因表现在两条染色体上都具有相同的表现现象。

例如,某些人患有系统性红狼疮就是常染色体隐性遗传的一种表现。

性联遗传指由X和Y染色体来遗传。

X染色体上的基因对于女性来说是双等位基因,由于女性有两个X染色体,所以会出现多种表现型。

而男性由于只有一个X 染色体,所以表型变化更加显著和恒定。

例如,红绿色盲就是一种典型的性连锁遗传疾病。

数量性状的计算分析数量性状的遗传变异分析可以通过基因型频度分析、亲权分析和遗传连锁分析来进行。

(1)基因型频度分析:由于每个基因座共有两个等位基因,因此可将一个种群中某一基因座的等位基因频率进行 PA+Pa=1,其中PA为某一基因座等位基因A 的频率,Pa为某一基因座等位基因a的频率。

第六章 数量性状的遗传

第六章  数量性状的遗传

其中:
△R(选择响应)----入选亲本子代平均表现 型值与群体平均表现型值之差
△R=P f—PP
S(选择差)----入选亲本平均表现型值与群 体平均表现型值之差
S=Ps—Pp
(二)遗传力的估算方法 1、利用基因型一致的群体估算环境方差求广
义遗传力 原理:同一无性系内的个体遗传基础完全相同,
中亲值 M=(80+40)/2=60
AA的加性效应值 a=80-60=20
aa的加性效应值 -a=40-60=-20
Aa的显性效应值 d=70-60=10
2、群+q2(-a)=a(p2-q2)+2pqd = a(pq)+2pqd
其中: a(p-q) 是纯合体的加性效应; 2pqd是杂合体的显性效应 。
于是有: P=G+E=A+D+I+E=A+R
R=D+I+E
对于一个群体,平均剩余效应为 0 ,
因此:P=A=G
(三)数量性状的数学模型 1、基因效应图:(一对等位基因控制一
个单位性状、群体处于平衡状态) 中亲值----两亲本表现型值的平均值
M 1 (P(AA) P(aa)) 2
第六章 数量性状的遗传
一、数量性状的概念和特征
1、数量性状与质量性状 数量性状(quantitative character):像株高、
产量等这些性状大多可用度量衡以数量值表示 出来,表现为数量上的连续变异,称为数量性 状。 质量性状(qualitative character):像花色等 性状彼此间差异明显,变异是不连续的,表现 为质量上的差异,称为质量性状。
给子代的能力。 遗传力常以百分数或小数来表示。 遗传力以性状为单位,是一个群体特性,并非

数量性状的遗传1ppt课件

数量性状的遗传1ppt课件
2.群体基因型值的平均值 μ=P2a+2pqd+q2(-a) =a(p-q)+2pqd, μ不代表绝对平均值,
而是对双亲基因型平均值的离差。 (Ⅰ) a(p-q)表示纯合体的累加效应; (Ⅱ) 2pqd表示杂合体的显性效应,d=0表示无显性效应. (Ⅲ)若p=q=1/2,且d=0, μ=0 (Ⅳ)n个基因座的联合效应
10/12/2024
16
第一节 数量性状的遗传学分析
上面两个杂交试验都表明,当基因的作 用为累加时,即每增加一个红粒有效基 因(R),子粒的颜色就要更红一些。由于 各个基因型所含的红粒有效基因数的不 同,就形成红色程度不同的许多中间类 型籽粒。
10/12/2024
17
第一节 数量性状的遗传学分析
基因控制 变异分布 表型 受环境 遗传 性状 研究 分布 影响 规律 特点 对象
————————————————————————————— 数量性状 多基因 正态分布 连续 大 非孟德 易度量 群体
尔遗传 质量性状 单基因 二项分布 分散 小 孟德尔 不易 个体
遗传 度量 和群体
—————————————————————————————
常归于环境效应. 用剩余值(R)表示: R=E+D+I, ∴P=A+R
2.表型方差及分量 VP=VG+VE ①G和E相关:VP=VG+VE+2covGE ②G和E无相关:VP=VG+VE=VA+VD+VI+VE
其中VA加性方差——可稳定遗传; VD显性方差,VI互作方差——不能稳定遗传。
10/12/2024
按照他的解释,数量性状是许多彼此独立的基因 作用的结果,每个基因对性状表现的效果较微, 但其遗传方式仍然服从孟德尔的遗传规律。而且 还假定:

《数量性状遗传》课件

《数量性状遗传》课件

遗传模型构建方法
遗传力模型
通过构建遗传力模型,分 析数量性状的遗传变异程 度,并估计遗传力和相关 参数。
遗传相关模型
通过构建遗传相关模型, 分析不同数量性状之间的 遗传相关控制的群体遗传现象, 通过混合模型进行基因型 和环境交互作用的分析。
数量性状遗传在自然界中广泛存在,如人的身高、 体重、智力等都属于数量性状。
数量性状遗传的特点
数量性状遗传具有连续变异的 特点,即在一个群体中,个体 的表现型值可以连续变化。
数量性状遗传受多个基因位点 的影响,这些基因位点通常具 有微效作用,即每个基因位点 对表现型的影响较小。
数量性状遗传还受到环境因素 的影响,环境因素可以影响个 体表现型值的变异范围和分布 。
数量性状遗传在动物育种中的应用
生长速度
通过研究动物生长速度的数量性 状遗传,育种家可以培育出生长 快速的动物品种,提高养殖效益

繁殖性能
通过选育具有优良繁殖性能的数 量性状基因,可以提高动物的繁
殖效率,加速品种改良进程。
抗病性
通过研究动物抗病性的数量性状 遗传,育种家可以培育出具有较 强抗病能力的动物品种,降低养
利用新一代测序技术和遗传资源发掘,精细定位和克隆控制数量性状的基因或基因组区域 。
解析数量性状基因的互作网络
研究基因之间的相互作用关系,解析数量性状形成的复杂网络调控机制。
探索表观遗传修饰对数量性状的影响
研究DNA甲基化、组蛋白修饰等表观遗传修饰对数量性状表达的调控作用。
加强数量性状遗传与其他学科的交叉研究
03
数量性状遗传分析方法
统计分析方法
01
02
03
方差分析
通过比较不同群体或处理 组之间的变异程度,确定 数量性状是否受遗传控制 。

第八章 数量性状的遗传

第八章 数量性状的遗传
● VB1=1/4a2-1/2ad+1/4d2 +VE
● VB2 = 1/4a2 +1/2ad+1/4d2 +VE
● VB1+VB2=1/2a2 +1/2d2 +2VE ②
● 2VF2-(VB1+VB2) =1/2a2 = VA
VA=2VF2-(VB1+VB2)
狭义遗传力的估算方法
HN2

加性方差 总方差
基因加性方差是可固定的遗传变异 量,可在上、下代间传递,所以, 凡是狭义遗传率高的性状,在杂种 的早期世代选择有效; 反之,则要在 晚期世代选择才有效。
育种值方差 理论上,在同一个试验中HN2 一定小于HB2。 狭义遗传力才真正表示以表现型值作为选择 指标的可靠性程度。
加性方差又称为育种值方差。
具有相对性状的两个亲本杂交,后代的性状表 现型值的差异取决于两方面的因素,一是基因
的分离造成的,一是环境条件的影响造成的。
遗传率:在一个群体中,遗传方差在总 方差(表现型方差)中所占的比值。
广义遗传率定义为:
H
2 B

遗传方差 总方差
100%= VG VG VE
100 %
遗传率衡量遗传因素和环境条件对所研究的性状的 表型总变异所起作用的相对重要性。
广义遗传率的估算 VP是可以从表现型值P计算获得的。 而VG是不能直接测得的。 知道了VP,若能得到VE,则也就有了VG。 估计环境方差是估算广义遗传力的关键。
二、几种常用群体的方差分析 P1、P2和F1是不分离世代,群体内个体 间无遗传差异,所表现出的不同都是 环境因素引起的。故:
VP1=VE VP2=VE VF1=VE
合计 1

第5章 数量性状遗传

第5章 数量性状遗传


设:
a1a1纯合基因能支配一种代谢功能,其生长量为10个单位; a1a2杂合等位基因则能支配两种代谢功能,其生长量>10 个单位。

a2a2纯合基因能支配另一种代谢功能,其生长量4个单位;
则a1a2 > a1a1> a2a2
说明异质等位基因的作用优于同质等位基因,
可以解释杂种远远优于最好亲本的现象→称为 超显性假说。
㈢异花授粉植物(cross-pollinated plant):
如玉米、黑麦、白菜型油菜等,天然杂交率高 (>20~50%),自然状态下是自由传粉。
二、杂种优势
1.杂种优势(heterosis)概念:
指两个遗传组成不同的亲本杂交产生的F1, 在生长势、生活力、繁殖力、抗逆性、产量和
品质等方面优于双亲的现象。
4.F2 的衰退表现:
⑴.F2群体内必然会出现性状的分离和重组。 ⑵.衰退现象:F2生长势、生活力、抗逆性和产量等
方面明显低于F1的现象。 ⑶.衰退表现:
①.亲本纯度越高,性状差异越大,F1优势越强
F2衰退就越严重。
②.F2分离严重致使F2个体间参差不齐,差异很大。 ∴杂种优势一般只能利用F1,不能利用F2,故需年年制种。
通过对表现型变异的分析推断群体 的遗传变异借助数理统计的分析方法, 可以有效地分析数量性状的遗传规律。
第一节 数量性状的特征

例,玉米果穗长度 P1 × P2

F1 表现介于两者之间

F2 连续变异

同时,由于环境条件的影响,即使基因型纯合的亲本 (P1、P2)和基因型杂合一致的F1代,各个体的穗长也呈 现连续的分布,而不是只有一个长度。

植物群体或个体近亲交配的程度,一般根据天 然杂交率的高低可分为:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
结论: 合子分布为( ½ T + ½ t)6将展开,呈连续分布,为数量性状;
若仅一对基因有差异,F2分布呈( ½ T + ½ t)2,为质量性状。
两类性状划分的相对性:
3.观察层次的不同 例如: 外观表现与基本物质的分布
性状的外观表现是不连续的, 但假如导致性状差异的基本物质的 分布是连续的;并且存在一个阀值 (threshold)。
2.研究数量性状的遗传学分支称为数量遗传学,数量遗传 学是统计学与遗传学的结合的交叉学科。
数量性状的基因位传递都遵循孟德尔分离规律。 例如: 菜豆 (Phaseolus vulgaris) 种皮颜色和重量的遗传
紫色 (P) 对白色 (p) 为显性,PP × pp的F2代表型:
结论: 菜豆紫色种皮基因(PP)与种子重量基因连锁;
决定种子重量的基因也位于染色体上。
两类性状划分的相对性:
1.区分性状的方法不同 例如: 小麦 (Triticum vulgare) 粒色的遗传
设由两对基因控制,红色 (R1和R2 ) 对白色 (r1和r2) 为不完全 显性,并有累加效应。
红色(R1R1R2R2) × 白色(r1r1r2r2):
(二) 玉米果穗长度的遗传
(一) 小麦粒色的遗传
1. 小麦粒色的遗传控制
3:1 一对基因
红色×白色
↓ F1 (中间类型)
↓ F2 (红色:白色)
15:1 两对基因
63:1 三对基因
在一对基因F2的红粒中:1/3与红粒亲本一致、2/3与F1一致,表现 为不完全显性;
在二对、三对基因时:红色基因表现为重叠作用,但是R基因同时 表现累加效应——F2红粒中表现为一系列颜色梯度,每增加一个R 基因,籽粒颜色就更深一些。
状的各个基因位点标记在分子标记连锁图上,并研究其 基因的效应。 主效基因/主基因(major gene): 控制质量性状遗传的一对或少数几对效应明显的基因; 可以根据表型区分类别,并进行基因型推断。
多基因假说的实验证据
(一) 小麦粒色的遗传
尼尔逊·埃尔(Nilson-Ehle, H. 1909) 种皮颜色:红色(R)、白色(r)
结论: 基本物质的含量呈连续分布,由多基因控制,为数量性状;
含量超过阀值时,可以表现为非此即彼的性状,似质量性状。
两类性状划分的相对性:
4.同一类性状在不同种生物中表现可能表现不同。
例如:植株高度在孟德尔的豌豆杂交试验中表现为高株、矮株相对 性状的间断分布,为质量性状;但在大多数植物中株高均表现为数量化 的连续分布,为数量性状。
5.同一性状在不同杂交组合中也可能表现不同。
例如,小麦、水稻等均存在高秆与矮秆两种类型: 以纯合高秆与矮秆亲本杂交,后代主要表现为质量性状遗传的分离; 以两纯合矮秆亲本杂交,后代群体的株高则表现为数量性状遗传。
三、多基因假说
(Multiple Factor Hypothesis)
Nilson-Ehle, H.(1909)根据小麦粒色遗传提出: 数量性状受许多彼此独立的基因共同控制,每个
结论: 将小麦粒色分为红色和白色,可以看成质量性状;
将小麦粒色中的红色细分,从深红到淡红,表现为数量性状。
两类性状划分的相对性:
2.杂交亲本间相差基因对数的不同 例如: 水稻 (Oryza sativa) 株高的遗传
设由三对基因控制,显性或隐性效应相同,并有累加效应。 高株(T1T1T2T2T3T3) × 矮株(t1t1t2t2t3t3):
2. 两对基因差异亲本间的杂交
2. 两对基因差异亲本间的杂交
性状表现: F1表现为两亲本间的中间类型; F2表现为两对基因间的重叠作用(15:1); 籽粒颜色的深浅取决于所含R基因的数目,表现明
显的累加效应,并且有3种中间类型。 遗传方式分析: 棋盘法(P矩阵); 分枝法(略); 二项公式法。
群体内个体间性状表现为类别差异,可以进行类型 划分(分组)、计算类型间个体数的比例。 如:豌豆花色、子叶颜色、籽粒饱满程度等。
连续变异 (continuous variation) :
群体内个体间表现为数量化差异,不能按表现型进 行分组。 人的身高、植株生育期、果实大小、种子产量等。
Continuous variation in height.
二、质量性状与数量性状
质量性状 (Qualitative character) :
表现不连续变异(discontinuous variation)的性状,其 性状值能明确分组。
如:豌豆红花、白花;子叶颜色等性状。
数量性状 (Quantitative character):
表现连续变异(continuous variation)的性状,其性 状值不能明确分组。
第八章 数量性状的遗传
Chapter 8 Quantitative Genetics
第八章 数量性状的遗传
第一节 数量性状与多基因假说 第二节 研究数量性状的基本统计方法 第三节 遗传率的估算 第四节 近亲繁殖与杂种优势
第一节 数量性状与多基因假说
一、性状的连续变异与不连续变异
不连续变异 (discontinuous variation) :
如:人的身高、植株生育期、水稻产量等。
花瓣的颜色和大小
鸡的产蛋量
棉花的棉桃数
数量性状的重要性 :
1.动植物的大多数农艺性状和经济性状都是数量性状。 因此,研究数量性状的表现、遗传及其改良具有重要的实 践意义。
● 动物:体重、产仔(卵)数、出栏期、肉质等; ● 植物:株高、成熟期、产量、粒重、品质等。
棋盘法(P矩阵):两对基因差异
基因对性状表现的效果较微,但各对基因遗传方 式仍然服从孟德尔遗传规律; 同时还认为: 1. 各基因的效应相等; 2. 各个等位基因表现为不完全显性或无显性,或 表现为增效和减效作用; 3. 各基因的作用是累加的。
微效多基因与主效基因
微效多基因(polygenes)或微效基因(minor gene): 控制数量性状遗传的一系列效应微小的基因; 由于效应微小,难以根据表型将微效基因间区别开来; 近年来,借助分子标记作图技术已经可以将控制数量性
相关文档
最新文档