高二数学立体几何试题及答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【模拟试题】

一. 选择题(每小题5分,共60分) 1. 给出四个命题:

①各侧面都是正方形的棱柱一定是正棱柱;

②各对角面是全等矩形的平行六面体一定是长方体; ③有两个侧面垂直于底面的棱柱一定是直棱柱; ④长方体一定是正四棱柱。 其中正确命题的个数是( ) A. 0 B. 1

C. 2

D. 3

2. 下列四个命题:

①各侧面是全等的等腰三角形的四棱锥是正四棱锥; ②底面是正多边形的棱锥是正棱锥; ③棱锥的所有面可能都是直角三角形; ④四棱锥中侧面最多有四个直角三角形。 正确的命题有________个

A. 1

B. 2

C. 3

D. 4

3. 长方体的一个顶点处的三条棱长之比为1:2:3,它的表面积为88,则它的对角线长为( ) A. 12

B. 24

C. 214

D. 414

4. 湖面上漂着一个球,湖结冰后将球取出,冰面上留下一个面直径为24cm ,深为8cm 的空穴,则该球的半径是( ) A. 8cm

B. 12cm

C. 13cm

D. 82cm

5. 一个圆柱的侧面展开图是一个正方形,这个圆柱的全面积为侧面积的比是( )

A. 122+π

π

B. 144+ππ

C.

12+π

π

D. 142+ππ

6. 已知直线l m ⊥⊂平面,直线平面αβ,有下面四个命题:

①αβ//⇒⊥l m ;②αβ⊥⇒l m //;③l m //⇒⊥αβ;④l m ⊥⇒αβ//。 其中正确的两个命题是( ) A. ①② B. ③④ C. ②④ D. ①③ 7. 若干毫升水倒入底面半径为2cm 的圆柱形器皿中,量得水面的高度为6cm ,若将这些水倒入轴截面是正三角形的倒圆锥形器皿中,则水面的高度是( ) A. 63cm

B. 6cm

C. 2182

D. 3123

8. 设正方体的全面积为242

cm ,一个球内切于该正方体,那么这个球的体积是( ) A.

63πcm

B. 32

33

πcm C. 8

33

πcm

D. 4

33

πcm

9. 对于直线m 、n 和平面αβ、能得出αβ⊥的一个条件是( ) A. m n m n ⊥,,////αβ B. m n m n ⊥=⊂,,αβα C. m n n m //,,⊥⊂βα

D. m n m n //,,⊥⊥αβ

10. 如果直线l 、m 与平面αβγ、、满足:l l m m =⊂⊥βγααγ ,,,//,那么必有( ) A. αγ⊥⊥和l m

B. αγβ////,和m

C. m l m //β,且⊥

D. αγαβ⊥⊥且

11. 已知正方体的八个顶点中,有四个点恰好为正四面体的顶点,则该正四面

体的体积与正方体的体积之比为( ) A. 13:

B. 12:

C. 2:3

D. 1:3

12. 向高为H 的水瓶中注水,注满为止,如果注水量V 与水深h 的函数关系的图象如图所示,那么水瓶的形状是( ) 二. 填空题(每小题4分,共16分)

13. 正方体的全面积是a 2

,它的顶点都在球面上,这个球的表面积是__________。

14. 正四棱台的斜高与上、下底面边长之比为5:2:8,体积为143

cm ,则棱台的高为____________。

15. 正三棱柱的底面边长为a ,过它的一条侧棱上相距为b 的两点作两个互相平行的截面,在这两个截面间的斜三棱柱的侧面积为____________。

16. 已知αβ、是两个不同的平面,m 、n 是平面αβ及之外的两条不同的直线,给出四个论断:

①m ⊥n ,②αβ⊥,③n ⊥β,④m ⊥α。

以其中三个论断作为条件,余下一个论断作为结论,写出你认为正确的一个命题______________。 三. 解答题(共74分)

17. (12分)正方体ABCD A B C D -1111中,E 、F 、G 分别是棱DA 、DC 、DD 1的中点,试找出过正方体的三个顶点且与平面EFG 平行的平面,并证明之。 18. (12分)球内有相距1cm 的两个平行截面,截面的面积分别是

5822ππcm cm 和,球心不在截面之间,求球的表面积与体积。

19. (12分)一个正三棱柱的三视图如图所示,求这个正三棱锥的表面积。

20. (12分)直角梯形的一个内角为45°,下底长为上底长的3

2,这个梯形

绕下底所在直线旋转一周所成的旋转体的全面积是(52+)π,求这个旋转体的体积。

21. (12分)有一块扇形铁皮OAB ,∠AOB=60°,OA=72cm ,要剪下来一个扇形ABCD ,作圆台形容器的侧面,并且余下的扇形OCD 内剪下一块与其相切的圆形使它恰好作圆台形容器的下底面(大底面)。(如图)试求 (1)AD 应取多长? (2)容器的容积。

22. (14分)如图,正四棱柱ABCD A B C D -1111中,底面边长为22,侧棱长为4,E 、F 分别为AB 、BC 的中点,EF BD G =。 (1)求证:平面B EF BDD B 11⊥平面; (2)求点D 1到平面B EF 1的距离d ; (3)求三棱锥B EFD 11-的体积V 。 【试题答案】 一. 1. B 2. B

3. C

4. C

5. A

6. D

7. B

8. D

9. C

10. A

11. D

12. B

二.

13. π2

2

a 14. 2cm 15. 3ab

16. m n m n m n m n ⊥⊥⊥⇒⊥⊥⊥⊥⇒⊥,,(或,,)αβαβαβαβ 三.

17. 证明:过A C D 、、1的平面与平面EFG 平行,由E 、F 、G 是棱DA 、DC 、

相关文档
最新文档