汉诺塔c语言程序代码
c语言例题10-5 汉诺(hanoi)塔问题
汉诺塔问题是一个经典的递归问题。
在汉诺塔问题中,有三根柱子,第一根柱子上从下到上放着n 个盘子,目标是将这些盘子从第一根柱子移动到第三根柱子上,并且只能每次移动一个盘子,并且不能将一个较大的盘子放在较小的盘子上面。
以下是一个使用 C 语言实现的汉诺塔问题的示例代码:```c#include <stdio.h>void hanoi(int n, char A, char B, char C) {if (n == 1) {printf("Move disk 1 from %c to %c\n", A, C);return;}hanoi(n - 1, A, C, B);printf("Move disk %d from %c to %c\n", n, A, C);hanoi(n - 1, B, A, C);}int main() {int n = 3; // 盘子数量hanoi(n, 'A', 'B', 'C'); // 调用递归函数,将盘子从A 柱子移动到 C 柱子,B 柱子作为辅助柱子return 0;}```在这个代码中,我们定义了一个`hanoi` 函数来递归地解决汉诺塔问题。
在`hanoi` 函数中,我们首先检查盘子数量是否为1,如果是,则直接将盘子从起始柱子移动到目标柱子。
否则,我们使用两个辅助柱子来将n-1 个盘子从起始柱子移动到第二个辅助柱子上,然后将最后一个盘子从起始柱子移动到目标柱子上,最后再将n-1 个盘子从第二个辅助柱子移动到目标柱子上。
在`main` 函数中,我们定义了盘子数量n,并调用了`hanoi` 函数来解决问题。
C语言程序设计 入门源代码代码集合【精选文档】
#include 〈stdio.h〉void print_star(void){printf("*****************\n"); }void print_welcome(void){printf(”C language,welcome!\n");}void main(){print_star();print_welcome();print_star();getchar();}演示2#include "stdio。
h"int sum(int i,int j){return(i + j);}void main(){int n1,n2;printf("input 2 numbers:\n”);scanf("%d%d”,&n1,&n2);printf("the sum = %d\n",sum(n1,n2));getchar();}演示3#include "stdio。
h"int maxnum(int,int,int);main(){int a,b,c;printf("Please enter 3 numbers:\n");scanf(”%d,%d,%d”,&a,&b,&c);printf(”Maxnum is %d\n",maxnum(a,b,c));}int maxnum(int x,int y,int z){int max=x;if(y>max)max = y;if(z>max)max = z;return max;}演示4#include 〈stdio。
h〉int s1(int n){int j,s;s=0;for(j=1;j<=n;j++)s=s+j;return s;}int sum(int n){int i,s=0;for(i=1;i<=n;i++)s=s+s1(i);return s;}void main(){int n;printf(”n:”);scanf(”%d",&n);printf("s=%d\n”,sum(n));}演示5#include <stdio.h〉void func(int n){int i;for(i=n-1;i〉=1;i--)n=n+i;printf("n=%d\n",n);}void main(){int n;printf("Input n:");scanf("%d”,&n);func(n);printf(”n=%d\n",n);}演示6#include <stdio。
C语言程序设计课程设计报告---汉诺塔问题
XXXX大学计算机科学与技术学院课程设计报告2012 — 2013学年第一学期课程名称C/C++高级语言程序设计课程设计设计题目小游戏和图形处理汉诺塔问题学生姓名XXX学号XXXXXXX专业班级XXXXXXXXXXX指导教师XX2012 年X 月XX 日目录一、课程设计问题描述 (1)1、课程设计题目 (1)2、设计任务要求 (1)二、总体设计 (1)1、设计思路 (1)2、汉诺塔求解流程图 (2)三、详细设计 (2)1、汉诺塔问题描述 (2)2、算法分析 (3)3、实现递归的条件 (4)4、用C语言实现 (4)四、程序运行结果测试与分析 (4)1、打开Microsoft Visual C++ 6.0操作平台输入以下的源代码 (4)2、编译源代码 (5)3、组建 (5)4、执行 (5)5、运行结果 (6)6、按任意键结束程序 (7)五、结论与心得 (7)六、参考文献 (8)七、附录:程序源代码 (8)一、课程设计问题描述1、课程设计题目汉诺塔问题2、设计任务要求输入盘子数(2个以上有效),移动速度,开始演示汉诺塔移动的步骤,要求:盘子A,B,C柱需要自己绘制,初始时盘子在A柱上通过B柱最终移动到C 柱上,显示出盘子在几个柱之间的移动过程。
二、总体设计1、设计思路对于一个类似的这样的问题,任何一个人都不可能直接写出移动盘子的每一个具体步骤。
可以利用这样的统筹管理的办法求解:我们假设把该任务交给一个僧人,为了方便叙述,将他编号为64。
僧人自然会这样想:假如有另外一个僧人能有办法将63个盘子从一个座移到另一个座,那么问题就解决了,此时僧人A B C64只需这样做:(1).命令僧人63将63个盘子从A座移到C座(2).自己将最底下的最大的一个盘子从A座移到C座(3).再命令僧人63将63个盘子从B座移到C座为了解决将63个盘子从A座移到B座的问题,僧人63又想:如果能再有一个僧人62能将62个盘子移动到另一座,我就能将63个盘子从A座移动到B座。
python汉诺塔编程代码
python汉诺塔编程代码Python汉诺塔编程代码汉诺塔是一种经典的数学问题,它的规则很简单:有三根柱子,其中一根柱子上有若干个盘子,盘子大小不一,大的在下面,小的在上面。
现在要把这些盘子从一根柱子上移动到另一根柱子上,但是每次只能移动一个盘子,并且大盘子不能放在小盘子上面。
那么如何才能把所有的盘子都移动到目标柱子上呢?这个问题可以用递归算法来解决。
我们可以把所有的盘子分成两部分,一部分是最下面的那个盘子,另一部分是上面的所有盘子。
我们先把上面的所有盘子从起始柱子移动到中间柱子上,然后把最下面的那个盘子从起始柱子移动到目标柱子上,最后再把中间柱子上的所有盘子移动到目标柱子上。
这个过程可以用递归算法来实现。
下面是Python汉诺塔编程代码:```pythondef hanoi(n, start, end, middle):if n == 1:print(start, "->", end)else:hanoi(n-1, start, middle, end)print(start, "->", end)hanoi(n-1, middle, end, start)n = int(input("请输入盘子的数量:"))hanoi(n, "A", "C", "B")```这个代码中,hanoi函数接受四个参数:n表示盘子的数量,start 表示起始柱子,end表示目标柱子,middle表示中间柱子。
如果n 等于1,那么我们直接把最下面的那个盘子从起始柱子移动到目标柱子上;否则,我们先把上面的所有盘子从起始柱子移动到中间柱子上,然后把最下面的那个盘子从起始柱子移动到目标柱子上,最后再把中间柱子上的所有盘子移动到目标柱子上。
这个过程可以用递归算法来实现。
我们可以通过调用hanoi函数来解决汉诺塔问题。
c语言课程设计汉诺塔
c语言课程设计汉诺塔一、教学目标本节课的教学目标是让学生掌握汉诺塔问题的解法,理解其背后的算法思想,培养逻辑思维能力和编程能力。
具体分为以下三个部分:1.知识目标:使学生了解汉诺塔问题的定义、解法和算法思想,理解递归算法的原理及其在解决汉诺塔问题中的应用。
2.技能目标:培养学生运用C语言实现汉诺塔问题的解决方案,提高编程实践能力。
3.情感态度价值观目标:培养学生独立思考、合作交流的学习习惯,增强对计算机科学的兴趣和热情。
二、教学内容本节课的教学内容主要包括以下几个部分:1.汉诺塔问题的定义和解法:介绍汉诺塔问题的背景,讲解其解法及步骤。
2.递归算法的原理:讲解递归算法的基本概念、特点及其在解决汉诺塔问题中的应用。
3.C语言实现汉诺塔问题:引导学生运用C语言编写汉诺塔问题的解决方案,并进行调试和优化。
4.算法分析和改进:分析汉诺塔问题的算法复杂度,探讨如何优化算法性能。
三、教学方法为了达到本节课的教学目标,采用以下几种教学方法:1.讲授法:讲解汉诺塔问题的定义、解法和递归算法的原理。
2.案例分析法:分析实际案例,让学生了解递归算法在解决汉诺塔问题中的应用。
3.实验法:引导学生动手实践,用C语言实现汉诺塔问题的解决方案。
4.讨论法:学生进行小组讨论,分享算法优化思路,培养合作交流能力。
四、教学资源本节课的教学资源包括以下几个方面:1.教材:选用《C程序设计》等相关教材,为学生提供理论知识的学习参考。
2.参考书:推荐《算法导论》等参考书籍,帮助学生深入了解算法原理。
3.多媒体资料:制作PPT、教学视频等多媒体资料,辅助学生理解和记忆知识点。
4.实验设备:为学生提供计算机、编程环境等实验设备,方便学生动手实践。
五、教学评估本节课的教学评估主要包括以下几个方面:1.平时表现:评估学生在课堂上的参与度、提问回答等情况,占比20%。
2.作业:评估学生完成的汉诺塔问题相关练习,包括C语言代码编写和调试,占比30%。
汉诺塔游戏-----用C++编的
#ifndef HANIO_H_#define HANIO_Hclass Stack{private:enum{ MAX=50 };int m_node[MAX];int m_top;int m_size;int m_index;public:Stack();~Stack() { };bool Isfull() { return m_top==MAX-1 ;}; //堆栈满则返回TRUE bool Isempty() { return m_top==-1;}; //堆栈空则返回TRUE int Top() { return m_top; };int TopValue() { return m_node[m_top];};int GetDataFromIndex(int i) { return m_node[i]; };int GetIndex() { return m_index; } ;void SetIndex(int index) { m_index = index; };int Size() { return m_top+1; };bool Push(int data);bool Pop(int * pData);int MoveToNext();void OutPrint();};class Hanio{Stack m_stack[3];int m_num; //盘数int m_steps; //移动次数int m_times; //完成所用时间void print(char ch,int n);public:Hanio(int num=3);~Hanio() {};void GameStart();bool MoveFromTo(int x,int y); //从x号盘移动到y号盘void DrawPaletes(char ch='*'); //打印3个堆的盘子bool IsFinished() ; //结束返回TURE;int Solve(char from,char to,char auxiliary,int n); //求解其解法路径};#endif//hanio.cpp#include "hanio.h"#include <iostream>#include<cstdlib>#include<cstring>#include<cctype>#include<windows.h>Stack::Stack(){m_top=-1;m_index=m_top;for(int i=0;i<MAX;i++)m_node[i]=0;}bool Stack::Push(int data){if(Isfull())return false;m_top++;m_node[m_top]=data;m_index=m_top;return true;}bool Stack::Pop(int *pData){if(Isempty())return false;*pData=m_node[m_top];m_node[m_top]=0;m_top--;m_index=m_top;return true;}int Stack::MoveToNext(){int temp=m_index;m_index--;return m_node[temp];}void Stack::OutPrint(){if(m_top!=-1){for(int i=0;i<=m_top;i++)std::cout<<"["<<m_node[i]<<"]";}}///////////////////////////////////////Hanio::Hanio(int num){m_num=num;m_steps=0;m_times=0;for(int i=num;i>=1;i--)m_stack[0].Push(i);//m_stack[0].OutPrint();}void Hanio::print(char ch,int n){for(int i=1;i<=n;i++)std::cout<<ch;}void Hanio::DrawPaletes(char ch){int max;max=m_stack[0].Size()>m_stack[1].Size() ? m_stack[0].Size() : m_stack[1].Size();max=m_stack[2].Size()>max ? m_stack[2].Size() : max;//std::cout<<"Max:"<<max<<std::endl;m_stack[0].SetIndex(max-1);m_stack[1].SetIndex(max-1);m_stack[2].SetIndex(max-1);for(int i=1;i<=max;i++){int data1=m_stack[0].MoveToNext();int data2=m_stack[1].MoveToNext();int data3=m_stack[2].MoveToNext();if(data1==0)print(' ',20);else{print(' ',10-data1);print(ch,2*data1);print(' ',10-data1);}if(data2==0)print(' ',20);else{print(' ',10-data2);print(ch,2*data2);print(' ',10-data2);}if(data3==0)print(' ',20);else{print(' ',10-data3);print(ch,2*data3);print(' ',10-data1);}std::cout<<std::endl;}}bool Hanio::MoveFromTo(int x,int y){m_steps++; //计算所走的步数if(m_stack[x].Isempty()){std::cout<<x<<" pallete is empty ! continue !"<<std::endl; std::cin.get();return false;}if(m_stack[y].Isempty()){int data;m_stack[x].Pop(&data);m_stack[y].Push(data);return true;}else{if(m_stack[x].TopValue()>m_stack[y].TopValue()){std::cout<<"The board can't move from "<<x<<" plate to " <<y<<" plate!"<<std::endl;std::cin.get();return false;}else{int data;m_stack[x].Pop(&data);m_stack[y].Push(data);return true;}}}bool Hanio::IsFinished(){return m_stack[2].Top()==m_num-1;}void Hanio::GameStart(){using namespace std;UINT StartTime=::GetTickCount();UINT EndTime;while(1){system("cls");print('-',80);cout<<"steps: "<<m_steps; print(' ',20);cout<<"Used time: "<<m_times<<endl;print('-',80);cout<<endl; cout<<endl; print(' ',10); cout<<"A";print(' ',19); cout<<"B"; print(' ',19);cout<<"C"<<endl<<endl;Hanio::DrawPaletes();cout<<endl; cout<<endl;print('-',80);//测试游戏是否结束if(Hanio::IsFinished()){cout<<"你好强呀!从今天开始,维护世界和平的任务就交给你那!"<<endl;cin.get();break;}//输入命令并左相应的处理char szCommand[50];cout<<">>";cin.getline(szCommand,50);if(stricmp(szCommand,"QUIT")==0 || stricmp(szCommand,"Q")==0)break;if(stricmp(szCommand,"HELP")==0 || stricmp(szCommand,"H")==0){cout<<" 本游戏说明:"<<endl;cout<<" 该游戏由DAVID用C++编程,花费了一个多下午的时间呢!!!,由命令行来控制铁饼的移动:"<<endl;cout<<" QUIT / Q : 退出程序"<<endl;cout<<" HELP / H : 查看该说明"<<endl;cout<<" XY : X,Y的取值为A,B,C,意思时把X木桩最上面的铁饼移到Y 木桩"<<endl;cout<<" SOLVE / S : 显示求解该问题(移动铁饼)的最优路径..."<<endl; cin.get();}char ch1=toupper(szCommand[0]);char ch2=toupper(szCommand[1]);if( ch1=='A' && ch2=='B')Hanio::MoveFromTo(0,1);else if ( ch1=='A' && ch2=='C')MoveFromTo(0,2);else if ( ch1=='B' && ch2=='A')MoveFromTo(1,0);else if ( ch1=='B' && ch2=='C')MoveFromTo(1,2);else if ( ch1=='C' && ch2=='A')MoveFromTo(2,0);else if ( ch1=='C' && ch2=='B')MoveFromTo(2,1);else{cout<<"Bad command !"<<endl;cin.get();}//统计游戏所用时间EndTime=GetTickCount();m_times=(EndTime-StartTime)/1000;}}int Hanio::Solve(char from,char to,char auxiliary,int n) {if(n==1)return 0;}//main.cpp#include<iostream>#include"hanio.h"#include<cstdlib>using namespace std;int StartPicture();//返回选择的盘数int main(){int number;number=StartPicture();Hanio hanio(number);hanio.GameStart();return 0;}void print(char ch,int n){for(int i=1;i<=n;i++)std::cout<<ch;}int StartPicture(){using namespace std;int number;system("cls");system("color fc");print(' ',20);print('-',25);cout<<endl;print(' ',20);cout<<" Hanio(汉诺塔)"<<endl;print(' ',20);print('-',25);cout<<endl;print(' ',40);print('-',5);cout<<"By David"<<endl;print('=',80);cout<<" 相传在某一座古庙中有3根木桩,有24个铁盘由小到大放置在一根木柱上,庙中流传者一个传说:\"如果能把24个铁盘, 从一根木桩移动到另一个木桩,且必须遵守如下规则:"<<endl;cout<<endl;print(' ',5);cout<<"1. 每天只能动一个盘,而且只能从最上面的铁盘开始搬动."<<endl; print(' ',5);cout<<"2. 必须维持较小的铁盘在上方的原则"<<endl;cout<<endl;cout<<"这两个原则,则当24个铁盘完全般到另一个木桩时,世界就回永久和平!!"<<endl;cout<<"游戏的玩法可以在命令行中输入HELP查看"<<endl;cout<<endl;cout<<endl;cout<<endl;cout<<endl;cout<<endl;cout<<"再此输入你要搬的铁盘数(建议在1--10值间,太多回花费很长时间的)"<<endl;print('=',80);cout<<">>";cin>>number;cin.get();system("cls");return number;}。
用C语言解决汉诺塔问题的方法及过程分析
( )将 原 问题 转化 成 新 问题 后 ,能使 求 解算法 的规模减 小. 2
( )递归 有一 个 明显 的 出 口,或称 为递 归的边 界 ,而边 界 问题 的解是显 而 易见 的或 已知 的. 3
3 用 C语 言 编 程
C语 言是 一种 在 国内外 广泛 流行 的高 级程 序设 计语 言 ,它 的语 言 功能 丰富 ,表达 力 强 ,使 用 灵 活 ,应
言 中 ,用 递归 法编 写 条件
2 1 递 归程序 定义 .
《 C程 序设 计 》 数 据结 构 》等教科 书 中 ,都对 递 归 程 序 给 出 了基本 相 同的定 义 ,归纳 如下 :在调 用 、《
一
个 函数 的过 程 中 ,又直接 或 间接地 调用 了该 函数本 身 ,称 为 函数 的递 归调 用 ,使用 了递 归调用 函数 的程
第 3期
{ a ( 一 , o e t r e t ) hn n1 n , h e , wo ;
mo e ( ne, t e ); v o hr e
h n ( 一 ,t a n 1 wo,o e h e ) ) n ,t r e ;)
ma n ( i )
{n i tn;
prn f ( “ e s nt rt mbe ike ” it Pla e e e he nu rofd s s: );
维普资讯
维普资讯
2 0 年 6月 06
河 北 北 方 学 院学 报 ( 自然 科 学 版 )
第 3 期
上操 作 的实质 是把移 动 n个 盘子 的 问题转 化 为移 动 n 一1个盘 .那 一 、三 步 如何解 决 ?事 实 上 ,上述 方法 设盘 子数 为 n ,n可 为任 意数 ,该 法 同样 适 用于 移动 n 1 盘. 因此 ,依 据 上 法 ,可解 决 n 一 个 一1个 盘子从 A杆 移 到 B杆 ( 一 步)或 从 B杆 移到 C杆 ( 第 第三 步 ) 问题 .现 在 ,问题 由移 动 n个 盘 子 的操 作转 化 为 移动 n 一2个 盘子 的操作 .依 据该 原 理 ,层 层递 推 ,即可将 原 问题 转化 为 解 决移 动 n 、n … …3 、 一2 一3 、2 直 到移动 1 盘 的操 作 ,而移 动一 个 盘 的操 作 是可 以 直接 完成 的. 至 此 ,我 们 的任 务 算作 是 真 正完 成 了. 个 而这 种 由繁化 简 ,用简单 的问题 和 已知 的操 作 运算来 解决 复杂 问题 的方 法 ,就是 递归法 . 在计算 机设计 语
汉诺塔问题的程序实现
汉诺塔问题的程序实现汉诺塔问题的程序实现实验⽬的:运⽤程序解决汉诺塔(hanoi)问题。
汉诺塔问题:假设有3个分别命名为A,B,C的塔座,在塔座A上插有n个直径⼤⼩各不相同,依⼩到⼤编号为1,2....,n的圆盘。
现要求将A轴上的n个圆盘移到C并仍按同样顺序叠排,圆盘按以下规则(1)每次只能⼀动⼀个盘⼦(2)圆盘可以插在A,B,C中任⼀个塔座上(3)任何时刻都不能将⼀个较⼤的圆盘压在较⼩的圆盘之上。
A B C实验分析:汉诺塔问题可以规划为⼀个递归的问题予以分析,将n个盘⼦从A针移动到C 针可进⾏3个步骤:(1)将A上n-1的个盘⼦移到B针上;(2)把A针最后1个盘⼦移到C针上;(3)再把B盘⼦上的n-1个移到C针上。
实验过程:#includeusing namespace std;void main(){void hanoi(int m,char A,char B,char C); //A代表初始柱⼦,B代表辅助柱⼦,C代表⽬标柱⼦int m;printf("请输⼊盘⼦的个数:");scanf("%d", &m);printf("当盘⼦的个数为%d时移动的步骤是:\n",m);hanoi(m,'A','B','C');}void hanoi(int n,char X,char Y,char Z){void move(char X,char Z );if(n==1)move(X,Z);else{hanoi(n-1,X,Z,Y);move(X,Z);hanoi(n-1,Y,X,Z);}}void move(char x,char y){printf("%c-->%c\n",x,y);}过程:A代表初始柱⼦,B代表辅助柱⼦,C代表⽬标柱⼦。
⽽a代表第⼀根柱⼦,b代表第⼆根柱⼦,c代表第三根柱⼦。
c语言递归汉诺塔每一步详解
递归汉诺塔是一个经典的递归问题,它要求将一堆圆盘从一根柱子移动到另一根柱子上,且规定不能通过其他圆盘。
这个问题可以通过递归算法来解决。
在每一步中,我们可以选择将当前最大的圆盘从起始柱子移动到目标柱子,或者将两个较小的圆盘移动到另一个柱子上。
递归函数需要考虑三个柱子的状态:起始柱子、目标柱子和柱子。
在函数中,我们需要判断当前情况是否可以进行移动,如果可以,则执行相应的移动操作,否则返回上一个递归函数继续执行。
最终,当所有圆盘都移到目标柱子上时,问题得到解决。
汉诺塔问题C语言演示程序
{
static int count=0;
int i,flag;
NumNod *p;
p=NULL;
count++;
printf("\n\n\n第%d次移动!\n",count);
{
if(n==1)
move(s,1,d);
else
{
hanoi(n-1,s,d,b);
move(s,n,d);
hanoi(n-1,b,s,d);
}
}
main()
{
int i,j;
source=NULL;
backup=NULL;
destination=NULL;
source=CreatNumStack();
backup=CreatNumStack();
destination=CreatNumStack();
printf("请输入汉诺塔中盘子的数量:");
PrintNumStack(destination);
p=PopNumNod(s);
if(p!=NULL)
{
i=p->nNum;
flag=PushNum(d,i);
f盘子的状态如下:\n");
PrintNumStack(source);
printf(" Backup( %4x ):",((long)backup)&0x00ffff);
PrintNumStack(backup);
printf(" Destination( %4x ):",((long)destination)&0x00ffff);
有趣的c语言代码
有趣的c语言代码在计算机编程领域中,C语言无疑是居于重要地位的一种语言。
它简洁明了,具有高度的灵活性,其语法规范和基本结构也有着非常强的适用性,依旧是很多应用领域的首选语言。
但是,除了作为一门实用的编程语言外,C语言也具备着不少有趣的面向场景和实现思路。
有时候我们不妨放开心态,花一点时间去探索一些优美、神奇或者古怪的代码,或许不仅可以带来好玩的游戏体验,还可以深刻领略计算机编程这一领域的魅力所在。
以下是几个有趣的C语言代码:1. Hello World!这是许多人接触编程时会碰到的第一行代码,既简单又经典。
用C 语言实现只需一行:include <stdio.h>int main(){printf("Hello, World!");return 0;}这段代码的功能很简单,输出 "Hello, World!"。
2. 回文字检测给定一个字符串,判断其是否为回文字符串。
这也是许多入门程序员接触的练手题。
bool isPalindrome(char *s){int len = strlen(s);for (int i = 0; i < len / 2; ++i)if (s[i] != s[len - 1 - i])return false;return true;}这段代码通过比较字符串中左右两端字符是否相同,完成回文检测。
3. 汉诺塔游戏汉诺塔是一个经典的数学谜题,至今仍是计算机课程和聚会游戏的热门选择之一。
在C语言中实现汉诺塔游戏的代码不仅具备实用价值,同时也挑战了程序设计师的算法思考能力。
void hanoi(int n, char A, char B, char C){if (n == 1)printf("%c -> %c\n", A, C);else{hanoi(n - 1, A, C, B);hanoi(1, A, B, C);hanoi(n - 1, B, A, C);}}这段代码通过递归实现了汉诺塔游戏的具体操作,将汉诺塔复杂的问题转化为简单的递归关系。
Python递归算法实现汉诺塔(附代码+运行情况)
Python 递归算法实现汉诺塔(附代码+运⾏情况)⾸先你要知道汉诺塔是通过递归函数来解决的,递归函数,通俗易懂讲就是⾃⼰调⽤⾃⼰,类似于猫抓⾃⼰的尾巴,然后你可以脑⼦⾥把他想象成⼀个圈了。
汉诺塔的规则我就不说了,只给⼤家讲讲怎么理解代码为了讲解清楚,我给代码标记了⾏号。
①如果圆盘只有1,那就随便移动,直接把A 移动到C, A->C②就是圆盘数量不是1的时候,代码中第四⾏开始。
在讲之前,我们看第三⾏代码我们可以看到,在代码实现中A 直接移动到C ,是(a ‘>’ c )我们在看第⑤⾏代码,意思是A 移动B ,那么代码就是(A B )A 指向B就是A 在左,B 在最后,缓冲柱就在中间,⼤家可以观察观察是不是这样,到底是怎么做缓冲的,⼤家可以把这三个柱⼦想象成我前⾯说的⼀个圆圈举个例⼦哦,如果C 移动到B ,那么就是(C A B )C 在左 B 在右 中间是缓冲柱,现在⼀想就很清楚了。
代码+运⾏结果1 def move(n,a,b,c): #n 代表圆盘数,a,b,c 分别代表初始柱,缓冲柱,⽬标柱2 if n==1:3 print (a,'-->',c)4 else :5 move(n-1,a,c,b)#将 N-1 个圆盘从A 移动到B (A C B)6 print (a,'-->',c) 将最⼤的圆盘从A 直接移动到C (A C )因为不需要任何缓冲,直接移过去,所以是没有缓冲柱7 move(n-1,b,a,c) 将 N-1 个圆盘从B 移动到C (B A C )print (a,'-->',c)move(n-1,a,c,b)。
C语言递归调用实例——汉诺塔问题动画实现(附完整代码)
二、程序框架
古人云,不谋全局者,不足谋一域。同样,在编写代码之前,我们必 须得有个大体的思路和整体上的把握。不能一上来就稀里糊涂地乱敲一通。 当然,这里我也只能仅仅谈自己的个人想法,不一定就是最优的解决方案, 还希望能和大家一起相互交流,共同进步。整个程序的框架,我把它分为 动画效果和核心算法两大部分。我首先实现的是动画效果部分,等能够实 现盘子的随意移动后,我才开始研究核心算法的实现。这样一来,在核心 算法部分,我们正好可以利用前面的动画效果来直观地反映出我们的思路, 有助于代码的调试和缩短程序的开发周期。为了尽量减少废话,我们可以 用一张图来进行表示:
图 1-1 移动第一个圆盘..................................................................................................................... 4 图 1-2 移动第二个圆盘...................................................................................................................... 5 图 1-3 移动最后一个圆盘................................................................................................................. 6
能移动一个圆盘,且圆盘在放到棒上时,大的不能放在小的上面。中间的一根
棒作为辅助移动用。” 事实上,对此曾经有人作过分析,按这个规则,众僧耗尽毕生精力也
不可能完成圆盘的移动,因为需要移动圆盘的次数是一个天文数字 18446744073709551615(64 个圆盘需要移动的次数为 2 的 64 次方)。假设 1us 进行一次移动,也需要约一百万年的时间,使用计算机也很难解决 64
汉诺塔
实验1:梵塔问题实验。
熟悉和掌握问题规约法的原理、实质和规约过程;理解规约图的表示方法。
解法:原始问题归约(简化)为三个子问题:1、移动A,B盘至柱子2的双圆盘难题2、移动圆盘C至柱子3的单圆盘问题3、移动A,B盘至柱子3的双圆盘难题这样的问题求解算法可以设计成一个递归结构的算法。
求解n个圆盘的汉诺塔问题的算法为:(1) 递归调用n-1个圆盘的汉诺塔问题算法,把上面的n-1个圆盘从A柱移到B柱;(2) 把最下面的一个圆盘从A柱直接移到C柱;(3) 递归调用n-1个圆盘的汉诺塔问题算法,把B柱上临时存放的n-1个圆盘移到C柱。
汉诺塔程序源代码:#include <stdio.h>int number; /*全局变量,统计移动的步数*/void move(char x,char y) /*将1个盘子从x柱移到y柱*/{printf("%c->%c\n",x,y);}/*把A柱上的n个盘子借助于B柱移到C柱上*/void hanoi(int n,char A,char B,char C){if(n==1){move(A,C);number++;}else{hanoi(n-1,A,C,B); /*把A柱上的n个盘子借助于C柱移到B柱上*/move(A,C); /*把A柱上的最后一个盘子移到C柱上*/number++;hanoi(n-1,B,A,C); /*把B柱上的n个盘子借助于A柱移到C柱上*/ }}int main(void){int n;printf("请输入盘子的个数:");scanf("%d",&n);printf("\n");printf("以下是盘子移动步骤,从一个柱子移动到另一个柱子:\n");hanoi(n,'A','B','C');printf("\n步骤数:%d\n\n",number);return 0;}程序运行结果如图所示:。
汉诺塔的计算原理及应用
汉诺塔的计算原理及应用
汉诺塔问题简介
汉诺塔问题是一个经典的数学问题,它源于印度一个古老的传说。
问题的规则
很简单:给定三个柱子(编号为A、B和C),在柱子A上有一些不同大小的圆盘,按照从上到下逐渐变大的顺序堆叠在柱子上。
目标是将所有的圆盘移动到柱子C
上,移动过程中可以借助柱子B。
汉诺塔问题的计算原理
汉诺塔问题的计算原理可以通过递归实现。
对于N个圆盘的汉诺塔问题,可以将其分解为三个子问题:将N-1个圆盘从柱子A移动到柱子B,将第N个圆盘从
柱子A移动到柱子C,再将N-1个圆盘从柱子B移动到柱子C。
这样就将问题分
解为规模较小的子问题,可以通过递归解决。
下面是汉诺塔问题的计算原理示例代码:
```python def hanoi(n, source, target, auxiliary): if n > 0: # 将 n-1 个圆盘从源柱
子移动到辅助柱子 hanoi(n-1, source, auxiliary, target)
# 将第 n 个圆盘从源柱子移动到目标柱子
print(\。
汉诺塔问题的程序实现(hanoi塔)
汉诺塔问题的程序实现(hanoi塔)问题重述:有三根柱A、B、C,在柱A上有N块盘⽚,所有盘⽚都是⼤的在下⾯,⼩⽚能放在⼤⽚上⾯。
现要将A上的N块盘⽚移到C柱上,每次只能移动⼀⽚,⽽且在同⼀根柱⼦上必须保持上⾯的盘⽚⽐下⾯的盘⽚⼩,输⼊任意的N,输出移动⽅法。
(注意:这是⼀个古⽼的传说,传说是如果把64个盘⼦由A柱移到了C柱的话,那么世界末⽇就到了,事实上如果要把64个盘⼦从A柱移到C柱的话,即使⽤计算机运算,也要计算数亿年,所以这个预⾔未必不是真实。
)【分析】我们可以这样考虑,当n=1时,我们只要直接将A柱的盘⼦移到C柱,当n>1时,我们可以先把n-1个盘⼦由A柱通过C柱移到B 柱,此时就可以把A柱剩下的最后⼀个盘⼦直接移到C柱,这样接下来只要把n-1个盘⼦通过A柱移到C 柱即可,如果就构成了递归的思路,我们可以定义个移动过程mov(n,a,b,c)表⽰将n个盘⼦从a通过b移到c1.只要求输出搬运的次数#includeusing namespace std;int m=0;void move(){m++;}void I(int n){if(n==1)move();else{I(n-1);move();I(n-1);}}int main(){I(3);cout<cout<<"输出完毕!"<return 0;}更加简单的⽅法!#includeusing namespace std;int fact(int n){if(n==1)return(1);elsereturn((2*fact(n-1)+1));}int main(){cout<}2.不仅要求输出搬运的次数,⽽且要输出每个步骤的详细搬运#includeusing namespace std;int m=0;void Move(int n,char x,char y){cout<<"把"<m++;}void Hannoi(int n,char a,char b,char c){if(n==1)Move(1,a,c);else{Hannoi(n-1,a,c,b);Move(n,a,c);Hannoi(n-1,b,a,c);}}int main(){int i;cout<<"请输⼊圆盘数"<cin>>i;Hannoi(3,'a','b','c');cout<<"总的搬运次数"<cout<<"输出完毕!"<return 0;}}另外⼀种不利⽤递归的解法(很抱歉,我⾃⼰也没调出来,实在太复杂了)#includeusing namespace std;//圆盘的个数最多为64const int MAX = 1;//⽤来表⽰每根柱⼦的信息struct st{int s[MAX]; //柱⼦上的圆盘存储情况int top; //栈顶,⽤来最上⾯的圆盘char name; //柱⼦的名字,可以是A,B,C 中的⼀个int Top()//取栈顶元素{return s[top];}int Pop()//出栈{return s[top--];}void Push(int x)//⼊栈{s[++top] = x;}} ;long Pow(int x, int y); //计算x^yvoid Creat(st ta[], int n); //给结构数组设置初值void Hannuota(st ta[], long max); //移动汉诺塔的主要函数int main(void){int n;cin >> n; //输⼊圆盘的个数st ta[3]; //三根柱⼦的信息⽤结构数组存储Creat(ta, n); //给结构数组设置初值long max = Pow(2, n) - 1;//动的次数应等于2^n - 1 Hannuota(ta, max);//移动汉诺塔的主要函数system("pause");return 0;}void Creat(st ta[], int n){ta[0].name = 'A';ta[0].top = n-1;//把所有的圆盘按从⼤到⼩的顺序放在柱⼦A 上for (int i=0; ita[0].s[i] = n - i;//柱⼦B,C 上开始没有没有圆盘ta[1].top = ta[2].top = 0;for (int j=0; jta[1].s[j] = ta[2].s[j] = 0;//若n 为偶数,按顺时针⽅向依次摆放A B Cif (n%2 == 0){ta[1].name = 'B';ta[2].name = 'C';}else //若n 为奇数,按顺时针⽅向依次摆放A C B {ta[1].name = 'C';ta[2].name = 'B';}}long Pow(int x, int y){long sum = 1;for (int i=0; isum *= x;return sum;}void Hannuota(st ta[], long max){int k = 0; //累计移动的次数int i = 0;int ch;while (k < max){//按顺时针⽅向把圆盘1 从现在的柱⼦移动到下⼀根柱⼦ch = ta[i%3].Pop();ta[(i+1)%3].Push(ch);cout << ++k << ": " <<"Move disk " << ch << " from " << ta[i%3].name <<" to " << ta[(i+1)%3].name << endl;i++;//把另外两根柱⼦上可以移动的圆盘移动到新的柱⼦上if (k < max){ //把⾮空柱⼦上的圆盘移动到空柱⼦上,当两根柱⼦都为空时,移动较⼩的圆if (ta[(i+1)%3].Top() == 0 ||ta[(i-1)%3].Top() > 0 &&ta[(i+1)%3].Top() > ta[(i-1)%3].Top()){ch = ta[(i-1)%3].Pop();ta[(i+1)%3].Push(ch);cout << ++k << ": " << "Move disk "<< ch << " from " << ta[(i-1)%3].name<< " to " << ta[(i+1)%3].name << endl;}else{ch = ta[(i+1)%3].Pop();ta[(i-1)%3].Push(ch);cout << ++k << ": " << "Move disk " << ch << " from " << ta[(i+1)%3].name << " to " << ta[(i-1)%3].name << endl; }}}}补充知识:【典型例题1】求阶乘n!#includeusing namespace std;int fact(int n){if(n==0)return(1);elsereturn(n*fact(n-1)); }int main(){cout<。
微课-汉诺塔问题教案
本微课适用范围如下所示:课程所属学科:计算机适用专业:计算机应用技术、计算机软件工程、电子信息适用课程:C语言程序设计、C++程序设计、JAVA程序设计、数据结构适用对象:有一定编程基础的同学《汉诺塔问题》微课教案学院(部):软件学院系(教研室):网络教研授课教师:杨珺职称:副教授时间复杂度为:O(2n)程序实现部分汉诺塔问题的递归实现:#include<stdio.h>void hanoi(int n,char A,char B,char C){if(n==1){printf("Move disk %d from %c to %c\n",n,A,C);}else{hanoi(n-1,A,C,B);printf("Move disk %d from %c to %c\n",n,A,C);hanoi(n-1,B,A,C);}}main(){int n;printf("请输入数字n以解决n阶汉诺塔问题:\n");scanf("%d",&n);hanoi(n,'A','B','C');}●汉诺塔算法的非递归实现C++源代码#include <iostream>using namespace std;//圆盘的个数最多为64const int MAX = 64;//用来表示每根柱子的信息struct st{int s[MAX]; //柱子上的圆盘存储情况int top; //栈顶,用来最上面的圆盘char name; //柱子的名字,可以是A,B,C中的一个int Top()//取栈顶元素{return s[top];}int Pop()//出栈return s[top--];}void Push(int x)//入栈{s[++top] = x;}} ;long Pow(int x, int y); //计算x^yvoid Creat(st ta[], int n); //给结构数组设置初值void Hannuota(st ta[], long max); //移动汉诺塔的主要函数int main(void){int n;cin >> n; //输入圆盘的个数st ta[3]; //三根柱子的信息用结构数组存储Creat(ta, n); //给结构数组设置初值long max = Pow(2, n) - 1;//动的次数应等于2^n - 1 Hannuota(ta, max);//移动汉诺塔的主要函数system("pause");return 0;}void Creat(st ta[], int n){ta[0].name = 'A';ta[0].top = n-1;//把所有的圆盘按从大到小的顺序放在柱子A上for (int i=0; i<n; i++)ta[0].s[i] = n - i;//柱子B,C上开始没有没有圆盘ta[1].top = ta[2].top = 0;for (int i=0; i<n; i++)ta[1].s[i] = ta[2].s[i] = 0;//若n为偶数,按顺时针方向依次摆放 A B Cif (n%2 == 0){ta[1].name = 'B';ta[2].name = 'C';}else //若n为奇数,按顺时针方向依次摆放 A C Bta[1].name = 'C';ta[2].name = 'B';}}long Pow(int x, int y){long sum = 1;for (int i=0; i<y; i++)sum *= x;return sum;}void Hannuota(st ta[], long max){int k = 0; //累计移动的次数int i = 0;int ch;while (k < max){//按顺时针方向把圆盘1从现在的柱子移动到下一根柱子ch = ta[i%3].Pop();ta[(i+1)%3].Push(ch);cout << ++k << ": " <<"Move disk " << ch << " from " << ta[i%3].name <<" to " << ta[(i+1)%3].name << endl;i++;//把另外两根柱子上可以移动的圆盘移动到新的柱子上if (k < max){ //把非空柱子上的圆盘移动到空柱子上,当两根柱子都为空时,移动较小的圆盘if (ta[(i+1)%3].Top() == 0 ||ta[(i-1)%3].Top() > 0 &&ta[(i+1)%3].Top() > ta[(i-1)%3].Top()){ch = ta[(i-1)%3].Pop();ta[(i+1)%3].Push(ch);cout << ++k << ": " << "Move disk "<< ch << " from " << ta[(i-1)%3].name<< " to " << ta[(i+1)%3].name << endl;}else{ch = ta[(i+1)%3].Pop();ta[(i-1)%3].Push(ch);cout << ++k << ": " << "Move disk "<< ch << " from " << ta[(i+1)%3].name<< " to " << ta[(i-1)%3].name << endl;}}}}汉诺塔问题的非递归实现#include <stdio.h>#include <math.h>#include <stdlib.h>//第0位置是柱子上的塔盘数目int zhua[100]={0},zhub[100]={0},zhuc[100]={0};char charis(char x,int n)//左右字符出现顺序固定,且根据n值奇偶而不同{switch(x){case 'A':return (n%2==0)?'C':'B';case 'B':return (n%2==0)?'A':'C';case 'C':return (n%2==0)?'B':'A';default:return '0';}}void print(char lch,char rch)//打印字符{if(lch=='A'){switch(rch){case 'B':zhub[0]++;zhub[zhub[0]]=zhua[zhua[0]]; zhua[zhua[0]]=0;zhua[0]--;break;case 'C':zhuc[0]++;zhuc[zhuc[0]]=zhua[zhua[0]]; zhua[zhua[0]]=0;zhua[0]--;break;default:break;}}if(lch=='B'){switch(rch){case 'A':zhua[0]++;zhua[zhua[0]]=zhub[zhub[0]]; zhub[zhub[0]]=0;zhub[0]--;break;case 'C':zhuc[0]++;zhuc[zhuc[0]]=zhub[zhub[0]]; zhub[zhub[0]]=0;zhub[0]--;break;default:break;}}if(lch=='C'){switch(rch){case 'A':zhua[0]++;zhua[zhua[0]]=zhuc[zhuc[0]];zhuc[zhuc[0]]=0;zhuc[0]--;break;case 'B':zhub[0]++;zhub[zhub[0]]=zhuc[zhuc[0]];zhuc[zhuc[0]]=0;zhuc[0]--;break;default:break;}}printf("\t");int i;printf("(");for(i=1;i<=zhua[0];i++)printf(" %d ",zhua[i]);printf(")");printf("(");for(i=1;i<=zhub[0];i++)printf(" %d ",zhub[i]);printf(")");printf("(");for(i=1;i<=zhuc[0];i++)printf(" %d ",zhuc[i]);printf(")");printf("\n");}void Hannuo(int n){//分配2^n个空间bool *isrev;isrev=(bool *)malloc(sizeof(bool)*(int)pow(2,n)); for(int i=1;i<pow(2,n);i++)//循环计算是否逆序for(int ci=2;ci<=n;ci++){for(int zixh=(int)pow(2,ci-1);zixh<pow(2,ci);zixh+=4) //初始值重复一次,自增值可加4,减少循环次数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
汉诺塔c语言程序代码集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)
汉诺塔c语言程序代码(通过vc++6.0验证)(附讲解)让我们先看看代码吧
#include <stdio.h>
int hj(int a,int b, int c,int i)
{
int t;
if(i==1)
printf("%d->%d\n",a,c);
else
{t=c;
c=b;
b=t;
hj(a,b,c,i-1);
printf("%d->%d\n",a,b);
t=a;
a=c;
c=t;
t=b;
b=c;
c=t;
hj(a,b,c,i-1);
return 0;
}
}
main()
{
int a,b,c,i;
a=1;
b=2;
c=3;
printf("请输入汉诺塔的盘数");
scanf("%d",&i);
hj(a,b,c,i);
return 0;
}
以上是汉诺塔的代码,该程序主要是运用了递归的思想,比如数学中的
f(x)=f(x-1)+f(x-2),在本程序中为:int hj(int a,int b, int c,int i)
{
int t;
if(i==1)
printf("%d->%d\n",a,c);
else
{t=c;
c=b;
b=t;
hj(a,b,c,i-1);
也就是说,我们在这个函数中再次调用这个函数,相当于一个循环,而在再次调用的过程中,i的值变成i-1,就类似于f(x-1),这样层层调用,最终就变成当i=1的时候的值,然后通过运算,计算出想要得到的值。
汉诺塔的数值分析:
我们可以发现,当只有一个盘的时候,我们只需要做1->3(就是把第一个柱子上的最顶端的盘移动到第三根柱子,以下不再解释)
当有两个盘的时候,是1->2 1->3 2->3
三个盘子是:1->3 1->2 3->2 1->3 2->1 2->3 1->3
分析一下可以得出以下结论:
初始值a=1 b=2 c=3
一个盘子就是a->c
两个盘子与一个盘子的关系是:
第一步:b与c交换值,然后打印a->c
第二步:打印a->b
第三步:a与c交换值,b与c交换值,打印a->c
进一步分析,便可以得出以下结论
只要盘子数量为i(i大于1),那么它就有三部分
第一部分,b与c交换值,然后运行i-1
第二部分,打印a->b
第三部分,a与c交换值,b与c交换值,然后运行i-1程序表示便是:
if(i==1)
printf("%d->%d\n",a,c);
else
{t=c;
c=b;(交换值)
b=t;
hj(a,b,c,i-1);
printf("%d->%d\n",a,b);
t=a;
a=c;
c=t;(a c交换)
t=b;
b=c;
c=t;(b c交换)
hj(a,b,c,i-1);。