计量经济学标准参考答案

合集下载

计量经济学期末考试大全(含答案)

计量经济学期末考试大全(含答案)

计量经济学期末考试⼤全(含答案)计量经济学期末考试标准试题计量经济学试题⼀ (2)计量经济学试题⼀答案 (5)计量经济学试题⼆ (11)计量经济学试题⼆答案 (13)计量经济学试题三 (16)计量经济学试题三答案 (19)计量经济学试题四 (24)计量经济学试题四答案 (26)计量经济学试题⼀课程号:课序号:开课系:数量经济系⼀、判断题(20分)1.线性回归模型中,解释变量是原因,被解释变量是结果。

()2.多元回归模型统计显著是指模型中每个变量都是统计显著的。

()3.在存在异⽅差情况下,常⽤的OLS法总是⾼估了估计量的标准差。

()4.总体回归线是当解释变量取给定值时因变量的条件均值的轨迹。

()5.线性回归是指解释变量和被解释变量之间呈现线性关系。

()R的⼤⼩不受到回归模型中所包含的解释变量个数的影响。

()6.判定系数27.多重共线性是⼀种随机误差现象。

()8.当存在⾃相关时,OLS估计量是有偏的并且也是⽆效的。

()9.在异⽅差的情况下,OLS估计量误差放⼤的原因是从属回归的2R变⼤。

()10.任何两个计量经济模型的2R都是可以⽐较的。

()⼆.简答题(10)1.计量经济模型分析经济问题的基本步骤。

(4分)2.举例说明如何引进加法模式和乘法模式建⽴虚拟变量模型。

(6分)三.下⾯是我国1990-2003年GDP 对M1之间回归的结果。

(5分)ln() 1.37 0.76ln(1)se (0.15) ( )t ( ) ( 23 )GDP M =+()1.7820.05,12P t >==⾃由度;1.求出空⽩处的数值,填在括号内。

(2分) 2.系数是否显著,给出理由。

(3分)四.试述异⽅差的后果及其补救措施。

(10分)五.多重共线性的后果及修正措施。

(10分)六.试述D-W 检验的适⽤条件及其检验步骤?(10分)七.(15分)下⾯是宏观经济模型()()()()()1(1)*(2)*3*4*5*6*7*D t t t t t t C t t t tAtt t M C P CY C I C M u I C M C Y u Y C I u -=++++=++=+变量分别为货币供给M 、投资I 、价格指数P 和产出Y 。

计量经济学习题参考答案

计量经济学习题参考答案

计量经济学习题参考答案第⼀章导论1.计量经济学是⼀门什么样的学科?答:计量经济学的英⽂单词是Econometrics,本意是“经济计量”,研究经济问题的计量⽅法,因此有时也译为“经济计量学”。

将Econometrics译为“计量经济学”是为了强调它是现代经济学的⼀门分⽀学科,不仅要研究经济问题的计量⽅法,还要研究经济问题发展变化的数量规律。

可以认为,计量经济学是以经济理论为指导,以经济数据为依据,以数学、统计⽅法为⼿段,通过建⽴、估计、检验经济模型,揭⽰客观经济活动中存在的随机因果关系的⼀门应⽤经济学的分⽀学科。

2.计量经济学与经济理论、数学、统计学的联系和区别是什么?答:计量经济学是经济理论、数学、统计学的结合,是经济学、数学、统计学的交叉学科(或边缘学科)。

计量经济学与经济学、数学、统计学的联系主要是计量经济学对这些学科的应⽤。

计量经济学对经济学的应⽤主要体现在以下⼏个⽅⾯:第⼀,计量经济学模型的选择和确定,包括对变量和经济模型的选择,需要经济学理论提供依据和思路;第⼆,计量经济分析中对经济模型的修改和调整,如改变函数形式、增减变量等,需要有经济理论的指导和把握;第三,计量经济分析结果的解读和应⽤也需要经济理论提供基础、背景和思路。

计量经济学对统计学的应⽤,⾄少有两个重要⽅⾯:⼀是计量经济分析所采⽤的数据的收集与处理、参数的估计等,需要使⽤统计学的⽅法和技术来完成;⼀是参数估计值、模型的预测结果的可靠性,需要使⽤统计⽅法加以分析、判断。

计量经济学对数学的应⽤也是多⽅⾯的,⾸先,对⾮线性函数进⾏线性转化的⽅法和技巧,是数学在计量经济学中的应⽤;其次,任何的参数估计归根结底都是数学运算,较复杂的参数估计⽅法,或者较复杂的模型的参数估计,更需要相当的数学知识和数学运算能⼒,另外,在计量经济理论和⽅法的研究⽅⾯,需要⽤到许多的数学知识和原理。

计量经济学与经济学、数学、统计学的区别也很明显,经济学、数学、统计学中的任何⼀门学科,都不能替代计量经济学,这三门学科简单地合起来,也不能替代计量经济学。

计量经济学试题与答案

计量经济学试题与答案

计量经济学试题与答案一、选择题(每题5分,共25分)1. 以下哪个选项是计量经济学的基本任务?A. 建立经济模型B. 进行经济预测C. 分析经济现象的规律性D. 所有以上选项答案:D2. 以下哪个方法不属于计量经济学的研究方法?A. 最小二乘法B. 最大似然法C. 线性规划D. 广义矩估计答案:C3. 在线性回归模型中,以下哪个选项表示随机误差项的方差?A. σ²B. μC. εD. β答案:A4. 在计量经济学模型中,以下哪个选项表示解释变量与被解释变量之间的关系?A. 相关性B. 因果关系C. 联合分布D. 条件分布答案:B5. 在实证研究中,以下哪个选项可以用来检验模型的稳定性?A. 残差分析B. 异方差性检验C. 单位根检验D. 联合检验答案:C二、填空题(每题5分,共25分)1. 计量经济学是一门研究______、______和______的科学。

答案:经济模型、经济数据、经济预测2. 最小二乘法的原理是使______的平方和最小。

答案:回归残差3. 在线性回归模型中,回归系数的估计值是______的线性函数。

答案:解释变量4. 异方差性检验的方法有______检验、______检验和______检验。

答案:Breusch-Pagan检验、White检验、Goldfeld-Quandt检验5. 在实证研究中,单位根检验的目的是检验______。

答案:时间序列数据的平稳性三、计算题(每题20分,共40分)1. 设线性回归模型为:Y = β0 + β1X + ε,其中Y表示被解释变量,X表示解释变量,ε表示随机误差项。

给定以下数据:Y: 2, 3, 4, 5, 6X: 1, 2, 3, 4, 5求:回归系数β0和β1的估计值。

答案:首先,计算X和Y的均值:X̄ = (1 + 2 + 3 + 4 + 5) / 5 = 3Ȳ = (2 + 3 + 4 + 5 + 6) / 5 = 4然后,计算回归系数β1的估计值:β1̄= Σ[(Xi - X̄)(Yi - Ȳ)] / Σ[(Xi - X̄)²]= [(1-3)(2-4) + (2-3)(3-4) + (3-3)(4-4) + (4-3)(5-4) + (5-3)(6-4)] / [(1-3)² + (2-3)² + (3-3)² + (4-3)² + (5-3)²]= 4 / 10= 0.4最后,计算回归系数β0的估计值:β0̄ = Ȳ - β1̄X̄= 4 - 0.4 3= 2.2所以,回归系数β0和β1的估计值分别为2.2和0.4。

计量经济学习题及全部答案

计量经济学习题及全部答案

计量经济学习题一一、判断正误1.在研究经济变量之间的非确定性关系时,回归分析是唯一可用的分析方法; 2.最小二乘法进行参数估计的基本原理是使残差平方和最小;3.无论回归模型中包括多少个解释变量,总离差平方和的自由度总为n -1; 4.当我们说估计的回归系数在统计上是显着的,意思是说它显着地异于0; 5.总离差平方和TSS 可分解为残差平方和ESS 与回归平方和RSS 之和,其中残差平方和ESS 表示总离差平方和中可由样本回归直线解释的部分; 6.多元线性回归模型的F 检验和t 检验是一致的;7.当存在严重的多重共线性时,普通最小二乘估计往往会低估参数估计量的方差; 8.如果随机误差项的方差随解释变量变化而变化,则线性回归模型存在随机误差项的自相关;9.在存在异方差的情况下,会对回归模型的正确建立和统计推断带来严重后果; 10...DW 检验只能检验一阶自相关; 二、单选题1.样本回归函数方程的表达式为 ;A .i Y =01i i X u ββ++B .(/)i E Y X =01i X ββ+C .i Y =01ˆˆi i X e ββ++D .ˆi Y =01ˆˆiX ββ+ 2.下图中“{”所指的距离是 ;A .随机干扰项B .残差C .i Y 的离差D .ˆiY 的离差 3.在总体回归方程(/)E Y X =01X ββ+中,1β表示 ;A .当X 增加一个单位时,Y 增加1β个单位B .当X 增加一个单位时,Y 平均增加1β个单位C .当Y 增加一个单位时,X 增加1β个单位D .当Y 增加一个单位时,X 平均增加1β个单位 4.可决系数2R 是指 ;A .剩余平方和占总离差平方和的比重B .总离差平方和占回归平方和的比重C .回归平方和占总离差平方和的比重D .回归平方和占剩余平方和的比重 5.已知含有截距项的三元线性回归模型估计的残差平方和为2i e ∑=800,估计用的样本容量为24,则随机误差项i u 的方差估计量为 ;A .B .40C .D .6.设k 为回归模型中的参数个数不包括截距项,n 为样本容量,ESS 为残差平方和,RSS 为回归平方和;则对总体回归模型进行显着性检验时构造的F 统计量为 ;A .F =RSSTSSB .F =/(1)RSS k ESS n k --C .F =/1(1)RSS k TSS n k --- D .F =ESSTSS7.对于模型i Y =01ˆˆi iX e ββ++,以ρ表示i e 与1i e -之间的线性相关系数2,3,,t n =,则下面明显错误的是 ;A .ρ=,..DW =B .ρ=-,..DW =-C .ρ=0,..DW =2D .ρ=1,..DW =08.在线性回归模型 011...3i i k ki i Y X X u k βββ=++++≥;如果231X X X =-,则表明模型中存在 ;A .异方差B .多重共线性C .自相关D .模型误设定9.根据样本资料建立某消费函数 i Y =01i i X u ββ++,其中Y 为需求量,X 为价格;为了考虑“地区”农村、城市和“季节”春、夏、秋、冬两个因素的影响,拟引入虚拟变量,则应引入虚拟变量的个数为 ;A .2B .4C .5D .610.某商品需求函数为ˆi C =100.5055.350.45i i D X ++,其中C 为消费,X 为收入,虚拟变量10D ⎧=⎨⎩城镇家庭农村家庭,所有参数均检验显着,则城镇家庭的消费函数为 ;A .ˆi C =155.850.45i X +B .ˆiC =100.500.45i X + C .ˆi C =100.5055.35i X +D .ˆiC =100.9555.35i X + 三、多选题1.一元线性回归模型i Y =01i i X u ββ++的基本假定包括 ;A .()i E u =0B .()i Var u =2σ常数C .(,)i j Cov u u =0 ()i j ≠D .(0,1)iu NE .X 为非随机变量,且(,)i i Cov X u =02.由回归直线ˆi Y =01ˆˆi X ββ+估计出来的ˆiY ; A .是一组平均数 B .是实际观测值i Y 的估计值 C .是实际观测值i Y 均值的估计值 D .可能等于实际观测值i Y E .与实际观测值i Y 之差的代数和等于零 3.异方差的检验方法有A .图示检验法B .Glejser 检验C .White 检验D ...DW 检验E .Goldfeld Quandt -检验4.下列哪些非线性模型可以通过变量替换转化为线性模型 ;A .i Y =201i i X u ββ++B .1/i Y =01(1/)i i X u ββ++C .ln i Y =01ln i i X u ββ++D .i Y =iui i AK L e αβE .i Y =1122012iiX X i e e u ββααα+++5.在线性模型中引入虚拟变量,可以反映 ;A .截距项变动B .斜率变动C .斜率与截距项同时变动D .分段回归E .以上都可以 四、简答题1.随机干扰项主要包括哪些因素它和残差之间的区别是什么2.简述为什么要对参数进行显着性检验试说明参数显着性检验的过程;3.简述序列相关性检验方法的共同思路; 五、计算分析题1.下表是某次线性回归的EViews 输出结果,根据所学知识求出被略去部分的值用大写字母标示,并写出过程保留3位小数;Dependent Variable: Y Method: Least Squares Included observations: 132.用Goldfeld Quandt -方法检验下列模型是否存在异方差;模型形式如下:i Y =0112233 i i i i X X X u ββββ++++其中样本容量n =40,按i X 从小到大排序后,去掉中间10个样本,并对余下的样本按i X 的大小等分为两组,分别作回归,得到两个残差平方和1ESS =、2ESS =,写出检验步骤α=;F 分布百分位表α=3.有人用广东省1978—2005年的财政收入AV 作为因变量,用三次产业增加值作为自变量,进行了三元线性回归;第一产业增加值——1VAD ,第二产业增加值——2VAD ,第三产业增加值——3VAD ,结果为:AV =12335.1160.0280.0480.228VAD VAD VAD +-+2R =,F =- ..DW =试简要分析回归结果; 五、证明题求证:一元线性回归模型因变量模拟值ˆi Y 的平均值等于实际观测值i Y 的平均值,即ˆiY =i Y ; 计量经济学习题二一、判断正误正确划“√”,错误划“×” 1.残差剩余项i e 的均值e =()i e n ∑=0;2.所谓OLS 估计量的无偏性,是指参数估计量的数学期望等于各自的真值; 3.样本可决系数高的回归方程一定比样本可决系数低的回归方程更能说明解释变量对被解释变量的解释能力;4.多元线性回归模型中解释变量个数为k ,则对回归参数进行显着性检验的t 统计量的自由度一定是1n k --;5.对应于自变量的每一个观察值,利用样本回归函数可以求出因变量的真实值; 6.若回归模型存在异方差问题,可以使用加权最小二乘法进行修正;7.根据最小二乘估计,我们可以得到总体回归方程;8.当用于检验回归方程显着性的F 统计量与检验单个系数显着性的t 统计量结果矛盾时,可以认为出现了严重的多重共线性9.线性回归模型中的“线性”主要是指回归模型中的参数是线性的,而变量则不一定是线性的;10.一般情况下,用线性回归模型进行预测时,单个值预测与均值预测相等,且置信区间也相同; 二、单选题1.针对同一经济指标在不同时间发生的结果进行记录的数据称为A .面板数据B .截面数据C .时间序列数据D .以上都不是 2.下图中“{”所指的距离是A .随机干扰项B .残差C .i Y 的离差D .ˆiY 的离差 3.在模型i Y =01ln i i X u ββ++中,参数1β的含义是A .X 的绝对量变化,引起Y 的绝对量变化B .Y 关于X 的边际变化C .X 的相对变化,引起Y 的平均值绝对量变化D .Y 关于X 的弹性4.已知含有截距项的三元线性回归模型估计的残差平方和为2i e ∑=90,估计用的样本容量为19,则随机误差项i u 方差的估计量为A .B .6C .D .55.已知某一线性回归方程的样本可决系数为,则解释变量与被解释变量间的相关系数为A .B .0.8C .D .6.用一组有20个观测值的样本估计模型i Y =01i i X u ββ++,在的显着性水平下对1β的显着性作t 检验,则1β显着异于零的条件是对应t 统计量的取值大于 A .0.05(20)t B .0.025(20)t C .0.05(18)t D .0.025(18)t7.对于模型i Y =01122ˆˆˆˆi ik ki iX X X e ββββ+++++,统计量22ˆ()/ˆ()/(1)ii i Y Y kY Y n k ----∑∑服从A .()t n k -B .(1)t n k --C .(1,)F k n k --D .(,1)F k n k --8.如果样本回归模型残差的一阶自相关系数ρ为零,那么..DW 统计量的值近似等于 ;A .1B .2C .4D .9.根据样本资料建立某消费函数如下i Y =01i i X u ββ++,其中Y 为需求量,X 为价格;为了考虑“地区”农村、城市和“季节”春、夏、秋、冬两个因素的影响,拟引入虚拟变量,则应引入虚拟变量的个数为A .2B .4C .5D .610.设消费函数为i C =012i i i i X D X u βββ+++,其中C 为消费,X 为收入,虚拟变量10D ⎧=⎨⎩城镇家庭农村家庭,当统计检验表明下列哪项成立时,表示城镇家庭与农村家庭具有同样的消费行为A .1β=0,2β=0B .1β=0,2β≠0C .1β≠0,2β=0D .1β≠0,2β≠0 三、多选题1.以i Y 表示实际观测值,ˆiY 表示用OLS 法回归后的模拟值,i e 表示残差,则回归直线满足A .通过样本均值点(,)X YB .2ˆ()i iY Y -∑=0 C .(,)i i Cov X e =0 D .i Y ∑=ˆiY ∑ E .i i e X ∑=0 2.对满足所有假定条件的模型i Y =01122i i i X X u βββ+++进行总体显着性检验,如果检验结果显示总体线性关系显着,则可能出现的情况包括A .1β=2β=0B .10β≠,2β=0C .10β≠,20β≠D .1β=0,20β≠E .1β=2β≠0 3.下列选项中,哪些方法可以用来检验多重共线性 ;A .Glejser 检验B .两个解释变量间的相关性检验C .参数估计值的经济检验D .参数估计值的统计检验E ...DW 检验 4.线性回归模型存在异方差时,对于回归参数的估计与检验正确的表述包括A .OLS 参数估计量仍具有线性性B .OLS 参数估计量仍具有无偏性C .OLS 参数估计量不再具有效性即不再具有最小方差D .一定会低估参数估计值的方差5.关于虚拟变量设置原则,下列表述正确的有A .当定性因素有m 个类型时,引入1m -个虚拟变量B.当定性因素有m个类型时,引入m个虚拟变量会产生多重共线性问题C.虚拟变量的值只能取0和1D.在虚拟变量的设置中,基础类别一般取值为0E.以上说法都正确四、简答题1.简述计量经济学研究问题的方法;2.简述异方差性检验方法的共同思路;3.简述多重共线性的危害;五、计算分析题1.下表是某次线性回归的EViews输出结果,被略去部分数值用大写字母标示,根据所学知识解答下列各题计算过程保留3位小数;本题12分Dependent Variable: YMethod: Least SquaresIncluded observations: 181求出A 、B 的值;2求TSS2.有人用美国1960-1995年36年间个人实际可支配收入X 和个人实际消费支出Y 的数据单位:百亿美元建立收入—消费模型 i Y =01i i X u ββ++,估计结果如下:ˆiY =9.4290.936i X -+ t :2R = ,F = ,..DW =1检验收入—消费模型的自相关状况5%显着水平; 2用适当的方法消除模型中存在的问题; 五、证明题证明:用于多元线性回归方程显着性检验的F 统计量与可决系数2R 满足如下关系: 计量经济学习题三 一、判断对错1、在研究经济变量之间的非确定性关系时,回归分析是惟一可用的分析方法;2、对应于自变量的每一个观察值,利用样本回归函数可以求出因变量的真实值;DW 检验临界值表α=3、OLS 回归方法的基本准则是使残差平方和最小;4、在存在异方差的情况下,OLS 法总是高估了估计量的标准差;5、无论回归模型中包括多少个解释变量,总离差平方和的自由度总为n -1;6、线性回归分析中的“线性”主要是指回归模型中的参数是线性的,而变量则不一定是线性的;7、当我们说估计的回归系数在统计上是显着的,意思是说它显着异于0; 8、总离差平方和TSS 可分解为残差平方ESS 和与回归平方和RSS,其中残差平方ESS 表示总离差平方和可由样本回归直线解释的部分;9、所谓OLS 估计量的无偏性,是指回归参数的估计值与真实值相等; 10、当模型中解释变量均为确定性变量时,则可以用DW 统计量来检验模型的随机误差项所有形式的自相关性;二、单项选择1、回归直线t ^Y =0ˆβ+1ˆβX t 必然会通过点 A 、0,0; B 、_X ,_Y ;C 、_X ,0;D 、0,_Y ;2、针对经济指标在同一时间所发生结果进行记录的数据列,称为 A 、面板数据;B 、截面数据;C 、时间序列数据;D 、时间数据;3、如果样本回归模型残差的一阶自相关系数ρ接近于0,那么DW 统计量的值近似等于 A 、0 B 、1 C 、2 D 、44、若回归模型的随机误差项存在自相关,则参数的OLS 估计量A 、无偏且有效B 、有偏且非有效C 、有偏但有效D 、无偏但非有效 5、下列哪一种检验方法不能用于异方差检验A、戈德菲尔德-夸特检验;B、DW检验;C、White检验;D、戈里瑟检验;6、当多元回归模型中的解释变量存在完全多重共线性时,下列哪一种情况会发生A、OLS估计量仍然满足无偏性和有效性;B、OLS估计量是无偏的,但非有效;C、OLS估计量有偏且非有效;D、无法求出OLS估计量;7、DW检验法适用于的检验A、一阶自相关B、高阶自相关C、多重共线性 D都不是8、在随机误差项的一阶自相关检验中,若DW=,给定显着性水平下的临界值d L=,d U=,则由此可以判断随机误差项A、存在正自相关B、存在负自相关C、不存在自相关D、无法判断9、在多元线性线性回归模型中,解释变量的个数越多,则可决系数R2A、越大;B、越小;C、不会变化;D、无法确定10、在某线性回归方程的估计结果中,若残差平方和为10,回归平方和为40,则回归方程的拟合优度为A、 B、 C、 D、无法计算;三、简答与计算1、多元线性回归模型的基本假设有哪些2、计量经济模型中的随机误差项主要包含哪些因素3、简答经典单方程计量模型的异方差性概念、后果以及修正方法;4、简述方程显着性检验F检验与变量显着性检验t检验的区别;5、对于一个三元线性回归模型,已知可决系数R2=,方差分析表的部份结果如下:1样本容量是多少2总离差平方和TSS为多少3残差平方和ESS为多少4回归平方和RSS和残差平方和ESS的自由度各为多少5求方程总体显着性检验的F统计量;四、案例分析下表是中国某地人均可支配收入INCOME与储蓄SAVE之间的回归分析结果单位:元:Dependent Variable: SAVEMethod: Least SquaresSample: 1 31Included observations: 31Variable CoefficientStd.Errort-Statistic Prob.CINCOME――――R-squared Mean dependent var AdjustedR-squared. dependent var. of regression Akaike info criterionSum squared resid1778097Schwarz criterion.Log likelihood F-statisticDurbin-Watsonstat ProbF-statistic1、请写出样本回归方程表达式,然后分析自变量回归系数的经济含义2、解释样本可决系数的含义3、写出t检验的含义和步骤,并在5%的显着性水平下对自变量的回归系数进行t 检验临界值: 29=;4、下表给出了White异方差检验结果,试在5%的显着性水平下判断随机误差项是否存在异方差;5、下表给出LM序列相关检验结果滞后1期,试在5%的显着性水平下判断随机误差项是否存在一阶自相关;计量经济学习题四一、判断对错1、一般情况下,在用线性回归模型进行预测时,个值预测与均值预测结果相等,且它们的置信区间也相同;2、对于模型Yi =β+β1X1i+β2X2i+……+βkXki+μi,i=1,2, ……,n;如果X2=X5+X6, 则模型必然存在解释变量的多重共线性问题;3、OLS回归方法的基本准则是使残差项之和最小;4、在随机误差项存在正自相关的情况下,OLS法总是低估了估计量的标准差;5、无论回归模型中包括多少个解释变量,总离差平方和的自由度总为n-1;6、一元线性回归模型的F检验和t检验是一致的;7、如果随机误差项的方差随解释变量变化而变化,则线性回归模型存在随机误差项的序列相关;8、在近似多重共线性下,只要模型满足OLS的基本假定,则回归系数的最小二乘估计量仍然是一BLUE估计量;9、所谓参数估计量的线性性,是指参数估计量是解释变量的线性组合;10、拟合优度的测量指标是可决系数R2或调整过的可决系数,R2越大,说明回归方程对样本的拟合程度越高;二、单项选择1.在多元线性回归模型中,若两个自变量之间的相关系数接近于1,则在回归分析中需要注意模型的问题;A、自相关;B、异方差;C、模型设定偏误;D、多重共线性;2、在异方差的众多检验方法中,既能判断随机误差项是否存在异方差,又能给出异方差具体存在形式的检验方法是A、图式检验法;B、DW检验;C、戈里瑟检验;D、White检验;3、如果样本回归模型残差的一阶自相关系数ρ接近于1,那么DW统计量的值近似等于A、0B、1C、2D、44、若回归模型的随机误差项存在异方差,则参数的OLS估计量A、无偏且有效B、无偏但非有效C、有偏但有效D、有偏且非有效5、下列哪一个方法是用于补救随机误差项自相关问题的A、OLS;B、ILS;C、WLS;D、GLS;6、计量经济学的应用不包括:A、预测未来;B、政策评价;C、创建经济理论;D、结构分析;7、LM检验法适用于的检验A、异方差;B、自相关;C、多重共线性; D都不是8、在随机误差项的一阶自相关检验中,若DW=,给定显着性水平下的临界值d L=,d U=,则由此可以判断随机误差项A、存在正自相关B、存在负自相关C、不存在自相关D、无法判断9、在多元线性线性回归模型中,解释变量的个数越多,则调整可决系数2RA、越大;B、越小;C、不会变化;D、无法确定10、在某线性回归方程的估计结果中,若残差平方和为10,总离差平方和为100,则回归方程的拟合优度为A、;B、;C、;D、无法计算;三、简答与计算1、多元线性回归模型的基本假设有哪些2、简述计量经济研究的基本步骤3、简答经典单方程计量模型自相关概念、后果以及修正方法;4、简述对多元回归模型01122...i i i k ki i Y X X X u ββββ=+++++进行显着性检验F 检验的基本步骤5、对于一个五元线性回归模型,已知可决系数R 2=,方差分析表的部份结果如下:1样本容量是多少2回归平方和RSS 为多少3残差平方和ESS 为多少 4回归平方和RSS 和总离差平方和TSS 的自由度各为多少 5求方程总体显着性检验的F 统计量;四、实验下表是某国1967-1985年间GDP 与出口额EXPORT 之间的回归分析结果单位:亿美元:Dependent Variable: EXPORT Method: Least Squares Sample: 1967 1985Included observations: 19VariableCoefficientStd. Errort-Statist icProb. CGDP――――R-squaredMean dependent varAdjusted R-squared. dependent var. of regressionAkaike infocriterionSum squared residSchwarz criterion Log likelihoodF-statisticDurbin-Watson statProbF-statistic1、请写出样本回归方程表达式,然后分析自变量回归系数的经济含义2、解释样本可决系数的含义3、写出t 检验的含义和步骤,并在5%的显着性水平下对自变量的回归系数进行t 检验临界值: 17=;4、下表给出了White 异方差检验结果,试在5%的显着性水平下判断随机误差项是否存在异方差;5、下表给出LM 序列相关检验结果滞后1期,试在5%的显着性水平下判断随机误差项是否存在一阶自相关;计量经济学习题五一、判断正误正确划“√”,错误划“x ”1、最小二乘法进行参数估计的基本原理是使残差平方和最小;2、一般情况下,用线性回归模型进行预测时,个值预测与均值预测相等,且置信区间也相同;3、如果随机误差项的方差随解释变量变化而变化,则线性回归模型存在随机误差项的序列相关;4、若回归模型存在异方差问题,应使用加权最小二乘法进行修正;5、多元线性回归模型的F 检验和t 检验是一致的;6、DW 检验只能检验随机误差项是否存在一阶自相关;7、总离差平方和TSS 可分解为残差平方RSS 和与回归平方和ESS,其中残差平方RSS 表示总离差平方和可由样本回归直线解释的部分;8、拟合优度用于检验回归方程对样本数据的拟合程度,其测量指标是可决系数或调整后的可决系数;9、对于模型011... 1,2,...,i i n ni i Y X X u i n βββ=++++=;如果231X X X =-,则模型必然存在解释变量的多重共线性问题;10、所谓OLS 估计量的无偏性,是指参数估计量的数学期望等于各自真值; 二、单项选择1、回归直线01ˆˆˆi iY X ββ=+必然会通过点A、0,0B、_X,_YC、_X,0D、0,_Y2、某线性回归方程的估计的结果,残差平方和为20,回归平方和为80,则回归方程的拟合优度为A、 B、C、 D、无法计算3、针对经济指标在同一时间所发生结果进行记录的数据列,称为A、面板数据B、截面数据C、时间序列数据D、时间数据4、对回归方程总体线性关系进行显着性检验的方法是A、Z检验B、t检验C、F检验D、预测检验5、如果DW统计量等于2,那么样本回归模型残差的一阶自相关系数ρ近似等于A、0B、-1C、1D、6、若随机误差项存在异方差,则参数的普通最小二乘估计量A、无偏且有效B、有偏且非有效C、有偏但有效D、无偏但非有效7、下列哪一种方法是用于补救随机误差项的异方差问题的A、OLS;B、ILS;C、WLSD、GLS8、如果某一线性回归方程需要考虑四个季度的变化情况,那么为此设置虚拟变量的个数为A、1B、2C、3D、49、样本可决系数R2越大,表示它对样本数据拟合得A、越好B、越差C、不能确定D、均有可能10、多元线性回归模型中,解释变量的个数越多,可决系数R2A、越大;B、越小;C、不会变化;D、无法确定三、简答题1、简述计量经济学的定义;2、多元线性回归模型的基本假设有哪些3、简答异方差概念、后果以及修正方法;4、简述t检验的目的及基本步骤;四、计算对于一个三元线性回归模型,已知可决系数20.8R ,方差分析表的部份结果如下:变差来源平方和自由度源于回归ESS 200源于残差RSS总变差TSS 221样本容量是多少2总变差TSS为多少3残差平方和RSS为多少4ESS和RSS的自由度各为多少5求方程总体显着性检验的F统计量值;计量经济学习题六-案例题一、根据美国各航空公司航班正点到达的比率X%和每10万名乘客投诉的次数Y 进行回归,EViews输出结果如下:Dependent Variable: YMethod: Least SquaresSample: 1 9Included observations: 91对以上结果进行简要分析包括方程显着性检验、参数显着性检验、DW值的评价、对斜率的解释等,显着性水平均取;2按标准书写格式写出回归结果;二、以下是某次线性回归的EViews输出结果,部分数值已略去用大写字母标示,但它们和表中其它特定数值有必然联系,分别据此求出这些数值,并写出过程;保留3位小数Dependent Variable: YMethod: Least SquaresSample: 1 13Included observations: 131求A 的值; 2求B 的值; 3求C 的值;三、用1970-1994年间日本工薪家庭实际消费支出Y 与实际可支配收入X 单位:103日元数据估计线性模型Y =01X u ββ++,然后用得到的残差序列t e 绘制以下图形; 1试根据图形分析随机误差项之间是否存在自相关若存在,是正自相关还是负自相关答:图形显示,随机误差项之间存在着相关性,且为正的自相关; 2此模型的估计结果为 试用DW 检验法检验随机误差项之间是否存在自相关;四、用一组截面数据估计消费Y —收入X 方程Y =01X u ββ++的结果为1根据回归的残差序列et 图分析本模型是否存在异方差注:abset 表示et 的绝对值;2其次,用White 法进行检验;EViews 输出结果见下表:附表:DW 检验临界值表α=White Heteroskedasticity Test:Dependent Variable: RESID^2 Method: Least Squares Sample: 1 60Included observations: 60若给定显着水平0.05α=,以上结果能否说明该模型存在异方差查卡方分布临界值的自由度是多少五、下图描述了残差序列{}t e 与其滞后一期值1{}t e -之间的散点图,试据此判断随机误差项之间是否存在自相关若存在,则是正自相关还是负自相关六、在一多元线性回归模型中,为检验解释变量之间是否存在多重共线性问题,以解释变量1x 作为被解释变量,对其余解释变量进行辅助回归,得到可决系数20.95R =;试计算变量1x 的方差扩大因子1VIF ,并根据经验判断解释变量间是否存在多重共线性问题七、下表是中国某地人均可支配收入INCOME 与储蓄SAVE 之间的回归分析结果单位:元:Sample: 1 31Included observations: 31VariableCoefficientStd. Errort-Statist ic Prob.CINCOME--R-squaredMean dependent varAdjusted R-squared. dependent var. of regressionAkaike infocriterionSum squared resid 1778097. Schwarz criterion Log likelihoodF-statisticDurbin-Watson statProbF-statistic1、请写出样本回归方程表达式,然后分析自变量INCOME 回归系数的经济含义2、解释可决系数的含义3、若给定显着性水平5%α=,试对自变量INCOME 的回归系数进行显着性检验已知0.025(29) 2.045t =4、在5%α=的显着性水平下,查31n =的DW 临界值表得 1.363L d =, 1.496U d =,试根据回归结果判断随机误差项是否存在一阶自相关5、下表为上述回归的White 检验结果,在5%α=的显着性水平下,试根据P 值检验判断随机误差项是否存在异方差 White Heteroskedasticity Test:F-statisticProbabilityObsR-squaredProbability计量经济学习题一答案一、判断正误1. × 2. √ 3. √ 4. √ 5. × 6. × 7. ×8. × 9. √ 10. √ 二、单选题每小题分,共15分1. D ;2. B ;3. B ;4. C ;5. B ; 6. B ;7. B ;8. B ;9. B ;10. A ; 三、多选题1. ABCE 2. BCDE 3. ABCE 4. ABCD 5. ABCDE ; 四、简答题1.随机干扰项主要包括哪些因素它和残差之间的区别是什么答:随机干扰项包括的主要因素有:1众多细小因素的影响;2未知因素的影响;3数据测量误差或残缺;4模型形式不完善;5变量的内在随机性;随机误差项羽残差不同,残差是样本观测值与模拟值的差,即i e =ˆi iY Y -;残差项是随机误差项的估计;2.简述为什么要对参数进行显着性检验试说明参数显着性检验的过程;答:最小二乘法得到的回归直线是对因变量与自变量关系的一种描述,但它是不是恰当的描述呢一般会用与样本点的接近程度来判别这种描述的优劣,而当获得以上问题的肯定判断之后,还需要确定每一个参数的可靠程度,即参数本身以及对应的变量该不该保留在方程里,这就有必要进行参数的显着性检验;这种检验是确定各个参数是否显着地不等于零;检验分为三个步骤:①提出假设:原假设0:0i H β=;备择假设1:0i H β≠ ②在原假设成立的前提下构造统计量:()ˆ~(1)ˆiit t n k Se ββ=--③给定显着性水平α,查t 分布表求得临界值/2(1)t n k α--,把根据样本数据计算出的t 统计量值t *与/2(1)t n k α--比较:若/2(1)t t n k α*>--,则拒绝原假设0H ,即在给定显着性水平下,解释变量i X 对因变量有显着影响;若/2(1)t t n k α*<--,则不能拒绝原假设0H ,即在给定显着性水平下,解释变量i X 对因变量没有显着影响.3.简述序列相关性检验方法的共同思路;答:由于自相关性,使得相对于不同的样本点,随机干扰项之间存在相关关系,那么检验自相关性,首先根据OLS 法估计残差,将残差作为随机干扰项的近似估计值,然后检验这些近似估计值之间的相关性以判定随机干扰项是否存在序列相关;各种检验方法就是在这个思路下发展起来的;五、计算分析题1.下表是某次线性回归的EViews 输出结果,根据所学知识求出被略去部分的值用大写字母标示,Dependent Variable: Y Method: Least Squares Included observations: 13解:A=ˆ()Se β=ˆt β=7.10604.3903=;B=2R =211(1)1n R n k -----=1311(10.8728)1321-----=由公式2ˆσ=21ien k --∑,得C=2ie ∑=2ˆ(1)n k σ--=21.1886(1321)--=; 2.用Goldfeld Quandt -方法检验下列模型是否存在异方差;模型形式如下:i Y =0112233 i i i i X X X u ββββ++++其中样本容量n =40,按i X 从小到大排序后,去掉中间10个样本,并对余下的样本按i X 的大小等分为两组,分别作回归,得到两个残差平方和1ESS =、2ESS =,写出检验步骤α=;α。

计量经济学答案

计量经济学答案

计量经济学答案【1—2单元】第一章导论一、名词解释1、截面数据:截面数据是许多不同的观察对象在同一时间点上的取值的统计数据集合,可理解为对一个随机变量重复抽样获得的数据。

2、时间序列数据:时间序列数据是同一观察对象在不同时间点上的取值的统计序列,可理解为随时间变化而生成的数据。

3、虚变量数据:虚拟变量数据是人为设定的虚拟变量的取值。

是表征政策、条件等影响研究对象的定性因素的人工变量,其取值一般只取“0”或“1”。

4、内生变量与外生变量:。

内生变量是由模型系统决定同时可能也对模型系统产生影响的变量,是具有某种概率分布的随机变量,外生变量是不由模型系统决定但对模型系统产生影响的变量,是确定性的变量。

二、单项选择题1、C2、B3、A4、A5、B6、A三、填空题1、因果关系、相互影响关系2、时间序列数据、截面数据、面板数据3、时间序列模型、单方程模型、联立方程组模型四、简答题1、计量经济学与经济理论、统计学、数学的联系主要体现在计量经济学对经济理论、统计学、数学的应用方面,分别如下:1)计量经济学对经济理论的利用主要体现在以下几个方面(1)计量经济模型的选择和确定(2)对经济模型的修改和调整(3)对计量经济分析结果的解读和应用2)计量经济学对统计学的应用(1)数据的收集、处理、(2)参数估计(3)参数估计值、模型和预测结果的可靠性的判断3)计量经济学对数学的应用(1)关于函数性质、特征等方面的知识(2)对函数进行对数变换、求导以及级数展开(3)参数估计(4)计量经济理论和方法的研究2、模型的检验主要包括:经济意义检验、统计检验、计量经济学检验、模型的预测检验。

①在经济意义检验中,需要检验模型是否符合经济意义,检验求得的参数估计值的符号、大小、参数之间的关系是否与根据人们的经验和经济理论所拟订的期望值相符合;②在统计检验中,需要检验模型参数估计值的可靠性,即检验模型的统计学性质,有拟合优度检验、变量显著检验、方程显著性检验等;③在计量经济学检验中,需要检验模型的计量经济学性质,包括随机扰动项的序列相关检验、异方差性检验、解释变量的多重共线性检验等;④模型的预测检验,主要检验模型参数估计量的稳定性以及对样本容量变化时的灵敏度,以确定所建立的模型是否可以用于样本观测值以外的范围。

计量经济学习题含答案

计量经济学习题含答案

计量经济学习题含答案第1章绪论习题一、单项选择题1.把反映某一总体特征的同一指标的数据,按一定的时间顺序和时间间隔排列起来,这样的数据称为( B )A. 横截面数据B. 时间序列数据C. 面板数据D. 原始数据2.同一时间、不同单位按同一统计指标排列的观测数据称为(B )A.原始数据 B.截面数据C.时间序列数据 D.面板数据3.用计量经济学研究问题可分为以下四个阶段(B)A.确定科学的理论依据、建立模型、模型修定、模型应用B.建立模型、估计参数、检验模型、经济预测C.搜集数据、建立模型、估计参数、预测检验D.建立模型、模型修定、结构分析、模型应用4.下列哪一个模型是计量经济模型( C )A.投入产出模型B.数学规划模型C.包含随机变量的经济数学模型D.模糊数学模型二、问答题1.计量经济学的定义2.计量经济学的研究目的3.计量经济学的研究内容1.答:计量经济学是统计学、经济学、数学相结合的一门综合性学科,是一门从数量上研究物质资料生产、交换、分配、消费等经济关系和经济活动规律及其应用的科学2.答:计量经济学的研究目的主要有三个:(1)结构分析。

指应用计量经济模型对经济变量之间的关系作出定量的度量。

(2)预测未来。

指应用已建立的计量经济模型求因变量未来一段时期的预测值。

(3)政策评价。

指通过计量经济模型仿真各种政策的执行效果,对不同的政策进行比较和选择。

3.答:计量经济学在长期的发展过程中逐步形成了两个分支:理论计量经济学和应用计量经济学。

理论计量经济学主要研究计量经济学的理论和方法。

应用计量经济学将计量经济学方法应用于经济理论的特殊分支,即应用理论计量经济学的方法分析经济现象和预测经济变量。

2一元线性回归模型习题一、单项选择题1.最小二乘法是指(D)A. 使达到最小值B. 使达到最小值C. 使达到最小值D. 使达到最小值2.在一元线性回归模型中,样本回归方程可表示为(C )A. B.C. D.3.线设OLS法得到的样本回归直线为,以下说法不正确的是(B ) A. B.C.D.在回归直线上4.对样本的相关系数,以下结论错误的是(A)A.越接近0,与之间线性相关程度高B.越接近1,与之间线性相关程度高C.D、,则与相互独立二、多项选择题1.最小二乘估计量的统计性质有( ABC )A. 无偏性B. 线性性C. 最小方差性D. 不一致性E. 有偏性2.利用普通最小二乘法求得的样本回归直线的特点(ACD)A. 必然通过点B. 可能通过点C. 残差的均值为常数D.的平均值与的平均值相等E. 残差与解释变量之间有一定的相关性3.随机变量(随机误差项)中一般包括那些因素(ABCDE )A回归模型中省略的变量B人们的随机行为C建立的数学模型的形式不够完善。

计量经济学第3版习题答案

计量经济学第3版习题答案

计量经济学第3版习题答案计量经济学是经济学中的一门重要学科,它通过运用数理统计方法来研究经济现象,帮助我们理解经济规律和进行经济预测。

《计量经济学》是一本经典的教材,第3版是其最新版本。

在学习过程中,习题是帮助我们巩固知识和提高技能的重要工具。

下面是《计量经济学第3版》中一些习题的答案。

第一章:引言1. 习题:什么是计量经济学?为什么它在经济学中如此重要?答案:计量经济学是运用数理统计方法来研究经济现象的学科。

它在经济学中的重要性体现在以下几个方面:首先,计量经济学可以帮助我们理解经济规律。

通过对经济数据的分析和建模,我们可以揭示经济现象背后的规律和机制,从而更好地理解经济运行的规律性。

其次,计量经济学可以帮助我们进行经济预测。

通过对历史数据的分析和建模,我们可以预测未来经济的发展趋势,为政府和企业的决策提供参考。

最后,计量经济学可以帮助我们评估经济政策的效果。

通过对政策实施前后的数据进行比较,我们可以评估政策的效果,并提出改进的建议。

第二章:最小二乘法1. 习题:什么是最小二乘法?为什么要使用最小二乘法来估计模型参数?答案:最小二乘法是一种常用的参数估计方法,它的基本思想是通过最小化观测值与模型预测值之间的差异来估计模型参数。

具体来说,最小二乘法通过求解最小二乘问题,即找到使得观测值与模型预测值之差的平方和最小的参数值。

为什么要使用最小二乘法来估计模型参数呢?首先,最小二乘法是一种直观且易于理解的方法。

通过最小化观测值与模型预测值之间的差异,我们可以得到一个对观测值拟合较好的模型。

其次,最小二乘法在统计学中有很好的性质。

在一些假设条件下,最小二乘估计具有良好的统计性质,例如无偏性和有效性。

最后,最小二乘法在计算上也比较简单。

通过求解最小二乘问题,我们可以得到模型的闭式解,而不需要进行复杂的计算过程。

第三章:假设检验1. 习题:什么是假设检验?为什么要进行假设检验?答案:假设检验是一种统计推断方法,用于检验关于总体参数的假设。

计量经济学试题与答案 超级全面 可打印

计量经济学试题与答案 超级全面 可打印
序列相关_检验、解释发量的_多重共线性_检验。 15.计量经济学模型的应用可以概括为四个斱面,即_结构分析_、_经济预
测_、_政策评价_、_检验和収展经济理论_。 16.结构分析所采用的主要斱法是_弹性分析_、_乘数分析_和_比较静力分
析_。
二、单选题:
1.计量经济学是一门(B)学科。
A.数学
B.经济
B.一致性
C.广泛性
D.系统性
7.有人采用全国大中型煤炭企业的截面数据,估计生产函数模型,然后用
该模型预测未来煤炭行业的产出量,这是违反了数据的(A)原则。
A.一致性
B.准确性
C.可比性
D.完整性
8.判断模型参数估计量的符号、大小、相亏乊间关系的合理性属亍(Байду номын сангаас)
准则。
A.经济计量准则
B.经济理论准则
9
析,发量的地位是丌对称的,有解释发量不被解释发量乊分,而且解释发量也 往往被假设为非随机发量。再次,相关分析只关注发量间的具体依赖关系,因 此可以迚一步通过解释发量的发化来估计戒预测被解释发量的发化。
12.答:相关关系是指两个以上的发量的样本观测值序列乊间表现出来的 随机数学关系,用相关系数来衡量。
答:(1)理论模型的设计(○1 确定模型所包含的发量,○2 确定模型的数学形
式,○3 拟定理论模型中徃估参数的理论期望值);(2)样本数据的收集;(3)模
○ 型参数的估计;(4)模型的检验( 1 经济意义,○2 统计,○3 计量,○4 模型预测); ○ (5)应用( 1 结构分析,○2 经济预测,○3 政策评价,○4 检验和収展经济理论)。
1
面_数据和_虚发量_数据。 11.样本数据的质量包括四个斱面_完整性_、_可比性_、_准确性_、_一致

计量经济学试题及答案

计量经济学试题及答案

计量经济学试题及答案(I )第一部分选择题一、单项选择题(本大题共30小题,每小题1分,共30分)在每小题列出的四个选项中只有一个选项是符合题目要求的,请将正确选项前的字母填在题后的括号内。

1 .对联立方程模型进行参数估量的方法可以分两类,即:( )A.间接最小二乘法和系统估量法B.单方程估量法和系统估量法C.单方程估量法和二阶段最小二乘法D.工具变量法和间接最小二乘法2 .当模型中第i 个方程是不行识别的,则该模型是( )A.可识别的B.不行识别的C.过度识别D .恰好识别3 .结构式模型中的每一个方程都称为结构式方程,在结构方程中,解释变量可以是前定变量,也可以是( )A.外生变量B.滞后变量C.内生变量D.外生变量和内生变量4 .己知样本回归模型残差的一阶自相关系数接近于-1,则DW 统计量近似等于( ) A.0B.lC.2D.45 .假设回归模型为其中Xi 为随机变量,Xi 与Ui 相关则的一般最小二乘估量量( )A.无偏且全都B.无偏但不全都C.有偏但全都D.有偏且不全都6 .假定正确回归模型为,若遗漏了解释变量X2,且XI 、X2线性相关则的一般最小二乘法估量量()B.无偏但不全都C.有偏但全都D.有偏且不全都7 .对于误差变量模型,模型参数的一般最小二乘法估量量是( )A.无偏且全都的B.无偏但不全都C.有偏但全都 8 .戈德菲尔德-匡特检验法可用于检验( )A.异方差性B.多重共线性C.序列相关9 .对于误差变量模型,估量模型参数应采纳( )A.一般最小二乘法B.加权最小二乘法C.广义差分法10 .设无限分布滞后模型满意koyck 变换的假定,则长期影响乘数为()A.B.C.D.IL 系统变参数模型分为( )A.截距变动模型和斜率变动模型B.季节变动模型和斜率变动模型C.季节变动模型和截距变动模型D.截距变动模型和截距、斜率同时变动模型 12.虚拟变量()A.主要来代表质的因素,但在有些状况下可以用来代表数量因素B.只能代表质的因素C.只能代表数量因素A.无偏且全都D.有偏且不全都 D.设定误差 D.工具变量法D.只能代表季节影响因素 13.单方程经济计量模型必定是()A.行为方程B.政策方程C.制度方程D.定义方程14用于检验序列相关的DW 统计量的取值范围是()A.O≤DW≤1B.-1≤DW≤1C.-2≤DW≤2D.0≤DW≤415 .依据判定系数R2与F 统计量的关系可知,当R2=l 时有( )A.F=1B.F=-∣C.F=∞D.F=O16 .在给定的显著性水平之下,若DW 统计量的下和上临界值分别为dL 和du,则当dL<DW<du时,可认为随机误差项()A.存在一阶正自相关B.存在一阶负相关C .不存在序列相关D.存在序列相关与否不能断定17 .设P 为总体相关系数,I •为样本相关系数,则检验H:P=O 时,所用的统计量是()A. C.18 .经济计量分析的工作程序(19 .设k 为回归模型中的参数个数,n 为样本容量。

计量经济学题库(超完整版)及标准答案

计量经济学题库(超完整版)及标准答案

2.已知一模型的最小二乘的回归结果如下:i iˆY =101.4-4.78X 标准差 (45.2) (1.53) n=30 R 2=0.31其中,Y :政府债券价格(百美元),X :利率(%)。

回答以下问题:(1)系数的符号是否正确,并说明理由;(2)为什么左边是iˆY 而不是i Y ; (3)在此模型中是否漏了误差项i u ;(4)该模型参数的经济意义是什么。

13.假设某国的货币供给量Y 与国民收入X 的历史如系下表。

某国的货币供给量X 与国民收入Y 的历史数据年份 X Y 年份 X Y 年份 X Y 1985 2.0 5.0 1989 3.3 7.2 1993 4.8 9.7 1986 2.5 5.5 1990 4.0 7.7 1994 5.0 10.0 1987 3.2 6 1991 4.2 8.4 1995 5.2 11.2 19883.6719924.6919965.812.4根据以上数据估计货币供给量Y 对国民收入X 的回归方程,利用Eivews 软件输出结果为:Dependent Variable: Y Variable Coefficient Std. Error t-Statistic Prob. X 1.968085 0.135252 14.55127 0.0000 C 0.353191 0.5629090.6274400.5444 R-squared0.954902 Mean dependent var 8.258333 Adjusted R-squared 0.950392 S.D. dependent var 2.292858 S.E. of regression 0.510684 F-statistic 211.7394 Sum squared resid2.607979Prob(F-statistic)0.000000问:(1)写出回归模型的方程形式,并说明回归系数的显著性(0.05α=)。

计量经济学-参考答案

计量经济学-参考答案

一、解释概念:1、多重共线性:是指在多元线性回归模型中,解释变量之间存在的线性关系。

2、SRF:就是样本回归函数。

即是将样本应变量的条件均值表示为解释变量的某种函数。

3、解释变量的边际贡献:在回归模型中新加入一个解释变量所引起的回归平方和或者拟合优度的增加值。

4、一阶偏相关系数:反映一个经济变量与某个经济变量的线性相关程度时,剔除另一个变量对它们的影响的真实相关程度的指标。

5、最小方差准则:在模型参数估计时,应当选择其抽样分布具有最小方差的估计式,该原则就是最佳性准则,或者称为最小方差准则。

6、OLS:普通最小二乘估计。

是利用残差平方和为最小来求解回归模型参数的参数估计方法。

7、偏相关系数:反映一个经济变量与某个经济变量的线性相关程度时,剔除其它变量(部分或者全部变量)对它们的影响的真实相关程度的指标。

8、WLS:加权最小二乘法。

是指估计回归方程参数时,按照残差平方加权求和最小的原则进行的估计方法。

9、U t自相关:即回归模型中随机误差项逐项值之间的相关。

即Cov(U t,U s)≠0 t ≠s。

10、二阶偏相关系数:反映一个经济变量与某个经济变量的线性相关程度时,剔除另两个变量对它们的影响的真实相关程度的指标。

11、技术方程式:根据生产技术关系建立的计量经济模型。

13、零阶偏相关系数:反映一个经济变量与某个经济变量的线性相关程度时,不剔除任何变量对它们的影响的相关程度的指标。

也就是简单相关系数。

14、经验加权法:是根据实际经济问题的特点及经验判断,对滞后经济变量赋予一定的权数,利用这些权数构成各滞后变量的线性组合,以形成新的变量,再用最小二乘法进行参数估计的有限分布滞后模型的修正估计方法。

15、虚拟变量:在计量经济学中,我们把取值为0和1 的人工变量称为虚拟变量,用字母D表示。

(或称为属性变量、双值变量、类型变量、定性变量、二元型变量)16、不完全多重共线性:是指在多元线性回归模型中,解释变量之间存在的近似的线性关系。

计量经济学课后答案

计量经济学课后答案

计量经济学课后答案计量经济学课后答案第⼀章绪论(⼀)基本知识类题型 1-1.什么是计量经济学?1-2.简述当代计量经济学发展的动向。

1-3.计量经济学⽅法与⼀般经济数学⽅法有什么区别?1-4.为什么说计量经济学是经济理论、数学和经济统计学的结合?试述三者之关系。

1-5.为什么说计量经济学是⼀门经济学科?它在经济学科体系中的作⽤和地位是什么? 1-6.计量经济学的研究的对象和内容是什么?计量经济学模型研究的经济关系有哪两个基本特征?1-7.试结合⼀个具体经济问题说明建⽴与应⽤计量经济学模型的主要步骤。

1-8.建⽴计量经济学模型的基本思想是什么?1-9.计量经济学模型主要有哪些应⽤领域?各⾃的原理是什么?1-10.试分别举出五个时间序列数据和横截⾯数据,并说明时间序列数据和横截⾯数据有和异同?1-11.试解释单⽅程模型和联⽴⽅程模型的概念,并举例说明两者之间的联系与区别。

1-12.模型的检验包括⼏个⽅⾯?其具体含义是什么? 1-13.常⽤的样本数据有哪些?1-14.计量经济模型中为何要包括随机误差项?简述随机误差项形成的原因。

1-15.估计量和估计值有何区别?哪些类型的关系式不存在估计问题? 1-16.经济数据在计量经济分析中的作⽤是什么?1-17.下列假想模型是否属于揭⽰因果关系的计量经济学模型?为什么?⑴其中为第t 年农村居民储蓄增加额(亿元)、为第t 年城镇居民可⽀配收⼊总额(亿元)。

⑵其中为第(1 t )年底农村居民储蓄余额(亿元)、为第t 年农村居民纯收⼊总额(亿元)。

1-18.指出下列假想模型中的错误,并说明理由:(1)其中,为第t 年社会消费品零售总额(亿元),为第t 年居民收⼊总额(亿元)(城镇居民可⽀配收⼊总额与农村居民纯收⼊总额之和),为第t 年全社会固定资产投资总额(亿元)。

(2)t t Y C 2.1180+=其中,C 、Y 分别是城镇居民消费⽀出和可⽀配收⼊。

(3)t t t L K Y ln 28.0ln 62.115.1ln -+=其中,Y 、K 、L 分别是⼯业总产值、⼯业⽣产资⾦和职⼯⼈数。

计量经济学书后答案

计量经济学书后答案

《计量经济学》书后习题答案第一章作业答案3、解:(1)407181114616657937536164922221..xn x y x n y x ˆii i ==⨯-⨯⨯-=--=β∑∑5054640719375310...x ˆy ˆ-=⨯-=β-=β 所以,样本回归方程为ii i x ..x ˆˆy ˆ4071505410+-=β+β= 回归系数1β的经济意义:价格每上涨(或下跌)一个单位,企业销售额平均提高(降低)1.407个单位。

(2)222222181111μμμσ=σ-=σ-=β∑∑ˆˆxn x ˆ)x x ()ˆ(D ˆi i 222222222081616111μμμσ+=σ-+=σ-+=β∑∑ˆ)(ˆ)xn x x n (ˆ))x x (x n()ˆ(D ˆi i 而()21693753616492407197531652622212222-⨯⨯--⨯-=--β--=-ε=σ∑∑∑μ).(.).(n )y x n y x (ˆy n yn ˆii ii396814398160936277...=-=1040396881181121..ˆ)ˆ(D ˆ=⨯=σ=βμ256439688161618161612220..)(ˆ)()ˆ(D ˆ=⨯+=σ+=βμ (3) 以0.05的显著性水平检验0=β183225645054000...s ˆt ˆˆ-=-=β=ββ;370410404071111...s ˆt ˆˆ==β=ββ而临界值14482142975021.)(t )n (t.==-α-可以看出0βˆt 、1βˆt 的绝对值均大于临界值,说明回归参数0β、1β是显著的。

(4)求1β的置信度为95%的置信区间。

69104071104014482407121211.....)ˆ(D ˆ)n (t ˆ±=⨯±=β-±βα- 即(0.716,2.098) (5)求拟合优度2R5770936277398160221222...y n y)y x n y x (ˆ)y y()y y ˆ(SSTSSRR iii ii ==--β=--==∑∑∑∑拟合优度57.7%不高,说明价格只能解释企业销售额总变差的58%左右,还有42%左右得不到说明。

计量经济学复习答案参考

计量经济学复习答案参考

计量经济学复习答案参考单项选择题1.计量经济学是一门(B )学科。

A.数学B.经济C.统计D.测量2.狭义计量经济模型是指(C )。

A.投入产出模型B.数学规划模型C.包含随机方程的经济数学模型D.模糊数学模型3.计量经济模型分为单方程模型和(C )。

A.随机方程模型B.行为方程模型C.联立方程模型D.非随机方程模型4.经济计量分析的工作程序(B )A.设定模型,检验模型,估计模型,改进模型B.设定模型,估计参数,检验模型,应用模型C.估计模型,应用模型,检验模型,改进模型D.搜集资料,设定模型,估计参数,应用模型5.同一统计指标按时间顺序记录的数据列称为(B )A.横截面数据B.时间序列数据C.修匀数据D.平行数据6.样本数据的质量问题,可以概括为完整性、准确性、可比性和(B )。

A.时效性B.一致性C.广泛性D.系统性7.有人采用全国大中型煤炭企业的截面数据,估计生产函数模型,然后用该模型预测未来煤炭行业的产出量,这是违反了数据的(A )原则。

A.一致性B.准确性C.可比性D.完整性8.判断模型参数估计量的符号、大小、相互之间关系的合理性属于(B )准则。

A.经济计量准则B.经济理论准则C.统计准则D.统计准则和经济理论准则9.对下列模型进行经济意义检验,哪一个模型通常被认为没有实际价值的(B )。

A. (消费) (收入)B. (商品需求) (收入) (价格)C. (商品供给) (价格)D. (产出量) (资本) (劳动)10.回归分析中定义的(B )A.解释变量和被解释变量都是随机变量B.解释变量为非随机变量,被解释变量为随机变量C.解释变量和被解释变量都为非随机变量D.解释变量为随机变量,被解释变量为非随机变量11.最小二乘准则是指使(D )达到最小值的原则确定样本回归方程。

A. B.C. D.12.下图中“{”所指的距离是(B )X Y 10ˆˆˆββ+=i YA. 随机误差项B. 残差C.的离差D.的离差13.最大或然准则是从模型总体抽取该n组样本观测值的(C)最大的准则确定样本回归方程。

计量经济学参考答案

计量经济学参考答案

第二章练习题及参考解答练习题2.1 参考解答:计算中国货币供应量(以货币与准货币M2表示)与国内生产总值(GDP)的相关系数为:计算方法: 2222()()i i i iXY i i i i n X Y X Y r n X X n Y Y -=--∑∑∑∑∑∑∑或 ,22()()()()ii X Y iiX X Y Y r X X Y Y --=--∑∑∑计算结果:M2 GDP M2 1 0.6 GDP0.61经济意义: 这说明中国货币供应量与国内生产总值(GDP)的线性相关系数为0.,线性相关程度相当高。

练习题2.2参考解答美国软饮料公司的广告费用X 与销售数量Y 的散点图为说明美国软饮料公司的广告费用X 与销售数量Y 正线性相关。

x y x 1 0.4 y0.41说明美国软饮料公司的广告费用X 与销售数量Y 的正相关程度相当高。

若以销售数量Y 为被解释变量,以广告费用X 为解释变量,可建立线性回归模型 i i i u X Y ++=21ββ 利用EViews 估计其参数结果为经t 检验表明, 广告费用X 对美国软饮料公司的销售数量Y 确有显著影响。

回归结果表明,广告费用X 每增加1百万美元, 平均说来软饮料公司的销售数量将增加14.40359(百万箱)。

练习题2.3参考解答: 1、 建立深圳地方预算内财政收入对GDP 的回归模型,建立EViews 文件,利用地方预算内财政收入(Y )和GDP 的数据表,作散点图可看出地方预算内财政收入(Y )和GDP 的关系近似直线关系,可建立线性回归模型: t t t u GDP Y ++=21ββ 利用EViews 估计其参数结果为即 ˆ20.46110.0850t tY GDP =+ (9.8674) (0.0033)t=(2.0736) (26.1038) R 2=0.9771 F=681.4064经检验说明,深圳市的GDP 对地方财政收入确有显著影响。

计量经济学的课后习题答案

计量经济学的课后习题答案

计量经济学的课后习题答案计量经济学的课后习题答案计量经济学是经济学中的一个重要分支,它运用数理统计学和经济理论的方法来研究经济现象。

在学习计量经济学的过程中,课后习题是巩固知识和提高能力的重要途径。

下面将为大家提供一些计量经济学的课后习题答案,希望对大家的学习有所帮助。

第一题:回归分析假设我们有一个简单的线性回归模型:Y = β0 + β1X + ε,其中Y表示因变量,X表示自变量,β0和β1是回归系数,ε是误差项。

我们通过最小二乘法估计得到的回归方程为Y = 2 + 3X。

根据这个回归方程,当X等于5时,预测Y的值是多少?答案:根据回归方程,当X等于5时,预测Y的值为2 + 3*5 = 17。

第二题:假设检验在计量经济学中,假设检验是一种常用的统计方法,用于检验某个经济理论或假设是否成立。

假设我们有一个假设H0:β1 = 0,即自变量X对因变量Y没有显著影响。

我们通过回归分析得到的t统计量为2.5,自由度为50。

在显著性水平为0.05的条件下,我们应该接受还是拒绝这个假设?答案:在显著性水平为0.05的条件下,自由度为50的t分布的临界值为1.96。

由于t统计量的值(2.5)大于临界值(1.96),我们可以拒绝假设H0,即自变量X对因变量Y有显著影响。

第三题:多元回归分析多元回归分析是计量经济学中常用的分析方法之一,它考虑了多个自变量对因变量的影响。

假设我们有一个多元回归模型:Y = β0 + β1X1 + β2X2 + ε,其中Y表示因变量,X1和X2表示两个自变量,β0、β1和β2是回归系数,ε是误差项。

我们通过最小二乘法估计得到的回归方程为Y = 1 + 2X1 + 3X2。

根据这个回归方程,当X1等于3,X2等于4时,预测Y的值是多少?答案:根据回归方程,当X1等于3,X2等于4时,预测Y的值为1 + 2*3 +3*4 = 19。

第四题:异方差问题在计量经济学中,异方差是指误差项的方差不恒定,而是与自变量的取值相关。

《计量经济学》习题及答案

《计量经济学》习题及答案

《计量经济学》习题及答案(解答仅供参考)第一套一、名词解释:1. 计量经济学:计量经济学是经济学的一个分支,它使用数学和统计学的方法,对经济现象进行量化分析,建立经济模型,预测和解释经济行为和现象。

2. 异方差性:在回归分析中,如果误差项的方差随自变量的变化而变化,这种现象称为异方差性。

3. 自相关性:在时间序列分析中,如果一个变量的当前值与它的过去值存在相关性,这种现象称为自相关性。

4. 多重共线性:在多元回归分析中,如果两个或多个自变量之间高度相关,这种现象称为多重共线性。

5. 随机抽样:随机抽样是一种统计抽样方法,每个样本单位都有一定的概率被选入样本,且各个样本单位之间的选择是独立的。

二、填空题:1. 在线性回归模型中,参数估计的常用方法是______最小二乘法______。

2. 如果一个变量的分布是对称的,那么它的偏态系数应该接近于______0______。

3. 在时间序列分析中,______平稳性______是进行预测的前提条件之一。

4. ______工具变量法______是处理内生性问题的一种常用方法。

5. 如果一个经济变量的变化完全由其他经济变量的变化所决定,那么这个变量被称为______外生变量______。

三、单项选择题:1. 下列哪种情况可能导致异方差性?(B)A. 自变量和因变量之间存在非线性关系B. 自变量的某些组合导致误差项的方差增大C. 因变量和误差项之间存在相关性D. 样本容量过小2. 在进行回归分析时,如果发现数据存在多重共线性,以下哪种方法可以解决这个问题?(C)A. 增加样本容量B. 使用非线性模型C. 删除相关性较强的自变量D. 对自变量进行标准化3. 下列哪种情况可能会导致自相关性?(A)A. 时间序列数据中存在滞后效应B. 因变量和某个自变量之间存在非线性关系C. 样本容量过小D. 自变量之间存在多重共线性四、多项选择题:1. 下列哪些是计量经济学的基本假设?(ABCD)A. 线性关系假设B. 零均值假设C. 同方差性假设D. 无自相关性假设E. 正态性假设2. 下列哪些是处理内生性问题的方法?(ACD)A. 工具变量法B. 加权最小二乘法C. 两阶段最小二乘法D. 广义矩估计法E.岭回归法五、判断题:1. 在进行回归分析时,如果自变量和因变量之间不存在线性关系,那么回归结果将没有任何意义。

计量经济学习题及参考答案详细版

计量经济学习题及参考答案详细版

计量经济学习题及参考答案详细版(总25页)-本页仅作为预览文档封面,使用时请删除本页-计量经济学(第四版)习题参考答案潘省初第一章 绪论试列出计量经济分析的主要步骤。

一般说来,计量经济分析按照以下步骤进行:(1)陈述理论(或假说) (2)建立计量经济模型 (3)收集数据 (4)估计参数 (5)假设检验 (6)预测和政策分析 计量经济模型中为何要包括扰动项为了使模型更现实,我们有必要在模型中引进扰动项u 来代表所有影响因变量的其它因素,这些因素包括相对而言不重要因而未被引入模型的变量,以及纯粹的随机因素。

什么是时间序列和横截面数据 试举例说明二者的区别。

时间序列数据是按时间周期(即按固定的时间间隔)收集的数据,如年度或季度的国民生产总值、就业、货币供给、财政赤字或某人一生中每年的收入都是时间序列的例子。

横截面数据是在同一时点收集的不同个体(如个人、公司、国家等)的数据。

如人口普查数据、世界各国2000年国民生产总值、全班学生计量经济学成绩等都是横截面数据的例子。

估计量和估计值有何区别估计量是指一个公式或方法,它告诉人们怎样用手中样本所提供的信息去估计总体参数。

在一项应用中,依据估计量算出的一个具体的数值,称为估计值。

如Y 就是一个估计量,1nii YY n==∑。

现有一样本,共4个数,100,104,96,130,则根据这个样本的数据运用均值估计量得出的均值估计值为5.107413096104100=+++。

第二章 计量经济分析的统计学基础略,参考教材。

请用例中的数据求北京男生平均身高的99%置信区间N SS x ==45= 用=,N-1=15个自由度查表得005.0t =,故99%置信限为x S t X 005.0± =174±×=174±也就是说,根据样本,我们有99%的把握说,北京男高中生的平均身高在至厘米之间。

25个雇员的随机样本的平均周薪为130元,试问此样本是否取自一个均值为120元、标准差为10元的正态总体 原假设 120:0=μH备择假设 120:1≠μH 检验统计量()10/2510/25XX μσ-Z ====查表96.1025.0=Z 因为Z= 5 >96.1025.0=Z ,故拒绝原假设, 即 此样本不是取自一个均值为120元、标准差为10元的正态总体。

计量经济学答案部分Word版

计量经济学答案部分Word版

计量经济学答案部分Word版第一章导论一、单项选择题1-6: CCCBCAC二、多项选择题ABCD;ACD;ABCD三.问答题什么是计量经济学?答案见教材第3页四、案例分析题假定让你对中国家庭用汽车市场发展情况进行研究,应该分哪些步骤,分别如何分析?(参考计量经济学研究的步骤)第一步:选取被研究对象的变量:汽车销售量第二步:根据理论及经验分析,寻找影响汽车销售量的因素,如汽车价格,汽油价格,收入水平等第三步:建立反映汽车销售量及其影响因素的计量经济学模型第四步:估计模型中的参数;第五步:对模型进行计量经济学检验、统计检验以及经济意义检验;第六步:进行结构分析及在给定解释变量的情况下预测中国汽车销售量的未来值为汽车业的发展提供政策实施依据。

第二章简单线性回归模型一、填空题1、线性、无偏、最小方差性(有效性),BLUE。

2、解释变量;参数;参数。

3、随机误差项;随机误差项。

二、单项选择题1-4:BBDA;6-11:CDCBCA三、多项选择题1.ABC;2.ABC;3.BC;4.ABE;5.AD;6.BC四、判断正误:1. 错;2. 错;3. 对;4.错;5. 错;6. 对;7. 对;8.错五、简答题:1.为什么模型中要引入随机扰动项?答:模型是对经济问题的一种数学模型,在模型中,被解释变量是研究的对象,解释变量是其确定的解释因素,但由于实际问题的错综复杂,影响被解释变量的因素中,除了包括在模型中的解释变量以外,还有其他一些因素未能包括在模型中,但却影响被解释变量,我们把这类变量统一用随机误差项表示。

随机误差项包含的因素有:第一,未知影响因素的代表;第二,无法取得数据的已知因素的代表;第三,众多细小影响因素的综合代表;第四,模型的设定误差;第五,变量的观测误差;第六,经济现象的内在随机性。

由此可见,随机误差项有十分丰富的内容,在计量经济研究中起着重要的作用,一定程度上,随机误差项的性质决定着计量经济方法的选择和使用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章1.6一个完整的计量经济模型应包括哪些基本要素?你能举一个例子吗?答:一个完整的计量经济模型应包括三个基本要素:经济变量、参数和随机误差项。

例如研究一家店铺月销售额的计量经济模型:u βX αY ++=其中,Y 为该月店铺销售总额,X 为该月店铺销售量,二者是经济变量;α和β为参数;u 是随机误差项。

1.7答:经济变量反映不同时间、不同空间的表现不同,取值不同,是可以观测的因素。

经济参数是表现经济变量相互依存程度的、决定经济结构和特征的、相对稳定的因素,通常不能直接观测。

参数是未知的,又是不可直接观测的。

由于随机误差项的存在,参数也不能通过变量值去精确计算。

只能通过变量样本观测值选择适当方法去估计。

1.11答:时间序列数据:中国1990年至2013年国内生产总值,可从中国统计局网站查得数据。

截面数据:中国2013年各城市收入水平,中国统计局网站查得数据。

面板数据:中国1990年至2013年各城市收入水平,中国统计局网站查得数据。

虚拟变量数据:自然灾害状态,1表示该状态发生,0表示该状态不发生。

1.13为什么对已经估计出参数的模型还要进行检验?你能举一个例子说明各种检验的必要性吗?答:一,在设定模型时,对所研究经济现象规律性的认识可能并不充分,所依据的经济理论对所研究对象也许还不能作出正确的解释和说明。

二,经济理论是正确的,但可能我们对问题的认识只是从某些局部出发,或者只是考察了某些特殊的样本,以局部去说明全局的变化规律,可能导致偏差。

三,我们用以估计参数的统计数据或其它信息可能并不十分可靠,或者较多地采用了经济突变时期的数据,不能真实代表所研究的经济关系,或者由于样本太小,所估计参数只是抽样的某种偶然结果。

第二章2.3(1) 当1000f Y =时,消费支出C 的点预测值: ˆ500.61000650iC =+⨯=(元) (2)平均值的预测区间:已知: ˆ650iC =,0.025(10) 2.23t =,22300ˆ302122ie n σ===--∑,22ˆˆ[(f f C t C t αασσ-+[(650 2.23 2.23=-+=(650-27.5380,650+27.5380)=(622.46,677.54)当1000fY=时,在95%的置信概率下消费支出C平均值的预测区间为(622.46,677.54)元。

(3)个别值的预测区间:2ˆˆ[(f fC t C tαασ-+[(650 2.23 2.23=-+=(650-30.1247,650+30.1247)=(619.88,680.12)元当1000fY=时,在95%的置信概率下消费支出C个别值的预测区间为(619.88,680.12)元。

2.4(3)区间预测取α=0.5,f Y 平均值置信度95%的预测区间为∑-+∧∧222)(1if f x X X nt Y σα已知f Y =1556.647,025.0t (10)=2.228,∧σ=31.736,n=10∑2i x =)1()(22-=-∑n X X X f σ=(1.9894)^2*11=43.53482)(X X f -=(4.5-3.5233)^2=0.9539当f X =4.5时,将相关数据代入计算得到1556.647 2.228*31.736*5348.439539.0121+=1556.647 22.9386 即是说,当建筑面积达到4.5万平方米时,建造平均单位成本平均值置信度95%的预测区间为 (1533.7084,1579.5856)元。

第三章思考题3.2答:多元线性回归模型中,回归系数j β(j =1,2,…,k )表示的是当控制其它解释变量不变的条件下,第j 个解释变量的单位变动对被解释变量平均值的影响,这样的回归系数称为偏回归系数。

简单线性回归模型只有一个解释变量,回归系数表示解释变量的单位变动对被解释变量平均值的影响。

多元线性回归模型中的回归系数是偏回归系数,是当控制其它解释变量不变的条件下,某个解释变量的单位变动对被解释变量平均值的影响,从而可以实现保持某些控制变量不变的情况下,分析所关注的变量对被解释变量的真实影响。

3.3答:多元线性回归中的古典假定比简单线性回归时多出一个无多重共线性假定。

假定各解释变量之间不存在线性关系,或各个解释变量观测值之间线性无关。

解释变量观测值矩阵X 列满秩(k 列)。

这是保证多元线性回归模型参数估计值有解的重要条件。

3.4答:多元线性回归分析中,多重可决系数是模型中解释变量个数的增函数,这给对比不同模型的多重可决系数带来缺陷,所以需要修正。

联系:由方差分析可以看出,F检验与可决系数有密切联系,二者都建立在对应变量变差分解的基础上。

F统计量也可通过可决系数计算。

对方程联合显著性检验的F检验,实际上也是对可决系数的显著性检验。

区别:F检验有精确的分布,它可以在给定显著性水平下,给出统计意义上严格的结论。

可决系数只能提供一个模糊的推测,可决系数越大,模型对数据的拟合程度就越好。

但要大到什么程度才算模型拟合得好,并没有一个绝对的数量标准。

练习题3.4△感觉3.5的数字有误,但是过程可以参考(470895-70895)3.5 已知某商品的需求量(Y)、价格(X 2)和消费者收入(X 3),下表给出了解释变量2X 和.3X 对Y 线性回归方差分析的部分结果:表3.10 方差分析表1)回归模型估计结果的样本容量n 、来自回归的平方和(ESS)、回归平方和ESS 与残差平方和RSS 的自由度各为多少?2)此模型的可决系数和修正的可决系数为多少?3)利用此结果能对模型的检验得出什么结论?能否认为模型中的解释变量2X 和3X 联合起来对某商品的需求量Y 的影响是否显著?本例中能否判断两个解释变量2X 和3X 各自对某商品的需求量Y 也都有显著影响?来自回归的平方和(ESS)的自由度为k-1=3-1=2残差平方和RSS 的自由度为 n-k=20-3=172) 可决系数∑∑--=-=-=222)(11Y Y e TSS RSS TSS RSS TSS R ii∑∑∑-+-=-222)ˆ()ˆ()(Y Y Y Y Y Y ii i i=377067.19+70895.00=447962.19 22270895.00110.8417()447962.19iieR Y Y ==-=-=-∑∑2R =212011(1)1(10.8417)0.8231203n R n k ----=--=-- 3) F=188533.60/4170.2941=45.2087或者 F =222030.841745.1955113110.8417n k R k R --⋅=⨯=---- 0.05(2,17) 3.5945.1955F F =<=所以可以认为模型中的解释变量2X 和3X 联合起来对某商品的需求量(Y)的影响显著但是,判断判断两个解释变量2X 和.3X 各自对某商品的需求量Y 也都有显著影响需要t 统计量,而本例中缺t 统计量,还不能作出判断。

第四章思考题4.1 答:多重共线性包括完全的多重共线性和不完全的多重共线性。

多重共线性实质上是样本数据问题,出现了解释变量系数矩阵的线性相关问题。

产生多重共线性的经济背景主要有以下几种情形:第一,经济变量之间具有共同变化趋势。

第二,模型中包含滞后变量。

第三,利用截面数据建立模型也可能出现多重共线性。

第四,样本数据自身的原因。

4.5 答:原因是这些变量之间通常具有共同变化的趋势。

4.91)答:正确。

理由:在高度多重共线性的情形中,没有任何方法能从所给的样本中把存在高度共线性的解释变量的各自影响分解开来,从而也就无法得到单个参数显著性检验的t 统计量,因此无法判断单个或多个偏回归系数的单个显著性。

2)答:错误。

理由:在完全多重共线性情况下,参数估计值的方差无穷大,因此不再是有效估计量,从而BLUE 不再成立。

3)答:正确。

理由:方差扩大因子)(2j j R 11VIF -=,当2j R 时,方差扩大因子也会很大,说明变量之间多重共线性也会越严重。

4)答:正确。

理由:较高的简单相关系数只是多重共线性存在的充分条件,而不是必要条件。

特别是在多于两个解释变量的回归模型中,有时较低的简单相关系数也可能存在多重共线性,这时就需要检查偏相关系数。

因此,并不能简单地依据相关系数进行多重共线性的准确判断。

5)答:正确。

理由:以二元模型为例,V IF x V ar 2i222∑σ=β)ˆ(V IF x V ar 2i323∑σ=β)ˆ(,从而方差扩大因子VIF 越大,参数估计量的方法越大。

6)答:错误。

理由:在多元回归模型中,可能会由于多重共线性的存在导致2R 很高的情况下,各个参数单独的t 检验却不显著。

7)答:正确。

理由:根据公式,∑-σ=β)()ˆ(2232i 323r 1x V ar ,在两个解释变量线性相关程度一定的情况下,3X 的值很少变化,从而会使得∑2i 3x 很小,从而)ˆ(3Var β增大,如果全部3X 值都相同,∑2i 3x 趋于零,)ˆ(3Var β将是无穷大。

8)正确。

如果分析的目的仅仅是预测,则多重共线性是无害的。

练习题4.2克莱因与戈德伯格曾用1921-1950年(1942-1944年战争期间略去)美国国内消费Y 和工资收入X1、非工资—非农业收入X2、农业收入X3的时间序列资料,利用OLSE 估计得出了下列回归方程:37.107 95.0 (1.09) (0.66) (0.17) (8.92) 3121.02452.01059.1133.8ˆ2==+++=F R X X X Y(括号中的数据为相应参数估计量的标准误)。

试对上述模型进行评析,指出其中存在的问题。

解:从模型拟合结果可知,样本观测个数为27,消费模型的判定系数95.02=R ,F 统计量为107.37,在0.05置信水平下查分子自由度为3,分母自由度为23的F 临界值为3.028,计算的F 值远大于临界值,表明回归方程是显著的。

模型整体拟合程度较高。

依据参数估计量及其标准误,可计算出各回归系数估计量的t 统计量值:11.009.1121.0,69.066.0452.0,10.617.0059.1,91.092.8133.83210========t t t t除1t 外,其余的j t 值都很小。

工资收入X1的系数的t 检验值虽然显著,但该系数的估计值过大,该值为工资收入对消费边际效应,因为它为1.059,意味着工资收入每增加一美元,消费支出的增长平均将超过一美元,这与经济理论和常识不符。

另外,理论上非工资—非农业收入与农业收入也是消费行为的重要解释变量,但两者的t 检验都没有通过。

相关文档
最新文档