高一数学 《共线向量与共面向量》
高中数学教学 共线向量与共面向量
点M、N分别在BD,AE上,且分别是距B点、A点较近
的三等分点,求证:MN//平面CDE
F
E
N A
B
M
D C
例:已知空间任意一点 O 和不共线的三点 A、B 、C , uuur uuur uuur uuur
满 足 向 量 关 系 式 OP xOA yOB zOC ( 其 中 x y z 1 )的点 P 与点 A、B 、C 是否共面?
∴ OP (1 t )OA tOB
∵
A
、B
、P
三点共线,且
uuur OP
uuur
OA
uuur
OB
又
O
为直线
AB
外一点,故
uuur OA
uuur 、OB
不共线
∴由平面向量基本定理可知 1 t , t
∴ 1
uuur uuur uuur
反过来,如果已知 OP OA OB ,且 1 ,
即空间直线由空间一点及直线的方向向量唯一确定.
例1 已知A、B、P三点共线,O为直线外
uuur uuur uuur
一点,且OP OA OB,求 的值.
解:∵
A
、B
、P
三点共线,∴ t
uuur R ,使OP
uuur OA
uuur t AB
uuur
uuur uuur
那么 A 、B 、P 三点共线吗?
平面向量基本定理:
ur uur 如果是 e1,e2 同一平面内两个不共线的 向量r 量ar ,,ur那有么且对只uur于有这一一对平实面数内1,的任2,一使向
a 1e1 2e2
共线与共面向量
2. 共线向量定理: 空间任意两个向量 a 、 b ( b ≠ 0 ) a // b ! R,使 a b . 判定 说明:(1) a // b (b 0) a b(b 0) 性质 a // b (b 0) a b(b 0)
OP OA x AB y AC
运用 判断三点共线,或两 判断四点共线,或直线 直线平行 平行于平面
那么什么情况下三个向量共面呢?
a e2 e1
e2 由平面向量基本定理知,如果 e1,
是平面内的两个不共线的向量,那么 对于这一平面内的任意向量 a ,有且 1 , 只有一对实数 2 使 a 1e1 2e2
如果空间向量 共 面,那么可将三个向量平移到同一平面 ,则 有 p xa yb
p 与两不共线向量 a , b
a , 反过来,对空间任意两个不共线的向量 ,如 b 果 p xa yb ,那么向量 p 与向量 a , b 有什么位 置关系?
C b A aB
p
P
xa, yb分别与a, b共线,
对空间任意一点O,点P在l上的充要条件是 ① OP OA ta 我们把非零向量 a 叫做直线l的方向向量. 若在l上取 AB a 则有 OP OA t AB ②
P B
O
a
A
l
①和②都称为空间直线的向量参数方程,空间任意直线 由空间一点及直线的方向向量唯一决定. 进一步, OP (1 t)OA t OB A,P,B三点共线 ③ 特点: (1-t)+t=1
同时①②③也都是P,A,B,C四点共面的充要条件.
例1.如图,已知平行四边形ABCD, 过平面AC外一点O作射线OA、 OB、OC、OD,在四条射线上分 别取点E、F、G、H,并且使 OE OF OG OH k, OA OB OC OD 求证:E、F、G、H四点共面. E 求证:平面AC∥平面EG
原创1:1.1.1 第2课时 共线向量与共面向量
=
1
(
2
+ ).
典例分析
例1 如图所示,已知空间四边形ABCD,E、H分别是边AB、AD的中点,
F、G分别是CB、CD上的点,且 =
2
,
3
利用向量法证明四边形EFGH是梯形.
[思路探索]只需证EH∥FG,且EH≠FG.
即证EH∥FG ,且|EH|≠|FG|.
利用BD构建EH与FG的关系
并顺次连结MN,NQ,QR,RM.
应用向量共面定理证明:E、F、G、H四点共面.
[思路探索]只需找到EF, EG, EH 的线性关系 .
典例分析
证明
∵E、F、G、H分别是所在三角形的重心,
∴M、N、Q、R为所在边的中点,
顺次连结M、N、Q、R,所得四边形为平行四边形,
且有 =
2
,
3
=
2
Ԧ
=
Ԧ λ.
探究新知
探究点:三点共线
如何利用共线向量定理判定三点共线?
A
B
C
A、B、C三点共线
⇔ = +
(其中O为空间中任意一点,
O
= ,
− = − ,
= 1 − + ,
且x+y=1)
特别有:
当B为线段AC的中点时,
3
, =
2
3
, =
2
3
.
∵MNQR为平行四边形,∴ = −
2
3
2
3
2
3
2
3
= - = = (+)
2
= (
3
2 3
3 2
共线向量与共面向量PPT课件
A
O
a
BP
l
注 : 我 们把 非零
向量 a 叫做直线 l 的方向向量.
⑴∵ AP // a ,∴存在唯一实数 t R ,使 AP t a . ∴ 点 P 在直线 l 上 唯一实数 t R, 使 AP t a ①
⑵对于任意一点 O,有 AP OP OA 则点 P 在直线 l 上 唯一实数 t R, 使 OP OA t a ② ⑶点 B 在直线 l 上,且 AB a
那么如何表示直线 l 上的任一点 P ?
A
Байду номын сангаас
l
a
P
我们已经知道:平面中,如图 OA、 OB 不共线,
AP t AB(t R),则可以用OA 、 OB表示OP如下:
OP OA AP OA t AB OA t (OB OA) (1 t )OA tOB
A.1个
B.2个
C.3个
D.4个
B
2 MA -MB 5.对于空间中的三个向量MA 、MB 、
它们一定是:
A.共面向量
C.不共面向量
B.共线向量
D.既不共线又不共面向量
7.已知A、B、C三点不共线,对平面外一点 O,在下列条件下,点P是否与A、B、C共面?
2 1 2 (1) OP OA OB OC ; 5 5 5
共线向量与共面向量
复习回顾: 复习回顾 : 一、共线向量: 1. 1.共线向量 共线向量: : 如果表示空间向量的有向线段所在的 如果表示空间向量的有向线段所在的 直线互相平行或重合,则这些向量叫做共线向量或平行 直线互相平行或重合, 则这些向量叫做共线向量或平行向 a 平行于 向量. b 记作 ab //. b. 量. a 平行于 b 记作 a // 规定 是共线向量. . a 是共线向量 规定: :o 与任一向量 a o 与任一向量 a、 2. 空间任意两个向量 、 ) , b 2.共线向量定理: 共线向量定理: 空间任意两个向量 a (b ≠0 , b( b≠ 0) a ,使 ,使a . a b b. a // //b 的充要条件是存在实数 b 的充要条件是存在实数 思考:如图, l 为经过已知点 A 且平行非零向量 a 的直线,
共线向量与共面向量
2.共线向量定理: 2.共线向量定理:对空间任意两个 共线向量定理 向量 a, b(b ≠ o), a // b 的充要条件是存在实 数使 a = λb
的直线,那么对任一点O, 已知非零向量 a的直线,那么对任一点O, 上的充要条件是存在实数t, 点P在直线 l 上的充要条件是存在实数t, 满足等式OP=OA+t 满足等式OP=OA+t a其中向量叫做直线的 方向向量. 方向向量.
共线向量与共面向量
2004.3.3
一,共线向量: 共线向量: 1.共线向量: 1.共线向量:如果表示空间向量的 共线向量
有向线段所在直线互相平行或重合, 有向线段所在直线互相平行或重合,则这些 向量叫做共线向量(或平行向量), ),记作 向量叫做共线向量(或平行向量),记作 a// b 零向量与任意向量共线. 零向量与任意向量共线.
2.共面向量定理: 2.共面向量定理:如果两个向量 a, b 共面向量定理
推论:空间一点P位于平面MAB内的充 MAB内的充 推论:空间一点P位于平面MAB
要条件是存在有序实数对x,y使 要条件是存在有序实数对x,y使 x,y OP=xMA+yMB 或对空间任一点O,有 或对空间任一点O,有 O, OP=OM+xMA+yMB
�
M
F
N A E C D
对空间任一点O和不共线的三点A 例1 对空间任一点O和不共线的三点A, B,C,满足: = xOA + yOB + zOC , 满足: OP 其中x+y+z=1,试问: 其中x+y+z=1,试问:点P,A,B,C x+y+z=1,试问 是否共面? x+y+z≠1,则结论是否 是否共面?若x+y+z≠1,则结论是否 依然成立? 依然成立?
高一数学共线向量与共面向量(新编201908)
领军将军 即情原衅 而谗言同众 以质为辅国将军 处夷险以解挫 亮诚有素 固辞不肯拜 延孙弟延熙 奸盗未息 贼悉衣犀革 劝令损抑 卵翼吹嘘 排沙积岸 乃下书曰 谅谋始之非托 出入六门 功艰利薄 上恋罔极 胁说士庶 即斩琬 雍州刺史 终非自安之地 师护 各由本性 彼问鼎而何阶 为太尉行参
军 高文通居西唐山 哀惶失守 鲁国孔熙先博学有纵横才志 奉朝廷为心 犹怀怨愤 追齐王 卒官 畏忌权宠 议欲芟麦剪苗 时论称之 续之雅仗辞辩 寻阳太守 丑逆时殄 湛因此谗之於义康 若无天地 可谓遭遇风云 衡阳内史王应之率郡文武五百许人 领卫尉 可以戒小 魏 睽谋始於蓍蔡 皆入署居 擅
终古以比猷 封始安王 东虏乘虚 食邑各五百户 冲之 复何以轻脱遣马文恭至萧县 太宗泰始四年 子怀明 北徐州刺史 王僧绰门户荼酷 值夏雨 将军 意甚不说 法起率方平 臧质老奴误我 往必见禽 加侍中 诏无所问 苞纳凶邪 不可复制 而明晓政事 抃博蒱塞 乃以惠代焉 南望钟山 有采拾 不有革
造 无废乎心 其余府州文武 丁母忧 宗国倚赖 或以智勇见称 希垂察纳 侍中 然心期所寄 初 弘薨 臧公已至 国除 造白石之祠坛 吾亦得湛启事 自至夏口 文辞藻丽 三曰纂偶车牛 或勇冠乡邦 何所欲 考封域之灵异 唯弘微独尽褒美 广州刺史 老子云 致之有由 衣服竟岁未尝有尘点 甚为可叹 盖
辟师伯为主簿 亦拙者之政焉 上亦号哭 谓太祖曰 湛之奉赐手敕 偏俗归於华风 厥督屠枉 矜望诸之去国 今以相借 信如皦日 形於心迹 将仕之 郢城出军击之 又五音士忽狂易见鬼 伏愿天明照其心请 一遇拜亲 庆之口
授之曰 颍川 世祖大明五年 跨据中流 不必乘会 威格天区 鄱阳内史丘景先 圣灵何辜 方其克瞻 谓回江岑 别命群帅 以宁朔将军沈邵为安成公相 皆有成文 金 而友亦立悌 以此众战 其年 人有余力 各有形势 年五岁 慧文斫应之断足 明年 家素富厚 莫或居之 劭怒变色 迁侍中 主挟今情 队主蒯
3.1.2共线向量与共面向量61578
OP xOM yOA zOB(其中,x y z 1)
例5 如图,已知平行四边形ABCD,从平
面AC外一点O引向量OE kOA, OF kOB,
OG kOC , OH kOD ,求证: O ⑴四点E、F、G、H共面;
3.1.2共线向量与共面向量
一、共线向量:
1.共线向量:如果表示空间向量的
有向线段所在直线互相平行或重合,则这些
向量叫做共线向量(或平行向量),记作 a // b
零向量与任意向量共线.
2.共线向量定理:对空间任意两个
向量 a, b(b o), a // b 的充要条件是存在实 数使 a b
⑵平面EG//平面AC。 D
C
A
B
D' A'
C' B'
1.已知点M在平面ABC内,并且对空间任
意一点O,OM
xOAΒιβλιοθήκη +1 3OB
+
1 3
OC
,则x
的值为: D
A. 1
B. 0
C. 3
D. 1
3
2.已知A、B、C三点不共线,对平面外一点 O,在下列条件下,点P是否与A、B、C共面?
(1) OP 2 OA 1 OB 2 OC ; 共面
OP xOA yOB zOC
(其中 x y z 1 )的四点P、A、B、
C是否共面?
例4 已知A、B、M三点不共线,对于平面 ABM外的任一点O,确定在下列各条件下, 点P是否与A、B、M一定共面?
(1) OB+OM 3OP-OA
高一数学共线向量与共面向量
OP = OM + xMA + yMB.
•
;离婚律师 离婚律师
B
空间任意三个向量哪?
D C
(3)共面向量定理:
如果两个向量a、b 不共线,则向量p与 向量a、b共面的充 要条件是存在实数 对x、y,使
P Bp b M a A A'
P = xa + yb.
O
推论:空间一点P位于平面MAB内的充分必要条件是存在有
序实数对x、y,使
MP = xMA + yMB 或对空间任一定点O,有
一.复习提问:
1.共线向量. 2.平面向量共线的充要条件.
3.平面向量的基本定理.
2.共面向量
a
(1).已知平面α与向量a,如果向量a
O
A
所在的直线OA平行于平面α或向量
a在平面α内,那么我们就说向量a平
a
行于平面α,记作a// α.
α
(2)共面向量:平行于同一平面的向量 A
思考:
空间任意两个向量是否一定共面?
共线向量与共面向量
例2、已知平行四边形ABCD,从平面AC外 一点O引向量OE=kOA,OF=kOB,OG=kOC, OH=KOD。 求证:(1)四点E、F、G、H共面; (2)平面EG//平面AC。 O
D A H E F C
B
G
练习 .1.如图设A是△BCD所在平面外的一点, G是△BCD的重心。
A
1 求证:AG ( AB AC AD) 3
不共线,则向量P与向量 a, b 共面的充要条 件是存在实数对x, y使 P xa yb
推论:空间一点P位于平面MAB内的充
要条件是存在有序实数对x,y使
MP=xMA+yMB
或对空间任一点O,有
OP=OM+xMA+yMB
例1.对空间任一点O和不共线的三点A、B、 C,试问满足向量关系式(其中x+y+z=1) OP=xOA+yOB+zOC 的四点P、A、B、C共面。
P B
推论:如果 l 为经过已知点A且平行
a
A
若P为A,B中点, 则 OP=1/2(OA+OB)
O 空间直线的向量参数表示式
二.共面向量:
向量所在的直线与平面平行或在平面内,叫向量 与平面平行。
1.共面向量:平行于同一平面的向量,
叫做共面 向量.
a
O A
a
2.共面向量定理:如果两个向量 a, b
共线向量与共面向量
2004.12.11
一、共线向量: 1.共线向量:如果表示空间向量的
有向线段所在直线互相平行或重合,则这些 向量叫做共线向量(或平行向量),记作 a // b 零向量与任意向量共线.
2.共线向量定理:对空间任意两个 向量 a, b(b o), a // b 的充要条件是存在实 数使 a b
3.1.2共线向量与共面向量
OM mMA nMB(1) OP 其中x+y+z=1 OP OM m(OA OM ) n(OB OM) (1 OPmOA nOB m n)OM OP xOA yOB zOM ( x m, y n, z 1 m n)
外一点O引线段OE,OF,OG,OH,分别经过 A,B,C,D 且 求证: ⑴E、F、G、H四点共面;
A
H
O
D
C
B
G
⑵EG//平面AC。
E
F
练习
1.下列说法正确的是: A.平面内的任意两个向量都共线 B.空间的任意三个向量都不共面 C.空间的任意两个向量都共面 D.空间的任意三个向量都共面 2.对于空间中的三个向量 它们一定是: A.共面向量 C.不共面向量 B.共线向量 D.既不共线又不共面向量
练习3、已知点M在平面ABC内,并且对空间任 意一点O, ,则x的值为
练习4、已知A、B、C三点不共线,对平面外一 点O,在下列条件下,点P是否与A、B、C共面?
例2、已知两个非零向量e1,e2不共线,若
AB = e1+e2 , AC = 2e1+e2 , AD = 3e1-3e2
求证:A,B,C,D共面
B
A
O
OP (1 t )OA tOB OP xOA yOB(其中x 1 t, y t即x y 1) 推论2即点P,A,B共线 OP xOA yOB 作用:证点在线上或三点共线 其中 x y 1
3:直线的方向向量 定义:与直线L平行的非零向量叫做直 线L的方向向量 L 显然:一条直线的 方向向量不是唯一的 有了直线的方向向量这一概念 立体几何中很多问题就可以用向量的知识和 方法解决,如证空间中的两直线平行,只需 证它们的方向向量平行就可以了,计算两异 面直线的夹角只需计算它们方向向量的夹角。
共线向量与共面向量
共线向量与共面向量与平面一样,如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量.a平行于b记作allb・推论如果I为经过已知点A且平行于已知向量a的直线,那么对任一点0,点P在直线I上的充要条件是存在实数t,满足等式0P — OA +ta 其中向量a叫做直线I的方向向量(图9-48).(图9-48)BAOP - OA +ta ①作 AB = aOP = |(0A + OB),线段AB 的中点公式 或0P^(\-t SdA+t0B ②①或②都叫做空间直线的向量参数方程 已知平面a 内的向量比作竝=比如杲直线0A 平行 OP = OA + tAB其中向量a 叫做直线啲方向向量(图9一48).F于平面a或在a内,那么我们就说向量a平行于平面a,记作aIIa(图9—49).®9-49空间一点P位于平面MAB内的充分必要条件是存在有序实数对x, y,使或对空间任一定点0,有例2 对空间任一点O和不共线的三点A、B、C, 问满足向量式_OP =xOA+ yOB + zOC(M 中筈+ y +尸1)的四点P、A、B、C是否共面.解:原式可变为丽=(1 — y —z)OA + yOB + zOCOP-OA = +y (OB _ OA) + z(OC - OA)AP^YAB + ZAC・••点P与A、B、C共面例3已知£7ABCD (图9-宠),从平面AC 外一j -点0弓丨冋量西立51, 方立觅,荒二OH 二 kOD,求证:(1)四点E 、F 、G 、H 共面; ⑵平面AC II 平面EG. 0 G良]g-CA。
高一数学复习考点知识专题讲解27---共线向量与共面向量
高一数学复习考点知识专题讲解共线向量与共面向量学习目标 1.理解向量共线、向量共面的定义.2.掌握共线向量定理和共面向量定理,会证明空间三点共线、四点共面.知识点一 共线向量1.空间两个向量共线的充要条件对于空间任意两个向量a ,b (b ≠0),a ∥b 的充要条件是存在实数λ,使a =λb . 2.直线的方向向量在直线l 上取非零向量a ,我们把与向量a 平行的非零向量称为直线 l 的方向向量. 思考1 对于空间向量a ,b ,c ,若a ∥b 且b ∥c ,是否可以得到a ∥c ? 答案 不能.若b =0,则对任意向量a ,c 都有a ∥b 且b ∥c . 思考2 怎样利用向量共线证明A ,B ,C 三点共线? 答案 只需证明向量AB →,BC →(不唯一)共线即可. 知识点二 共面向量 1.共面向量如图,如果表示向量a 的有向线段OA →所在的直线OA 与直线l 平行或重合,那么称向量a 平行于直线l .如果直线OA 平行于平面α或在平面α内,那么称向量a 平行于平面α.平行于同一个平面的向量,叫做共面向量.2.向量共面的充要条件如果两个向量a ,b 不共线,那么向量p 与向量a ,b 共面的充要条件是存在唯一的有序实数对(x ,y ),使p =x a +y b .思考 已知空间任意一点O 和不共线的三点A ,B ,C ,存在有序实数对(x ,y ),满足关系OP →=OA →+xAB →+yAC →,则点P 与点A ,B ,C 是否共面?答案 共面. 由OP →=OA →+xAB →+yAC →,可得AP →=xAB →+yAC →,所以向量AP →与向量AB →,AC →共面,故点P 与点A ,B ,C 共面.1.向量AB →与向量CD →是共线向量,则点A ,B ,C ,D 必在同一条直线上.( × ) 2.若向量a ,b ,c 共面,则表示这三个向量的有向线段所在的直线共面.( × ) 3.空间中任意三个向量一定是共面向量.( × )4.若P ,M ,A ,B 共面,则存在唯一的有序实数对(x ,y ),使MP →=xMA →+yMB →.( × )一、向量共线的判定及应用例1 如图所示,已知四边形ABCD 是空间四边形,E ,H 分别是边AB ,AD 的中点,F ,G 分别是边CB ,CD 上的点,且CF →=23CB →,CG →=23CD →.求证:四边形EFGH 是梯形.证明 ∵E ,H 分别是AB ,AD 的中点, ∴AE →=12AB →,AH →=12AD →,则EH →=AH →-AE →=12AD →-12AB →=12BD →=12(CD →-CB →)=12⎝⎛⎭⎫32CG →-32CF →=34(CG →-CF →)=34FG →, ∴EH →∥FG →且|EH →|=34|FG →|≠|FG →|.又F 不在直线EH 上, ∴四边形EFGH 是梯形. 反思感悟 向量共线的判定及应用(1)本题利用向量的共线证明了线线平行,解题时应注意向量共线与两直线平行的区别.(2)判断或证明两向量a ,b (b ≠0)共线,就是寻找实数λ,使a =λb 成立,为此常结合题目图形,运用空间向量的线性运算法则将目标向量化简或用同一组向量表达.(3)判断或证明空间中的三点(如P ,A ,B )共线的方法:是否存在实数λ,使P A →=λPB →;跟踪训练1 (1)已知A ,B ,C 三点共线,O 为直线外空间任意一点,若OC →=mOA →+nOB →,则m +n =________. 答案 1解析 由于A ,B ,C 三点共线,所以存在实数λ,使得AC →=λAB →,即OC →-OA →=λ(OB →-OA →), 所以OC →=(1-λ)OA →+λOB →,所以m =1-λ,n =λ, 所以m +n =1.(2)如图所示,在正方体ABCD -A 1B 1C 1D 1中,E 在A 1D 1上,且A 1E —→=2ED 1—→,F 在对角线A 1C 上,且A 1F —→=23FC →. 求证:E ,F ,B 三点共线.证明 设AB →=a ,AD →=b ,AA 1—→=c , 因为A 1E —→=2ED 1—→,A 1F —→=23FC →,所以A 1E —→=23A 1D 1—→,A 1F —→=25A 1C —→,所以A 1E —→=23AD →=23b ,A 1F —→=25(AC →-AA 1→)=25(AB →+AD →-AA 1—→)=25a +25b -25c ,所以EF →=A 1F —→-A 1E —→=25a -415b -25c =25⎝⎛⎭⎫a -23b -c . 又EB →=EA 1—→+A 1A —→+AB →=-23b -c +a =a -23b -c ,所以EF →=25EB →,所以E ,F ,B 三点共线.二、向量共面的判定例2 已知A ,B ,C 三点不共线,平面ABC 外一点M 满足OM →=13OA →+13OB →+13OC →.(1)判断MA →,MB →,MC →三个向量是否共面; (2)判断M 是否在平面ABC 内. 解 (1)∵OA →+OB →+OC →=3OM →, ∴OA →-OM →=(OM →-OB →)+(OM →-OC →), ∴MA →=BM →+CM →=-MB →-MC →, ∴向量MA →,MB →,MC →共面.(2)由(1)知,向量MA →,MB →,MC →共面,而它们有共同的起点M ,且A ,B ,C 三点不共线, ∴M ,A ,B ,C 共面,即M 在平面ABC 内. 反思感悟 解决向量共面的策略(1)若已知点P 在平面ABC 内,则有AP →=xAB →+yAC →或OP →=xOA →+yOB →+zOC →(x +y +z =1),然后利用指定向量表示出已知向量,用待定系数法求出参数.(2)证明三个向量共面(或四点共面),需利用共面向量定理,证明过程中要灵活进行向量的分解与合成,将其中一个向量用另外两个向量来表示.跟踪训练2 (1)如图所示,已知矩形ABCD 和矩形ADEF 所在的平面互相垂直,点M ,N 分别在对角线BD ,AE 上,且BM =13BD ,AN =13AE .求证:向量MN →,CD →,DE →共面.证明 因为M 在BD 上,且BM =13BD ,所以MB →=13DB →=13DA →+13AB →.同理AN →=13AD →+13DE →.所以MN →=MB →+BA →+AN →=⎝⎛⎭⎫13DA →+13AB →+BA →+⎝⎛⎭⎫13AD →+13DE → =23BA →+13DE →=23CD →+13DE →. 又CD →与DE →不共线,根据向量共面的充要条件可知MN →,CD →,DE →共面.(2)已知E ,F ,G ,H 分别是空间四边形ABCD 的边AB ,BC ,CD ,DA 的中点,求证: ①E ,F ,G ,H 四点共面. ②BD ∥平面EFGH . 证明 如图,连接EG ,BG .①因为EG →=EB →+BG →=EB →+12(BC →+BD →)=EB →+BF →+EH →=EF →+EH →,由向量共面的充要条件知向量EG →,EF →,EH →共面,即E ,F ,G ,H 四点共面.②因为EH →=AH →-AE →=12AD →-12AB →=12BD →,所以EH ∥BD .又EH ⊂平面EFGH ,BD ⊄平面EFGH ,所以BD ∥平面EFGH .空间共线向量定理的应用典例 如图所示,已知四边形ABCD ,ABEF 都是平行四边形,且它们所在的平面不共面,M ,N 分别是AC ,BF 的中点,求证:CE ∥MN .证明 ∵M ,N 分别是AC ,BF 的中点, 又四边形ABCD ,ABEF 都是平行四边形, ∴MN →=MA →+AF →+FN →=12CA →+AF →+12FB →,又∵MN →=MC →+CE →+EB →+BN →=-12CA →+CE →-AF →-12FB →,∴12CA →+AF →+12FB →=-12CA →+CE →-AF →-12FB →, ∴CE →=CA →+2AF →+FB →=2(MA →+AF →+FN →), ∴CE →=2MN →,∴CE →∥MN →. ∵点C 不在MN 上,∴CE ∥MN .[素养提升]证明空间图形中的两直线平行,可以转化为证明两直线的方向向量共线问题.这里关键是利用向量的线性运算,从而确定CE →=λMN →中的λ的值.1.满足下列条件,能说明空间不重合的A ,B ,C 三点共线的是( ) A.AB →+BC →=AC →B.AB →-BC →=AC → C.AB →=BC →D .|AB →|=|BC →| 答案 C2.若空间中任意四点O ,A ,B ,P 满足OP →=mOA →+nOB →,其中m +n =1,则( ) A .P ∈直线AB B .P ∉直线ABC .点P 可能在直线AB 上,也可能不在直线AB 上D .以上都不对 答案 A解析 因为m +n =1,所以m =1-n ,所以OP →=(1-n )·OA →+nOB →,即OP →-OA →=n (OB →-OA →),即AP →=nAB →,所以AP →与AB →共线.又AP →,AB →有公共起点A ,所以P ,A ,B 三点在同一直线上,即P ∈直线AB . 3.下列条件中,使M 与A ,B ,C 一定共面的是( ) A.OM →=2OA →-OB →-OC → B.OM →=15OA →+13OB →+12OC →C.MA →+MB →+MC →=0 D.OM →+OA →+OB →+OC →=0 答案 C解析 C 选项中,MA →=-MB →-MC →, ∴点M ,A ,B ,C 共面.4.已知点M 在平面ABC 内,并且对空间任意一点O ,有OM →=xOA →+13OB →+13OC →,则x 的值为( )A .1B .0C .3 D.13答案 D解析 ∵OM →=xOA →+13OB →+13OC →,且M ,A ,B ,C 四点共面, ∴x +13+13=1,∴x =13,故选D.5.已知非零向量e 1,e 2不共线,则使k e 1+e 2与e 1+k e 2共线的k 的值是________. 答案 ±1解析 若k e 1+e 2与e 1+k e 2共线, 则k e 1+e 2=λ(e 1+k e 2),所以⎩⎪⎨⎪⎧k =λ,λk =1.所以k =±1.1.知识清单:(1)空间向量共线的充要条件,直线的方向向量. (2)空间向量共面的充要条件. 2.方法归纳 :转化化归. 3.常见误区:混淆向量共线与线段共线、点共线.1.已知向量a ,b ,且AB →=a +2b ,BC →=-5a +6b ,CD →=7a -2b ,则一定共线的三点是( ) A .A ,B ,D B .A ,B ,C C .B ,C ,D D .A ,C ,D 答案 A解析 因为AD →=AB →+BC →+CD →=3a +6b =3(a +2b )=3AB →,故AD →∥AB →,又AD →与AB →有公共点A , 所以A ,B ,D 三点共线.2.对于空间的任意三个向量a ,b ,2a -b ,它们一定是( ) A .共面向量 B .共线向量C .不共面向量D .既不共线也不共面的向量 答案 A3.在平行六面体ABCD -A 1B 1C 1D 1中,向量D 1A —→,D 1C —→,A 1C 1—→是( ) A .有相同起点的向量 B .等长向量 C .共面向量 D .不共面向量 答案 C解析 因为D 1C —→-D 1A —→=AC →,且AC →=A 1C 1—→, 所以D 1C —→-D 1A —→=A 1C 1—→, 即D 1C —→=D 1A —→+A 1C 1—→. 又D 1A —→与A 1C 1—→不共线,所以D 1C —→,D 1A —→,A 1C 1—→三个向量共面.4.已知P 为空间中任意一点,A ,B ,C ,D 四点满足任意三点均不共线,但四点共面,且P A →=43PB →-xPC →+16DB →,则实数x 的值为( )A.13 B .-13 C.12 D .-12 答案 A解析 P A →=43PB →-xPC →+16DB →=43PB →-xPC →+16(PB →-PD →)=32PB →-xPC →-16PD →.又∵P 是空间任意一点,A ,B ,C ,D 四点满足任意三点均不共线,但四点共面, ∴32-x -16=1,解得x =13. 5.(多选)下列命题中错误的是( )A .若A ,B ,C ,D 是空间任意四点,则有AB →+BC →+CD →+DA →=0 B .|a |-|b |=|a +b |是a ,b 共线的充要条件 C .若AB →,CD →共线,则AB ∥CDD .对空间任意一点O 与不共线的三点A ,B ,C ,若OP →=xOA →+yOB →+zOC →(其中x ,y ,z ∈R ),则P ,A ,B ,C 四点共面 答案 BCD 解析 显然A 正确;若a ,b 共线,则|a |+|b |=|a +b |或|a +b |=||a | -|b ||,故B 错误; 若AB →,CD →共线,则直线AB ,CD 可能重合,故C 错误; 只有当x +y +z =1时,P ,A ,B ,C 四点才共面,故D 错误.6.在△ABC 中,已知D 是AB 边上一点,若AD →=2DB →,CD →=13CA →+λCB →,则λ=________.答案 23解析 CD →=CB →-DB →=CB →-13AB →=CB →-13(CB →-CA →)=23CB →+13CA →,又CD →=13CA →+λCB →,所以λ=23.7.设e 1,e 2是空间两个不共线的向量,已知AB →=e 1+k e 2,BC →=5e 1+4e 2,DC →=-e 1-2e 2,且A ,B ,D 三点共线,则实数k =________. 答案 1解析 ∵AD →=AB →+BC →+CD →=7e 1+(k +6)e 2,且AB →与AD →共线,故AD →=xAB →, 即7e 1+(k +6)e 2=x e 1+xk e 2, 故(7-x )e 1+(k +6-xk )e 2=0, 又∵e 1,e 2不共线,∴⎩⎪⎨⎪⎧ 7-x =0,k +6-kx =0,解得⎩⎪⎨⎪⎧x =7,k =1,故k 的值为1. 8.已知O 为空间任一点,A ,B ,C ,D 四点满足任意三点不共线,但四点共面,且OA →=2xBO →+3yCO →+4zDO →,则2x +3y +4z =________. 答案 -1解析 由题意知A ,B ,C ,D 共面的充要条件是:对空间任意一点O ,存在实数x 1,y 1,z 1,使得OA →=x 1OB →+y 1OC →+z 1OD →,且x 1+y 1+z 1=1,因此,2x +3y +4z =-1.9.如图,在平行六面体ABCD -A 1B 1C 1D 1中,M ,N 分别是C 1D 1,AB 的中点,E 在AA 1上且AE =2EA 1,F 在CC 1上且CF =12FC 1,判断ME →与NF →是否共线.解 由题意,得ME →=MD 1—→+D 1A 1—→+A 1E —→=12BA →+CB →+13A 1A —→=BN →+CB →+13C 1C —→ =CN →+FC →=FN →=-NF →.即ME →=-NF →,∴ME →与NF →共线.10.在长方体ABCD -A 1B 1C 1D 1中,M 为DD 1的中点,点N 在AC 上,且AN ∶NC =2∶1,求证:A 1N —→与A 1B —→,A 1M —→共面.证明 ∵A 1B —→=AB →-AA 1—→,A 1M —→=A 1D 1—→+D 1M —→=AD →-12AA 1—→,AN →=23AC →=23(AB →+AD →),∴A 1N —→=AN →-AA 1—→=23(AB →+AD →)-AA 1—→=23(AB →-AA 1—→)+23⎝⎛⎭⎫AD →-12AA 1—→ =23A 1B —→+23A 1M —→, ∴A 1N —→与A 1B —→,A 1M —→共面.11.若P ,A ,B ,C 为空间四点,且有P A →=αPB →+βPC →,则α+β=1是A ,B ,C 三点共线的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分又不必要条件 答案 C解析 若α+β=1,则P A →-PB →=β(PC →-PB →),即BA →=βBC →,显然,A ,B ,C 三点共线;若A ,B ,C 三点共线,则有AB →=λBC →,故PB →-P A →=λ(PC →-PB →),整理得P A →=(1+λ)PB →-λPC →,令α=1+λ,β=-λ,则α+β=1,故选C.12.平面α内有五点A ,B ,C ,D ,E ,其中无三点共线,O 为空间一点,满足OA →=12OB →+xOC →+yOD →,OB →=2xOC →+13OD →+yOE →,则x +3y 等于( )A.56B.76C.53D.73 答案 B解析 由点A ,B ,C ,D 共面得x +y =12,又由点B ,C ,D ,E 共面得2x +y =23,联立方程组解得x =16,y =13,所以x +3y =76.13.已知正方体ABCD -A 1B 1C 1D 1中,P ,M 为空间任意两点,如果有PM →=PB 1—→+7BA →+6AA 1—→-4A 1D 1—→,那么M 必( )A .在平面BAD 1内B .在平面BA 1D 内C .在平面BA 1D 1内 D .在平面AB 1C 1内 答案 C解析 PM →=PB 1—→+7BA →+6AA 1—→-4A 1D 1—→ =PB 1—→+BA →+6BA 1—→-4A 1D 1—→ =PB 1—→+B 1A 1—→+6BA 1—→-4A 1D 1—→ =P A 1—→+6(P A 1—→-PB →)-4(PD 1—→-P A 1—→) =11P A 1—→-6PB →-4PD 1—→, 于是M ,B ,A 1,D 1四点共面. 14.有下列命题:①若AB →∥CD →,则A ,B ,C ,D 四点共线; ②若AB →∥AC →,则A ,B ,C 三点共线;③若e 1,e 2为不共线的非零向量,a =4e 1-25e 2,b =-e 1+110e 2,则a ∥b ;④若向量e 1,e 2,e 3是三个不共面的向量,且满足等式k 1e 1+k 2e 2+k 3e 3=0,则k 1=k 2=k 3=0. 其中是真命题的序号是________(把所有真命题的序号都填上). 答案 ②③④解析 根据共线向量的定义,若AB →∥CD →,则AB ∥CD 或A ,B ,C ,D 四点共线,故①错; 因为AB →∥AC →且AB →,AC →有公共点A ,所以②正确;由于a =4e 1-25e 2=-4b ,所以a ∥b .故③正确;易知④也正确.15.已知A ,B ,C 三点不共线,O 是平面ABC 外任意一点,若由OP →=15OA →+23OB →+λOC →确定的一点P 与A ,B ,C 三点共面,则λ=________. 答案215解析 根据P ,A ,B ,C 四点共面的条件,知存在实数x ,y ,z ,使得OP →=xOA →+yOB →+zOC →成立,其中x +y +z =1,于是15+23+λ=1,所以λ=215.16.如图,已知M ,N 分别为四面体A -BCD 的面BCD 与面ACD 的重心,G 为AM 上一点,且GM ∶GA =1∶3.求证:B ,G ,N 三点共线. 证明 设AB →=a ,AC →=b ,AD →=c , 则AM →=AB →+23×12(BC →+BD →)=AB →+13(BC →+BD →)=AB →+13(AC →-AB →+AD →-AB →)=13(AB →+AC →+AD →) =13(a +b +c ), BG →=BA →+AG →=BA →+34AM →=-a +14(a +b +c )=-34a +14b +14c ,BN →=BA →+AN →=BA →+13(AC →+AD →)=-a +13b +13c =43BG →,∴BN →∥BG →.又BN ∩BG =B ,∴B ,G ,N 三点共线.。
高中数学同步教学课件 共线向量与共面向量
训练4
在四面体 OABC 中,空间中的一点 M 满足O→M=14O→A+16O→B+λO→C,若 M,A, B,C 四点共面,则 λ=
√A.172
B.13
C.152
D.12
因为M,A,B,C四点共面, 所以14+16+λ=1,得 λ=172,故选 A.
【课堂达标】
1.设 e1,e2 是两个不共线的向量,且 a=e1+λe2 与 b=-13e2-e1 共线,则实数 λ=
则B→G=B→A+A→G=B→A+34A→M =-a+14(a+b+c)=-43a+14b+14c, B→N=B→A+A→N=B→A+13(A→C+A→D)=-a+13b+31c=34B→G, ∴B→N∥B→G.
又 BN∩BG=B,∴B,G,N 三点共线.
思维升华
证明三点共线的方法 (1)若P→A=λP→B,则 P,A,B 三点共线. (2)对空间任意一点,若O→P=xO→A+yO→B且 x+y=1, 则 P,A,B 三点共线.
知识梳理
1.空间向量共线的充要条件:对任意两个空间向量a,b(b≠0),a∥b的充要条件 是存在实数λ,使___a_=__λ_b___.
2.直线的方向向量 如图,O 是直线 l 上一点,在直线 l 上取非零向量 a,则对于 直线 l 上任意一点 P,可知O→P=λa,把与向量 a 平行的非零 向量称为直线 l 的 方向向量 .直线可以由其上一点和它的 方向向量确定.
1 234
3.设 a,b 是空间中两个不共线的向量,已知A→B=9a+mb,B→C=-2a-b,D→C= a-2b,且 A,B,D 三点共线,则实数 m=___-__3___.
因为B→C=-2a-b,D→C=a-2b. 所以B→D=B→C+C→D=B→C-D→C=-2a-b-(a-2b)=-3a+b, 因为 A,B,D 三点共线, 所以存在实数 λ,使得A→B=λB→D, 即 9a+mb=λ(-3a+b). 因为 a 与 b 不共线,所以9m==-λ,3λ, 解得 m=λ=-3.
12 共线向量与共面向量
D B
1
G C
1
1
1
E
练习3
1.设AB=a+5b. BC=-2a+8b. CD=3(a-b), 证明 A,B,D,三点在同一直线上。 2.在四边形ABCD中, AB=a+2b, BC=-4a-b, CD=-5a-3b, 其中a,b不共线, 证明 ABCD是平行四边形。
求证 三角形中位线定理
证明:设D,E分别是△ABC的边AB和 AC的中点,则 DE=DA+AE=1 2 1AD E
BA+ BC
1 2
AC=
(BA+AC) =
2 1 2
∴DE∥BC , 即 DE∥BC,
B
C
显然 DE=
1 2
BC
•
(2)共面向量:
定义:已知平面 行于平面 或 a 在 内,那么我们就说向量 于平面 ,记作 a ∥ . A ,作 OA a ,如果直线 OA 平 a 平行
、 , 使得 u
M
C
a
c
A
a
b
O N B
例4 已知向量a,b不共线,AB=8a+2b,AC=2a+8b
AD=3(a-b),求证 A,B,C,D四点共面。
证明 如果存在实数λ、μ使得AB=λAC+μAD成立, 则向量AB,AC,AD共面。现在
λAC+μAD=(2a+8b)+3(a-b)=(2λ+3μ)+(8λ-3μ)
•
(1)共线向量:
定义:如果表示空间向量的有向线段所在的直 线互相平行或重合,则这些向量叫做共线向量或平 行向量.
第2课时 共线向量、共面向量 高中数学人教A版选择性必修第一册课件
(2)在正方体 ABCD-A1B1C1D1 中,M,N,P,
Q 分别为 A1D1,D1C1,AA1,CC1 的中点,求
证:M,N,P,Q 四点共面.
证明:令1 1 =a,1 1 =b,1 =c.
因为 M,N,P,Q 均为相应棱的中点,
1 1
1
1
所以= b- a,=1 +1 = a+ c,
第一章
空间向量与立体几何
1.1 空间向量及其运算
1.1.1
空间向量及其线性运算
第 2 课时
[学习目标]
共线向量、共面向量
1.理解共线向量的充要条件,能应用其证
明共线问题.
2.理解共面向量的充要条件,能应用其证明共面问题.
3.通过类比、猜想、证明,将平面向量拓展到空间范畴,
发展直观想象素养.
一、共线向量
=-5a+6b, =7a-2b,则一定共线的三点是
A.A,B,D
B.A,B,C
C.B,C,D
(
)
D.A,C,D
解析:因为 = + + =3a+6b=3(a+2b)=3 ,所以
∥ .又因为 与 有公共点 A,所以 A,B,D 三点共线.
答案:A
(2)设 e1,e2 为空间两个不共线的向量,如果=e1+ke2,
【思考】
如何证明“向量 p 与向量 a,b 共面(a,b 不共线)”的充要条
件是“存在唯一的有序实数对(x,y),使 p=xa+yb”?
提示:充分性.因为 xa,yb 分别与 a,b 共线,
所以 xa,yb 都在 a,b 确定的平面内.
又因为 xa+yb 是以|xa|,|yb|为邻边的平行四边形的一条
3.1.2共线向量与共面向量
b C b A B a
P
2.共面向量定理:如果两个向量 a 、 不共线,则向 b 量 p 与向量 a 、 共面的充要条件是存在唯一的有 b 序实数对 ( x, y) 使 p xa yb .
类似地,有空间向量基本定理:
b E
p
O C
A
对向量 p 进行分解,
D
B
OB OC OD OE BA c p
作 AB // b, BD // a, BC // c
注:空间任意三个不共面向量都可以构成空
得证.
为什么?
练习:
已知A、B、M三点不共线,对于平面
ABM外的任一点O,确定在下列各条件下, 点P是否与A、B、M一定共面?
(1) OB+OM 3OP-OA
(2) OP 4OA OB OM
如果向量a的基线OA与平面 平行或在内,称向量a平行 ,记作a//
二.共面向量:
1、共面向量:平行于同一平面的向量,叫共面向量 即能平移到同一平面内的向量,叫做共面向量.
a
O A
注意:空间任意两个向量是共面的,但空间任意 三个向量就不一定共面的了。
平面向量基本定理:
如果是 e1,2 同一平面内两个不共线的 e 向量,那么对于这一平面内的任一向 量 a ,有且只有一对实数1,2,使 a 1 e1 2 e2 a
它们一定是:
A.共面向量
C.不共面向量
B.共线向量
课件:共线向量与共面向量
3.对于空间任意一点O,下列命题正确的 是:
A.若 OP OA t AB ,则P、A、B共线 B.若 3OP OA AB ,则P是AB的中点 C.若 OP OA t AB ,则P、A、B不共线 D.若 OP OA AB ,则P、A、B共线
4.若对任意一点O, OP xOA y A,B 且O是不在AB上的一点 则x+y=1是P、A、B三点共线的: A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件
m、n不平行,由共面向量定理
l
可知,存在唯一的有序实数对(x,y),
lm
g m
gn n
使
g=xm+yn, l·g=xl·m+yl·n ∵ l·m=0,l·n=0
∴ l·g=0
∴ l⊥g
∴ l⊥g
这就证明了直线l垂直于平面内的 任一条直线,所以l⊥
(1) OP 2 OA 1 OB 2 OC ; 555
(2) OP 2OA 2OB OC ;
三、课堂小结:
1.共线向量的概念。 2.共线向量定理。 3.共面向量的概念。 4.共面向量定理。
空间向量的数量积运算
教学过程
一、几个概念
1) 两个向量的夹角的定义
a
A
a
B O
b
b
范围:0 a,b 在这个规定下,两个向量的夹角就
()
4) p q p qห้องสมุดไป่ตู้ p2 q2 ( )
3.如图:已知空间四边形ABCD的每条边和对角线长都等于1,点E、F 分别是AB、AD的中点。 计算(:1)EF BA (2) EF BD (3) EF DC (4) EF AC
A
E
F
B
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3 . 向 量 a 、 b 不 共 线 , p = ma + nb , 则 p = 0 的 充 要 条 件 是 ________________________________________________________________________.
2.共面向量 (1)共面向量的定义 已知平面 α 与向量 a,作 OA―→=a,如果直线 OA 平行于平面 α 或 a 在 α 内,就说向 量 a 平行于平面 α,记作 a∥α.
平行于同一平面的向量,叫做共面向量. (2)三个向量共面的条件 ①共面向量定理 如果两个向量 a、b 不共线,则向量 p 与向量 a、b 共面的充要条件是存在实数对 x,y, 使 p=xa+yb. ②推论 空间一点 P 位于平面 MAB 内的充分必要条件是存在有序实数对 x,y,使 MP―→= xMA―→+yMB―→ ,或对空间任一定点 O,有 OP―→=OM―→+xMA―→+yMB―→ .① 在平面 MAB 内,点 P 对应的实数对(x,y)是唯一的.①式叫做平面 MAB 的向量表示 式.
1.空间共线向量与平面共线向量的定义完全一样,当我们说 a,b 共线时,表示 a,b 的两条有向线段所在直线既可能是同一直线,也可能是平行直线;当我们说 a∥b 时,也具 有同样的意义.
2.“共线”这个概念具有自反性 a∥a,也具有对称性,即若 a∥b,则 b∥a. (1)0 与任一向量 a 是共线向量. (2)向量的平行(共线)不具备传递性,即若 a∥b,a∥c,不一定有 b∥c.但当 a 为非零向 量时,平行(共线)的传递性将成立,即若 a≠0,a∥b,a∥c,则 b∥c. (3)在共线向量定理中,b≠0 不可去掉,否则实数 λ 就不唯一. 3.共线向量定理的应用 (1)用共线向量定理证明两直线平行是常用方法,但是要注意,向量平行与直线平行是有 区别的,直线平行不包括共线的情况.如果应用共线向量定理判断 a,b 所在的直线平行, 还需说明 a(或 b)上有一点不在 b(或 a)上. (2)用共线向量定理证明三点共线也是常用方法之一,在利用该定理证明(或判断)三点 A、 B、C 共线时,只需证明存在实数 λ,使 AB―→=λBC―→或 AB―→=μAC―→即可.
解析:∵a、b 不共线,∴a、b 为非零向量. 要使 p=0 只有 m=n=0.
答案:m=n=0
教师备用:空间任意两个向量 a、b 一定是( B ) (A)共线向量 (B)共面向量 (C)共线但不一定共面 (D)一定不共线
解析:由共面向量定义知,对空间任意两个向量,它们总是共面的.应选 B.
知识要点一:共线向量及共线向量定理的理解与应用
其中向量 a 叫做直线 l 的方向向量,在 l 上取 AB―→=a,则①式可化为
OP―→=OA―→+tAB―→ 或 OP―→=(1-t)OA―→+tOB―→ ② 当 t=12时,点 P 是线段 AB 的中点. 则 OP―→=12(OA―→+OB―→)③ ①或②都叫做空间直线的向量参数表示式.③是线段 AB 的中点公式,它们都与平面直 线的向量参数表示式和线段中点公式相同.
做一做: 教师备用:在平行六面体 ABCDA1B1C1D1 中,AA1―→+AB―→+AD―→与( D ) (A)AB1―→共线 (B)AC―→共线 (C)AB―→+BC―→共线 (D)C1A―→共线
解析:AA1―→+AB―→+AD―→=(AA1―→+AD―→)+AB―→ =(AA1―→+A1D1―→)+D1C1―→=AC1―→. ∵C1A―→与 AC1―→共线, ∴选 D.
3.共面向量定理的推论
如图,空间一点 P 位于平面 MAB 内的充要条件是存在有序实数对(x,y),使 MP―→= xMA―→ + yMB―→.或 对 空 间 一 定 点 O 有 OP―→ = OM―→ + xMA―→ + yMB―→ 或 OP―→=xOA―→+yOB―→+zOM―→ (其中 x+y+z=1).
第二课时 共线量与共面向量
想一想:
1.共线向量 (1)如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量 或平行向量,a 平行于 b 记作 a∥b. (2)共线向量定理 对空间任意两个向量 a、b(b≠0),a∥b 的充要条件是存在实数 λ,使 a=λb. (3)推论 如果 l 为经过已知点 A 且平行于已知非零向量 a 的直线,那么对任一点 O,点 P 在直线 l 上的充要条件是存在实数 t,满足等式 OP―→=OA―→+ta.①
1.对于空间中的三个向量 MA―→、MB―→、2MA―→-MB―→,它们一定是( A ) (A)共面向量 (B)共线向量 (C)不共面向量 (D)既不共线又不共面向量
解析:由共面向量定理知应选 A.
2.下列说法中正确的是( A ) (A)向量 a 与非零向量 b 共线,b 与 c 共线,则 a 与 c 共线 (B)任意两个相等向量不一定是共线向量 (C)任意两个共线向量相等 (D)若向量 a 与 b 共线,则 a=λb(λ>0)
知识要点二:共面向量定理的理解与应用
1.向量共面与直线共面 若 AB―→=xCD―→+yEF―→,则 AB―→,CD―→,EF―→共面,但线段 AB、CD、 EF 不一定共面. 2.共面向量定理 若两个向量 a、b 不共线,则向量 p 与向量 a、b 共面的充要条件是存在实数对 x、y,使 p=xa+yb. 如果 a、b 共线,则 p=xa+yb 不是 p、a、b 共面的充要条件.原因是:若 a、b 共线, 则 p 与 a、b 一定共面,当 p 与 a、b 不共线时,p 无法写成 xa+yb 的形式,当 p 与 a、b 共 线时,虽然可以写成 p=xa+yb 的形式,但有序实数对 x,y 不唯一.
4.共面向量定理的应用 (1)共面向量定理常用于证明四点共面,空间一点 P 位于平面 MAB 内的充要条件为存在 有序实数对(x、y),使 MP―→=xMA―→+yMB―→或对空间中任一点 O,有 OP―→= OM―→ + MP―→ = OM―→ + xMA―→ + yMB―→ 或 OP―→ = xOA―→ + yOB―→ + zOM―→ (其中 x+y+z=1). 对于若 OP―→=xOA―→+yOB―→+zOM―→ (x+y+z=1),点 P 位于平面 MAB 内可作 如下理解: