高一数学 《共线向量与共面向量》

合集下载

高中数学教学 共线向量与共面向量

高中数学教学 共线向量与共面向量

点M、N分别在BD,AE上,且分别是距B点、A点较近
的三等分点,求证:MN//平面CDE
F
E
N A
B
M
D C
例:已知空间任意一点 O 和不共线的三点 A、B 、C , uuur uuur uuur uuur
满 足 向 量 关 系 式 OP xOA yOB zOC ( 其 中 x y z 1 )的点 P 与点 A、B 、C 是否共面?
∴ OP (1 t )OA tOB

A
、B
、P
三点共线,且
uuur OP
uuur
OA

uuur
OB

O
为直线
AB
外一点,故
uuur OA
uuur 、OB
不共线
∴由平面向量基本定理可知 1 t , t
∴ 1
uuur uuur uuur
反过来,如果已知 OP OA OB ,且 1 ,
即空间直线由空间一点及直线的方向向量唯一确定.
例1 已知A、B、P三点共线,O为直线外
uuur uuur uuur
一点,且OP OA OB,求 的值.
解:∵
A
、B
、P
三点共线,∴ t
uuur R ,使OP

uuur OA
uuur t AB
uuur
uuur uuur
那么 A 、B 、P 三点共线吗?
平面向量基本定理:
ur uur 如果是 e1,e2 同一平面内两个不共线的 向量r 量ar ,,ur那有么且对只uur于有这一一对平实面数内1,的任2,一使向
a 1e1 2e2

共线与共面向量

共线与共面向量

2. 共线向量定理: 空间任意两个向量 a 、 b ( b ≠ 0 ) a // b ! R,使 a b . 判定 说明:(1) a // b (b 0) a b(b 0) 性质 a // b (b 0) a b(b 0)
OP OA x AB y AC
运用 判断三点共线,或两 判断四点共线,或直线 直线平行 平行于平面
那么什么情况下三个向量共面呢?
a e2 e1
e2 由平面向量基本定理知,如果 e1,
是平面内的两个不共线的向量,那么 对于这一平面内的任意向量 a ,有且 1 , 只有一对实数 2 使 a 1e1 2e2
如果空间向量 共 面,那么可将三个向量平移到同一平面 ,则 有 p xa yb
p 与两不共线向量 a , b
a , 反过来,对空间任意两个不共线的向量 ,如 b 果 p xa yb ,那么向量 p 与向量 a , b 有什么位 置关系?
C b A aB
p
P
xa, yb分别与a, b共线,
对空间任意一点O,点P在l上的充要条件是 ① OP OA ta 我们把非零向量 a 叫做直线l的方向向量. 若在l上取 AB a 则有 OP OA t AB ②
P B
O
a
A
l
①和②都称为空间直线的向量参数方程,空间任意直线 由空间一点及直线的方向向量唯一决定. 进一步, OP (1 t)OA t OB A,P,B三点共线 ③ 特点: (1-t)+t=1
同时①②③也都是P,A,B,C四点共面的充要条件.
例1.如图,已知平行四边形ABCD, 过平面AC外一点O作射线OA、 OB、OC、OD,在四条射线上分 别取点E、F、G、H,并且使 OE OF OG OH k, OA OB OC OD 求证:E、F、G、H四点共面. E 求证:平面AC∥平面EG

原创1:1.1.1 第2课时 共线向量与共面向量

原创1:1.1.1 第2课时 共线向量与共面向量

=
1
(
2
+ ).
典例分析
例1 如图所示,已知空间四边形ABCD,E、H分别是边AB、AD的中点,
F、G分别是CB、CD上的点,且 =
2

3
利用向量法证明四边形EFGH是梯形.
[思路探索]只需证EH∥FG,且EH≠FG.
即证EH∥FG ,且|EH|≠|FG|.
利用BD构建EH与FG的关系
并顺次连结MN,NQ,QR,RM.
应用向量共面定理证明:E、F、G、H四点共面.
[思路探索]只需找到EF, EG, EH 的线性关系 .
典例分析
证明
∵E、F、G、H分别是所在三角形的重心,
∴M、N、Q、R为所在边的中点,
顺次连结M、N、Q、R,所得四边形为平行四边形,
且有 =
2

3
=
2
Ԧ
=
Ԧ λ.
探究新知
探究点:三点共线
如何利用共线向量定理判定三点共线?
A
B
C
A、B、C三点共线
⇔ = +
(其中O为空间中任意一点,
O
= ,
− = − ,
= 1 − + ,
且x+y=1)
特别有:
当B为线段AC的中点时,

3
, =
2

3
, =
2

3
.
∵MNQR为平行四边形,∴ = −
2
3
2
3
2
3
2
3
= - = = (+)
2
= (
3
2 3
3 2

共线向量与共面向量PPT课件

共线向量与共面向量PPT课件
如何表示直线 l 上的任一点 P ?
A
O

a
BP
l
注 : 我 们把 非零
向量 a 叫做直线 l 的方向向量.
⑴∵ AP // a ,∴存在唯一实数 t R ,使 AP t a . ∴ 点 P 在直线 l 上 唯一实数 t R, 使 AP t a ①
⑵对于任意一点 O,有 AP OP OA 则点 P 在直线 l 上 唯一实数 t R, 使 OP OA t a ② ⑶点 B 在直线 l 上,且 AB a
那么如何表示直线 l 上的任一点 P ?
A
Байду номын сангаас

l
a
P
我们已经知道:平面中,如图 OA、 OB 不共线,
AP t AB(t R),则可以用OA 、 OB表示OP如下:
OP OA AP OA t AB OA t (OB OA) (1 t )OA tOB
A.1个
B.2个
C.3个
D.4个
B
2 MA -MB 5.对于空间中的三个向量MA 、MB 、
它们一定是:
A.共面向量
C.不共面向量
B.共线向量
D.既不共线又不共面向量
7.已知A、B、C三点不共线,对平面外一点 O,在下列条件下,点P是否与A、B、C共面?
2 1 2 (1) OP OA OB OC ; 5 5 5
共线向量与共面向量
复习回顾: 复习回顾 : 一、共线向量: 1. 1.共线向量 共线向量: : 如果表示空间向量的有向线段所在的 如果表示空间向量的有向线段所在的 直线互相平行或重合,则这些向量叫做共线向量或平行 直线互相平行或重合, 则这些向量叫做共线向量或平行向 a 平行于 向量. b 记作 ab //. b. 量. a 平行于 b 记作 a // 规定 是共线向量. . a 是共线向量 规定: :o 与任一向量 a o 与任一向量 a、 2. 空间任意两个向量 、 ) , b 2.共线向量定理: 共线向量定理: 空间任意两个向量 a (b ≠0 , b( b≠ 0) a ,使 ,使a . a b b. a // //b 的充要条件是存在实数 b 的充要条件是存在实数 思考:如图, l 为经过已知点 A 且平行非零向量 a 的直线,

共线向量与共面向量

共线向量与共面向量

2.共线向量定理: 2.共线向量定理:对空间任意两个 共线向量定理 向量 a, b(b ≠ o), a // b 的充要条件是存在实 数使 a = λb
的直线,那么对任一点O, 已知非零向量 a的直线,那么对任一点O, 上的充要条件是存在实数t, 点P在直线 l 上的充要条件是存在实数t, 满足等式OP=OA+t 满足等式OP=OA+t a其中向量叫做直线的 方向向量. 方向向量.
共线向量与共面向量
2004.3.3
一,共线向量: 共线向量: 1.共线向量: 1.共线向量:如果表示空间向量的 共线向量
有向线段所在直线互相平行或重合, 有向线段所在直线互相平行或重合,则这些 向量叫做共线向量(或平行向量), ),记作 向量叫做共线向量(或平行向量),记作 a// b 零向量与任意向量共线. 零向量与任意向量共线.
2.共面向量定理: 2.共面向量定理:如果两个向量 a, b 共面向量定理
推论:空间一点P位于平面MAB内的充 MAB内的充 推论:空间一点P位于平面MAB
要条件是存在有序实数对x,y使 要条件是存在有序实数对x,y使 x,y OP=xMA+yMB 或对空间任一点O,有 或对空间任一点O,有 O, OP=OM+xMA+yMB

M
F
N A E C D
对空间任一点O和不共线的三点A 例1 对空间任一点O和不共线的三点A, B,C,满足: = xOA + yOB + zOC , 满足: OP 其中x+y+z=1,试问: 其中x+y+z=1,试问:点P,A,B,C x+y+z=1,试问 是否共面? x+y+z≠1,则结论是否 是否共面?若x+y+z≠1,则结论是否 依然成立? 依然成立?

高一数学共线向量与共面向量(新编201908)

高一数学共线向量与共面向量(新编201908)

领军将军 即情原衅 而谗言同众 以质为辅国将军 处夷险以解挫 亮诚有素 固辞不肯拜 延孙弟延熙 奸盗未息 贼悉衣犀革 劝令损抑 卵翼吹嘘 排沙积岸 乃下书曰 谅谋始之非托 出入六门 功艰利薄 上恋罔极 胁说士庶 即斩琬 雍州刺史 终非自安之地 师护 各由本性 彼问鼎而何阶 为太尉行参
军 高文通居西唐山 哀惶失守 鲁国孔熙先博学有纵横才志 奉朝廷为心 犹怀怨愤 追齐王 卒官 畏忌权宠 议欲芟麦剪苗 时论称之 续之雅仗辞辩 寻阳太守 丑逆时殄 湛因此谗之於义康 若无天地 可谓遭遇风云 衡阳内史王应之率郡文武五百许人 领卫尉 可以戒小 魏 睽谋始於蓍蔡 皆入署居 擅
终古以比猷 封始安王 东虏乘虚 食邑各五百户 冲之 复何以轻脱遣马文恭至萧县 太宗泰始四年 子怀明 北徐州刺史 王僧绰门户荼酷 值夏雨 将军 意甚不说 法起率方平 臧质老奴误我 往必见禽 加侍中 诏无所问 苞纳凶邪 不可复制 而明晓政事 抃博蒱塞 乃以惠代焉 南望钟山 有采拾 不有革
造 无废乎心 其余府州文武 丁母忧 宗国倚赖 或以智勇见称 希垂察纳 侍中 然心期所寄 初 弘薨 臧公已至 国除 造白石之祠坛 吾亦得湛启事 自至夏口 文辞藻丽 三曰纂偶车牛 或勇冠乡邦 何所欲 考封域之灵异 唯弘微独尽褒美 广州刺史 老子云 致之有由 衣服竟岁未尝有尘点 甚为可叹 盖
辟师伯为主簿 亦拙者之政焉 上亦号哭 谓太祖曰 湛之奉赐手敕 偏俗归於华风 厥督屠枉 矜望诸之去国 今以相借 信如皦日 形於心迹 将仕之 郢城出军击之 又五音士忽狂易见鬼 伏愿天明照其心请 一遇拜亲 庆之口
授之曰 颍川 世祖大明五年 跨据中流 不必乘会 威格天区 鄱阳内史丘景先 圣灵何辜 方其克瞻 谓回江岑 别命群帅 以宁朔将军沈邵为安成公相 皆有成文 金 而友亦立悌 以此众战 其年 人有余力 各有形势 年五岁 慧文斫应之断足 明年 家素富厚 莫或居之 劭怒变色 迁侍中 主挟今情 队主蒯

3.1.2共线向量与共面向量61578

3.1.2共线向量与共面向量61578
注意: 空间四点P、M、A、B共面 存在唯一实数对(x , y), 使得MP x MA yMB
OP xOM yOA zOB(其中,x y z 1)
例5 如图,已知平行四边形ABCD,从平
面AC外一点O引向量OE kOA, OF kOB,
OG kOC , OH kOD ,求证: O ⑴四点E、F、G、H共面;
3.1.2共线向量与共面向量
一、共线向量:
1.共线向量:如果表示空间向量的
有向线段所在直线互相平行或重合,则这些
向量叫做共线向量(或平行向量),记作 a // b
零向量与任意向量共线.
2.共线向量定理:对空间任意两个
向量 a, b(b o), a // b 的充要条件是存在实 数使 a b
⑵平面EG//平面AC。 D
C
A
B
D' A'
C' B'
1.已知点M在平面ABC内,并且对空间任
意一点O,OM

xOAΒιβλιοθήκη +1 3OB

1 3
OC
,则x
的值为: D
A. 1
B. 0
C. 3
D. 1
3
2.已知A、B、C三点不共线,对平面外一点 O,在下列条件下,点P是否与A、B、C共面?
(1) OP 2 OA 1 OB 2 OC ; 共面
OP xOA yOB zOC
(其中 x y z 1 )的四点P、A、B、
C是否共面?
例4 已知A、B、M三点不共线,对于平面 ABM外的任一点O,确定在下列各条件下, 点P是否与A、B、M一定共面?
(1) OB+OM 3OP-OA

高一数学共线向量与共面向量

高一数学共线向量与共面向量

OP = OM + xMA + yMB.


;离婚律师 离婚律师
B
空间任意三个向量哪?
D C
(3)共面向量定理:
如果两个向量a、b 不共线,则向量p与 向量a、b共面的充 要条件是存在实数 对x、y,使
P Bp b M a A A'
P = xa + yb.
O
推论:空间一点P位于平面MAB内的充分必要条件是存在有
序实数对x、y,使
MP = xMA + yMB 或对空间任一定点O,有
一.复习提问:
1.共线向量. 2.平面向量共线的充要条件.
3.平面向量的基本定理.
2.共面向量
a
(1).已知平面α与向量a,如果向量a
O
A
所在的直线OA平行于平面α或向量
a在平面α内,那么我们就说向量a平
a
行于平面α,记作a// α.
α
(2)共面向量:平行于同一平面的向量 A
思考:
空间任意两个向量是否一定共面?

共线向量与共面向量

共线向量与共面向量

例2、已知平行四边形ABCD,从平面AC外 一点O引向量OE=kOA,OF=kOB,OG=kOC, OH=KOD。 求证:(1)四点E、F、G、H共面; (2)平面EG//平面AC。 O
D A H E F C
B
G
练习 .1.如图设A是△BCD所在平面外的一点, G是△BCD的重心。
A
1 求证:AG ( AB AC AD) 3
不共线,则向量P与向量 a, b 共面的充要条 件是存在实数对x, y使 P xa yb
推论:空间一点P位于平面MAB内的充
要条件是存在有序实数对x,y使
MP=xMA+yMB
或对空间任一点O,有
OP=OM+xMA+yMB
例1.对空间任一点O和不共线的三点A、B、 C,试问满足向量关系式(其中x+y+z=1) OP=xOA+yOB+zOC 的四点P、A、B、C共面。
P B
推论:如果 l 为经过已知点A且平行
a
A
若P为A,B中点, 则 OP=1/2(OA+OB)
O 空间直线的向量参数表示式
二.共面向量:
向量所在的直线与平面平行或在平面内,叫向量 与平面平行。
1.共面向量:平行于同一平面的向量,
叫做共面 向量.
a
O A

a
2.共面向量定理:如果两个向量 a, b
共线向量与共面向量
2004.12.11
一、共线向量: 1.共线向量:如果表示空间向量的
有向线段所在直线互相平行或重合,则这些 向量叫做共线向量(或平行向量),记作 a // b 零向量与任意向量共线.
2.共线向量定理:对空间任意两个 向量 a, b(b o), a // b 的充要条件是存在实 数使 a b

3.1.2共线向量与共面向量

3.1.2共线向量与共面向量

OM mMA nMB(1) OP 其中x+y+z=1 OP OM m(OA OM ) n(OB OM) (1 OPmOA nOB m n)OM OP xOA yOB zOM ( x m, y n, z 1 m n)
外一点O引线段OE,OF,OG,OH,分别经过 A,B,C,D 且 求证: ⑴E、F、G、H四点共面;
A
H
O
D
C
B
G
⑵EG//平面AC。
E
F
练习
1.下列说法正确的是: A.平面内的任意两个向量都共线 B.空间的任意三个向量都不共面 C.空间的任意两个向量都共面 D.空间的任意三个向量都共面 2.对于空间中的三个向量 它们一定是: A.共面向量 C.不共面向量 B.共线向量 D.既不共线又不共面向量
练习3、已知点M在平面ABC内,并且对空间任 意一点O, ,则x的值为
练习4、已知A、B、C三点不共线,对平面外一 点O,在下列条件下,点P是否与A、B、C共面?
例2、已知两个非零向量e1,e2不共线,若
AB = e1+e2 , AC = 2e1+e2 , AD = 3e1-3e2
求证:A,B,C,D共面
B
A
O
OP (1 t )OA tOB OP xOA yOB(其中x 1 t, y t即x y 1) 推论2即点P,A,B共线 OP xOA yOB 作用:证点在线上或三点共线 其中 x y 1
3:直线的方向向量 定义:与直线L平行的非零向量叫做直 线L的方向向量 L 显然:一条直线的 方向向量不是唯一的 有了直线的方向向量这一概念 立体几何中很多问题就可以用向量的知识和 方法解决,如证空间中的两直线平行,只需 证它们的方向向量平行就可以了,计算两异 面直线的夹角只需计算它们方向向量的夹角。

共线向量与共面向量

共线向量与共面向量

共线向量与共面向量与平面一样,如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量.a平行于b记作allb・推论如果I为经过已知点A且平行于已知向量a的直线,那么对任一点0,点P在直线I上的充要条件是存在实数t,满足等式0P — OA +ta 其中向量a叫做直线I的方向向量(图9-48).(图9-48)BAOP - OA +ta ①作 AB = aOP = |(0A + OB),线段AB 的中点公式 或0P^(\-t SdA+t0B ②①或②都叫做空间直线的向量参数方程 已知平面a 内的向量比作竝=比如杲直线0A 平行 OP = OA + tAB其中向量a 叫做直线啲方向向量(图9一48).F于平面a或在a内,那么我们就说向量a平行于平面a,记作aIIa(图9—49).®9-49空间一点P位于平面MAB内的充分必要条件是存在有序实数对x, y,使或对空间任一定点0,有例2 对空间任一点O和不共线的三点A、B、C, 问满足向量式_OP =xOA+ yOB + zOC(M 中筈+ y +尸1)的四点P、A、B、C是否共面.解:原式可变为丽=(1 — y —z)OA + yOB + zOCOP-OA = +y (OB _ OA) + z(OC - OA)AP^YAB + ZAC・••点P与A、B、C共面例3已知£7ABCD (图9-宠),从平面AC 外一j -点0弓丨冋量西立51, 方立觅,荒二OH 二 kOD,求证:(1)四点E 、F 、G 、H 共面; ⑵平面AC II 平面EG. 0 G良]g-CA。

高一数学复习考点知识专题讲解27---共线向量与共面向量

高一数学复习考点知识专题讲解27---共线向量与共面向量

高一数学复习考点知识专题讲解共线向量与共面向量学习目标 1.理解向量共线、向量共面的定义.2.掌握共线向量定理和共面向量定理,会证明空间三点共线、四点共面.知识点一 共线向量1.空间两个向量共线的充要条件对于空间任意两个向量a ,b (b ≠0),a ∥b 的充要条件是存在实数λ,使a =λb . 2.直线的方向向量在直线l 上取非零向量a ,我们把与向量a 平行的非零向量称为直线 l 的方向向量. 思考1 对于空间向量a ,b ,c ,若a ∥b 且b ∥c ,是否可以得到a ∥c ? 答案 不能.若b =0,则对任意向量a ,c 都有a ∥b 且b ∥c . 思考2 怎样利用向量共线证明A ,B ,C 三点共线? 答案 只需证明向量AB →,BC →(不唯一)共线即可. 知识点二 共面向量 1.共面向量如图,如果表示向量a 的有向线段OA →所在的直线OA 与直线l 平行或重合,那么称向量a 平行于直线l .如果直线OA 平行于平面α或在平面α内,那么称向量a 平行于平面α.平行于同一个平面的向量,叫做共面向量.2.向量共面的充要条件如果两个向量a ,b 不共线,那么向量p 与向量a ,b 共面的充要条件是存在唯一的有序实数对(x ,y ),使p =x a +y b .思考 已知空间任意一点O 和不共线的三点A ,B ,C ,存在有序实数对(x ,y ),满足关系OP →=OA →+xAB →+yAC →,则点P 与点A ,B ,C 是否共面?答案 共面. 由OP →=OA →+xAB →+yAC →,可得AP →=xAB →+yAC →,所以向量AP →与向量AB →,AC →共面,故点P 与点A ,B ,C 共面.1.向量AB →与向量CD →是共线向量,则点A ,B ,C ,D 必在同一条直线上.( × ) 2.若向量a ,b ,c 共面,则表示这三个向量的有向线段所在的直线共面.( × ) 3.空间中任意三个向量一定是共面向量.( × )4.若P ,M ,A ,B 共面,则存在唯一的有序实数对(x ,y ),使MP →=xMA →+yMB →.( × )一、向量共线的判定及应用例1 如图所示,已知四边形ABCD 是空间四边形,E ,H 分别是边AB ,AD 的中点,F ,G 分别是边CB ,CD 上的点,且CF →=23CB →,CG →=23CD →.求证:四边形EFGH 是梯形.证明 ∵E ,H 分别是AB ,AD 的中点, ∴AE →=12AB →,AH →=12AD →,则EH →=AH →-AE →=12AD →-12AB →=12BD →=12(CD →-CB →)=12⎝⎛⎭⎫32CG →-32CF →=34(CG →-CF →)=34FG →, ∴EH →∥FG →且|EH →|=34|FG →|≠|FG →|.又F 不在直线EH 上, ∴四边形EFGH 是梯形. 反思感悟 向量共线的判定及应用(1)本题利用向量的共线证明了线线平行,解题时应注意向量共线与两直线平行的区别.(2)判断或证明两向量a ,b (b ≠0)共线,就是寻找实数λ,使a =λb 成立,为此常结合题目图形,运用空间向量的线性运算法则将目标向量化简或用同一组向量表达.(3)判断或证明空间中的三点(如P ,A ,B )共线的方法:是否存在实数λ,使P A →=λPB →;跟踪训练1 (1)已知A ,B ,C 三点共线,O 为直线外空间任意一点,若OC →=mOA →+nOB →,则m +n =________. 答案 1解析 由于A ,B ,C 三点共线,所以存在实数λ,使得AC →=λAB →,即OC →-OA →=λ(OB →-OA →), 所以OC →=(1-λ)OA →+λOB →,所以m =1-λ,n =λ, 所以m +n =1.(2)如图所示,在正方体ABCD -A 1B 1C 1D 1中,E 在A 1D 1上,且A 1E —→=2ED 1—→,F 在对角线A 1C 上,且A 1F —→=23FC →. 求证:E ,F ,B 三点共线.证明 设AB →=a ,AD →=b ,AA 1—→=c , 因为A 1E —→=2ED 1—→,A 1F —→=23FC →,所以A 1E —→=23A 1D 1—→,A 1F —→=25A 1C —→,所以A 1E —→=23AD →=23b ,A 1F —→=25(AC →-AA 1→)=25(AB →+AD →-AA 1—→)=25a +25b -25c ,所以EF →=A 1F —→-A 1E —→=25a -415b -25c =25⎝⎛⎭⎫a -23b -c . 又EB →=EA 1—→+A 1A —→+AB →=-23b -c +a =a -23b -c ,所以EF →=25EB →,所以E ,F ,B 三点共线.二、向量共面的判定例2 已知A ,B ,C 三点不共线,平面ABC 外一点M 满足OM →=13OA →+13OB →+13OC →.(1)判断MA →,MB →,MC →三个向量是否共面; (2)判断M 是否在平面ABC 内. 解 (1)∵OA →+OB →+OC →=3OM →, ∴OA →-OM →=(OM →-OB →)+(OM →-OC →), ∴MA →=BM →+CM →=-MB →-MC →, ∴向量MA →,MB →,MC →共面.(2)由(1)知,向量MA →,MB →,MC →共面,而它们有共同的起点M ,且A ,B ,C 三点不共线, ∴M ,A ,B ,C 共面,即M 在平面ABC 内. 反思感悟 解决向量共面的策略(1)若已知点P 在平面ABC 内,则有AP →=xAB →+yAC →或OP →=xOA →+yOB →+zOC →(x +y +z =1),然后利用指定向量表示出已知向量,用待定系数法求出参数.(2)证明三个向量共面(或四点共面),需利用共面向量定理,证明过程中要灵活进行向量的分解与合成,将其中一个向量用另外两个向量来表示.跟踪训练2 (1)如图所示,已知矩形ABCD 和矩形ADEF 所在的平面互相垂直,点M ,N 分别在对角线BD ,AE 上,且BM =13BD ,AN =13AE .求证:向量MN →,CD →,DE →共面.证明 因为M 在BD 上,且BM =13BD ,所以MB →=13DB →=13DA →+13AB →.同理AN →=13AD →+13DE →.所以MN →=MB →+BA →+AN →=⎝⎛⎭⎫13DA →+13AB →+BA →+⎝⎛⎭⎫13AD →+13DE → =23BA →+13DE →=23CD →+13DE →. 又CD →与DE →不共线,根据向量共面的充要条件可知MN →,CD →,DE →共面.(2)已知E ,F ,G ,H 分别是空间四边形ABCD 的边AB ,BC ,CD ,DA 的中点,求证: ①E ,F ,G ,H 四点共面. ②BD ∥平面EFGH . 证明 如图,连接EG ,BG .①因为EG →=EB →+BG →=EB →+12(BC →+BD →)=EB →+BF →+EH →=EF →+EH →,由向量共面的充要条件知向量EG →,EF →,EH →共面,即E ,F ,G ,H 四点共面.②因为EH →=AH →-AE →=12AD →-12AB →=12BD →,所以EH ∥BD .又EH ⊂平面EFGH ,BD ⊄平面EFGH ,所以BD ∥平面EFGH .空间共线向量定理的应用典例 如图所示,已知四边形ABCD ,ABEF 都是平行四边形,且它们所在的平面不共面,M ,N 分别是AC ,BF 的中点,求证:CE ∥MN .证明 ∵M ,N 分别是AC ,BF 的中点, 又四边形ABCD ,ABEF 都是平行四边形, ∴MN →=MA →+AF →+FN →=12CA →+AF →+12FB →,又∵MN →=MC →+CE →+EB →+BN →=-12CA →+CE →-AF →-12FB →,∴12CA →+AF →+12FB →=-12CA →+CE →-AF →-12FB →, ∴CE →=CA →+2AF →+FB →=2(MA →+AF →+FN →), ∴CE →=2MN →,∴CE →∥MN →. ∵点C 不在MN 上,∴CE ∥MN .[素养提升]证明空间图形中的两直线平行,可以转化为证明两直线的方向向量共线问题.这里关键是利用向量的线性运算,从而确定CE →=λMN →中的λ的值.1.满足下列条件,能说明空间不重合的A ,B ,C 三点共线的是( ) A.AB →+BC →=AC →B.AB →-BC →=AC → C.AB →=BC →D .|AB →|=|BC →| 答案 C2.若空间中任意四点O ,A ,B ,P 满足OP →=mOA →+nOB →,其中m +n =1,则( ) A .P ∈直线AB B .P ∉直线ABC .点P 可能在直线AB 上,也可能不在直线AB 上D .以上都不对 答案 A解析 因为m +n =1,所以m =1-n ,所以OP →=(1-n )·OA →+nOB →,即OP →-OA →=n (OB →-OA →),即AP →=nAB →,所以AP →与AB →共线.又AP →,AB →有公共起点A ,所以P ,A ,B 三点在同一直线上,即P ∈直线AB . 3.下列条件中,使M 与A ,B ,C 一定共面的是( ) A.OM →=2OA →-OB →-OC → B.OM →=15OA →+13OB →+12OC →C.MA →+MB →+MC →=0 D.OM →+OA →+OB →+OC →=0 答案 C解析 C 选项中,MA →=-MB →-MC →, ∴点M ,A ,B ,C 共面.4.已知点M 在平面ABC 内,并且对空间任意一点O ,有OM →=xOA →+13OB →+13OC →,则x 的值为( )A .1B .0C .3 D.13答案 D解析 ∵OM →=xOA →+13OB →+13OC →,且M ,A ,B ,C 四点共面, ∴x +13+13=1,∴x =13,故选D.5.已知非零向量e 1,e 2不共线,则使k e 1+e 2与e 1+k e 2共线的k 的值是________. 答案 ±1解析 若k e 1+e 2与e 1+k e 2共线, 则k e 1+e 2=λ(e 1+k e 2),所以⎩⎪⎨⎪⎧k =λ,λk =1.所以k =±1.1.知识清单:(1)空间向量共线的充要条件,直线的方向向量. (2)空间向量共面的充要条件. 2.方法归纳 :转化化归. 3.常见误区:混淆向量共线与线段共线、点共线.1.已知向量a ,b ,且AB →=a +2b ,BC →=-5a +6b ,CD →=7a -2b ,则一定共线的三点是( ) A .A ,B ,D B .A ,B ,C C .B ,C ,D D .A ,C ,D 答案 A解析 因为AD →=AB →+BC →+CD →=3a +6b =3(a +2b )=3AB →,故AD →∥AB →,又AD →与AB →有公共点A , 所以A ,B ,D 三点共线.2.对于空间的任意三个向量a ,b ,2a -b ,它们一定是( ) A .共面向量 B .共线向量C .不共面向量D .既不共线也不共面的向量 答案 A3.在平行六面体ABCD -A 1B 1C 1D 1中,向量D 1A —→,D 1C —→,A 1C 1—→是( ) A .有相同起点的向量 B .等长向量 C .共面向量 D .不共面向量 答案 C解析 因为D 1C —→-D 1A —→=AC →,且AC →=A 1C 1—→, 所以D 1C —→-D 1A —→=A 1C 1—→, 即D 1C —→=D 1A —→+A 1C 1—→. 又D 1A —→与A 1C 1—→不共线,所以D 1C —→,D 1A —→,A 1C 1—→三个向量共面.4.已知P 为空间中任意一点,A ,B ,C ,D 四点满足任意三点均不共线,但四点共面,且P A →=43PB →-xPC →+16DB →,则实数x 的值为( )A.13 B .-13 C.12 D .-12 答案 A解析 P A →=43PB →-xPC →+16DB →=43PB →-xPC →+16(PB →-PD →)=32PB →-xPC →-16PD →.又∵P 是空间任意一点,A ,B ,C ,D 四点满足任意三点均不共线,但四点共面, ∴32-x -16=1,解得x =13. 5.(多选)下列命题中错误的是( )A .若A ,B ,C ,D 是空间任意四点,则有AB →+BC →+CD →+DA →=0 B .|a |-|b |=|a +b |是a ,b 共线的充要条件 C .若AB →,CD →共线,则AB ∥CDD .对空间任意一点O 与不共线的三点A ,B ,C ,若OP →=xOA →+yOB →+zOC →(其中x ,y ,z ∈R ),则P ,A ,B ,C 四点共面 答案 BCD 解析 显然A 正确;若a ,b 共线,则|a |+|b |=|a +b |或|a +b |=||a | -|b ||,故B 错误; 若AB →,CD →共线,则直线AB ,CD 可能重合,故C 错误; 只有当x +y +z =1时,P ,A ,B ,C 四点才共面,故D 错误.6.在△ABC 中,已知D 是AB 边上一点,若AD →=2DB →,CD →=13CA →+λCB →,则λ=________.答案 23解析 CD →=CB →-DB →=CB →-13AB →=CB →-13(CB →-CA →)=23CB →+13CA →,又CD →=13CA →+λCB →,所以λ=23.7.设e 1,e 2是空间两个不共线的向量,已知AB →=e 1+k e 2,BC →=5e 1+4e 2,DC →=-e 1-2e 2,且A ,B ,D 三点共线,则实数k =________. 答案 1解析 ∵AD →=AB →+BC →+CD →=7e 1+(k +6)e 2,且AB →与AD →共线,故AD →=xAB →, 即7e 1+(k +6)e 2=x e 1+xk e 2, 故(7-x )e 1+(k +6-xk )e 2=0, 又∵e 1,e 2不共线,∴⎩⎪⎨⎪⎧ 7-x =0,k +6-kx =0,解得⎩⎪⎨⎪⎧x =7,k =1,故k 的值为1. 8.已知O 为空间任一点,A ,B ,C ,D 四点满足任意三点不共线,但四点共面,且OA →=2xBO →+3yCO →+4zDO →,则2x +3y +4z =________. 答案 -1解析 由题意知A ,B ,C ,D 共面的充要条件是:对空间任意一点O ,存在实数x 1,y 1,z 1,使得OA →=x 1OB →+y 1OC →+z 1OD →,且x 1+y 1+z 1=1,因此,2x +3y +4z =-1.9.如图,在平行六面体ABCD -A 1B 1C 1D 1中,M ,N 分别是C 1D 1,AB 的中点,E 在AA 1上且AE =2EA 1,F 在CC 1上且CF =12FC 1,判断ME →与NF →是否共线.解 由题意,得ME →=MD 1—→+D 1A 1—→+A 1E —→=12BA →+CB →+13A 1A —→=BN →+CB →+13C 1C —→ =CN →+FC →=FN →=-NF →.即ME →=-NF →,∴ME →与NF →共线.10.在长方体ABCD -A 1B 1C 1D 1中,M 为DD 1的中点,点N 在AC 上,且AN ∶NC =2∶1,求证:A 1N —→与A 1B —→,A 1M —→共面.证明 ∵A 1B —→=AB →-AA 1—→,A 1M —→=A 1D 1—→+D 1M —→=AD →-12AA 1—→,AN →=23AC →=23(AB →+AD →),∴A 1N —→=AN →-AA 1—→=23(AB →+AD →)-AA 1—→=23(AB →-AA 1—→)+23⎝⎛⎭⎫AD →-12AA 1—→ =23A 1B —→+23A 1M —→, ∴A 1N —→与A 1B —→,A 1M —→共面.11.若P ,A ,B ,C 为空间四点,且有P A →=αPB →+βPC →,则α+β=1是A ,B ,C 三点共线的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分又不必要条件 答案 C解析 若α+β=1,则P A →-PB →=β(PC →-PB →),即BA →=βBC →,显然,A ,B ,C 三点共线;若A ,B ,C 三点共线,则有AB →=λBC →,故PB →-P A →=λ(PC →-PB →),整理得P A →=(1+λ)PB →-λPC →,令α=1+λ,β=-λ,则α+β=1,故选C.12.平面α内有五点A ,B ,C ,D ,E ,其中无三点共线,O 为空间一点,满足OA →=12OB →+xOC →+yOD →,OB →=2xOC →+13OD →+yOE →,则x +3y 等于( )A.56B.76C.53D.73 答案 B解析 由点A ,B ,C ,D 共面得x +y =12,又由点B ,C ,D ,E 共面得2x +y =23,联立方程组解得x =16,y =13,所以x +3y =76.13.已知正方体ABCD -A 1B 1C 1D 1中,P ,M 为空间任意两点,如果有PM →=PB 1—→+7BA →+6AA 1—→-4A 1D 1—→,那么M 必( )A .在平面BAD 1内B .在平面BA 1D 内C .在平面BA 1D 1内 D .在平面AB 1C 1内 答案 C解析 PM →=PB 1—→+7BA →+6AA 1—→-4A 1D 1—→ =PB 1—→+BA →+6BA 1—→-4A 1D 1—→ =PB 1—→+B 1A 1—→+6BA 1—→-4A 1D 1—→ =P A 1—→+6(P A 1—→-PB →)-4(PD 1—→-P A 1—→) =11P A 1—→-6PB →-4PD 1—→, 于是M ,B ,A 1,D 1四点共面. 14.有下列命题:①若AB →∥CD →,则A ,B ,C ,D 四点共线; ②若AB →∥AC →,则A ,B ,C 三点共线;③若e 1,e 2为不共线的非零向量,a =4e 1-25e 2,b =-e 1+110e 2,则a ∥b ;④若向量e 1,e 2,e 3是三个不共面的向量,且满足等式k 1e 1+k 2e 2+k 3e 3=0,则k 1=k 2=k 3=0. 其中是真命题的序号是________(把所有真命题的序号都填上). 答案 ②③④解析 根据共线向量的定义,若AB →∥CD →,则AB ∥CD 或A ,B ,C ,D 四点共线,故①错; 因为AB →∥AC →且AB →,AC →有公共点A ,所以②正确;由于a =4e 1-25e 2=-4b ,所以a ∥b .故③正确;易知④也正确.15.已知A ,B ,C 三点不共线,O 是平面ABC 外任意一点,若由OP →=15OA →+23OB →+λOC →确定的一点P 与A ,B ,C 三点共面,则λ=________. 答案215解析 根据P ,A ,B ,C 四点共面的条件,知存在实数x ,y ,z ,使得OP →=xOA →+yOB →+zOC →成立,其中x +y +z =1,于是15+23+λ=1,所以λ=215.16.如图,已知M ,N 分别为四面体A -BCD 的面BCD 与面ACD 的重心,G 为AM 上一点,且GM ∶GA =1∶3.求证:B ,G ,N 三点共线. 证明 设AB →=a ,AC →=b ,AD →=c , 则AM →=AB →+23×12(BC →+BD →)=AB →+13(BC →+BD →)=AB →+13(AC →-AB →+AD →-AB →)=13(AB →+AC →+AD →) =13(a +b +c ), BG →=BA →+AG →=BA →+34AM →=-a +14(a +b +c )=-34a +14b +14c ,BN →=BA →+AN →=BA →+13(AC →+AD →)=-a +13b +13c =43BG →,∴BN →∥BG →.又BN ∩BG =B ,∴B ,G ,N 三点共线.。

高中数学同步教学课件 共线向量与共面向量

高中数学同步教学课件 共线向量与共面向量

训练4
在四面体 OABC 中,空间中的一点 M 满足O→M=14O→A+16O→B+λO→C,若 M,A, B,C 四点共面,则 λ=
√A.172
B.13
C.152
D.12
因为M,A,B,C四点共面, 所以14+16+λ=1,得 λ=172,故选 A.
【课堂达标】
1.设 e1,e2 是两个不共线的向量,且 a=e1+λe2 与 b=-13e2-e1 共线,则实数 λ=
则B→G=B→A+A→G=B→A+34A→M =-a+14(a+b+c)=-43a+14b+14c, B→N=B→A+A→N=B→A+13(A→C+A→D)=-a+13b+31c=34B→G, ∴B→N∥B→G.
又 BN∩BG=B,∴B,G,N 三点共线.
思维升华
证明三点共线的方法 (1)若P→A=λP→B,则 P,A,B 三点共线. (2)对空间任意一点,若O→P=xO→A+yO→B且 x+y=1, 则 P,A,B 三点共线.
知识梳理
1.空间向量共线的充要条件:对任意两个空间向量a,b(b≠0),a∥b的充要条件 是存在实数λ,使___a_=__λ_b___.
2.直线的方向向量 如图,O 是直线 l 上一点,在直线 l 上取非零向量 a,则对于 直线 l 上任意一点 P,可知O→P=λa,把与向量 a 平行的非零 向量称为直线 l 的 方向向量 .直线可以由其上一点和它的 方向向量确定.
1 234
3.设 a,b 是空间中两个不共线的向量,已知A→B=9a+mb,B→C=-2a-b,D→C= a-2b,且 A,B,D 三点共线,则实数 m=___-__3___.
因为B→C=-2a-b,D→C=a-2b. 所以B→D=B→C+C→D=B→C-D→C=-2a-b-(a-2b)=-3a+b, 因为 A,B,D 三点共线, 所以存在实数 λ,使得A→B=λB→D, 即 9a+mb=λ(-3a+b). 因为 a 与 b 不共线,所以9m==-λ,3λ, 解得 m=λ=-3.

12 共线向量与共面向量

12  共线向量与共面向量
得 AG=b+ (-b+ c+ d)= (b+c+d) 2 2 2 2
D B
1
G C
1
1
1
E
练习3
1.设AB=a+5b. BC=-2a+8b. CD=3(a-b), 证明 A,B,D,三点在同一直线上。 2.在四边形ABCD中, AB=a+2b, BC=-4a-b, CD=-5a-3b, 其中a,b不共线, 证明 ABCD是平行四边形。
求证 三角形中位线定理
证明:设D,E分别是△ABC的边AB和 AC的中点,则 DE=DA+AE=1 2 1AD E
BA+ BC
1 2
AC=
(BA+AC) =
2 1 2
∴DE∥BC , 即 DE∥BC,
B
C
显然 DE=
1 2
BC

(2)共面向量:
定义:已知平面 行于平面 或 a 在 内,那么我们就说向量 于平面 ,记作 a ∥ . A ,作 OA a ,如果直线 OA 平 a 平行
、 , 使得 u

M
C
a
c
A
a
b
O N B
例4 已知向量a,b不共线,AB=8a+2b,AC=2a+8b
AD=3(a-b),求证 A,B,C,D四点共面。
证明 如果存在实数λ、μ使得AB=λAC+μAD成立, 则向量AB,AC,AD共面。现在
λAC+μAD=(2a+8b)+3(a-b)=(2λ+3μ)+(8λ-3μ)

(1)共线向量:
定义:如果表示空间向量的有向线段所在的直 线互相平行或重合,则这些向量叫做共线向量或平 行向量.

第2课时 共线向量、共面向量 高中数学人教A版选择性必修第一册课件

第2课时 共线向量、共面向量 高中数学人教A版选择性必修第一册课件

(2)在正方体 ABCD-A1B1C1D1 中,M,N,P,
Q 分别为 A1D1,D1C1,AA1,CC1 的中点,求
证:M,N,P,Q 四点共面.
证明:令1 1 =a,1 1 =b,1 =c.
因为 M,N,P,Q 均为相应棱的中点,
1 1
1
1
所以= b- a,=1 +1 = a+ c,
第一章
空间向量与立体几何
1.1 空间向量及其运算
1.1.1
空间向量及其线性运算
第 2 课时
[学习目标]
共线向量、共面向量
1.理解共线向量的充要条件,能应用其证
明共线问题.
2.理解共面向量的充要条件,能应用其证明共面问题.
3.通过类比、猜想、证明,将平面向量拓展到空间范畴,
发展直观想象素养.
一、共线向量
=-5a+6b, =7a-2b,则一定共线的三点是
A.A,B,D
B.A,B,C
C.B,C,D
(
)
D.A,C,D
解析:因为 = + + =3a+6b=3(a+2b)=3 ,所以
∥ .又因为 与 有公共点 A,所以 A,B,D 三点共线.
答案:A
(2)设 e1,e2 为空间两个不共线的向量,如果=e1+ke2,
【思考】
如何证明“向量 p 与向量 a,b 共面(a,b 不共线)”的充要条
件是“存在唯一的有序实数对(x,y),使 p=xa+yb”?
提示:充分性.因为 xa,yb 分别与 a,b 共线,
所以 xa,yb 都在 a,b 确定的平面内.
又因为 xa+yb 是以|xa|,|yb|为邻边的平行四边形的一条

3.1.2共线向量与共面向量

3.1.2共线向量与共面向量
思考1:空间任意向 量 p 与两个不共线 的向量 a, 共面时, b 它们之间存在怎样 的关系呢?
b C b A B a
P
2.共面向量定理:如果两个向量 a 、 不共线,则向 b 量 p 与向量 a 、 共面的充要条件是存在唯一的有 b 序实数对 ( x, y) 使 p xa yb .
类似地,有空间向量基本定理:
b E
p
O C
A
对向量 p 进行分解,
D
B
OB OC OD OE BA c p
作 AB // b, BD // a, BC // c
注:空间任意三个不共面向量都可以构成空
得证.
为什么?
练习:
已知A、B、M三点不共线,对于平面
ABM外的任一点O,确定在下列各条件下, 点P是否与A、B、M一定共面?
(1) OB+OM 3OP-OA
(2) OP 4OA OB OM
如果向量a的基线OA与平面 平行或在内,称向量a平行 ,记作a//
二.共面向量:
1、共面向量:平行于同一平面的向量,叫共面向量 即能平移到同一平面内的向量,叫做共面向量.
a
O A

注意:空间任意两个向量是共面的,但空间任意 三个向量就不一定共面的了。
平面向量基本定理:
如果是 e1,2 同一平面内两个不共线的 e 向量,那么对于这一平面内的任一向 量 a ,有且只有一对实数1,2,使 a 1 e1 2 e2 a
它们一定是:
A.共面向量
C.不共面向量
B.共线向量

课件:共线向量与共面向量

课件:共线向量与共面向量

3.对于空间任意一点O,下列命题正确的 是:
A.若 OP OA t AB ,则P、A、B共线 B.若 3OP OA AB ,则P是AB的中点 C.若 OP OA t AB ,则P、A、B不共线 D.若 OP OA AB ,则P、A、B共线
4.若对任意一点O, OP xOA y A,B 且O是不在AB上的一点 则x+y=1是P、A、B三点共线的: A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件
m、n不平行,由共面向量定理
l
可知,存在唯一的有序实数对(x,y),
lm
g m
gn n
使
g=xm+yn, l·g=xl·m+yl·n ∵ l·m=0,l·n=0
∴ l·g=0
∴ l⊥g
∴ l⊥g
这就证明了直线l垂直于平面内的 任一条直线,所以l⊥
(1) OP 2 OA 1 OB 2 OC ; 555
(2) OP 2OA 2OB OC ;
三、课堂小结:
1.共线向量的概念。 2.共线向量定理。 3.共面向量的概念。 4.共面向量定理。
空间向量的数量积运算
教学过程
一、几个概念
1) 两个向量的夹角的定义
a
A
a
B O
b
b
范围:0 a,b 在这个规定下,两个向量的夹角就
()
4) p q p qห้องสมุดไป่ตู้ p2 q2 ( )
3.如图:已知空间四边形ABCD的每条边和对角线长都等于1,点E、F 分别是AB、AD的中点。 计算(:1)EF BA (2) EF BD (3) EF DC (4) EF AC
A
E
F
B
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解析:由共线向量、相等向量定义知,应选 A.
3 . 向 量 a 、 b 不 共 线 , p = ma + nb , 则 p = 0 的 充 要 条 件 是 ________________________________________________________________________.
2.共面向量 (1)共面向量的定义 已知平面 α 与向量 a,作 OA―→=a,如果直线 OA 平行于平面 α 或 a 在 α 内,就说向 量 a 平行于平面 α,记作 a∥α.
平行于同一平面的向量,叫做共面向量. (2)三个向量共面的条件 ①共面向量定理 如果两个向量 a、b 不共线,则向量 p 与向量 a、b 共面的充要条件是存在实数对 x,y, 使 p=xa+yb. ②推论 空间一点 P 位于平面 MAB 内的充分必要条件是存在有序实数对 x,y,使 MP―→= xMA―→+yMB―→ ,或对空间任一定点 O,有 OP―→=OM―→+xMA―→+yMB―→ .① 在平面 MAB 内,点 P 对应的实数对(x,y)是唯一的.①式叫做平面 MAB 的向量表示 式.
1.空间共线向量与平面共线向量的定义完全一样,当我们说 a,b 共线时,表示 a,b 的两条有向线段所在直线既可能是同一直线,也可能是平行直线;当我们说 a∥b 时,也具 有同样的意义.
2.“共线”这个概念具有自反性 a∥a,也具有对称性,即若 a∥b,则 b∥a. (1)0 与任一向量 a 是共线向量. (2)向量的平行(共线)不具备传递性,即若 a∥b,a∥c,不一定有 b∥c.但当 a 为非零向 量时,平行(共线)的传递性将成立,即若 a≠0,a∥b,a∥c,则 b∥c. (3)在共线向量定理中,b≠0 不可去掉,否则实数 λ 就不唯一. 3.共线向量定理的应用 (1)用共线向量定理证明两直线平行是常用方法,但是要注意,向量平行与直线平行是有 区别的,直线平行不包括共线的情况.如果应用共线向量定理判断 a,b 所在的直线平行, 还需说明 a(或 b)上有一点不在 b(或 a)上. (2)用共线向量定理证明三点共线也是常用方法之一,在利用该定理证明(或判断)三点 A、 B、C 共线时,只需证明存在实数 λ,使 AB―→=λBC―→或 AB―→=μAC―→即可.
解析:∵a、b 不共线,∴a、b 为非零向量. 要使 p=0 只有 m=n=0.
答案:m=n=0
教师备用:空间任意两个向量 a、b 一定是( B ) (A)共线向量 (B)共面向量 (C)共线但不一定共面 (D)一定不共线
解析:由共面向量定义知,对空间任意两个向量,它们总是共面的.应选 B.
知识要点一:共线向量及共线向量定理的理解与应用
其中向量 a 叫做直线 l 的方向向量,在 l 上取 AB―→=a,则①式可化为
OP―→=OA―→+tAB―→ 或 OP―→=(1-t)OA―→+tOB―→ ② 当 t=12时,点 P 是线段 AB 的中点. 则 OP―→=12(OA―→+OB―→)③ ①或②都叫做空间直线的向量参数表示式.③是线段 AB 的中点公式,它们都与平面直 线的向量参数表示式和线段中点公式相同.
做一做: 教师备用:在平行六面体 ABCDA1B1C1D1 中,AA1―→+AB―→+AD―→与( D ) (A)AB1―→共线 (B)AC―→共线 (C)AB―→+BC―→共线 (D)C1A―→共线
解析:AA1―→+AB―→+AD―→=(AA1―→+AD―→)+AB―→ =(AA1―→+A1D1―→)+D1C1―→=AC1―→. ∵C1A―→与 AC1―→共线, ∴选 D.
3.共面向量定理的推论
如图,空间一点 P 位于平面 MAB 内的充要条件是存在有序实数对(x,y),使 MP―→= xMA―→ + yMB―→.或 对 空 间 一 定 点 O 有 OP―→ = OM―→ + xMA―→ + yMB―→ 或 OP―→=xOA―→+yOB―→+zOM―→ (其中 x+y+z=1).
第二课时 共线量与共面向量
想一想:
1.共线向量 (1)如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量 或平行向量,a 平行于 b 记作 a∥b. (2)共线向量定理 对空间任意两个向量 a、b(b≠0),a∥b 的充要条件是存在实数 λ,使 a=λb. (3)推论 如果 l 为经过已知点 A 且平行于已知非零向量 a 的直线,那么对任一点 O,点 P 在直线 l 上的充要条件是存在实数 t,满足等式 OP―→=OA―→+ta.①
1.对于空间中的三个向量 MA―→、MB―→、2MA―→-MB―→,它们一定是( A ) (A)共面向量 (B)共线向量 (C)不共面向量 (D)既不共线又不共面向量
解析:由共面向量定理知应选 A.
2.下列说法中正确的是( A ) (A)向量 a 与非零向量 b 共线,b 与 c 共线,则 a 与 c 共线 (B)任意两个相等向量不一定是共线向量 (C)任意两个共线向量相等 (D)若向量 a 与 b 共线,则 a=λb(λ>0)
知识要点二:共面向量定理的理解与应用
1.向量共面与直线共面 若 AB―→=xCD―→+yEF―→,则 AB―→,CD―→,EF―→共面,但线段 AB、CD、 EF 不一定共面. 2.共面向量定理 若两个向量 a、b 不共线,则向量 p 与向量 a、b 共面的充要条件是存在实数对 x、y,使 p=xa+yb. 如果 a、b 共线,则 p=xa+yb 不是 p、a、b 共面的充要条件.原因是:若 a、b 共线, 则 p 与 a、b 一定共面,当 p 与 a、b 不共线时,p 无法写成 xa+yb 的形式,当 p 与 a、b 共 线时,虽然可以写成 p=xa+yb 的形式,但有序实数对 x,y 不唯一.
4.共面向量定理的应用 (1)共面向量定理常用于证明四点共面,空间一点 P 位于平面 MAB 内的充要条件为存在 有序实数对(x、y),使 MP―→=xMA―→+yMB―→或对空间中任一点 O,有 OP―→= OM―→ + MP―→ = OM―→ + xMA―→ + yMB―→ 或 OP―→ = xOA―→ + yOB―→ + zOM―→ (其中 x+y+z=1). 对于若 OP―→=xOA―→+yOB―→+zOM―→ (x+y+z=1),点 P 位于平面 MAB 内可作 如下理解:
相关文档
最新文档