十字相乘法

合集下载

完整版十字相乘法因式分解

完整版十字相乘法因式分解

4)(t +14)
当q>0时,q分解的因数a、b( 同号 )且(a、b符号)与p符号相同
当q<0时, q分解的因数a、b( 异号) (其中绝对值较大的因数符号)与p符号相同
试将 ? x2 ? 6x? 16 分解因式
? x2 ? 6x? 16
? ?? x2 ? 6x ? 16?
? ??x? 8?x?? 2?
+3
=(5x+3)(x-4) x
-4
-20x+3x=-17x
1.十字相乘法分解因式的公式:
x2+(a+b)x+ab=(x+a)(x+b)
2.能用十字相乘法来分解因式的二次三项式的系数的 特点:常数项能分解成两个数的积,且这两个数的和 恰好等于一次项的系数。
3.在用十字相乘法分解因式时,因为常数项的 分解因数有多种情况,所以通常要经过多次的 尝试才能确定采用哪组分解来进行分解因式。
x2 ? 29x ? 138 ? (x? 23)(x? 6)
小结: 当q>0时,q分解的因数a、b(
) 同号
且(a、b符号)与p符号相同
x 2 ? 7 x ? 60 ? (x ? 12)(x ? 5) x2 ? 14 x ? 72 ? (x? 4)(x? 18)
当q<0时, q分解的因数a、b(
) 异号
1
–2
5
4
4 – 10 = –6 ∴5x2–6xy–8y2 =(x–2y)(5x+4y)
简记口诀:
首尾分解, 交叉相乘, 求和凑中。
分解因式 3x -102x+3
解:3x 2-10x+3
x
-3
=(x-3)(3x-1) 3x

十字相乘法

十字相乘法

十字相乘法利用十字交叉线来分解系数,将二次三项式分解因式的方法叫做十字相乘法,主要分为以下两类:1.二次项系数是1的二次三项式的十字相乘法对首项是1的二次三项式的十字相乘法主要就是要能够运用公式进行因式分解.对于二次三项式,若存在则,即把常数项分解成两个数的积,且其和刚好等于一次项系数.技巧1:在对c的正负入手:若,则、同号,若,则、异号,然后根据一次项系数的正负进一步确定、的符号;技巧2:若中的b、c为整数时,要先将c分解成两个整数的积,然后再考虑这两个整数和能否等于一次项系数(再分解时,要考虑分解的多种可能,直至凑对为止).2.二次项系数不为1的十字相乘在二次三项式a可以分解成两个因数的积,常数项c也可以分解成两个因数的积,即,将、、、按照以下进行排列:按照斜线交叉相乘,再相加,得到若它正好等于二次三项式一次项系数b,即,那么二次三项式就可以分解成两个因式与之积,即.PS:若二次项系数是负数,可以先提个负号,分解括号里面的二次三项式,最后结果不要忘记添上负号.例1:二次项系数为1的二次三项式分解因式:(1)(2)(3)(4)见解析(1);(2)(3);(4)例2:二次项系数不为1的二次三项式分解因式:(1)(2)见解析(1);(2).例3:待定系数法求字母的值若能分解成两个一次因式的积,则的值为()A. 1B.C.D. 2C,,分以下两种情况考虑:由①可得m=1,故选C.例4:解决几何类问题已知长方形的长、宽分别为x、y,周长为16,求此长方形的面积.15或15.75又解得,∴长方形的面积为15或15.75.例5:十字相乘法综合求证:若是7的倍数,其中x、y都是整数,则是49的倍数.见解析证明:∵是7的倍数,设(m为整数),则,∵x、m也是整数,∴49的倍数.巩固练习一.选择题1.把多项式x2+x﹣2分解因式,下列结果正确的是()A.(x+2)(x﹣1)B.(x﹣2)(x+1)C.(x﹣1)2D.(2x﹣1)(x+2)Ax2+x﹣2=(x﹣1)(x+2),故选:A.2.下列因式分解正确的是()A.4m2﹣4m+1=4m(m﹣1)B.a3b2﹣a2b+a2=a2(ab2﹣b)C.x2﹣7x﹣10=(x﹣2)(x﹣5)D.10x2y﹣5xy2=5xy(2x﹣y)DA、4m2﹣4m+1=(2m﹣1)2,故本选项错误;B、a3b2﹣a2b+a2=a2(ab2﹣b+1),故本选项错误;C、(x﹣2)(x﹣5)=x2﹣7x+10,故本选项错误;D、10x2y﹣5xy2=xy(10x﹣5y)=5xy(2x﹣y),故本选项正确;故选:D.3.下列多项式不能分解的是()A.(ab+cd)2+(bc﹣ad)2B.x2﹣y2﹣6x+9C.x2﹣2xy﹣3y2+4x+8y﹣5D.x2+2x+4DA.(ab+cd)2+(bc﹣ad)2=(a2+c2)(b2+d2),故本选项能分解;B.x2﹣y2﹣6x+9=(x﹣3+y)(x﹣3﹣y),故本选项能分解;C.x2﹣2xy﹣3y2+4x+8y﹣5=(x+y﹣1)(x﹣3y+5),故本选项能分解;D.x2+2x+4不能分解,故本选项符合题意;故选:D.4.把多项式(x﹣y)2﹣2(x﹣y)﹣8分解因式,正确的结果是()A.(x﹣y+4)(x﹣y+2)B.(x﹣y﹣4)(x﹣y﹣2)C.(x﹣y﹣4)(x﹣y+2)D.(x﹣y+4)(x﹣y﹣2)C(x﹣y)2﹣2(x﹣y)﹣8,=(x﹣y﹣4)(x﹣y+2).故选:C.二.填空题5.若对于一切实数x,等式x2﹣px+q=(x+1)(x﹣2)均成立,则p2﹣4q的值是.9由题意得:﹣p=1﹣2,q=1×(﹣2),∴p=1,q=﹣2,∴p2﹣4q=1﹣4×(﹣2)=1+8=9.6.分解因式:x2﹣3xy﹣4y2=.(x﹣4y)(x+y)x2﹣3xy﹣4y2=(x﹣4y)(x+y),7.若x2+mx﹣15=(x+3)(x+n),则m﹣n的值为.3∵(x+3)(x+n)=x2+nx+3x+3n=x2+(n+3)x+3n,∴,解得:m=﹣2,n=﹣5,则m﹣n=﹣2+5=3.8.若x2+mx+n分解因式的结果是(x+2)(x﹣1),则m+n的值为.﹣1∵x2+mx+n分解因式的结果是(x+2)(x﹣1),∴x2+mx+n=x2+x﹣2,∴m=1,n=﹣2,∴m+n=1﹣2=﹣1.9.阅读下列文字与例题:将一个型如x2+px+q的二次三项式因式分解时,如果能满足q=mn且p=m+n,则可以把x2+px+q因式分解成(x+m)(x+n).例如(1)x2+3x+2=(x+1)(x+2)(2)x2﹣3x﹣10=(x﹣5)(x+2).要使二次三项式x2+mx﹣6能在整数范围内分解因式,则m可取的整数为.﹣5,﹣1,1,5∵﹣6=﹣1×6=﹣2×3=1×(﹣6)=2×(﹣3),∴m=﹣1+6=5或m=﹣2+3=1或m=1+(﹣6)=﹣5或m=2+(﹣3)=﹣1.10.多项式kx2﹣9xy﹣10y2可分解因式得(mx+2y)(3x﹣5y),则k=,m=.9,3∵kx2﹣9xy﹣10y2=(mx+2y)(3x﹣5y),∴kx2﹣9xy﹣10y2=3mx2﹣5mxy+6xy﹣10y2,∴,解得:.三.解答题11.分解因式:x2+12x﹣189,分析:由于常数项数值较大,则将x2+12x﹣189变为完全平方公式,再运用平方差公式进行分解,这样简单易行.x2+12x﹣189=x2+2*6x+62﹣36﹣189=(x+6)2﹣225=(x+6)2﹣152=(x+6+15)(x+6﹣15)=(x+21)(x﹣9)请按照上面的方法分解因式:x2﹣60x+884.(x﹣26)(x﹣34)x2﹣60x+884=x2﹣2×30x+900﹣900+884=(x﹣30)2﹣16=(x﹣30+4)(x﹣30﹣4)=(x﹣26)(x﹣34).12.李伟课余时间非常喜欢研究数学,在一次课外阅读中遇到一个解一元二次不等式的问题:x2﹣2x﹣3>0.经过思考,他给出了下列解法:左边因式分解可得:(x+1)(x﹣3)>0,或,解得x>3或x<﹣1.聪明的你,请根据上述思想求一元二次不等式的解集:(x﹣1)(x﹣2)(x﹣3)>0.x>3或1<x<2由题意知x﹣1、x﹣2、x﹣3中负数的个数为偶数个,则①,解得:x>3;②,解得:1<x<2;∴x>3或1<x<2.13.在对某二次三项式进行因式分解时,甲同学因看错了一次项系数而将其分解为2(x﹣1)(x﹣9),乙同学因看错常数项而将其分解为2(x﹣2)(x﹣4),请你写出这个二次三项式,并将其进行正确的因式分解.2x2﹣12x+18=2(x﹣3)2甲:2(x﹣1)(x﹣9)=2x2﹣20x+18,乙:2(x﹣2)(x﹣4)=2x2﹣12x+16,∵甲同学看错了一次项系数,但没有看错常数项,乙同学看错了常数项,但没有看错一次项系数,∴原多项式为2x2﹣12x+18,将其分解因式为:2x2﹣12x+18=2(x﹣3)2.14.我们知道,多项式a2+6a+9可以写成(a+3)2的形式,这就是将多项式a2+6a+9因式分解,当一个多项式(如a2+6a+8)不能写成两数和(成差)的平方形式时,我们可以尝试用下面的办法来分解因式.a2+6a+8=a2+6a+9﹣1=(a+3)2﹣1=[(a+3)+1][(a+3)﹣1]=(a+4)(a+2)请仿照上面的做法,将下列各式分解因式:(1)x2﹣6x﹣27(2)x2﹣2xy﹣3y2.(1)原式=(x+3)(x﹣9);(2)原式=(x+y)(x﹣3y)(1)原式=x2﹣6x+9﹣36=(x﹣3)2﹣36=(x﹣3+6)(x﹣3﹣6)=(x+3)(x﹣9);(2)原式=x2﹣2xy+y2﹣4y2=(x﹣y)2﹣4y2=(x﹣y+2y)(x﹣y﹣2y)=(x+y)(x﹣3y).15.找出能使二次三项式x2+ax﹣6可以因式分解(在整数范围内)的整数值a,并且将其进行因式分解.见解析x2+x﹣6=(x+3)(x﹣2);x2﹣x﹣6=(x﹣3)(x+2);x2+5x﹣6=(x+6)(x﹣1);x2﹣5x﹣6=(x﹣6)(x+1).16.先阅读下列解题过程,然后完成后面的题目.分解因式:x4+4x4+4=x4+4x2+4﹣4x2=(x2+2)2﹣4x2=(x2+2x+2)(x2﹣2x+2)以上解法中,在x4+4的中间加上一项,使得三项组成一个完全平方式,为了使这个式子的值保持与x4+4的值保持不变,必须减去同样的一项.按照这个思路,试把多项式x4+x2y2+y4分解因式.见解析x4+x2y2+y4=x4+2x2y2+y4﹣x2y2=(x2+y2)2﹣x2y2=(x2+y2+xy)(x2+y2﹣xy).。

十字相乘法的方法(青龙333333)

十字相乘法的方法(青龙333333)

十字相乘法的解法1、十字相乘法的方法:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。

2、十字相乘法的用处:(1)用十字相乘法来分解因式。

(2)用十字相乘法来解一元二次方程。

3、十字相乘法的优点:用十字相乘法来解题的速度比较快,能够节约时间,而且运用算量不大,不容易出错。

4、十字相乘法的缺陷:1、有些题目用十字相乘法来解比较简单,但并不是每一道题用十字相乘法来解都简单。

2、十字相乘法只适用于二次三项式类型的题目。

3、十字相乘法比较难学。

5、十字相乘法解题实例:1)、用十字相乘法解一些简单常见的题目例1把m²+4m-12分解因式分析:本题中常数项-12可以分为-1×12,-2×6,-3×4,-4×3,-6×2,-12×1当-12分成-2×6时,才符合本题解:因为1 -21 ╳6所以m²+4m-12=(m-2)(m+6)例2把5x²+6x-8分解因式分析:本题中的5可分为1×5,-8可分为-1×8,-2×4,-4×2,-8×1。

当二次项系数分为1×5,常数项分为-4×2时,才符合本题解:因为 1 25 ╳-4所以5x²+6x-8=(x+2)(5x-4)例3解方程x²-8x+15=0分析:把x²-8x+15看成关于x的一个二次三项式,则15可分成1×15,3×5。

解:因为 1 -31 ╳-5所以原方程可变形(x-3)(x-5)=0所以x1=3 x2=5例4、解方程6x²-5x-25=0分析:把6x²-5x-25看成一个关于x的二次三项式,则6可以分为1×6,2×3,-25可以分成-1×25,-5×5,-25×1。

十字相乘因式分解法

十字相乘因式分解法

十字相乘因式分解法摘要:一、引言二、十字相乘法的基本概念1.什么是十字相乘法2.十字相乘法的符号表示三、十字相乘法的应用1.分解单项式2.分解多项式四、十字相乘法的优势与局限1.优势2.局限五、结论正文:一、引言十字相乘法是一种常用的因式分解方法,尤其在初中阶段数学学习中占据着重要地位。

本文将对十字相乘法进行详细介绍,包括其基本概念、应用以及优势与局限。

二、十字相乘法的基本概念1.什么是十字相乘法十字相乘法是一种因式分解方法,主要用于分解二次多项式。

具体操作步骤如下:首先,将二次多项式的二次项系数a、常数项b和一次项系数c、d分别填入一个十字形的四个格子中(如下所示)。

```c da |b | a b|-------|-------| c d | c d```然后,根据a、b、c、d的值,利用乘法分配律进行计算,得出两个括号中的表达式。

最后,将这两个括号中的表达式相乘,即可得到原二次多项式的因式分解式。

2.十字相乘法的符号表示我们可以用如下符号表示十字相乘法:```(ax + b)(cx + d) = acx^2 + (ad + bc)x + bd```其中,a、b、c、d为常数,x为变量。

三、十字相乘法的应用1.分解单项式假设我们有一个单项式:ax^2 + bx + c。

我们可以先提取出公因式x,得到x(ax + b) + c。

然后,我们可以使用十字相乘法分解ax + b,从而得到单项式的因式分解式。

2.分解多项式十字相乘法主要用于分解二次多项式,如ax^2 + bx + c。

我们可以根据二次项系数a、常数项b和一次项系数c、d的值,将多项式表示为(ax + b)(cx + d)的形式。

然后,利用乘法分配律计算括号中的表达式,最后将两个括号中的表达式相乘,即可得到原二次多项式的因式分解式。

四、十字相乘法的优势与局限1.优势十字相乘法具有较高的实用价值,尤其在初中阶段数学学习中。

它可以帮助学生快速、准确地分解二次多项式,从而简化问题,便于求解。

十字相乘法完整版

十字相乘法完整版

XX,a click to unlimited possibilities
十字相乘法完整版
目录
01
添加目录标题
02
十字相乘法的基本原理
03
十字相乘法的应用
04十字相乘法ຫໍສະໝຸດ 注意事项05十字相乘法的扩展应用
01
添加章节标题
02
十字相乘法的基本原理
定义与公式
定义:十字相乘法是一种解一元二次方程的方法,通过将方程的系数分解为两个因数的乘积,从而找到方程的解。
分解因式时,要注意符号的变化,特别是当多项式中含有括号时。
分解因式时,要注意符号的变化,特别是当多项式中含有分数时。
分解因式时要注意完全平方数的问题
分解因式时要注意完全平方数的问题,避免出现错误的结果。
分解因式时要注意符号问题,确保结果的正确性。
分解因式时要注意因式的分解是否彻底,避免出现不必要的错误。
应用场景:求解一元二次不等式时,当不等式的系数较大或较为复杂时,使用十字相乘法可以简化计算过程
注意事项:在使用十字相乘法时,需要确保分解后的两个一次项的乘积为正,否则会导致不等号方向错误
举例说明:通过具体的一元二次不等式实例,展示十字相乘法的应用和求解过程
求解一元二次函数极值
定义:一元二次函数极值是指函数在某点的导数为零,且该点两侧的函数值异号
代数方程:十字相乘法可用于解二次方程和一元高次方程
矩阵运算:十字相乘法在矩阵的乘法中也有应用
分式化简:十字相乘法可以用于化简分式,简化计算过程
在物理和工程领域的应用
线性代数方程组的求解
工程中的结构分析、流体动力学等领域
物理中的动力学方程求解
矩阵运算中的分块矩阵相乘

十字相乘法的方法

十字相乘法的方法

十字相乘法的方法:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。

2、十字相乘法的用处:(1)用十字相乘法来分解因式。

(2)用十字相乘法来解一元二次方程。

3、十字相乘法的优点:用十字相乘法来解题的速度比较快,能够节约时间,而且运用算量不大,不容易出错。

4、十字相乘法的缺陷:1、有些题目用十字相乘法来解比较简单,但并不是每一道题用十字相乘法来解都简单。

2、十字相乘法只适用于二次三项式类型的题目。

3、十字相乘法比较难学。

5、十字相乘法解题实例:1)、用十字相乘法解一些简单常见的题目例1把m&sup2;+4m-12分解因式分析:本题中常数项-12可以分为-1×12,-2×6,-3×4,-4×3,-6×2,-12×1当-12分成-2×6时,才符合本题解:因为1 -21 ╳6所以m&sup2;+4m-12=(m-2)(m+6)例2把5x&sup2;+6x-8分解因式分析:本题中的5可分为1×5,-8可分为-1×8,-2×4,-4×2,-8×1。

当二次项系数分为1×5,常数项分为-4×2时,才符合本题解:因为1 25 ╳-4所以5x&sup2;+6x-8=(x+2)(5x-4)例3解方程x&sup2;-8x+15=0分析:把x&sup2;-8x+15看成关于x的一个二次三项式,则15可分成1×15,3×5。

解:因为1 -31 ╳-5所以原方程可变形(x-3)(x-5)=0所以x1=3 x2=5例4、解方程6x&sup2;-5x-25=0分析:把6x&sup2;-5x-25看成一个关于x的二次三项式,则6可以分为1×6,2×3,-25可以分成-1×25,-5×5,-25×1。

十字相乘法

十字相乘法

十字相乘法,顾名思义,就是利用十字交叉线来分解系数,从而把二次三项式分解因式的方法,就叫做十字相乘法。

二次三项式就是我们经常接触到的ax²+bx+c,这种形式的方程式
那么十字相乘法,就是把这个式子中的
二次项系数a,分解为a1,a2 在这里,a等于a1乘以a2
常数项c分解为c1和c2 同样的,在这里c等于c1乘以c2
我们把这几个分解开的式子按照十字排列
a1 c1
a2 c2
按照交叉线来相乘,然后再加起来,就得到a1c2+a2c1
如果这个式子刚好等于二次三项式中的b
那么ax²+bx+c就可以分解为(a1x+c1)(a2x+c2)
其实这么一大堆话,看起来可能很难理解,但是事实上,他是很简单的,只要你做的题多了,对于十字相乘法就能形成一种灵感。

看到那个题,可能就可以想象的到它该怎么分解。

好了,下边儿给大家出个例题
比如6x²+7x-5这个式子,我们该怎么分解呢?
这就需要用到我们第一印象,一看到6,我们能想到它能怎样分解呢?
对,分成2,3
然后常数项c,就是-5,该怎么分解呢?
很明显,它可以分解成为-1,5
也可以分解成为5,-1
这时候就需要我们去实验哪种分解方法是我们需要的,怎么实验呢?就是把我们分解的这几个数字,按照十字排列好。

然后交叉相乘再相加。

看一下哪个能够得到我们想要的数字b=7,那么那就是我们想要的分解方法
最终得到结果,大家可以试一下
然后我们给大家出一道例题,大家来练习一下
6x²-x-15=0
大家用十字相乘法,解一下这个方程~加油,。

十字相乘法

十字相乘法

例4
把(x-y)(2x-2y-3)-2分解因式. 分析:这个多项式是两个因式之积与另一个因数之差的形式,只有先进行多项式的乘法运算,把变形后的多 项式再因式分解。 问:以上乘积的因式是什么特点,用什么方法进行多项式的乘法运算最简便? 答:第二个因式中的前两项如果提出公因式2,就变为2(x-y),它是第一个因式的二倍,然后把(x-y)看作 一个整体进行乘法运算,可把原多项式变形为关于(x-y)的二次三项式,就可以用十字分解法分解因式了。 解 (x-y)(2x-2y-3)-2 =(x-y)[2(x-y)-3]-2 = 2 ( x - y ) ²- 3 ( x - y ) - 2 1 -2 ╳ 21
十字相乘法
因式分解方法
01 原理
03 运算举例
目录
02 判定 04 分解因式
05 例题解析
07 注意事项
பைடு நூலகம்目录
06 重难点
基本信息
十字相乘法是因式分解中十四种方法之一。
十字相乘法的方法简单来讲就是:十字左边相乘的积为二次项,右边相乘的积为常数项,交叉相乘再相加等 于一次项。原理就是运用二项式乘法的逆运算来进行因式分解。
例题解析
例3 例1
例2
例4
例1
把 2 x ²- 7 x + 3 分 解 因 式 . 分析:先分解二次项系数,分别写在十字交叉线的左上角和左下角,再分解常数项,分 别写在十字交叉线的右上角和右下角,然后交叉相乘,求代数和,使其等于一次项系数. 分解二次项系数(只取正因数,因为取负因数的结果与正因数结果相同。): 2=1×2=2×1; 分解常数项: 3=1×3=3×1=(-3)×(-1)=(-1)×(-3). 用画十字交叉线方法表示下列四种情况: 13 ╳ 21

十字相乘法的运算技巧

十字相乘法的运算技巧

十字相乘法的运算技巧十字相乘法,就是把一个二次三项式化为两个因式相乘的形式,是一元二次方程解法之一。

“十字相乘法”:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。

对于某些首项系数是1的二次三项式2x Px q++【2()x a b x ab+++】的因式分解:即:一般地,∵2()()()x a x b x a b x ab++=+++,∴2()()()x a b x ab x a x b+++=++.这就是说,对于二次三项式2x Px q++,若能找到两个数a、b,使,, a b p a b q+=⎧⎨⋅=⎩则就有22()()()x Px q x a b x ab x a x b++=+++=++.(掌握这种方法的关键是确定适合条件的两个数,即把常数项分解成两个........数的积,且其和等于一次项系数,...............通常要借助画十字交叉线的办法来确定,故称十字相乘法。

)对于首项系数不是1的二次三项式:十字相乘法相对来说难学一些,但是一旦学会了它,用它来解题,会给我们带来很多方便。

一、十字相乘法的特点:1、十字相乘法的方法:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。

2、十字相乘法的用处:(1)用十字相乘法来分解因式。

(2)用十字相乘法来解一元二次方程。

3、十字相乘法的优点:用十字相乘法来解题的速度比较快,能够节约时间,而且运用算量不大,不容易出错。

4、十字相乘法的缺陷:①有些题目用十字相乘法来解比较简单,但并不适用于每一道题。

②十字相乘法只适用于二次三项式类型的题目。

二、十字相乘法的应用举例:例1. 十字相乘法的图解及待定系数已知二次三项式2x2-mx-20有一个因式为(x+4),求m的值.分析:用十字相乘法分解这个二次三项式有如下的图解:8-5=3=-m解:2x2-mx-20=(x+4)(2x-5)=2x2+3x-20∴-m=3m=-3(由例1我们应该明白,“十字相乘”法,并非凭空而来,也没有什么新东西——像不像?只要懂(ax+b)(cx+d),就懂“十字相乘”,这样,十字相乘中各数的意义,你记得更清楚了吧?)再如例2:把m²+4m-12分解因式分析:本题中常数项-12可以分为-1×12,-2×6,-3×4,-4×3,-6×2,-12×1当-12分成-2×6时,才符合本题解:因为 1 -21 ╳ 6 所以m²+4m-12=(m-2)(m+6)请观察比较例题中的各题,你能发现把常数q分解成两个整数a、b之积时的符号规律吗?⑴若q>0,则a、b同号.当p>0时a、b同为正,当p<0时a、b同为负.⑵若q<0,则a、b异号.当p>0时a、b中的正数绝对值较大,当p<0时a、b中的负数绝对值较大.⑶分解二项项系数、常数项有多种可能,即使对于同一种分解,十字图也有不同的写法,为了避免重或漏,故二次项系数的因数一经排定就不变,而用常数项的因数作调整;⑷用十字相乘法分解因式时,一般要经过多次尝试才能确定能否分解或怎样分解.例3、因式分解与系数的关系若多项式a2+ka+16能分解成两个系数是整数的一次因式的积,则整数k可取的值有( )A.5个B.6个C.8个D.4个分析:因为二次项系数为1,所以原式可分解为(a+m)(a+n)的形式,其中mn=16,k=m+n,所以整数k可取值的个数取决于式子mn=16的情况.(其中m、n 为整数)因为16=2×8,16=(-2)×(-8)16=4×4,16=(-4)×(-4)16=1×16,16=(-1)×(-16)所以k=±10,±8,±16答案:B(是不是有一点即通的感觉?这一层窗户纸不厚,数学要的就是心细,胆大) 例4.分组分解后再用十字相乘把2x2-8xy+8y2-11x+22y+15分解因式解:原式=(2x2-8xy+8y2)-(11x-22y)+15=2(x-2y)2-11(x-2y)+15=[(x-2y)-3][2(x-2y)-5]=(x-2y-3)(2x-4y-5)说明:分组后运用十字相乘进行因式分解,分组的原则一般是二次项一组,一次项一组,常数项一组.本题通过这样分组就化为关于(x-2y)的二次三项式,利用十字相乘法完成因式分解.例5.换元法与十字相乘法把(x2+x+1)(x2+x+2)-6分解因式分析:观察式子特点,二次项系数和一次项系数分别相同,把(x2+x)看成一个“字母”,把这个式子展开,就可以得到关于(x2+x)的一个二次三项式(或设x2+x=u,将原式化为(u+1)(u+2)-6=u2+3u-4,则更为直观)再利用十字相乘法进行因式分解.解:(x2+x+1)(x2+x+2)-6=[(x2+x)+1][(x2+x)+2]-6=(x2+x)2+3(x2+x)-4=(x2+x+4)(x2+x-1)说明:本题结果中的两个二次三项式在有理数范围内不能再分解了,若能分解一定要继续分解,如摸底检测第3题答案应当是C.再如、例6、把10x²-27xy-28y²-x+25y-3分解因式分析:在本题中,要把这个多项式整理成二次三项式的形式解法一、10x²-27xy-28y²-x+25y-3=10x²-(27y+1)x -(28y²-25y+3)4y -37y ╳ -1=10x²-(27y+1)x -(4y-3)(7y -1)2 -(7y – 1)5 ╳ 4y - 3=[2x -(7y -1)][5x +(4y -3)]=(2x -7y +1)(5x +4y -3)说明:在本题中先把28y²-25y+3用十字相乘法分解为(4y-3)(7y -1),再用十字相乘法把10x²-(27y+1)x -(4y-3)(7y -1)分解为:[2x -(7y -1)][5x +(4y -3)]解法二、10x²-27xy-28y²-x+25y-32 -7y5 ╳ 4y=(2x -7y)(5x +4y)-(x -25y)- 32 x -7y 15 x +4y ╳ -3=[(2x -7y)+1] [(5x +4y)-3]=(2x -7y+1)(5x +4y -3)说明:在本题中先把10x²-27xy-28y²用十字相乘法分解为(2x -7y)(5x +4y),再把(2x -7y)(5x +4y)-(x -25y)- 3用十字相乘法分解为[(2x -7y)+1] [(5x +4y)-3].(试比一下“分组分解”与“十字相乘”适用的题目的类型特点,从各项的次幂的次数及各项系数去分析)例6.因式分解与十字相乘法已知(x2+y2)(x2-1+y2)=12求:x2+y2的值解:(x2+y2)(x2-1+y2)=12(x2+y2)[(x2+y2)-1]-12=0(x2+y2)2-(x2+y2)-12=0[(x2+y2)-4][(x2+y2)+3]=0∵x2+y2≥0∴(x2+y2)+3≠0∴(x2+y2)-4=0∴x2+y2=4说明:我们把(x2+y2)看成一个“字母”,则原式转化为关于这个“字母”的一个一元二次方程。

十字交叉相乘法

十字交叉相乘法

十字交叉相乘法
十字相乘法是因式分解中十四种方法之一。

十字相乘法的方法简单来讲就是:十字左边相乘的积为二次项,右边相乘的积为常数项,交叉相乘再相加等于一次项。

原理就是运用二项式乘法的逆运算来进行因式分解。

[1] 十字相乘法能用于二次三项式(一元二次式)的分解因式(不一定是在整数范围内)。

对于像ax²+bx+c=(a₁x+c₁)(a₂x+c₂)这样的整式来说,这个方法的关键是把二次项系数a分解成两个因数a₁,a₂的积,把常数项c分解成两个因数c₁,c₂的积,并使a₁c₂+a₂c₁正好等于一次项的系数b。

那么可以直接写成结果:ax²+bx+c=(a₁x+c₁)(a₂x+c₂)。

在运用这种方法分解因式时,要注意观察,尝试,并体会,它的实质是二项式乘法的逆过程。

当首项系数为1时,可表达为x²+(p+q)x+pq=(x+p)(x+q);当首项系数不是1时,往往需要多次试验,务必注意各项系数的符号。

【数学知识点】十字相乘法顺口溜

【数学知识点】十字相乘法顺口溜

【数学知识点】十字相乘法顺口溜一、十字相乘法的口诀是:竖分常数交叉验,横写因式不能乱。

1、口诀第一句:竖分常数交叉验,这里包含了三个步骤,1)竖分二次项和常数项,即把二次项和常数项的系数竖向写出来,2)交叉相乘,和相加,即斜向相乘然后相加,得出一次项系数,3)检验确定,检验一次项系数是否正确。

2、口诀第二句:横写因式不能乱即把因式横向写,而不是交叉写,这里不能搞乱。

二、十字相乘法顺口溜:分解二次三项式,尝试十字相乘法。

分解二次常数项,交叉相乘做加法;叉乘和是一次项,十字相乘分解它。

1、十字相乘法的方法:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。

2、十字相乘法的用处:(1)用十字相乘法来分解因式。

(2)用十字相乘法来解一元二次方程。

十字相乘法的优点:用十字相乘法来解题的速度比较快,能够节约时间,而且运用算量不大,不容易出错。

十字相乘法的缺陷:1、有些题目用十字相乘法来解比较简单,但并不是每一道题用十字相乘法来解都简单。

2、十字相乘法只适用于二次三项式类型的题目。

3、十字相乘法比较难学。

十字相乘法能把二次三项式分解因式(不一定在整数范围内)。

对于形如ax²+bx+c=(a1x+c1)(a2x+c2)的整式来说,方法的关键是把二次项系数a分解成两个因数a1,a2的积a1·a2,把常数项c分解成两个因数c1,c2的积c1·c2,并使a1c2+a2c1正好等于一次项的系数b,那么可以直接写成结果:a x²+bx+c=(a1x+c1)(a2x+c2)。

在运用这种方法分解因式时,要注意观察,尝试,并体会,它的实质是二项式乘法的逆过程。

当首项系数不是1时,往往需要多次试验,务必注意各项系数的符号。

基本式子:x²+(p+q)x+pq=(x+p)(x+q)。

感谢您的阅读,祝您生活愉快。

数学十字相乘法公式

数学十字相乘法公式

数学十字相乘法公式摘要:一、引言二、数学十字相乘法公式简介1.公式定义2.公式结构三、数学十字相乘法公式的应用1.求解一元二次方程2.求解多项式因式分解四、数学十字相乘法公式的推导1.推导过程2.关键步骤解析五、总结正文:一、引言数学十字相乘法公式是数学中一种非常实用的公式,广泛应用于一元二次方程和多项式因式分解的求解。

本文将对其进行详细介绍,包括公式的定义、结构、应用以及推导过程。

二、数学十字相乘法公式简介1.公式定义数学十字相乘法公式,又称“双十字相乘法”,是一种求解一元二次方程和多项式因式分解的方法。

它利用两个十字交叉相乘的形式,将方程的系数与常数项分别填入,从而得到两个括号的形式,进一步求解方程。

2.公式结构数学十字相乘法公式具有简洁的结构。

它包含两个部分:一元二次方程的系数与常数项。

通过这两个部分的交叉相乘,我们可以得到一个双括号的形式,即(ax + b)(cx + d),其中a、b、c、d 分别代表方程的系数与常数项。

三、数学十字相乘法公式的应用1.求解一元二次方程数学十字相乘法公式可以用于求解一元二次方程。

假设我们有一个一元二次方程:ax + bx + c = 0,其中a、b、c 分别为方程的系数,我们可以利用数学十字相乘法公式,将方程的系数与常数项填入公式,得到两个括号的形式(ax + b)(cx + d),从而进一步求解方程。

2.求解多项式因式分解数学十字相乘法公式同样适用于求解多项式因式分解。

假设我们有一个多项式:f(x) = ax + bx + c,其中a、b、c 分别为多项式的系数,我们可以利用数学十字相乘法公式,将多项式的系数与常数项填入公式,得到两个括号的形式(ax + b)(cx + d),从而实现多项式的因式分解。

四、数学十字相乘法公式的推导1.推导过程数学十字相乘法公式的推导过程相对简单。

首先,我们需要将一元二次方程的系数与常数项填入公式,得到两个括号的形式(ax + b)(cx + d)。

十字相乘法的由来及相关知识

十字相乘法的由来及相关知识

十字相乘法的由来及相关知识十字相乘法是一种线性代数中的一种基本运算,它用来解决线性方程组的常用方法之一。

十字相乘法的由来可以追溯到古希腊的数学家阿基里斯的《几何原本》中。

在这本书中,阿基里斯讨论了线性方程组的解法,提出了十字相乘法的概念。

十字相乘法的基本原理是:对于两个含有未知数的线性方程,可以通过计算它们的乘积来消去未知数。

例如,有两个方程:2x + 3y = 5 4x + 6y = 10可以用十字相乘法来求解 x 和 y 的值:2x + 3y = 5 4x + 6y = 10将第一个方程的系数2和第二个方程的系数4相乘得到8,再将第一个方程的系数3和第二个方程的系数6相乘得到18,得到如下方程: 8x + 18y =接着上面的例子,我们可以继续使用十字相乘法求解 x 和 y的值:8x + 18y = 50 2x + 3y = 5由于第二个方程中 x 的系数比第一个方程中 x的系数小得多,所以可以将第二个方程的 x 系数乘以第一个方程的 y 系数,再将第二个方程的 y 系数乘以第一个方程的 x系数,得到如下方程:16x + 27y = 50将第一个方程的系数8和第二个方程的系数16相乘得到128,再将第一个方程的系数18和第二个方程的系数27相乘得到486,得到如下方程:128x + 486y = 650现在我们可以计算 x 和 y 的值了:x = (50 - 27y) / 16将 x 的值代入其中一个方程中可得:y = (5 - 2x) / 3代入 x 的值得到:y = (5 - 2 * (50 - 27y) / 16)继续上面的例子,我们可以继续使用十字相乘法求解 x 和 y 的值:y = (5 - 2 * (50 - 27y) / 16)将 y 的值带入得到:y = (5 - 2 * (50 - 27 * y) / 16)将 y 化简得到:y = 5 / 2 - 27 / 32 * y再将 y 化简得到:32y = 160 - 40y = 5将 y 的值代入 x 的表达式中得到:x = (50 - 27 * 5) / 16x = (50 - 135) / 16x = -85 / 16x = -5.3125所以 x 的值为 -5.3125,y 的值为 5。

十字相乘法

十字相乘法

一、十字相乘法
利用十字交叉线来分解系数,把二次三项式分解因式方法叫做十字相乘法。

即对于二次三项式x²+bx+c,若存在p+q=b,pq=c ,则x²+bx+c=(x+p)(x+q)
1.在对x²+bx+c分解因式时,要先从常数项c的正、负入手,若c>0,则p、q同号,若c<0,则p、q异号,然后依据一次项系数b的正负再确定p、q的符号。

2.若x²+bx+c中的b、c为整数时,要先将c分解成两个整数的积(要考虑到分解的各种可能),然后看这两个整数之和能否等于b,直到凑对为止。

二、首项系数不为1的十字相乘法
在二次三项式ax²+bx+c (a≠0)中,如果二次项系数a可以分解成两个因数之积,即a=a₁a₂,常数项c可以分解成两个因数之积,即c=c₁c₂,
把a₁,a₂,c₁,c₂排列如下:
若a₁c₂+a₂c₁=b,即ax²+bx+c=(a₁x+c₁)(a₂x+c₂)。

(1)十字相乘法分解思路为“看两端,凑中间”。

(2)二次项系数一般都化为正数,如果是负数,则提出负号,分解括号里面的二次三项式,最后结果不要忘记把提出的负号添上。

三、分组分解法
对于一个多项式的整体,若不能直接运用提公因式法和公式法进行因式分解时,可考虑分组处理的方法,即把这个多项式分成几组,先对各组分别分解因式,然后再对整体作因式分解即先对题目进行分组,然后再分解因式。

十字相乘法——精选推荐

十字相乘法——精选推荐

⼗字相乘法⼗字相乘法是运⽤完全平⽅公式不能因式分解时需要优先考虑的⼜⼀种基本⽅法,其依据是根据由乘法恒等式——(x+a)(x+b)=x^2+(a+b)x+ab演变过来的公式——x^2+(a+b)x+ab=(x+a)(x+b).从某种意义上来说,⼗字相乘法也是运⽤公式法,它是针对⼆次项系数为1的⼆次三项式x^2+px+q进⾏分解的第三种基本⽅法.运⽤这种⽅法的思路是寻找两个数a,b,使得它们的积ab等于常数项q,和等于⼀次项系数p.⼀旦找到了这样的两个数,那么就可以把多项式x^2+px+q分解为(x+a)(x+b).例如,分解x^2+10x+16因式时,由于它是⼆次三项式,所以我们⾸先想到的是能否运⽤完全平⽅公式?经过验证可知这种⽅法是不能的,因此考虑⼗字相乘法,寻找两个数,使得它们的积等于16,且和等于10.要寻找这样的两个数,我们⼀般只需要先考虑正整数就可以.由于乘积等于16的两个正整数只有1和16,2和8,4和4这三组,所以接下来只需要验证哪⼀组的和等于10即可.显然,在这三组数中,只有2+8=10,所以2和8就是我们寻找的两个数.因此,x^2+10x+16可分解为(x+2)(x+8).为什么把这种因式分解的⽅法叫做⼗字相乘法呢?这是因为在寻找这样两个数时,为了⽅便与直观,我们⼀般通过画如下简易的交叉“⼗字”图,把⼆次项x^2分解为x乘以x,把常数项16分解为所有可能两个整数的相乘,然后再寻找和等于⼀次项系数10的⼀组.由于这个“⼗字图”的缘故才把这种因式分解的⽅法叫做⼗字相乘法.例如,⽤⼗字相乘法分解x^2+7x-18因式时,通过画“⼗字图”可以较快地找到我们想找的两个数.由于常数项是负数,所以分解为乘积的两个整数是⼀正、⼀负,验证⼀次项系数时要注意符号.经过⼏次尝试与验证,我们寻找的两个数是9和-2.所以x^2+7x-18=(x+9)(x-2).再如,因式分解:x^2-18x+56.见到常数项56,我们马上想到的是“七⼋五⼗六”,由于⼀次项系数是负数,于是⾃然会想到乘积等于56的两数是-7和-8,.但是,-7与-8的和是-15,不等于⼀次项系数-18,告这⼀⽅案失败.再对乘积等于56的两个数继续尝试,⼀定会找到-4和-14,满⾜乘积等于56,和等于-18,所以x^2-18x+56=(x-4)(x-14).显然,运⽤⼗字相乘法进⾏多项式x^2+px+q因式分解的关键是找到两个数a与b,使得a+b=p,ab=q.⽽能否快速找到这两个数,虽然是“三分靠运⽓”,但⼤多还是靠实⼒,经过不断尝试总能成功的.运⽤⼗字相乘法因式分解时需要注意以下⼏点:(1)上述⽅法针对的是⼆次项系数为1的⼆次三项式,如果⼆次项系数不是1,其分解思路也是⼀样的.⽐如,因式分解:3x^2-7x-6.把3x^2分解为x与3x的积,-6分解为1与-6,-1与6,2与-3,-2与3,然后验证交叉乘积的和是否等于⼀次项-7x?易知,在这些⽅案中,只有x·2+3x·(-3)=-7x,然后把同⾏的x与-3相加,得(x-3),3x与2相加,得(3x+2),再把(x-3)与(3x+2)相乘即可.即:3x^2-7x-6=(x-3)(3x+2).(2)⼆次项带负号“-”时,先提取负号“-”再分解.例如,因式分解:-x^2+3x-2.解:原式=-(x^2-3x+2)=-(x-1)(x-2).(3)如果多项式有公因式仍然需要先提取.例如,分解因式:3ax^3-39ax^2x-42ax.解:原式=3ax(x^2-13x-14)=3ax(x-14)(x+1).(4)别忘了完全平⽅公式.对于⼆次三项式的分解因式,不要因为有了⼗字相乘法⽽忘了完全平⽅公式.例如,分解因式:x^2-6x+9.解析:该多项式满⾜完全平⽅公式条件,可⽤公式法直接得到:原式=(x-3)^2.如果⽤⼗字相乘法,则容易写成(x-3)(x-3),此时应再化为(x-3)^2,否则就不够完美了.(5)要有整体思想的意识.例如,因式分解:(a-b)^2+5(a-b)-50.解析:把(a-b)作为整体,则易得:原式=(a-b+10)(a-b-5).(6)双字母的⼆次三项式仍可运⽤⼗字相乘法.例如,分解因式:x^2-3xy-4y^2.解析:视y为1,分解x^2-3x-4=(x-4)(x+1),然后将因式中的-4,1作为原式分解因式中y的系数,得:原式=(x-4y)(x+y).(7)分解后因式要计算、化简与整理,之后能继续分解的要继续分解.例如,分解因式:(2x+3)^2-12(2x+3)+35.解析:把2x+3作为整体,⽤⼗字相乘法分解后会出现2x+3与35分解出来的数相加减,此时需要计算化简,整理后还要看看能否继续分解?原式=[(2x+3)-5][(2x+3)-7]=(2x-2)(2x-4)=4(x-1)(x-2).(8)运⽤⼗字相乘法分解后仍然需要再考虑每个因式是否能继续分解?例如,分解因式:x^4+5x^2-6.解析:把x^2作为整体,原式可视为关于x^2的⼆次三项式,运⽤⼗字相乘法分解后,每个因式都是⼆次式,应再考虑能否继续分解?原式=(x^2)^2+5x^2-6=(x^2-1)(x^2+6)=(x+1)(x-1)(x^2+6).(9)有时需要先计算再分解.例如,分解因式:(x-1)^2-3(x+1)-4.解析:如果不先计算、化简,显然是⽆法分解的.因此,只能是先计算,再看看能⽤什么⽅法分解?原式=x^2-2x+1-3x-3-4=x^2-5x-6=(x-6)(x+1).练习:把下列多项式因式分解:(1)x^2-12x+32.(2)4m3+12mn+8mn^2.(3)x^4+2x^2-3.(4)(x-1) ^2+4(1-x)+3.(5)a^4-5a^2+4.(6)(a+1)^2-4(a-1)-8.(未完待续)。

十字相乘法

十字相乘法

在数学其他领域的应用
线性代数:用于求解线性方程组 概率论与数理统计:用于求解概率分布 微积分:用于求解极限和导数 几何学:用于求解几何图形的面积和体积
十字相乘法的原理
第三章
十字相乘法的数学原理
原理:通过将方程组中的两 个方程相乘,得到新的方程 组
十字相乘法是一种解二元一 次方程组的方法
新的方程组可以通过十字相 乘法进行求解
几何学:十字相 乘法可以用于解 决几何问题,如 解三角形、解四
边形等。
概率论与数理统 计:十字相乘法 可以用于解决概 率论与数理统计 问题,如计算概
率、期望等。
微积分:十字相 乘法可以用于解 决微积分问题, 如求导、积分等。
十字相乘法的实际应用
第六章
在日常生活中的应用
Байду номын сангаас
解决二元一次方程组
解决线性规划问题
简化计算过程
观察题目,找出两个因数 找出两个因数的公因数 利用公因数进行分解 利用分解后的结果进行计算 得出答案
注意事项和常见错误
注意事项: a. 确保两个因式的符号相同 b. 确保两个因式的系数相同 c. 确 保两个因式的常数项相同
a. 确保两个因式的符号相同 b. 确保两个因式的系数相同 c. 确保两个因式的常数项相同
常见错误: a. 混淆因式的符号 b. 混淆因式的系数 c. 混淆因式的常 数项 d. 混淆十字相乘法的步骤和顺序 e. 混淆十字相乘法的应用范围
a. 混淆因式的符号 b. 混淆因式的系数 c. 混淆因式的常数项 d. 混淆十字相乘法的步骤和顺序 e. 混淆十字相乘法的应用范围
十字相乘法的扩展
第五章
十字相乘法可以快速、准确 地求解二元一次方程组

十字相乘法的公式

十字相乘法的公式

十字相乘法的公式十字相乘就是一种因式分解技巧他的目的是化简这样的式子cdx^2+(ad+bc)x+ab\rightarrow(cx+a)(dx+b)事实上一般碰到的十字相乘不会这么复杂, a,b,c,d 这四个数字会有1~2个是1,这可以大大简化十字相乘的难度比如说这个例子2x^2-5x-12这个式子是非常常见,也非常基础的一类十字相乘首先在十字相乘前你需要对数字的质因数分解比较敏感,比如说12=4\times3=2\times6=1\times12然后找出相加能得到中间这个数的组合,在这个例子中我们取-12=(-4)\times3 ,这样的话就可以使得 (-4)\times2+3\times1=-5然后你就可以得到最终结果2x^2-5x-12=(x-4)(2x+3)你可能会有疑惑,“十字相乘”里的“十字”是怎么来的事实上,上面这个是你的思考过程,十字相乘中的“十字”是帮助你做出这些过程的同样还是这个例子,利用十字我们这样来做首先画一个斜着的十字,在左面将 x^2 项的系数分解,在这个例子中,系数是2,所以只能分解成 2x\times x ,把它们写到左端然后我们要让右面这两个位置的数,他们相乘等于 -12 ,他们分别与线另一端的x相乘再求和的结果是 -5x ,来看下一张图找到a和b,使得 ab=-12 并且 a\times1x+b\times2x=-5x (注意相乘的位置,是斜着的)这个过程是最重要的。

你越熟练,交叉相乘就越快。

这纯粹是测试你对数字的敏感度。

我们可以找到 a=3,b=-4 ,然后就得到了下一张图把他们横着写下来,上下是相乘的关系,就可以得到(2x+3)(x-4)这也是最终结果。

乘法很重要,尤其是高中计算。

公式法可能计算量比较大,或者公式中有字母的情况有时可以用公式法解决。

这些内容在这里无法一一说明,但是体验和感受很重要。

有可能的话可以买个练习册做一些相应的练习,可以增加交叉相乘的速度和准确度。

(完整版)十字相乘法因式分解

(完整版)十字相乘法因式分解

当q>0时,q分解的因数a、b( 当q<0时, q分解的因数a、b(
) 同号 ) 异号
观察:p与a、b符号关

x2 14x 45 (x 5)(x 9)
x2 29x 138 (x 23)(x 6)
小结: 当q>0时,q分解的因数a、b(
) 同号
且(a、b符号)与p符号相同
x2 7x 60 (x 12)(x 5) x2 14x 72 (x 4)(x 18)
当q<0时, q分解的因数a、b(
) 异号
(其中绝对值较大的因数符号)与p符号相同
练习:在 横线上 填 、 符号
__ __ x2 4x 3 =(x + 3)(x + 1)
_-_ __ x2 2x 3 =(x
3)(x + 1)
_-_ _-_ y2 9y 20 =(y
4)(y 5)
_-_ __ t2 10t 56 =(t
4)(t +14)
当q>0时,q分解的因数a、b( 同号 )且(a、b符号)与p符号相同
当q<0时, q分解的因数a、b( 异号) (其中绝对值较大的因数符号)与p符号相同
试将 x2 6x 16 分解因式
x2 6x 16
x2 6x 16
x 8x 2
提示:当二次项系数为 -1 时 , 先提出负号再因式分解 。
十字相乘法②
试因式分解6x2+7x+2。
这里就要用到十字相乘法(适用于二次三项式)。
既然是二次式,就可以写成(ax+b)(cx+d)的形式。 (ax+b)(cx+d)=acx2+(ad+bc)x+bd

高中十字相乘法

高中十字相乘法

高中十字相乘法
【实用版】
目录
1.十字相乘法的概念
2.十字相乘法的应用
3.十字相乘法的优点
4.十字相乘法的局限性
正文
十字相乘法是高中数学中的一种重要方法,它是一种用来解决二次方程的工具。

十字相乘法的基本思想是将二次方程的系数用十字的形式排列,然后通过相乘得到一个新的二次方程,这个新的二次方程的解就是原二次方程的解。

十字相乘法在解决二次方程时非常有用,它可以帮助我们快速地找到方程的解。

例如,如果我们要解决方程 x^2 + 3x - 10 = 0,我们可以使用十字相乘法来找到它的解。

首先,我们将方程的系数用十字的形式排列,然后相乘,得到一个新的二次方程:(x+5)(x-2) = 0。

这个新的二次方程的解就是原方程的解,即 x = -5 或 x = 2。

十字相乘法不仅适用于一元二次方程,也适用于多元二次方程。

例如,如果我们要解决方程 x^2 + y^2 - 4x - 6y + 11 = 0,我们也可以使用
十字相乘法来找到它的解。

首先,我们将方程的系数用十字的形式排列,然后相乘,得到一个新的二次方程:(x-2)^2 + (y-3)^2 = 0。

这个新的
二次方程的解就是原方程的解,即 x = 2,y = 3。

虽然十字相乘法在解决二次方程时非常有用,但它也有一些局限性。

首先,它只适用于二次方程,对于三次或更高次的方程,它并不能提供有效的解决方案。

其次,它只适用于实数域,对于复数域,它并不能提供有效的解决方案。

总的来说,十字相乘法是一种非常有用的解决二次方程的工具,它可以帮助我们快速地找到方程的解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

拓展创新
把下列各式分解因式
1、x2-4xy+4y2-6x+12y+8
2、(x2+2x)(x2+2x-11)+11 3、 x
n+1+3xn+2xn-1
4、(x+1)(x+3)(x+5)(x+7)+16
− x +7x = 6x
试一试: 试一试:
(顺口溜:竖分常数交叉验,横写因式不能乱。) 顺口溜:竖分常数交叉验 横写因式不能乱 常数交叉 因式不能乱。
x − 8 x + 15 = ( x − 5)( x − 3) ⇓ ⇓
2
小结: 小结: 用十字相乘法把形如
பைடு நூலகம்
x x
×
− 5 − 3
x + px + q
用十字相乘法分解下列因式
4-13x2+36 1、x 2+3xy-4y2 2、x
3、x2y2+16xy+48
2+5(2+a)-36 4、(2+a) 4-2x3-48x2 5、x
例4、把 6x2-23x+10 分解因式 、 十字相乘法的要领是: 十字相乘法的要领是:“头尾 分解,交叉相乘,求和凑中, 分解,交叉相乘,求和凑中,观 察试验” 察试验”。
例2、把 解因式 例3、把 分解因式
4-7y2-18 y

2-9xy+14y2 x
把下列各式分解因式
1. x2-11x-12 2. x2+4x-12 3. x2-x-12 5. y2-11y+24 4. x2-5x-14
2-5x+6 x 2-5x-6 x 5x2+5x-6 X +5x2+5x+6 X
(1) (2) (3) (4)
一、计算:
( x + a)(x + b) = x + (a + b)x + ab
2
十字相乘法
“十字相乘法”是乘法公式: 十字相乘法”是乘法公式: 十字相乘法 (x+a)(x+b)=x2+(a+b)x+ab的反 的反 向运算, 向运算,它适用于分解二次三 项式。 项式。 例1、把 x2+6x-7分解因式 分解因式
1、8x2-22x+15 2、14a2-29a-15 2+7mn-36n2 3、4m 4、10(y+1)2-29(y+1)+10
例5、把(x2+5x)2-2(x2+5x)-24 、 分解因式 例6、把 (x2+2x+3)(x2+2x-2)-6 、 分解因式
例7、把 、 (x+1)(x+2)(x+3)(x+4)-3分解 分解 因式
十字相乘法(借助十字交叉线分解因式的方法) 借助十字交叉线分解因式的方法)
例一: 例一:
步骤:
x
× x

x + 6 x − 7 =( x + 7)( x − 1) ①竖分二次项与常数项 竖分二次项与常数项
2

7
②交叉相乘,和相加 交叉相乘, 相乘 ③检验确定,横写因式 检验确定,横写因式
−1
顺口溜: 顺口溜: 竖分常数交叉验 竖分常数交叉验, 常数交叉 横写因式不能乱。 横写因式不能乱。 因式不能乱
2
二次三项式分解因式使
q = ab, p = a + b
(−3x) + (−5x) = −8x
注意: 注意: 常数项是正数时 当常数项是正数时,分解的 两个数必同号 同号, 都为正或 两个数必同号,即都为正或都为 交叉相乘之和得一次项系数 相乘之和得一次项系数。 负,交叉相乘之和得一次项系数。 常数项是负数时 当常数项是负数时,分解的两个 数必为异号 交叉相乘之和仍得 异号, 数必为异号,交叉相乘之和仍得 一次项系数。因此因式分解时, 一次项系数。因此因式分解时, 不但要注意首尾分解 首尾分解, 不但要注意首尾分解,而且需十 分注意一次项的系数 一次项的系数, 分注意一次项的系数,才能保证 因式分解的正确性。 因式分解的正确性。
相关文档
最新文档