全国一卷高考理科数学试卷及答案

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014年普通高等学校招生全国统一考试全国课标I 理科数学

第Ⅰ卷 (选择题 共60分)

一.选择题:共12小题,每小题5分,共60分。在每个小题给出的四个选项中,只有一项是符合题目要求的一项。

1.已知集合A ={x |2

230x x --≥},B={x |-2≤x <2=,则A B ⋂=

A .

[-2,-1] B .[-1,2) C .[-1,1] D .[1,2) 2.32(1)(1)

i i +-= A .1i + B .1i - C .1i -+ D .1i --

3.设函数()f x ,()g x 的定义域都为R,且()f x 时奇函数,()g x 是偶函数,则下列结论正确的是

A .()f x ()g x 是偶函数

B .|()f x |()g x 是奇函数

C .()f x |()g x |是奇函数

D .|()f x ()g x |是奇函数

4.已知F 是双曲线C :22

3(0)x my m m -=>的一个焦点,则点F 到C 的一条渐近线的距离为A .3

B .3

C .3m

D .3m

5.4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率

A .

18 B .38 C .58 D .78

6.如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过

点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示为x 的函数()f x ,则y =()f x 在[0,π]上的图像大致为

7.执行下图的程序框图,若输入的,,a b k 分别为1,2,3,则输出的M =

A .

203 B .165 C .72 D .158

8.设(0,

)2π

α∈,(0,)2

π

β∈,且1sin tan cos βαβ+=

,则 A .32

π

αβ-=

B .22

π

αβ-=

C .32

π

αβ+=

D .22

π

αβ+=

9.不等式组1

24

x y x y +≥⎧⎨

-≤⎩的解集记为D .有下面四个命题:

1p :(,),22x y D x y ∀∈+≥-, 2p :(,),22x y D x y ∃∈+≥, 3P :(,),23x y D x y ∀∈+≤, 4p :(,),21x y D x y ∃∈+≤-.

其中真命题是

A .2p ,3p

B .1p ,4p

C .1p ,2p

D .1p ,3p

10.已知抛物线C :2

8y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个焦点,若

4FP FQ =,则||QF =

A .

72 B .5

2

C .3

D .2 11.已知函数()f x =3

2

31ax x -+,若()f x 存在唯一的零点0x ,且0x >0,则a 的取值范围为 A .(2,+∞) B .(-∞,-2) C .(1,+∞) D .(-∞,-1) 12.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视

图,则该多面体的个条棱中,最长的棱的长度为

A .62

B .42

C .6

D .4

第Ⅱ卷(非选择题 共90分)

本卷包括必考题和选考题两个部分。第(13)题-第(21)题为必考题,每个考生都必须作答。第(22)题-第(24)题为选考题,考生根据要求作答。 二.填空题:本大题共四小题,每小题5分。

13.8

()()x y x y -+的展开式中2

2

x y 的系数为 .(用数字填写答案) 14.甲、乙、丙三位同学被问到是否去过A ,B,C 三个城市时,

甲说:我去过的城市比乙多,但没去过B 城市; 乙说:我没去过C 城市;

丙说:我们三人去过同一个城市. 由此可判断乙去过的城市为 . 15.已知A,B,C 是圆O 上的三点,若1

()2

AO AB AC =

+,则AB 与AC 的夹角为 . 16.已知,,a b c 分别为ABC ∆的三个内角,,A B C 的对边,a =2,且(2)(sin sin )()sin b A B c b C +-=-,则

ABC ∆面积的最大值为 .

三.解答题:解答应写出文字说明,证明过程或演算步骤。

17.(本小题满分12分)已知数列{n a }的前n 项和为n S ,1a =1,0n a ≠,11n n n a a S λ+=-,其中λ为常数. (I )证明:2n n a a λ+-=;

(Ⅱ)是否存在λ,使得{n a }为等差数列?并说明理由.

18. (本小题满分12分)从某企业的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:

(I)求这500件产品质量指标值的样本平均数x 和样本方差2

s (同一组数据用该区间的中点值作代表); (Ⅱ)由频率分布直方图可以认为,这种产品的质量指标值Z 服从正态分布2

(,)N μδ,其中μ近似为样本平均数x ,2

δ近似为样本方差2s .

(i)利用该正态分布,求(187.8212.2)P Z <<;

(i i)某用户从该企业购买了100件这种产品,学科网记X 表示这100件产品中质量指标值为于区间(187.8,212.2)的产品件数,利用(i)的结果,求EX .

附:150≈12.2.若Z ~2

(,)N μδ,则

()P Z μδμδ-<<+=0.682

6,(22)P Z μδμδ-<<+=0.9544. 19. (本小题满分12分)如图三棱锥

111ABC A B C -中,

侧面11BB C C 为菱形,1AB B C ⊥. (I )证明:1AC AB =;

(Ⅱ)若1AC AB ⊥,o

160CBB ∠=,AB =Bc ,求二面角111A A B C --的余弦值.

20. (本小题满分12分) 已知点A (0,-2),椭圆E :22

221(0)x y a b a b

+=>>的离心率为3,F 是

椭圆的焦点,直线AF 的斜率为23

,O 为坐标原点. (I )求E 的方程;

(Ⅱ)设过点A 的直线l 与E 相交于,P Q 两点,当OPQ ∆的面积最大时,求l 的方程.

相关文档
最新文档