矩阵可对角化的总结
第六章矩阵的对角化
2
2
2
4
2 4
2
22 7 0
得 1 2 2, 3 7.
将 1 2 2代入A 1E 0,得方程组
2xx1124xx2224xx33
0 0
2x1 4x2 4x3 0
解之得基础解系
2
0
1 0 , 2 1.
1
1
命题得证.
推 论 如果 n 阶矩阵 A 的 n个特征值互不相等 (即用特征方程算出的特征值都是单重根),
则 A与对角阵相似(A可对角化).
Hale Waihona Puke 明 如果 A 的特征方程有重根,此时不一定有 n个线性无关的特征向量,从而矩阵 A不一定能 对角化,但如果能找到 n个线性无关的特征向量, A 还是能对角化.
α11,α12,,α1s1α, 21 ,α22 ,,α2s2 ,,αm1 , αm2 ,,αmsm
是线性无关的。
例1 判断下列实矩阵能否化为对角阵?
1 2 2
2 1 2
(1) A 2 2 4 (2)A 5 3 3
2 4 2
1 0 2
解
1
(1)由 A E 2
可逆矩阵 P就是以这 n个线性无关的特征向量 作为列向量而成的。
定理 3、设 0是 n阶方阵 A的一个 k重 特征值,则 A的属于特征值 0的特征向量
中,极大线性无关组包 含的向量个数不
多于 k个。即齐次线性方程组
(0 E A)x 0
的基础解系包含的向量 个数最多有 k个。
定理2、设λ1,λ2,λm 是方阵A的m个互不相 同的特征值,αi1,αi2 ,,αisi 是A的属于特征值λi (i 1,2,,m)的线性无关的特征向量,则有所有 这些特征向量组成的向 量组
第二十讲 矩阵的对角化
20.1 矩阵可对角化的条件设矩阵有个线性无关的特征向量令则是一个对角矩阵其对角元素是的特征值:20.1 矩阵可对角化的条件事实上,于是因可逆,故20.1 矩阵可对角化的条件若存在可逆矩阵使为对角矩阵,则称矩阵是可对角化的(diagonalized).由上面的分析知,反之也成立. 故有定理:矩阵可对角化的充要条件是有个线性无关的特征向量.20.1 矩阵可对角化的条件例:的特征值为故只有个线性无关的特征向量,因此不能对角化.20.1 矩阵可对角化的条件定理:设是的互异特征值,是相应特征向量. 则线性无关.证明:设两边左乘得再左乘得不断左乘直到得故有20.1 矩阵可对角化的条件左边第二个矩阵的行列式行列式因此该矩阵可逆,故由于特征向量均为非零向量,故所以线性无关.20.1 矩阵可对角化的条件推论:具有个两两互异特征值的矩阵可以对角化.但若矩阵有相同特征值,其也可能对角化.例:有重特征值任何可逆矩阵都使是对角阵. 这反映了所有非零向量都是单位矩阵的特征向量.20.2 特征值的代数重数和几何重数定义:设其中称为特征值的代数重数(algebraicmultiplicity),记作称为特征值的几何重数(geometric multiplicity),记作例:20.2 特征值的代数重数和几何重数例:例:20.2 特征值的代数重数和几何重数一般地,命题:引理1:相似矩阵具有相同的特征多项式.事实上,设可逆,则我们有20.2 特征值的代数重数和几何重数引理2:任意复方阵相似于上三角阵,且其对角元为矩阵的特征值. 证明:对方阵的阶数用数学归纳法.时结论成立. 假设对阶复方阵结论成立.对任意阶复方阵设其有特征值及相应特征向量则可将其扩充得的一组基有记则有20.2 特征值的代数重数和几何重数对阶复方阵由归纳假设, 存在可逆阵使得为上三角阵.令为上三角阵.则结论第一部分得证.由引理1知上三角阵的对角元为的特征值.20.2 特征值的代数重数和几何重数命题的证明:由引理2,相似于上三角阵则和有相同特征值,且对任意特征值因此,不妨设是上三角阵,即于是故20.2 特征值的代数重数和几何重数定理:复方阵可对角化对任意特征值事实上,若则故有个线性无关的特征向量.从而可对角化.20.2 特征值的代数重数和几何重数例:判断是否可对角化,若可以求使为对角阵.解:于是又因此,可对角化.20.2 特征值的代数重数和几何重数对的基础解系为对的基础解系为20.2 特征值的代数重数和几何重数令则20.2 特征值的代数重数和几何重数注:可以看到,使对角化的矩阵不是唯一的. 一个特征向量乘以非零常数后仍是属于同一特征值的特征向量,所以若用任意非零常数乘以的各列,则得一个新的使对角化的矩阵. 而对于重特征值则有更大自由度. 上例中由的任意线性组合得到的两个线性无关的向量都可充当的前两列.20.2 特征值的代数重数和几何重数例:设其中为矩阵.的秩为的秩为故可对角化.20.3 矩阵可对角化的应用若矩阵可对角化,则可快速计算例:设求解:的特征值可对角化.20.3 矩阵可对角化的应用对的基础解系为对的基础解系为20.3 矩阵可对角化的应用令 则故20.3 矩阵可对角化的应用例(Markov过程):每年海淀区以外人口的迁入海淀区,而海淀区人口的迁出. 这给出一个差分方程:设最初外部人口为内部人口为则一年以后外部人口内部人口即20.3 矩阵可对角化的应用这个虚构的人口迁移过程有两个特点:(1)人口总数保持不变;(2)海淀区外部和内部的人口数不是负的. 我们称之为Markov(马尔科夫)过程.由性质(1),矩阵每一列元素之和为由性质(2),矩阵元素非负. 同样等也非负.20.3 矩阵可对角化的应用记取则20.3 矩阵可对角化的应用于是我们可求和年之后的人口分布:20.3 矩阵可对角化的应用可以看出,经过很多年之后,会变得非常小,从而这个解达到一个极限状态:此时,总人口仍为与初始状态相同. 但在此极限状态下,总人口的在外部,在内部, 并且这个数据无论初始分布怎样总成立.20.3 矩阵可对角化的应用注意到即这个稳定状态是Markov矩阵关于的特征向量.20.3 矩阵可对角化的应用例(Fibonacci数列):数列满足规律这是一个差分方程.怎样由出发,求出Fibonacci数列的通项公式呢?20.3 矩阵可对角化的应用令则即于是只需求20.3 矩阵可对角化的应用故20.3 矩阵可对角化的应用初始值给出于是Fibonacci数是这个乘积的第二个分量20.3 矩阵可对角化的应用我们希望研究由差分方程描述的离散动力系统的长期行为,即时解的性质.设可对角化,即存在可逆矩阵其中使为对角阵.则其中即可以看出,的增长由因子支配. 因此系统的稳定性依赖于的特征值.20.3 矩阵可对角化的应用对由一个差分方程定义的离散动力系统,当的所有特征值时,它是稳定的(stable),且;当所有时,它是中性稳定的(neutrally stable),且有界;而当至少有一个特征值时,它是不稳定的(unstable),且是无界的.Markov过程是中性稳定的,Fibonacci数列是不稳定的.20.3 矩阵可对角化的应用例:考虑差分方程其中的特征值为其对角元和故该系统是稳定的.由任何一个初始向量出发,的解必定最终趋向于如:20.3 矩阵可对角化的应用可以看到从开始,而的实际作用是,若把分解成的两个特征向量的和:则把属于的特征向量化为零,而把属于的特征向量乘以20.4 同时对角化问题:给定两个阶矩阵是否存在可逆矩阵使得同时为对角阵,也即同时对角化?命题:若有相同特征向量矩阵使得为对角阵,则事实上,20.4 同时对角化重要的是,“逆”命题也成立. 我们不加证明地给出:定理:若均可对角化,且则可同时对角化.注意到,若则故和是的属于同一特征值的特征向量. 看简单的情况.假设的特征值两两互异,则其所有特征子空间都是一维的. 于是必是的倍数,也即是的特征向量. 从而有公共特征向量矩阵,可同时对角化.20.4 同时对角化定理:对阶复矩阵若矩阵的特征值两两互异,则可同时对角化.20.4 同时对角化小结:1. 矩阵可对角化,指存在可逆矩阵使为对角阵.2. 矩阵可对角化有个线性无关的特征向量.3. 若复矩阵有个互异特征值,则可对角化.4. 复矩阵可对角化任意特征值的几何重数等于代数重数.5. 设可对角化, 即存在可逆阵使则6. 差分方程的解为其中。
矩阵可对角化的判定条件及推广
矩阵可对角化的判定条件及推广
矩阵的对角化是矩阵理论的一个重要概念,它指的是有一种转换,使给定的方阵成为一个主对角线向量组成的对角矩阵。
矩阵可对角化是一个重要的判定条件,当满足所有下列条件时,矩阵可以对角化:
1、矩阵必须是n阶可逆矩阵,且n>1,即A必须为n阶可逆方阵;
2、所有特征值都是不同的,只有不同的特征值才能保证对角矩阵的特性;
3、矩阵的特征向量必须互相垂直,它们的内积必须为零,两个向量只有在这种状态下才能够形成一个正交矩阵;
4、矩阵的特征向量必须是单位向量,这种向量的模为1,只有确保矩阵的行列式的值不为0,才能让对角矩阵与原矩阵相同。
对角化矩阵的概念可以拓展到实数矩阵,在这种情况下,矩阵可先进行置换变换,让特征值互不相同,然后进行双对角化,将原矩阵分解为两个对角矩阵的乘积,然后将每个矩阵的特征向量分别作为其特征值的正交基,最后将所有对角矩阵的特征值按照其特定顺序汇总起来,从而形成一个新的对角矩阵。
补充到此,实数矩阵也同样满足上述矩阵可对角化的四条条件。
综上所述,矩阵可对角化的判定条件是:矩阵是可逆矩阵,并且特征值各不相同,特征向量互相垂直,且为单位向量,这四条条件同时满足时,矩阵可以对角化。
此外,对角化的概念也可以拓展到实数矩阵,用置换变换与双对角化使实数矩阵可对角化,实数矩阵也必须满足上述四条条件。
矩阵可对角化的条件
矩阵可对角化的条件学生:翟亚丽 指导老师:王全虎一 引言矩阵可对角化的问题是高等代数和矩阵论最基本的问题之一,也是人们一直研究的问题之一。
从矩阵对角化的判别法则到矩阵对角化的方法,从矩阵对角化的方法再到矩阵可对角化的条件,再延伸到矩阵的广义对角化,本文从矩阵可对角化的各种例子和矩阵可对角化的各种定理归纳总结出矩阵可对角化的条件。
二 矩阵可对角化的概念定义【2】 设A 是数域F 上一个n 阶矩阵,如果存在F 上一个n 阶可逆矩阵T 使得T -1AT具有对角形式100n a a ⎛⎫ ⎪ ⎪ ⎪⎝⎭ 那么就称矩阵A 可对角化。
三 矩阵可对角化的相关定理定理1【1】 n 阶矩阵A 相似对角矩阵的充要条件是A 有n 个线性无关的特征向量。
定理2【3】 设i λ是线性变换A 的特征值,它的代数重数为i n ,几何重数为i m ,且1i im n ≤≤则A 可对角化的充分必要条件是:每个特征值的几何重数都等于代数重数。
定理 3【3】 A 可对角化⇔A 的最小多项式没有重根。
四 由矩阵可对角化的定理所引出的矩阵可对角化的条件及其相互之间的关系。
(一)设【12】()n M F A∈,K 重根按k 个计算,则A 可对角化⇒A 有n 个特征根,自然会问:A 有n 个特征根是否也是A 可对角化的充分条件?看例子11()01n M F ⎛⎫A =∈ ⎪⎝⎭则2()(1)A x x λ=-于是A 有2个特征值为1,但A 却不能对角化,故此例告诉我们A 有n 个特征根只是A 可对角化的必要条件,而非充要条件。
而且一般形如1,0k k F k ⎛⎫A =∈ ⎪⎝⎭的矩阵都不能对角化。
在给出A 可对角化的充要条件时需对特征根的特征向量要进一步讨论,若矩阵A 有n 个线性无关的特征向量则该矩阵可对角化,又有定理(二)设()n M F A∈,若在F 中,A 有n 个不同的特征根,则A 可对角化。
因为,不同特征根对应的特征向量必线性无关,则特征向量线性无关时可得出矩阵可对角化。
矩阵可对角化的总结
矩阵可对角化的总结(总15页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--矩阵可对角化的总结莆田学院数学系02级1班连涵生[摘要]:主要讨论n级方阵可对角化问题:(1)通过特征值,特征向量和若尔当标准形讨论方阵可对角化的条件;(2)实n级对称矩阵的可对角化讨论;(3)几个常见n 级方阵的可对角化讨论。
[关键词]:n级方阵;可对角化;相似;特征值;特征向量;若尔当标准形;n级实对称矩阵说明:如果没有具体指出是在哪一个数域上的n 级方阵,都认为是复数域上的。
当然如果它的特征多项式在某一数域K上不能表成一次多项式的乘积的话,那么在此数域上它一定不能相似对角阵。
只要适当扩大原本数域使得满足以上条件就可以。
复数域上一定满足,因此这样假设,就不用再去讨论数域。
引言所谓矩阵可对角化指的是矩阵与对角阵相似,而说线性变换是可对角化的指的是这个线性变换在某一组基下是对角阵(或者说线性变换在一组基下的矩阵是可对角化的),同样可以把问题归到矩阵是否可对角化。
本文主要是讨论矩阵可对角化。
定义1:设A,B是两个n级方阵,如果存在可逆矩阵P,使P-1AP=B,则称B与A相似,记作A~B。
矩阵P称为由A到B的相似变换矩阵。
[]1[]2[]3[]423定义2:设A 是一个n 级方阵,如果有数λ和非零向量X ,使AX=λX 则称λ是矩阵A 的特征值,X 称为A 的对应于λ的特征向量,称{|}V A λααλα==为矩阵对应于特征值λ的特征子空间。
[]1[]2[]3[]4定义3:设A 是数域P 上一个n 级方阵,若多项式()[]f x P X ∈,使()0f A =则称()f x 为矩阵A 的零化多项式。
[]2定义4:数域P 上次数最低的首项为1的以A 为根的多项式称为A 的最小多项式。
[]1[]2[]3一、 首先从特征值,特征向量入手讨论n 级方阵可对角化的相关条件。
定理1:一个n 级方阵A 可对角化的充要条件它有n 个线性无关的特征向量。
矩阵对角化问题总结
矩阵对角化问题总结矩阵对角化是线性代数中的一个重要概念,它在很多数学和工程领域中都有广泛应用。
对角化可以把一个矩阵转化为对角矩阵的形式,简化了计算和分析的过程。
本文将对矩阵对角化的定义、条件以及计算方法进行总结。
首先,矩阵对角化的定义如下:对于一个n × n的矩阵A,如果存在一个可逆矩阵P,使得我们可以得到对角矩阵D,则称矩阵A是可对角化的。
其中,对角矩阵D的非零元素是A的特征值,且按照相应的特征值的重数排列。
为了判断一个矩阵是否可对角化,我们需要满足以下条件:1. 矩阵A必须是一个方阵(即行数等于列数)。
2. 矩阵A必须具有n个线性无关的特征向量,对应于n个不同的特征值。
当满足上述条件时,我们可以通过以下步骤进行矩阵对角化:1. 求出矩阵A的特征值,即解A的特征方程det(A-λI) = 0,其中I是单位矩阵。
2. 对每个特征值λ,解方程组(A-λI)X = 0,求得对应的特征向量X。
3. 将特征向量按列组成矩阵P。
4. 求出特征值构成的对角矩阵D。
需要注意的是,在实际求解矩阵对角化问题时,可能会遇到以下情况:1. 矩阵A的特征值重数大于1。
在这种情况下,我们需要确保对应于相同特征值的特征向量线性无关。
2. 矩阵A不可对角化。
这意味着矩阵A无法被相似变换为对角矩阵。
这可能发生在矩阵A的特征向量不足以构成一组基的情况下。
矩阵对角化在很多应用中具有重要意义,它简化了矩阵的计算和分析过程。
对角矩阵具有很好的性质,例如幂运算和指数函数的计算变得更加简单。
此外,在线性系统的稳定性和动态响应的分析中,矩阵对角化也起到了关键的作用。
总之,矩阵对角化是一个重要而又广泛应用的概念。
本文对矩阵对角化的定义、条件以及计算方法进行了总结,并提到了在实际问题中可能会遇到的情况。
了解矩阵对角化的概念和方法,对于深入理解和应用线性代数具有重要意义。
对角矩阵(精)
为 V0 的基, A (i ) ii .扩充基: 1, ,m ,m1, ,n 则
A (1,
故
,m ,m1,
,n ) (1,
,m ,m1,
0
,
n
)
*
0
0
*
fA( ) ( 0 )m g( ), m 0 的重数.
证明.
二、几个引理
3.(Th.9) 设A 为线性空间V的一个线性变换,
1,2 , k是 A 的不同特征值,而 i1,i2 , iri 是属于 特征值 i 的线性无关的特征向量,i 1,2, ,k, 则向量 11, ,1r1 , ,k1, ,krk 线性无关.
证明.
三、可对角化的条件
故 11, ,1r1 , ,k1, ,krk 线性无关.
6. 设A 为n维线性空间V的一个线性变换,
若A 在某组基下的矩阵为对角矩阵
1
D
2
n
则 1)A 的特征多项式就是
f ( ) 1 2 n
2)对角矩阵D主对角线上元素除排列次序外是唯一
i E A X 0, i 1.2. k
的一个基础解系(此即A 的属于i 的全部线性无关 的特征向量在基 1, 2 , , n下的坐标).
3°若全部基础解系所含向量个数之和等于n ,则
A 有n个线性无关的特征向量 1,2 , ,n , 从而 A
(或矩阵A)可对角化. 以这些解向量为列,作一个 n阶方阵T,则T可逆, T 1AT 是对角矩阵. 而且
①
以 k 乘①式的两端,得பைடு நூலகம்
a1k1 a2k2 akkk 0.
矩阵对角化公式
矩阵对角化公式矩阵对角化是线性代数中的重要概念,它提供了一种将一个矩阵表示为对角矩阵的方法,使得矩阵的运算更加简化。
在本文中,我们将介绍矩阵对角化的基本概念、判定条件以及计算方法。
1. 矩阵对角化的基本概念一个n×n矩阵A可对角化,意味着存在一个可逆矩阵P和一个对角矩阵D,使得A=PDP^{-1}。
其中,D是由A的特征值组成的对角矩阵。
2. 判定矩阵可对角化的条件一个n×n矩阵A可对角化的条件是:- 矩阵A有n个线性无关的特征向量;- 矩阵A的每个特征值都有对应的正交归一化特征向量。
3. 计算矩阵的特征值和特征向量要计算一个矩阵A的特征值和特征向量,可以遵循以下步骤:- 计算矩阵A的特征多项式det(A-λI),其中λ是一个未知数,I是单位矩阵;- 解特征多项式的根,即特征值λ;- 将特征值代入方程A-λI的解空间中,求解特征向量。
4. 矩阵对角化的计算过程对于可对角化的矩阵A,可以按以下步骤进行对角化:- 对矩阵A进行特征值分解,得到特征矩阵V和对角矩阵D;- 计算可逆矩阵P,使得A=V^{-1}DVP;- 可以通过相似变换将矩阵A对角化,P表示变换矩阵。
5. 对角化与矩阵的性质对角矩阵的特点是非常简单的,可以很容易地计算幂、指数和逆矩阵等运算。
因此,对角化使得矩阵的运算更加简化。
6. 矩阵对角化的应用矩阵对角化在许多领域都有广泛应用,包括物理、工程和数据分析等。
例如,在量子力学中,矩阵对角化可以把含有多个粒子态的哈密顿矩阵表示成一组分立的单粒子能级。
总结:矩阵对角化是线性代数中一个重要的概念,它提供了将一个矩阵表示为对角矩阵的方法。
这篇文章介绍了矩阵对角化的基本概念、判定条件及计算方法,还讨论了对角化的计算过程、矩阵的性质以及应用领域。
对角化简化了矩阵的运算,并且在许多领域有广泛的应用。
第五章 .特征值特、征向量及矩阵对角化总结
第五章 特征值、特征向量及矩阵的对角化(填空、选择为主)5.1矩阵的特征值和特征向量定义(矩阵的特征值和特征向量)设A 为n 阶方阵,如果存在数λ及非零向量x,使得 x Ax λ=(4-1) 或0)(=-x A E λ (4-2)则称λ为A 的一个特征值,x 为A 的对应于(或属于)特征值λ的一个特征向量. 求n 阶方阵A 的特征值与特征向量的一般步骤如下: 第一步:计算特征多项式||A E -λ;第二步:求出特征方程||A E -λ=0的全部根n λλλ,,,21 (重根按重数计算),则n λλλ,,,21 就是方阵的全部特征值.如果i λ为特征方程的单根,则称i λ为A 的单特征值;如果j λ为特征方程的k 重根,则称j λ为A 的k 重特征值,并称k 为j λ的重数;第三步:对A 的相异特征值中的每个特征值i λ,求出齐次线性方程组 0)(=-A E i λ(4-3)的一个基础解系j ik i i ξξξ,,,21 ,则j ik i i ξξξ,,,21 就是对应于特征值i λ的特征空间的一个基,而A 的属于i λ的全部特征向量为 j j ik k i i c c c x ξξξ+++= 2211 其中j k c c c ,,,21 为不全为零的任意常数.特征值和特征向量有下列基本性质:性质1 设n n ij a A ⨯=)(的全部特征值为n λλλ,,,21 ,则有||,21121A an ni iin ==+++∑=λλλλλλ利用性质1可以简化有关特征值问题的某些计算.性质2 设λ为方阵A 的一个特征值,且x 为对应的特征向量,则对任何正整数k,kλ为kA 的一个特征值且x 为对应的特征向量.更01)(a x a x a x f m m +++= ,则)(λf 为方阵E a A a A a A f m m 01)(+++= 的一个特征值,且x 为对应的特征向量.性质3 设λ为可逆方阵A 的一个特征值,则λλ1,0≠为1-A 的一个特征值,λ||A 为*A 的一个特征值性质4 设m λλλ,,,21 为方阵A 的互不相同的特征值,i x 为属于i λ的特征向量),,2,1(m i =,则向量组m x x x ,,,21 线性无关.更一般的,设i ik i i x x x ,,,21 为属于i λ的线性无关特征向量),,2,1(m i =,则向量组 m m k m m k k x x x x x x x x x ,,,,,,,,,,,,21222211121121 线性无关性质5 设重特征值,则属于的为方阵k A 0λ0λ的线性无关特征向量的个数不大于k 关于特征值与特征向量的结论见下图:5.2相似矩阵及方阵可相似对角化的条件定义(相似矩阵)对于同阶矩阵A,B ,若存在同阶可逆矩阵P ,使得B AP P =-1(4-4)则称A 与B 相似,或A 相似于B ,并称变换:AP P A 1-→ 为相似变换.矩阵的相似关系具有反身性(A 与A 相似)、对称性(A 与B 相似,则B 与A 相似)和传递性(A 与B 相似,B 与C 相似,则A 与C 相似).定理(矩阵A 与B 相似的必要条件)设矩阵A 与B 相似,则有 (1))()(B r A r =; (2)||||B A =;(3)||||B E A E -=-λλ,即A 与B 有相同的特征多项式(从而A 与B 有相同的特征值)(但要注意到其特征向量不一定相等);(4)TA 与TB 相似,1-A 与1-B相似,k A 与kB 相似.推论 若n 阶矩阵A 相似于对角矩阵∧=diag(ƛ1,ƛ2,…,ƛn )时,∧的主对角线元素ƛ1,ƛ2,…,ƛn 就是A 的n 特征值.定理(矩阵相似与对角矩阵的充分必要条件)n 阶矩阵A 相似于对角矩阵的充分必要条件是A 有n 个线性无关的特征向量.推论 矩阵A 相似于对角矩阵的充分必要条件是A 的属于每个特征值的线性无关特征向量个数正好等于该特征值的重数.定理(矩阵相似于对角矩阵的充分条件)如果n 阶矩阵A 有n 个互不相同的特征值(即A 的特征值都是特征值),则A 必相似于对角矩阵.矩阵可相似对角化的条件见下图(设A 是n 阶矩阵)5.3 向量的内积、长度及正交性定义 几何中,两个向量 的数量积定义为:其中 是 的长度, 是的夹角.如果在直角坐标系下,向量表示为则依据坐标表示向量 的长度为: ,向量 的夹角为:代数中定义 设 维向量称为向量的内积.称为向量 的长度(或范数),特别,当 时,称 为单位向量.称 为向量 与 的夹角;特别,,当 (即 )时,称向量 与 正交. 注:内积是向量的一种运算,如果x 和y 都是列向量,可以记作[x ,y]=x T y ,其结果是一个数.且[x ,x]=x 1^2+x 2^2+…+x n ^2≥0,当且仅当x=0时成立.4. 向量长度的性质:(1) 非负性:0≥α且00=⇔=αα (2) 齐次性:ααk k = (3) 三角不等式:βαβα+≤+以上定义的概念有如下性质:1 .2 .3 .4 . ,( )5 .6 .7 .称一组两两正交的非零向量为正交向量组.定理设n维向量是一组两两正交的非零向量(或称是正交向量组),则线性无关.证设,两边与作内积,得因故,同理,,所以线性无关.定义设是向量空间,是的一组基,且是正交向量组,则称是的一组正交基.如果既是的一组正交基,又是单位向量,则称是规范正交基或单位正交基.正交基的求法(施密特正交化公式解决矩阵的对角化问题):1.正交化设是向量空间,是的一组基,则,,是的一组正交基.2.单位化如果取则是规范正交基.例3 设⎪⎪⎪⎭⎫ ⎝⎛-=1211α,⎪⎪⎪⎭⎫ ⎝⎛-=1312α,⎪⎪⎪⎭⎫ ⎝⎛-=0143α,试用施密特正交化过程把这组向量规范正交化.解 取11α=b ;[]⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛-=-=1113512164131,1211222bb b b αα; [][]⎪⎪⎪⎭⎫ ⎝⎛=--=1012,,222231211333b b b b b b b ααα. 再把它们单位化,取⎪⎪⎪⎭⎫ ⎝⎛-=121611e ,⎪⎪⎪⎭⎫ ⎝⎛-=111312e ,⎪⎪⎪⎭⎫ ⎝⎛=101213e .即合所求.例4 已知⎪⎪⎪⎭⎫⎝⎛=1111α,求一组非零向量32,αα,使321,,ααα两两正交.解 32,αα应满足方程01=x Tα,即0321=++x x x .它的基础解系为⎪⎪⎪⎭⎫ ⎝⎛-=1011ξ,⎪⎪⎪⎭⎫ ⎝⎛-=1102ξ.把基础解系正交化,即合所求.亦即取 12ξα=,[][]1112123,,ξξξξξξα-=.于是得⎪⎪⎪⎭⎫ ⎝⎛-=1012α,⎪⎪⎪⎭⎫ ⎝⎛--=121213α.正交矩阵定义 1 .是阶方阵,并且(即),称为正交阵.2 .若是正交阵,则称 是正交变换.正交阵的充要条件:为正交阵的列(行)是两两正交的单位向量.为正交矩阵的充要条件是或证 设,是的列向量,则为正交阵是两两正交的单位向量.正交矩阵的等价定义:正交矩阵有下列基本性质: 设A,B 都是n 阶正交矩阵,则 (1)1±=A(2)*T 1A A A )与(即-也是正交矩阵(注:A 为正交能推出A 为可逆矩阵且T1A A =-,但反之不成立)(3)如果A,B 为同阶正交矩阵,则AB 也是正交矩阵.(4)实矩阵A 为正交矩阵,当且仅当A 的列(行)向量组为正交单位向量组. 利用上述的性质(4),可以比较方便的检验矩阵是否为正交矩阵. 正交变换定义 若P 为正交阵,则线性变换y=P x 称为正交变换.正交变换的性质:设是正交变换的系数矩阵,则,从而及.正交变换有下列性质(其中A为正交矩阵):(1)保内积性:若2211,AxyAxy==,则),(),(2121xxyy=;(2)保长度性:若Axy=,则||||xy=正交矩阵的判断例题5.4实对称矩阵的性质及正交相似对角化实对称矩阵有下列性质:性质1 实对称矩阵的特征值都是实数.性质2 实对称矩阵的属于不同特征值的特征向量必正交.即设λ1,λ2是实对称矩阵A的两个特征值,p1,p2是对应的特征向量,若λ1≠λ2则p1与p2正交.性质3 若λ为实对称矩阵A的k重特征值,则A的属于λ的线性无关特征向量正好有k个.定理设A为实对称矩阵,则必存在正交矩阵P,使得APPAPP T=-1为对角矩阵.求正交矩阵P,使得Λ=-APP1对角矩阵的方法:1)、求出A的全部特征值nλλλ,,21:由方程0||=-AEλ解得;2)、对于每一个),,2,1(,nii=λ,解齐次线性方程组0)(=-xAEiλ,找出基础解系siiippp,,,213)、将nppp,,,21正交化,单位化,得一组正交单位向量nηηη,,,21;4)、因为nλλλ,,21各不相同,因此所求的向量组是两两正交的单位向量组,其向量的总数为n,这组列向量就构成了正交矩阵Q。
矩阵可对角化的条件
于是有 xT Ax xT Ax xTx xT x
及 xT Ax xT AT x AxT x xT x xT x.
两式相减,得
xT x 0.
但因为 x 0,
n
n
所以 xT x xi xi xi 2 0, 0,
17.解:
因为矩阵A和相似,所以它们的特征值相同,有
5 0
0
E 0 4 0
0
0 y
(5 )(y )(4 )
则矩阵的特征值为5,y, 4,
所以矩阵A的特征值也是5,y, 4.
于是
5 2 4 1 4 1
. 0 A 4E 2 x 4 2 2 x 4 2 4 2 5 4 2 5
P
1
,2
,3
1
0 2
1 0 0 1 2
1 2 0 1 2
则
P 1 AP
2 0
0 4
0 0.
0 0 4
三、小结
1. 对称矩阵的性质: (1)特征值为实数; (2)属于不同特征值的特征向量正交; (3)特征值的重数和与之对应的线性无关的
特征向量的个数相等; (4)必存在正交矩阵,将其化为对角矩阵,
解由
1 1 1 1 0 A E 1 1 r1 r2 1 1
1 1
1 1
c1 c2 1
00
1 1 1
1
2
(1 )(2 2) ( 1)2( 2)
求得A的特征值为 1 2,2 3 1.
对应 λ12解方程(A+2E) x=0,由
2 A 2E 1
0 1 3
解 (1)第一步:求A的特征值
2 2 0
A E 2 1 2 4 1 2 0
矩阵可对角化的充要条件
矩阵可对角化的充要条件引言矩阵对角化是矩阵理论中的一个重要概念,它能够让我们更好地理解矩阵的性质和运算。
在实际应用中,对角化可以简化计算和分析过程,因此对于一个矩阵是否可对角化的问题,是值得我们深入研究和探讨的。
本文将探讨矩阵可对角化的充要条件,通过理论推导和实例分析,将会全面、详细、完整地讲解矩阵可对角化的各种情况及其判定条件。
I. 列举与分析矩阵的特殊情况为了更好地理解什么样的情况下一个矩阵可对角化,我们先来列举一些特殊的矩阵情况,并分析它们是否可对角化。
1. 对角矩阵对角矩阵是指主对角线以外的元素都为零的矩阵。
例如:[ A =]对于任意的对角矩阵,由于它的非零元素只存在于主对角线上,所以它必然是一个可对角化的矩阵。
2. 对称矩阵对称矩阵是指矩阵的转置等于其本身的矩阵。
例如:[ B =]对于任意的对称矩阵,它必然是一个可对角化的矩阵。
这是因为对于对称矩阵,其特征值都是实数,且对应不同特征值的特征向量是相互正交的,因此可以通过特征向量的线性组合来表示整个矩阵。
3. 可逆矩阵可逆矩阵是指存在逆矩阵的矩阵。
例如:[ C =]对于任意的可逆矩阵,它必然是一个可对角化的矩阵。
这是因为可逆矩阵的特征值都是非零的,且可逆矩阵可以表示为一个对角矩阵和一个正交矩阵的乘积,而正交矩阵的转置等于其逆矩阵,因此可逆矩阵可以通过正交矩阵的逆变换为对角矩阵。
II. 可对角化的充分条件在上一节中,我们列举了一些特殊的矩阵情况,并发现它们对应的矩阵都是可对角化的。
接下来,我们将推导出可对角化的充分条件,并用定理的形式表述出来。
定理1对于一个n阶矩阵A,如果它有n个线性无关的特征向量,那么A是可对角化的。
证明:假设A有n个线性无关的特征向量,分别为v1, v2, …, vn,相应的特征值分别为λ1, λ2, …, λn。
根据特征值与特征向量的定义,我们可以得到以下等式:Av1 = λ1v1Av2 = λ2v2…Avn = λnv现在,我们将这n个特征向量构成一个矩阵V,即:V = [v1, v2, …, vn]同时,将这n个特征值构成一个对角矩阵Λ,即:Λ = []根据上述等式,我们可以得到:AV = [Av1, Av2, …, Avn] = [λ1v1, λ2v2, …, λnvn] = VΛ由于V是一个可逆矩阵(因为v1, v2, …, vn是线性无关的),所以可以将上述等式两边都左乘V的逆矩阵V^-1,得到:AVV^-1 = VΛV^-1即:A = VΛV^-1因此,我们证明了如果一个n阶矩阵A有n个线性无关的特征向量,那么A是可对角化的。
矩阵可对角化条件与方法
矩阵可对角化条件与方法矩阵的可对角化是一个重要的概念,在线性代数中占据着重要的地位。
一个矩阵是否可对角化决定着其特征值与特征向量的性质,对于解决线性方程组、求解线性变换以及简化计算都有着重要意义。
本文将介绍矩阵可对角化的条件与方法。
一、矩阵可对角化的条件对于一个n阶矩阵A,如果存在可逆矩阵P使得P-1AP为对角矩阵D,则称矩阵A可对角化。
下面是矩阵可对角化的充分条件:1. 矩阵A有n个线性无关的特征向量。
2. 矩阵A的n个特征向量构成了n维空间的一组基。
3. 矩阵A的特征值都是代数重数等于几何重数的。
这三个条件是矩阵可对角化的充分条件,也是我们在判断矩阵可对角化时常常使用的条件。
二、矩阵对角化的方法1. 求特征值和特征向量的方法对于一个矩阵A,我们首先需要求解其特征值和特征向量。
求解特征值的方法是通过解方程|A-λI|=0,其中λ为特征值,I为单位矩阵。
解得特征值后,再通过求解(A-λI)X=0,其中X为特征向量。
这个方法是最常用的求解特征值和特征向量的方法。
2. 判断矩阵可对角化的方法在求解完特征值和特征向量后,接下来需要判断矩阵是否可对角化。
常用的方法有以下几种:(1)检查特征值的代数重数与几何重数是否相等。
如果对于每个特征值的代数重数等于几何重数,则矩阵可对角化。
(2)检查特征向量的个数是否等于矩阵的秩。
如果矩阵的秩等于n 个特征向量的个数,则矩阵可对角化。
(3)判断矩阵的特征向量能否构成一组基。
根据线性代数的知识,如果矩阵A的n个特征向量能够构成一组基,则矩阵可对角化。
三、矩阵对角化的应用矩阵的可对角化在许多领域中都有着广泛的应用。
以下是一些常见的应用:1. 线性方程组的求解。
对于一个矩阵可对角化的线性方程组,可以通过对角化后的矩阵求解出方程组的解。
2. 线性变换的简化。
在线性代数中,矩阵可对角化可以将线性变换转化为更简单的形式,从而简化计算。
3. 特征值问题的求解。
矩阵的特征值问题可以通过矩阵的可对角化来求解,从而得到矩阵的特征值。
判断矩阵是否可对角化的方法
判断矩阵是否可对角化的方法1.引言1.1 概述在线性代数中,矩阵的对角化是一种重要的研究方法,可以帮助我们简化矩阵的计算和分析。
通过对角化,我们可以将一个复杂的矩阵转化为一个对角矩阵,使得矩阵的运算变得更加简单和直观。
然而,并非所有的矩阵都可以进行对角化。
有些矩阵由于其特殊的性质或结构,无法被对角化。
因此,判断一个矩阵是否可以对角化成为一个重要的问题,在矩阵理论和应用中具有广泛的意义。
本文将介绍一些判断矩阵是否可对角化的方法。
这些方法包括变换法、特征值法和可对角化标准形等。
通过运用这些方法,我们可以确定一个矩阵是否可以对角化,以及找出对角化所需的相应变换矩阵和对角矩阵。
文章的正文部分将详细介绍这些方法。
首先,我们将详细描述变换法,并给出相应的步骤和注意事项。
然后,我们将介绍特征值法,它是判断矩阵可对角化的常用方法之一。
我们将解释特征值的概念,并提供相应的判断条件和计算方法。
最后,我们将介绍可对角化标准形,它是判断矩阵是否可对角化的一个重要的准则。
我们将详细介绍可对角化标准形的定义、性质和应用。
在结论部分,我们将对整篇文章进行总结,并充分展望未来对于判断矩阵是否可对角化的更深入研究方向。
研究和应用矩阵的对角化具有重要的理论和实际意义,因此为了进一步提高矩阵的运算效率和准确性,我们需要不断深化对矩阵可对角化性质的研究与理解。
通过本文的阅读,读者将能够了解判断矩阵是否可对角化的一些基本方法,并能够应用这些方法解决实际问题。
同时,我们也将为矩阵的对角化研究提供一些思路和参考,促进相关领域的深入发展和应用。
文章结构部分的内容可以这样编写:1.2 文章结构本篇文章主要围绕判断矩阵是否可对角化的方法展开讨论。
文章分为引言、正文和结论三个部分。
引言部分主要包括对本文的概述、文章结构以及研究目的的介绍。
首先,我们会概述矩阵对角化的重要性和应用背景。
接着,我们会介绍文章的整体结构,明确每个部分的主要内容和研究重点。
对角矩阵
的一个基础解系:(-2、1、0),(1、0、1)
对于特征值-4,求出齐次方程组
7 2 1 x1 0 2 2 2 x 2 0 3 6 3 x 0 3 1 2 的一个基础解系: ( , ,1) 3 3
三、可对角化的条件
1.(Th.7)设 A 为 n 维线性空间V的一个线性变换,
则A 可对角化 A 有 n 个线性无关的特征向量. 证明.
A 2.(Cor.1)设 为 n 维线性空间V的一个线性变换,
若 A 在域 P 中有 n 个不同的特征值.则A 可对角化 证明.
3.
(Cor.2) 在复数域C上的线性空间中,
即基 1 , 2 , 3 到 1 ,2 ,3 的过渡矩阵为
1 0 1 T 0 1 0 , 1 0 1 1 0 0 T 1 AT 0 1 0 . 0 0 1
例2. 问A是否可对角化?若可,求可逆矩阵T,使
3 2 1 T 1 AT 为以角矩阵. 这里 A 2 2 2 3 6 1
必有所有的 i 0, i 1,2, , k .
即 ai 1 i 1 airi iri 0. 而 i 1 , , iri 线性无关,所以有
ai 1 airi 0, i 1,2, , k .
故 11 , , 1r1 , , k 1 , , krk 线性无关.
得A的特征值是1、1、-1. 解齐次线性方程组 1 E A X 0, 得 x1 x3 故其基础解系为: (1,0,1),(0,1,0) 所以, 1 1 3 , 2 2 是A 的属于特征值1的两个线性无关的特征向量.
线性变换“可对角化”的条件及“对角化”方法
对角化方法在控制系统设计 中的应用
在机器学习中的应用
对角化矩阵可以提高机器学 习算法的收敛速度
对角化矩阵可以简化机器学 习算法的实现过程
线性变换可对角化在机器学 习算法中的优化性能
对角化矩阵可以提高机器学 习算法的稳定性
研究现状及问题
线性变换对角化的研究历史与现状 当前研究存在的问题与挑战 未来研究方向与趋势 当前研究的热点问题与争议
当前研究的挑战与困难
确定对角化方法的 有效性
确定对角化方法的 普适性
确定对角化方法在 不同领域的应用价 值
探索新的对角化方 法
解决挑战的方法与策略
发展新的数学工具:引入新的数学理论和方法,以解决线性变换对角化中遇到的问题
借鉴其他领域的经验:参考其他领域类似的案例和经验,寻找解决方案 深入研究线性变换的性质:更深入地了解线性变换的性质和特点,为对角化提供更多思路和方法 开发高效的数值计算方法:发展更高效、更精确的数值计算方法,提高对角化的效率和准确性
对未来研究的展望与预期
探索更多可对角化的线性变换类型 深入研究线性变换对角化的条件和算法 拓展线性变换对角化在各个领域的应用 加强与其他领域的交叉研究,推动线性代数的发展
对未来应用的设想与期待
线性变换对角化在科学计 算领域的应用
对量子计算领域的影响
在机器学习领域的应用前 景
对未来科技发展的推动与 影响
特征值的应用:通过特征值可以对矩阵进行分解,应用于信号处理、图像处理等领域
相似变换的应用:通过相似变换可以将矩阵转化为对角矩阵,应用于相似分类、机器学习等领 域
对角化方法的优缺点:对角化方法具有简单易行、直观性等优点,但也存在局限性,如不适用 于非方阵等情形
第五章矩阵的对角化
所以1 , 2 , 3线性无关.
2 1 2 ( 2) A 5 3 3 1 0 2 2 1 A E 5 1 3 0
2
3 3 1 2
所以A的特征值为1 2 3 1. 把 1代入 A E x 0, 解之得基础解系 T (1,1,1) ,
0 1 2 5 100 2 3 1 1 5 52
100
5 2101
2. 求行列式
例5:设 A 是 n 阶方阵,2,4, 计算 A 3 E .
,2n 是A 的 n个特征值,
解:
已知 A 有 n 个不同的特征值,所以 A 可以对角化,
即存在可逆矩阵 P , 使得 2 P 1 AP 1
说明 如果 A 的特征方程有重根,此时不一定有 n个线性无关的特征向量,从而矩阵 A不一定能 对角化,但如果能找到 n个线性无关的特征向量, A 还是能对角化.
可逆矩阵 P就 是 以 这 n个 线 性 无 关 的 特 征 向 量 作为列向量而成的。
定 理3、 设 0 是n阶 方 阵 A的 一 个 k重 特征值,则 A的 属 于 特 征 值 0的 特 征 向 量 中 , 极 大 线 性 无 关 组含 包的 向 量 个 数 不 多 于k个 。 即 齐 次 线 性 方 程 组 ( 0 E A)x 0 的 基 础 解 系 包 含 的 向个 量数 最 多 有 k个 。
定理2、设λ 1,λ2, λm 是方阵A的m个互不相 同的特征值,α i1 , α , α i2 , isi 是A的属于特征值λ i (i 1,2,,m)的线性无关的特征 向量,则有所有 这些特征向量组成的向 量组 α ,α1s1, α21 , α22 , , α2s2 , , αm1 , 11,α 12, αm2 , , αms m 是线性无关的。
关于矩阵等价 合同 相似以及可对角化的性质和判别条件的总结
6.对于实对称矩阵A、B,A B A与B合同,反之不成立
A B A和B具有相同的特征值 A与B合同
矩阵A与B等价、合同、相似的判别条件
矩阵A与B等价
可逆矩阵PQ,使得B PAQ r( A) r(B),且A与B为同型矩阵
故矩阵A与B等价 r( A) r(B),反之不一定成立
r( A) r(B) A 与 B 同号 矩阵A与B合同 A与B具有相同的特征值 A与B的正、负特征值个数分别相等, 即正特征值个数相等,负特征值个数相等
可逆矩阵C,使得CT AC B
xT
Ax与xT
Bx有相同的正负惯性指数
1.矩阵A与B合同 A与B的特征值中,正特征值个数相等,负特征值个数相等
r A r B
A B
A有n个线性无关的特征向量
2.n阶矩阵A可对角化
对于A的每个特征值i ,其重数ki
A有n个不同的特征值
n
r iE
A
A为实对称矩阵
0
A
a11a22
ann
aii 0,i 1, 2, , n.
5.矩阵A与B相似:即可逆矩阵P,使得B P1AP.
r A r B
A、B具有相同的特征多B具有许多相同的性质
A、B具有相同的特征值 AB
tr A tr B,即: aii bii
A1 B1、AT B、A* B、f ( A) f (B),其中f (x)为关于x的多项式
矩阵A与B的相似问题一般只对实对称矩阵而言,
即矩阵A与B均为实对称矩阵。
实对称矩阵A与B相似 A与B具有相同的特征值
此外还可以根据A与B相似的必要条件进行判别
A
Ann
是
否
是
A是否为实对称矩阵
7.6 可对角化矩阵
的特征多项式是
−3
2
−3
−2
1
+2
−2 = 3 − 12 + 16 = ( − 2)2
−6
+1
特征根是 2,2,-4.
对于特征根-4,求出齐次线性方程组
−7 −2
2 −2
−3 −6
的一个基础系
1
2
, − ,1
3
1
−2
−3
1
0
2 = 0
3
0
对于特征根 2,求出齐次线性方程组
−
根据归纳法假设, 1 , 2 , ⋯ , −1 线性无关,所以
( − ) = , = , , ⋯ , − .
但 1 , 2 , ⋯ 两两不同,所以 1 = 2 = ⋯ = −1 = 0 ,再代入(3),
因为 ≠ 0, 所以 = 0. 这就证明了 , , ⋯ , 线性无关。
()
+ + ⋯ + = . ∈ ,
推论7.6.2 设σ是数域F上向量空间V的一个线性变换, 1 , 2 , ⋯ , 是σ的
互不相同的特征值。又设 1 , ⋯ , , = 1, ⋯ , , 是属于特征值 的线性
无关的特征向量, 那么向量 11 , ⋯ , 11 , ⋯ , 1 , ⋯ , 线性无关.
如果等式
()
+ + ⋯ + = . ∈ ,
成立,那么以 乘(3)的两端得
()
+ + ⋯ + = .
另一方面,对(3)式两端施行线性变换σ,
注意到等式(2),我们有
()
75对角矩阵
证明:首先,A 的属于同一特征值 i 的特征向量 的非零线性组合仍是 A 的属于特征值 i 的一个特征
向量.
第8页共23页
设 a1111 a1r11r1 ak 1 k 1 akrk krk 0, ④
a11 , , a1r1 , , ak 1 , , akrk P .
第4页共23页
假设对于 k 1 来说,结论成立. 现设 1 , 2 ,k 为
A 的互不相同的特征值, i 是属于 i 的特征向量,
即 A i i i ,
i 1,2,, k . ai P
①
设 a11 a2 2 ak k 0,
以 k 乘①式的两端,得
1 0 1 0 1 0 . 1 ,2 ,3 1 , 2 , 3 1 0 1
即基 1 , 2 , 3 到 1 ,2 ,3 的过渡矩阵为
1 0 1 T 0 1 0 , 1 0 1 1 0 0 T 1 AT 0 1 0 . 0 0 1
故其基础解系为: (1,0, 1) 所以, 3 1 3 是 A 的属于特征值-1的线性无关的特征向量.
1 ,2 ,3 线性无关,故 A可对角化,且
A 在基 1 ,2 ,3 下的矩阵为对角矩阵
1 0 0 0 1 0 ; 0 0 1
第16页共23页
∴ D的特征值为0(n重).
又由于对应特征值0的齐次线性方程组 AX 0
的系数矩阵的秩为n-1,从而方程组的基础解系 只含有一个向量,它小于P[ x ]n的维数n(>1). 故D不可对角化 .
第22页共23页
小结
进一步了解特征向量的线性无关性。 线性变换可对角化是指其在相应基下的矩阵为
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
矩阵可对角化的总结莆田学院数学系02级1班连涵生21041111 [摘要]:主要讨论n级方阵可对角化问题:(1)通过特征值,特征向量和若尔当标准形讨论方阵可对角化的条件;(2)实n 级对称矩阵的可对角化讨论;(3)几个常见n 级方阵的可对角化讨论。
[关键词]:n级方阵;可对角化;相似;特征值;特征向量;若尔当标准形;n级实对称矩阵说明:如果没有具体指出是在哪一个数域上的n级方阵,都认为是复数域上的。
当然如果它的特征多项式在某一数域K上不能表成一次多项式的乘积的话,那么在此数域上它一定不能相似对角阵。
只要适当扩大原本数域使得满足以上条件就可以。
复数域上一定满足,因此这样假设,就不用再去讨论数域。
引言所谓矩阵可对角化指的是矩阵与对角阵相似,而说线性变换是可对角化的指的是这个线性变换在某一组基下是对角阵(或者说线性变换在一组基下的矩阵是可对角化的),同样可以把问题归到矩阵是否可对角化。
本文主要是讨论矩阵可对角化。
定义1:设A,B是两个n级方阵,如果存在可逆矩阵P,使P-1AP=B,则称B与A相似,记作A~B。
矩阵P称为由A到B的相似变换矩阵。
[]1[]2[]3[]4定义2:设A 是一个n 级方阵,如果有数λ和非零向量X ,使AX=λX 则称λ是矩阵A 的特征值,X 称为A 的对应于λ的特征向量,称{|}V A λααλα==为矩阵对应于特征值λ的特征子空间。
[]1[]2[]3[]4定义3:设A 是数域P 上一个n 级方阵,若多项式()[]f x P X ∈,使()0f A =则称()f x 为矩阵A 的零化多项式。
[]2定义4:数域P 上次数最低的首项为1的以A 为根的多项式称为A 的最小多项式。
[]1[]2[]3一、首先从特征值,特征向量入手讨论n 级方阵可对角化的相关条件。
定理1:一个n 级方阵A 可对角化的充要条件它有n 个线性无关的特征向量。
[]1[]2[]3[]4证明:必要性:由已知,存在可逆矩阵P ,使121n P AP λλλ-⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦即12n AP P λλλ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦把矩阵P 按列分块,记每一列矩阵为 12,,,n P P P 即12[,,,]n P P P P = 于是有12[,,,]n A P P P ==1212[,,,]n n P P P λλλ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦, 即 121122[,,,][,,,]n n n AP AP AP P P P λλλ=于是有 ,1,2,,i i i AP P i n λ==。
由特征值,特征向量定义,表明P 的每一列都是A 的特征向量,因为P 是可逆的,因此12,,,n P P P 是A 的n 个线性无关特征向量,其中12,,,n λλλ为A 的特征值。
充分性:若A 有n 个线性无关的特征向量12,,,n P P P 则有,1,2,,i i i AP P i n λ==,其中i λ是对应于特征向量i P 的A 的特征值。
以12,,,n P P P 为列作矩阵12[,,,]n P P P P =,因为12,,,n P P P 线性无关,所以矩阵P 是可逆的。
由 12[,,,]n AP A P P P ==121122[,,,][,,,]n n n AP AP AP P P P λλλ==1212[,,,]n n P P P λλλ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦=12n P λλλ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦则有 121n P AP λλλ-⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦即A 与对角矩阵相似从以上证明中可知:(1) 与矩阵A 相似的对角矩阵主对角线上的元素是A的特征值,而相似变换矩阵P 的列是A 的n 个线性无关特征向量。
(2)12,,,n λλλ在主对角线上的次序应与其对应的特征向量在P 中的次序相对应,如果12,,,nλλλ的次序改变,那么12,,,n P P P 在P 中的次序也要作相应的改变。
但这时P 就不是原来的P 了。
因此相似变换矩阵不是唯一的。
若不计k λ的排列顺序,则对角矩阵是唯一的,称它为A 的相似标准形。
由相似是一种等价关系知:与A 相似的矩阵都有相同的相似标准形。
定理2:矩阵A 的属于不同特征值的特征向量是线性无关的。
[]1[]2[]3[]4由此给出了一个推论:n 级方阵可对角化的充分条件A 有n 个互不相同的特征值。
[]1[]2[]3[]4证明:由定理1及定理2可得。
但这个推论的逆不成立。
例如:n 级单位阵E ,显然它是可对角化的,但它的特征值为1(n 重根)。
那我们要问若有重根时,要满足什么条件才可对角化? 定理3:n 阶矩阵A 可对角化的充要条件是:A 的每个特征值对应的特征向量线性无关的最大个数等于特征值的重数(即A 的每个特征子空间i V λ的维数等于特征值i λ的重数)[]4这个定理又可以这样叙述:矩阵A 的每个特征值的代数重数等于对应子空间的(几何)重数。
[]2[]3引理1:如果1,,k λλ是矩阵A 的不同特征值,而12,,,i i i ir ααα是属于i λ的线性无关的特征向量,12,,,i k = 那么向量组111121,,,,,kr kr αααα也线性无关。
[]1[]2[]3即:给出一个n 级矩阵,求出属于每个特征值的线性无关向量,把它们合在一起也是线性无关的。
引理2:设0λ是n 阶矩阵A 的一个k 重特征值,对应于0λ的特征向量线性无关的最大个数为l ,则k l ≥。
[]4证明:反证法。
设 l k < ,由已知 0012,,,,,i i i A i l αλαα=≠=。
(1) 12,,,l ααα 线性无关。
将 12,,,l ααα 扩充为n 维向量空间 V 的一组基:121,,,,,,l l n ααααα+ 其中 1,,l n αα+一般不 是A 的特征向量,但1,,,m A V m l n α∈=+ ,可用上述的一 组基线性表示,即 1111'''',,,,m m l m l l m l n m n A a a a a ααααα++=+++++ 其中1(,,)m l n =+ (2)用矩阵可表示为:()121,,,,,,l l n A ααααα+()011100112111110'',,'',,'',,'',,,,,,,,l n l l l n l l n l l l n n l n n a a a a a a a a λλλααααα+++++++⎛⎫⎪ ⎪ ⎪ ⎪ ⎪=⎪⎪ ⎪⎪ ⎪ ⎪⎝⎭(3)记 ()121,,,,,,l l n P ααααα+= 则P 是可逆的。
因此上式可表为 01011220l l E A E A AP P P AP A A λλ-⎛⎫⎛⎫=⇒=⎪ ⎪⎝⎭⎝⎭根据相似矩阵有相同的特征多项式,得111()n n n n E A P E A P P E A P E P AP λλλλ----=-=-=-01022()()ll n l n l E A E E A E A λλλλλλ----==---02()l n l E A λλλ-=-- (4)令2()n l g E A λλ-=-是λ的n l -次多项式,由(4)式知0λ至少是A 的l (l k >)重特征值。
与0λ为A 的k 重特征值,矛盾,所以l k ≤。
由上面的两个引理作基础,下证定理3:证明:不妨设1()i mr i i E A λλλ=-=-∏其中1,,m K λλ∈又1mi i r n ==∑。
(在复数域中)充分性:由于对应于i λ的特征向量有i r 个线性无关,又m 个特征值互异。
由引理1知A 有n 个线形无关的特征向量,依据定理1,A 与对角阵相似。
必要性:用反证法:设有一个特征值i λ所对应的线性无关的特征向量的最大个数i i l λ<的重数为i r ,则由引理2知, A 的线性无关的特征向量个数小于n ,故A 不能对角化,与题设矛盾,假设不成立。
即A 的每个特征值对应的特征向量线性无关的最大个数i l 等于特征值的重数i r 。
[]4推论:n 级方阵A 可对角化的充要条件是对于A 的每一个特征根λ,有秩()E A n S λ-=-,其中s 是λ的重数。
[]2 证明:()0E A X λ-=的解空间V λ的维数等于特征值λ的重数即维()V S λ=(由定理3知)。
又维()V n λ=-秩()E A λ-。
所以,秩()E A n S λ-=- 成立。
以上给出的可对角化的几个条件都是以特征值,特征向量为基础。
其中条件1(也是定理1)是最基础的,可以把它看作是矩阵可对角化的实质。
其它条件都是它的扩展。
下面我们用λ-矩阵及若尔当标准形来讨论矩阵可对角化。
定理4:复数域上每一个n 阶矩阵A 都与一个若尔当标准形相似。
这个若当形矩阵除去其中若当块的排列次序外是被矩阵A 唯一决定的。
它称为A 的若尔当标准形。
[]1[]2[]3[]4由相似是一个等价关系知,与A 相似的矩阵都有相同的若尔当标准形。
从这个意义上讲,我们可以把n 级方阵划分为以若当标准形为代表元素的等价类。
等价类中的每个元素是相似的。
由若尔当标准形的构造知,它包含对角形矩阵为它的特殊情况。
那么当它满足什么条件时,一个若尔当标准形是一个对角矩阵,也就是可对角化的条件。
由于每个初等因子对应一个若当块,例如初等因子为()ir i λλ-,那它对应的若当块为11i ii ii i r rJ λλλ⨯⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦, 而若当形矩阵是由这样的若当块组成的。
例: 12S J J J J ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦, 所以如果每一个若当块都是1阶,那么,这个若当形矩阵J 就成了对角阵,那么与之对应的初等因子都是一次的。
由上面讨论给出矩阵可对角化的几个条件:定理5:n 级方阵可对角化的充要条件它的初等因子都是一次的。
[]1[]2[]3推论1:n 级方阵可对角化的充要条件它的不变因子无重根。
[]1[]2[]3 推论2:n 级方阵可对角化的充要条件它的最小多项式无重根。
[]1[]2[]3这三个充要条件充分利用了不变因子,初等因子及最小多项式之间的关系,但在具体的解题过程中很少直接去求不变因子和初等因子,一般情况下是通过求最小多项式来解题的。
例:由最小多项式的定义知,对于任一个零化多项式()f x 都满足()|()A m x f x ,()A m x 表示矩阵A 的最小多项式。
因此若()f x 无重根,则()A m x 一定无重根。
当然这只是一种方法。
由此给出推论3:n 级方阵可对角化的充分条件是它的零化多项式无重根。
由哈密尔顿—凯莱定理知,特征多项式是一个零化多项式。