磁共振波谱成像的基本原理
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
磁共振波谱成像的基本原理、序列设计与临床应用
磁共振波谱(MR Spectroscopy, MRS)是医学影像学近年来发展的新的检查手段,作为一种无创伤性研究活体器官组织代谢、生化变化及化合物定量分析的方法,随着MRI、MRS装置不断改进,软件开发及临床研究的不断深入,人们通过MRS对各种疾病的生化代谢的认识将不断提高,为临床的诊断、鉴别、分期、治疗和预后提供更多有重要价值的信息。1H MRS可对神经元的丢失、神经胶质增生进行定量分析,31P磁共振波谱可对心肌梗塞能量代谢变化进行评价。MRS以分子水平了解人体生理上的变化,从而对疾病的早期诊断、预后及鉴别诊断、疗效追踪等方面,做出更明确的结论。本文从MRS波谱成像的基本原理和序列设计方面简要作一介绍。
一磁共振波谱的基本原理
在理想均匀的磁场中,同一种质子(如1H)理论上应具有相同的共振频率。事实上,当频率测量精度非常高时会发现,即使同一种核处在相同磁场中,它们的共振频率也不完全相同,而是在一个有限的频率范围内。这是由于原子核外的电子对原子核有磁屏蔽作用,它使作用于原子核的磁场强度小于外加磁场的强度,其屏蔽作用大小用屏蔽系数s来表示,被这种屏蔽作用削弱掉的磁场为sB,与外加磁场方向相反。外加磁场越强sB越大,原子核实际感受到的磁场强度与外加磁场强度之差越大。此外,s还与核的特性和化学环境有关。核的化学环境指核所在的分子结构,同一种核处在不同的分子中,甚至在同一分子的不同位置或不同的原子基团中,它周围的电子数和电子的分布将有所不同。因而,受到电子的磁屏蔽作用的程度不同,如图1所示。考虑到电子的磁屏蔽作用,决定共振频率的拉莫方程应表示为:w=gBeff=gB0(1-s)
由上式可知,在相同外加磁场作用下,样品中有不同化学环境的同一种核,由于它们受磁屏蔽的程度(s的大小)不同,它们将具有不同的共振频率。如在MRS中,水、NAA(N-乙酰天门冬氨酸)、Cr(肌酸)、Cho(胆碱)、脂肪的共振峰位置不同,这种现象就称为化学位移(Chemical Shift)。即因质子所处的化学环境不同,也就是核外电子云密度不同和所受屏蔽作用的不同,而引起相同质子在磁共振波谱中吸收信号位置的不同,如图2所示。实际上,研究某种样品物质的磁共振频谱时,常选用一种物质做参考基准,以它的共振频率作为频谱图横坐标的原点。并且,将不同种原子基团中的核的共振频率相对于坐标原点的频率之差作为该基团的化学位移。显然,这种用频率之差表示的化学位移的大小与磁场强度高低有关。在正常组织中,代谢物在物质中以特定的浓度存在,当组织发生病变时,代谢物浓度会发生改变。磁共振成像主要是对水和脂肪中的氢质子共振峰进行测量和脂肪中的氢质子共振峰进行测量,在1.5T场强下水和脂肪共振频率相差220Hz (化学位移),但是在这两个峰之间还有多种浓度较低代谢物所形成的共振峰,如NAA、Cr、Cho等,这些代谢物的浓度与水和脂肪相比非常低。MRS需要通过匀场抑制水和脂肪的共振峰,才能使这些微弱的共振峰群得以显示。
下面是研究MRS谱线时常用到的参数:
(1)共振峰的共振频率的中心—峰的位置V: 化学位移决定磁共振波谱中共振峰的位置。
(2)共振峰的分裂。
(3)共振峰下的面积和共振峰的高度: 在磁共振波谱中,吸收峰占有的面积与产生信号的质子数目成正比。在研究波谱时,共振峰下的面积比峰的高度更有价值,因为它不受磁场均匀度的影响,对噪音相对不敏感。
(4)半高宽: 半高宽是指吸收峰高度一半时吸收峰的宽度,它代表了波谱的分辨率。
原子核自旋磁矩之间的相互作用称为自旋自旋耦合。高分辨率磁共振频谱可以观察到自旋自旋耦合引起的共振谱线的裂分,裂分的数目和幅度是相互耦合的核的自旋和核的数目的指征。在一个氢核和一个氢核发生自旋耦合的情况下,由于一个氢核的磁矩有顺磁场和逆磁场两种可能的取向,因此它对受耦合作用的氢核可能产生两个不同的附加磁场的作用,这引起受耦合的氢核的共振由一个单峰分裂为二重峰。如此类推,在两个氢核和一个氢核发生耦合的情况下,共振谱由一个分裂为三个。
磁共振波谱仪不仅可以描绘频谱,还可以描绘频谱的积分曲线,积分曲线对应共振峰的面积。
峰的面积反映一个原子基团中参与磁共振的核的数量。比较频谱中各个峰的面积能确定出不同分子或原子基团中产生共振的核的相对数量。将各共振峰的相对面积与参考标准进行比较可以推算样品分子或化学基团中共振核的绝对数目。
众所周知,磁共振研究的核首先必须具有磁矩。这就排除了有偶数质子和偶数中子的核如16O和12C等。另外,有两个自旋状态的核最便于研究,满足这个条件的核有1H、31P、19F和13C。其中,19F和13C在人体中含量很小,大多数研究必须在接纳用19F或13C增浓的物质条件下进行,1H在人体内的含量最高,但人体组织极强的水信号往往导致频谱中水共振频率两侧其他生化物质的微弱信号被淹没。由于这种原因,31P频谱研究得到最早应用,并在活体频谱研究中占居首要地位。
MRI尽量去除化学位移的作用,并突出反映组织间T1、T2的差异,而MRS恰恰要利用化学位移的作用来确定代谢物的种类和含量。MRS的敏感性较低,因为代谢物的浓度较低,产生的信号几乎是正常MR成像中水信号的万分之一,需要重复多次采集才能得到信号,所以需要更多的扫描时间,限制了MRS测定代谢物浓度变化的时间分辨率。
由于活体中组织水浓度比代谢物的质子浓度大几个量级,所产生的信号也大很多,并且由于MRI的接收机增益动态范围有限,必须抑制水峰,才有可能观察到微弱的代谢信号,常用CHESS (CHEmical Shift Selective suppression)方法抑制水峰,大部分CHESS技术是使用一种窄带频率选择性90?RF脉冲激发水峰,之后可激发测量代谢物的质子MR谱,也可以躲开水的频率,使激发频谱中不包含水的频率成分,只激发代谢物的质子进行谱测量。另外一种有效的抑制水的方法为WET(Water suppression Enhanced through T1 effects),该方法利用180度脉冲反转VOI内水磁化强度,当水磁化强度穿越零点时,用90度脉冲激发VOI内样品,进行质子MRS测量,这时水将不贡献信号。
另外匀场技术(Shimming)在MRS技术中也占有很重要的位置,波谱的信噪比和分辨率部分决定于谱线线宽,谱线线宽受原子核自然线宽及磁场均匀度的影响,内磁场的均匀度越高,线宽越小,基线越平滑。1H谱用水峰的半高宽来检测磁场的均匀性,由于磷的代谢产物化学位移范围较宽,故对匀场的要求不如氢谱高。首先在病人进入磁场之前对较大范围进行匀场,但确定VOI后再进一步对VOI匀场。方法是通过逐步调整X、Y、Z三个轴方向上的梯度线圈内电流使产生的自由感应衰减(Free Induced Decay,FID)达到最慢来实现。
二MRS的定位技术和脉冲序列设计
在实际临床工作中,我们需要获得的是一个组织器官特定部位的正常或是异常组织的波谱信息。这一特定的部位可以是一个层面、层面中的条块、或是一个立方体。根据选择这一区域的方式不同,磁共振波谱的采集方式可以分为三种: 第一种是利用表面线圈的射频场非均匀的获得局域波谱,这种技术简单,但它局限于采集靠近体表的解剖区域的波谱,也不能灵活的控制区域形状和大小; 第二种方法是通过MR图像确定感兴趣区,然后利用磁场梯度和射频脉冲结合进行选择激励; 第三种是化学位移成像,也是一种需要利用磁场梯度的定位技术。
1. 射频梯度定域频谱技术(FID方法)
表面线圈的射频场在与表面线圈平面垂直的方向存在梯度。这可以利用来建立信号的等效相位编码,将表面线圈设置到所要研究的组织区域附近,用非选择性射频脉冲进行激励,所采集的FID 信号将包含整个表面线圈的灵敏区域的信号。灵敏区域的尺寸决定于线圈的半径。由于表面线圈的射频场存在梯度的原因,自旋磁矩的翻转角便同它们沿梯度方向的位置有关。这使沿射频场梯度方向不同位置的自旋的MR信号具有不同的相位。改变射频脉冲的长度反复进行射频激励和信号采集,每次采集的信号是与不同的位置对应的不同相位的信号的总和。这些信号经过数据处理可以得到信号相位和信号位置唯一对应关系的一组数据。这组数据经两维傅立叶变换便产生一组与表面线圈平面平行的层面的频谱。其中,每个层面的频谱对应于一个由射频场的等高(强度)面划定边界的解剖区域。这个方法不是仅获取一个层面区域的频谱,而是从包括一组层面的整个体积范围获取一组频谱。这个方法不用梯度磁场,因此不存在涡流磁场的影响。
2. 单体素MRS的序列设计