八年级下册几何证明题精选精编版

合集下载

八年级下册几何证明题精编版

八年级下册几何证明题精编版

_ D_ C_B _ C_ A _ B_ A_ B_ E四边形试题1.已知:在矩形ABCD 中,AE ⊥BD 于E ,∠DAE=3∠BAE ,求:∠EAC 的度数。

2.已知:直角梯形ABCD 中,BC=CD=a 且∠BCD=60︒,E 、F 分别为梯形的腰AB 、DC 的中点,求:EF 的长。

3、已知:在等腰梯形ABCD 中,AB ∥DC ,AD=BC ,E 、F 分别为AD 、BC 的中点,BD 平分∠ABC 交EF 于G ,EG=18,GF=10求:等腰梯形ABCD 的周长。

4、已知:梯形ABCD 中,AB ∥CD ,以AD ,AC 为邻边作平行四边形ACED ,DC 延长线交BE 的中点。

5、已知:梯形ABCD 中,AB ∥CD ,AC ⊥CB ,AC 平分∠A ,又∠B=60︒,梯形的周长是20cm, 求:AB 的长。

_ A _ B_B_ C _B _F _ B _ C _ F_ B _A _ E6、从平行四边形四边形ABCD 的各顶点作对角线的垂线AE 、BF 、CG 、DH ,垂足分别是E 、F 、G 、H ,求证:EF ∥GH 。

7、已知:梯形ABCD 的对角线的交点为E 若在平行边的一边BC 的延长线上取一点F ,使S ABC ∆=S EBF ∆,求证:DF ∥AC 。

8、在正方形ABCD 中,直线EF 平行于对角线AC ,与边AB 、BC 的交点为E 、F ,在DA 的延长线上取一点G ,使AG=AD , 若EG 与DF 的交点为H ,求证:AH 与正方形的边长相等。

9、若以直角三角形ABC 的边AB 为边,在三角形ABC 的外部作正方形ABDE ,AF 是BC 边的高,延长FA 使AG=BC ,求证:BG=CD 。

10、正方形ABCD ,E 、F 分别是AB 、AD 延长线 上的一点,且AE=AF=AC ,EF 交BC 于G ,交AC 于K ,交CD 于H ,求证:EG=GC=CH=HF 。

(完整版)初中几何证明题五大经典(含答案)

(完整版)初中几何证明题五大经典(含答案)

经典题(一)1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初二)证明:过点G 作GH ⊥AB 于H ,连接OE ∵EG ⊥CO ,EF ⊥AB∴∠EGO=90°,∠EFO=90° ∴∠EGO+∠EFO=180° ∴E 、G 、O 、F 四点共圆 ∴∠GEO=∠HFG∵∠EGO=∠FHG=90° ∴△EGO ∽△FHG ∴FG EO =HGGO∵GH ⊥AB ,CD ⊥AB ∴GH ∥CD∴CD COHG GO =∴CDCO FG EO = ∵EO=CO ∴CD=GF2、已知:如图,P 是正方形ABCD 内部的一点,∠PAD =∠PDA =15°。

求证:△PBC 是正三角形.(初二) 证明:作正三角形ADM ,连接MP ∵∠MAD=60°,∠PAD=15° ∴∠MAP=∠MAD+∠PAD=75° ∵∠BAD=90°,∠PAD=15°∴∠BAP=∠BAD-∠PAD=90°-15°=75° ∴∠BAP=∠MAP ∵MA=BA ,AP=AP ∴△MAP ≌△BAP∴∠BPA=∠MPA ,MP=BP 同理∠CPD=∠MPD ,MP=CP ∵∠PAD =∠PDA =15°∴PA=PD ,∠BAP=∠CDP=75° ∵BA=CD∴△BAP ≌∠CDP ∴∠BPA=∠CPD∵∠BPA=∠MPA ,∠CPD=∠MPD ∴∠MPA=∠MPD=75°∴∠BPC=360°-75°×4=60°∵MP=BP ,MP=CP ∴BP=CP ∴△BPC 是正三角形3、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN于E 、F .求证:∠DEN =∠F .证明:连接AC ,取AC 的中点G ,连接NG 、MG ∵CN=DN ,CG=DG ∴GN ∥AD ,GN=21AD ∴∠DEN=∠GNM ∵AM=BM ,AG=CG ∴GM ∥BC ,GM=21BC ∴∠F=∠GMN ∵AD=BC ∴GN=GM∴∠GMN=∠GNM ∴∠DEN=∠F经典题(二)1、已知:△ABC 中,H 为垂心(各边高线的交点),O 为外心,且OM ⊥BC 于M . (1)求证:AH =2OM ;(2)若∠BAC =600,求证:AH =AO .(初二) 证明:(1)延长AD 交圆于F ,连接BF ,过点O 作OG ⊥AD 于G ∵OG ⊥AF ∴AG=FG ∵AB⌒ =AB ⌒ ∴∠F=∠ACB又AD ⊥BC ,BE ⊥AC ∴∠BHD+∠DBH=90° ∠ACB+∠DBH=90° ∴∠ACB=∠BHD ∴∠F=∠BHD∴BH=BF 又AD ⊥BC ∴DH=DF∴AH=AG+GH=FG+GH=GH+DH+DF+GH=2GH+2DH=2(GH+DH )=2GD 又AD ⊥BC ,OM ⊥BC ,OG ⊥AD ∴四边形OMDG 是矩形 ∴OM=GD ∴AH=2OM (2)连接OB 、OC∵∠BAC=60∴∠BOC=120° ∵OB=OC ,OM ⊥BC ∴∠BOM=21∠BOC=60°∴∠OBM=30° ∴BO=2OM由(1)知AH=2OM ∴AH=BO=AO2、设MN 是圆O 外一条直线,过O 作OA ⊥MN 于A ,自A 引圆的两条割线交圆O 于B 、C 及D 、E ,连接CD 并延长交MN 于Q ,连接EB 并延长交MN 于P. 求证:AP =AQ .证明:作点E 关于AG 的对称点F ,连接AF 、CF 、QF ∵AG ⊥PQ ∴∠PAG=∠QAG=90°又∠GAE=∠GAF ∴∠PAG+∠GAE=∠QAG+∠GAF 即∠PAE=∠QAF∵E 、F 、C 、D 四点共圆 ∴∠AEF+∠FCQ=180° ∵EF ⊥AG ,PQ ⊥AG ∴EF ∥PQ∴∠PAF=∠AFE ∵AF=AE∴∠AFE=∠AEF ∴∠AEF=∠PAF ∵∠PAF+∠QAF=180° ∴∠FCQ=∠QAF ∴F 、C 、A 、Q 四点共圆 ∴∠AFQ=∠ACQ 又∠AEP=∠ACQ ∴∠AFQ=∠AEP3、设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE ,设CD 、EB 分别交MN 于P 、Q . 求证:AP =AQ .(初二)证明:作OF ⊥CD 于F ,OG ⊥BE 于G ,连接OP 、OQ 、OA 、AF 、AG ∵C 、D 、B 、E 四点共圆 ∴∠B=∠D ,∠E=∠C ∴△ABE ∽△ADC ∴DFBGFD 2BG 2DC BE AD AB === ∴△ABG ∽△ADF ∴∠AGB=∠AFD ∴∠AGE=∠AFC ∵AM=AN , ∴OA ⊥MN 又OG ⊥BE ,∴∠OAQ+∠OGQ=180° ∴O 、A 、Q 、E 四点共圆 ∴∠AOQ=∠AGE 同理∠AOP=∠AFC ∴∠AOQ=∠AOP又∠OAQ=∠OAP=90°,OA=OA ∴△OAQ ≌△OAP ∴AP=AQ 在△AEP 和△AFQ 中 ∠AFQ=∠AEP AF=AE ∠QAF=∠PAE ∴△AEP ≌△AFQ ∴AP=AQ4、如图,分别以△ABC 的AB 和AC 为一边,在△ABC 的外侧作正方形ABFG 和正方形ACDE ,点O 是DF 的中点,OP ⊥BC求证:BC=2OP (初二)证明:分别过F 、A 、D 作直线BC 的垂线,垂足分别是L 、M 、N ∵OF=OD ,DN ∥OP ∥FL ∴PN=PL∴OP 是梯形DFLN 的中位线 ∴DN+FL=2OP ∵ABFG 是正方形∴∠ABM+∠FBL=90° 又∠BFL+∠FBL=90° ∴∠ABM=∠BFL又∠FLB=∠BMA=90°,BF=AB ∴△BFL ≌△ABM ∴FL=BM同理△AMC ≌△CND ∴CM=DN∴BM+CN=FL+DN ∴BC=FL+DN=2OP经典题(三)1、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F . 求证:CE =CF .(初二)证明:连接BD 交AC 于O 。

初二数学几何证明题(5篇可选)

初二数学几何证明题(5篇可选)

初二数学几何证明题(5篇可选)第一篇:初二数学几何证明题1.在△ABC中,AB=AC,D在AB上,E在AC的延长线上,且BD=CE,线段DE交BC于点F,说明:DF=EF。

2.已知:在正方形ABCD中,M是AB的中点,E是AB延长线上的一点,MN垂直DM于点M,且交∠CBE的平分线于点N.(1)求证:MD=MN.(2)若将上述条件中的“M是AB的中点”改为“M 是AB上任意一点”其余条件不变,则(1)的结论还成立吗?如果成立,请证明,如果不成立,请说明理由。

3.。

如图,点E,F分别是菱形ABCD的边CD和CB延长线上的点,且DE=BF,求证∠E=∠F。

4,如图,在△ABC中,D,E,F,分别为边AB,BC,CA,的中点,求证四边形DECF为平行四边形。

5.如图,在菱形ABCD中,∠DAB=60度,过点C作CE垂直AC 且与AB的延长线交与点E,求证四边形AECD是等腰梯形?6.如图,已知平行四边形ABCD中,对角线AC,BD,相交与点0,E是BD延长线上的点,且三角形ACE是等边三角形。

1.求证四边形ABCD是菱形。

2.若∠AED=2∠EAD,求证四边形ABCD是正方形。

7.已知正方形ABCD中,角EAF=45度,F点在CD边上,E点在BC边上。

求证:EF=BE+DF第二篇:初二几何证明题1如图,在△ABC中,D是BC边上的一点,E是AD的中点,过点A作BC的平行线交BE的延长线于F,且AF=DCCF.(1)求证:D是BC的中点;(2)如果AB=ACADCF的形状,并证明你的结论AEB第三篇:初二几何证明题初二几何证明题1.已知:如图,在△ABC中,AD⊥BC,垂足为D,BE⊥AC,垂足为E。

M为AB中点,联结ME,MD、ED求证:角EMD=2角DAC证明:∵M为AB边的中点,AD⊥BC,BE⊥AC,∴MD=ME=MA=MB(斜边上的中线=斜边的一半)∴△MED为等腰三角形∵ME=MA∴∠MAE=∠MEA∴∠BME=2∠MAE∵MD=MA∴∠MAD=∠MDA,∴∠BMD=2∠MAD,∵∠EMD=∠BME-∠BMD=2∠MAE-2∠MAD=2∠DAC2.如图,已知四边形ABCD中,AD=BC,E、F分别是AB、CD中点,AD、BC的延长线与EF的延长线交于点H、D求证:∠AHE=∠BGE证明:连接AC,作EM‖AD交AC于M,连接MF.如下图:∵E是CD的中点,且EM‖AD,∴EM=1/2AD,M是AC的中点,又因为F是AB的中点∴MF‖BC,且MF=1/2BC.∵AD=BC,∴EM=MF,三角形MEF为等腰三角形,即∠MEF=∠MFE.∵EM‖AH,∴∠MEF=∠AHF ∵FM‖BG,∴∠MFE=∠BGF∴∠AHF=∠BGF.3.写出“等腰三角形两底角的平分线相等”的逆命题,并证明它是一个真命题这是经典问题,证明方法有很多种,对于初二而言,下面的反证法应该可以接受如图,已知BD平分∠ABC,CE平分∠ACB,BD=CE,求证:AB=AC证明:BD平分∠ABC==>BE/AE=BC/AC==>BE/AB=BC/(BC+AC)==>BE=AB*BC/(BC+AC)同理:CD=AC*BC/(BC+AB)假设AB≠AC,不妨设AB>AC.....(*)AB>AC==>BC+ACAC*BC==>AB*AB/(BC+AC)>AC*BC/(BC+AB)==>BE>CDAB>AC==>∠ACB>∠ABC∠BEC=∠A+∠ACB/2,∠BDC=∠A+∠ABC/2==>∠BEC>∠BDC过B作CE平行线,过C作AB平行线,交于F,连DF则BECF为平行四边形==>∠BFC=∠BEC>∠BDC (1)BF=CE=BD==>∠BDF=∠BFDCF=BE>CD==>∠CDF>∠CFD==>∠BDF+∠CDF>∠BFD+∠CFD==>∠BDC>∠BFC (2)(1)(2)矛盾,从而假设(*)不成立所以AB=AC。

八年级下册几何证明题

八年级下册几何证明题

_D_C_B_C_A_B_A_B_E _A _B四边形试题1.已知:在矩形ABCD中,AE⊥BD于E,∠DAE=3∠BAE ,求:∠EAC的度数。

2.已知:直角梯形ABCD中,BC=CD=a且∠BCD=60︒,E、F分别为梯形的腰AB、DC的中点,求:EF的长。

3、已知:在等腰梯形ABCD中,AB∥DC,AD=BC,E、F分别为AD、BC的中点,BD平分∠ABC交EF于G,EG=18,GF=10求:等腰梯形ABCD的周长。

4、已知:梯形ABCD中,AB∥CD,以AD,AC为邻边作平行四边形ACED,DC延长线交BE于F,求证:F是BE的中点。

5、已知:梯形ABCD中,AB∥CD,AC⊥CB,AC平分∠A,又∠B=60︒,梯形的周长是20cm, 求:AB的长。

_ A_ B_B_ C _B _F _ B _ C _ F_ B _A _ E6、从平行四边形四边形ABCD 的各顶点作对角线的垂线AE 、BF 、CG 、DH ,垂足分别是E 、F 、G 、H ,求证:EF ∥GH 。

7、已知:梯形ABCD 的对角线的交点为E 若在平行边的一边BC 的延长线上取一点F ,使S ABC ∆=S EBF ∆,求证:DF ∥AC 。

8、在正方形ABCD 中,直线EF 平行于对角线AC ,与边AB 、BC 的交点为E 、F ,在DA 的延长线上取一点G ,使AG=AD , 若EG 与DF 的交点为H ,求证:AH 与正方形的边长相等。

9、若以直角三角形ABC 的边AB 为边,在三角形ABC 的外部作正方形ABDE ,AF 是BC 边的高,延长FA 使AG=BC ,求证:BG=CD 。

10、正方形ABCD ,E 、F 分别是AB 、AD 延长线 上的一点,且AE=AF=AC ,EF 交BC 于G ,交AC 于K ,交CD 于H ,求证:EG=GC=CH=HF 。

_ C _ D_ B_ F 11、在正方形ABCD 的对角线BD 上,取BE=AB ,若过E 作BD 的垂线EF 交CD 于F ,求证:CF=ED 。

2024年数学八年级几何证明专项练习题1(含答案)

2024年数学八年级几何证明专项练习题1(含答案)

2024年数学八年级几何证明专项练习题1(含答案)试题部分一、选择题:1. 在三角形ABC中,若∠A = 90°,AB = 6cm,BC = 8cm,则AC 的长度为()。

A. 2cmB. 10cmC. 4cmD. 5cm2. 下列哪个条件不能判定两个三角形全等?()A. SASB. ASAC. AASD. AAA3. 在直角坐标系中,点A(2,3)关于原点对称的点是()。

A. (2,3)B. (2,3)C. (2,3)D. (3,2)4. 下列哪个比例式是正确的?()A. 若a∥b,则∠1 = ∠2B. 若a∥b,则∠1 + ∠2 = 180°C. 若a⊥b,则∠1 = 90°D. 若a⊥b,则∠1 + ∠2 = 180°5. 在等腰三角形ABC中,若AB = AC,∠B = 70°,则∠C的度数为()。

A. 70°B. 40°C. 55°D. 110°6. 下列哪个条件可以判定两个角相等?()A. 对顶角B. 邻补角C. 内错角D. 同位角7. 在平行四边形ABCD中,若AD = 8cm,AB = 6cm,则对角线AC 的长度()。

A. 10cmB. 14cmC. 12cmD. 15cm8. 下列哪个图形是轴对称图形?()A. 等腰三角形B. 等边三角形C. 矩形D. 梯形9. 在三角形ABC中,若a = 8cm,b = 10cm,c = 12cm,则三角形ABC是()。

A. 锐角三角形B. 钝角三角形C. 直角三角形D. 不能确定10. 下列哪个条件不能判定两个直线平行?()A. 内错角相等B. 同位角相等C. 同旁内角互补D. 两直线垂直二、判断题:1. 若两个三角形的两边和夹角分别相等,则这两个三角形全等。

()2. 在等腰三角形中,底角相等。

()3. 平行线的同位角相等,内错角相等。

()4. 若两个角的和为180°,则这两个角互为补角。

(完整版)初中经典几何证明练习题集(含答案解析),推荐文档

(完整版)初中经典几何证明练习题集(含答案解析),推荐文档

初 中 几 何 证 明 题经 典 题(一)1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .证明:过点 G 作 GH ⊥AB 于 H ,连➓ OE ∵EG ⊥CO ,EF ⊥AB ∴∠EGO=90°,∠EFO=90° ∴∠EGO+∠EFO=180° ∴E 、G 、O 、F 四点共圆 ∴∠GEO=∠HFG∵∠EGO=∠FHG=90° ∴△EGO ∽△FHG ∴EO = GOFG HG∵GH ⊥AB ,CD ⊥AB ∴GH ∥CD∴GO = COHG CD ∴ EO = CO FG CD∵EO=CO ∴CD=GF2、已知:如图,P 是正方形 ABCD 内部的一点,∠PAD =∠PDA =15°。

求证:△PBC 是正三角形.(初二) 证明:作正三角形 ADM ,连➓ MP ∵∠MAD=60°,∠PAD=15° ∴∠MAP=∠MAD+∠PAD=75° ∵∠BAD=90°,∠PAD=15° ∴∠BAP=∠BAD-∠PAD=90°-15°=75° ∴∠BAP=∠MAP ∵MA=BA ,AP=AP ∴△MAP ➴△BAP ∴∠BPA=∠MPA ,MP=BP 同理∠CPD=∠MPD ,MP=CP ∵∠PAD =∠PDA =15° ∴PA=PD ,∠BAP=∠CDP=75° ∵BA=CD∴△BAP ➴∠CDP ∴∠BPA=∠CPD∵∠BPA=∠MPA ,∠CPD=∠MPD ∴∠MPA=∠MPD=75° ∴∠BPC=360°-75°×4=60°∵MP=BP ,MP=CP ∴BP=CP ∴△BPC 是正三角形3、已知:如图,在四边形 ABCD 中,AD =BC ,M 、N 分别是 AB 、CD 的中点,AD 、BC 的延长线交 MN 于E 、F .求证:∠DEN =∠F .证明:连➓ AC ,取 AC 的中点 G,连➓ NG 、MG ∵CN=DN ,CG=DG ∴GN ∥AD ,GN= 1AD2∴∠DEN=∠GNM ∵AM=BM ,AG=CG ∴GM ∥BC ,GM= 1 BC2∴∠F=∠GMN ∵AD=BC ∴GN=GM∴∠GMN=∠GNM ∴∠DEN=∠F经 典 题(二)1、已知:△ABC 中,H 为垂心(各边高线的交点),O 为外心,且 OM ⊥BC 于 M . (1)求证:AH =2OM ;(2)若∠BAC =600,求证:AH =AO .(初二)证明:(1)延长 AD 交圆于 F ,连➓ BF ,过点 O 作 OG ⊥AD 于 G ∵OG ⊥AF ∴AG=FG ⌒ ⌒ AB AB ∵ =∴∠F=∠ACB又 AD ⊥BC ,BE ⊥AC ∴∠BHD+∠DBH=90° ∠ACB+∠DBH=90° ∴∠ACB=∠BHD ∴∠F=∠BHD∴BH=BF 又 AD ⊥BC ∴DH=DF∴AH=AG+GH=FG+GH=GH+DH+DF+GH=2GH+2DH=2(GH+DH )=2GD 又 AD ⊥BC ,OM ⊥BC ,OG ⊥AD ∴四边形 OMDG 是矩形 ∴OM=GD ∴AH=2OM (2)连➓ OB 、OC ∵∠BAC=60∴∠BOC=120° ∵OB=OC ,OM ⊥BC∴∠BOM= 1∠BOC=60°∴∠OBM=30°2∴BO=2OM由(1)知 AH=2OM ∴AH=BO=AO2、设 MN 是圆 O 外一条直线,过 O 作 OA ⊥MN 于 A ,自 A 引圆的两条割线交圆 O 于 B 、C 及 D 、E ,连➓ CD 并延长交 MN 于 Q ,连➓ EB 并延长交 MN 于 P. 求证:AP =AQ .证明:作点 E 关于 AG 的对称点 F ,连➓ AF 、CF 、QF ∵AG ⊥PQ ∴∠PAG=∠QAG=90°又∠GAE=∠GAF ∴∠PAG+∠GAE=∠QAG+∠GAF 即∠PAE=∠QAF∵E 、F 、C 、D 四点共圆 ∴∠AEF+∠FCQ=180° ∵EF ⊥AG ,PQ ⊥AG ∴EF ∥PQ∴∠PAF=∠AFE ∵AF=AE∴∠AFE=∠AEF ∴∠AEF=∠PAF∵∠PAF+∠QAF=180° ∴∠FCQ=∠QAF∴F 、C 、A 、Q 四点共圆 ∴∠AFQ=∠ACQ 又∠AEP=∠ACQ ∴∠AFQ=∠AEP在△AEP 和△AFQ 中 ∠AFQ=∠AEP AF=AE ∠QAF=∠PAE ∴△AEP ≌△AFQ ∴AP=AQ3、设 MN 是圆 O 的弦,过 MN 的中点 A 任作两弦 BC 、DE ,设 CD 、EB 分别交 MN 于 P 、Q . 求证:AP =AQ .(初二)证明:作 OF ⊥CD 于 F ,OG ⊥BE 于 G ,连➓ OP 、OQ 、OA 、AF 、AG ∵C 、D 、B 、E 四点共圆 ∴∠B=∠D ,∠E=∠C ∴△ABE ∽△ADC ∴AB = BE = 2BG =BGAD DC 2FD DF∴△ABG ∽△ADF ∴∠AGB=∠AFD ∴∠AGE=∠AFC ∵AM=AN , ∴OA ⊥MN又 OG ⊥BE ,∴∠OAQ+∠OGQ=180° ∴O 、A 、Q 、E 四点共圆 ∴∠AOQ=∠AGE 同理∠AOP=∠AFC ∴∠AOQ=∠AOP又∠OAQ=∠OAP=90°,OA=OA ∴△OAQ ➴△OAP ∴AP=AQ4、如图,分别以△ABC 的 AB 和 AC 为一边,在△ABC 的外侧作正方形 ABFG 和正方形 ACDE ,点 O 是 DF 的中点,OP ⊥BC求证:BC=2OP (初二)证明:分别过 F 、A 、D 作直线 BC 的垂线,垂足分别是 L 、M 、N ∵OF=OD ,DN ∥OP ∥FL ∴PN=PL∴OP 是✲形 DFLN 的中位线 ∴DN+FL=2OP ∵ABFG 是正方形 ∴∠ABM+∠FBL=90° 又∠BFL+∠FBL=90° ∴∠ABM=∠BFL又∠FLB=∠BMA=90°,BF=AB ∴△BFL ➴△ABM ∴FL=BM同理△AMC ➴△CND ∴CM=DN∴BM+CN=FL+DN ∴BC=FL+DN=2OP经 典 题(三)1、如图,四边形 ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与 CD 相交于 F . 求证:CE =CF .(初二)证明:连➓ BD 交 AC 于 O 。

八年级全等三角形简单证明题及答案(15道)

八年级全等三角形简单证明题及答案(15道)

∴BC=ED.
全等三角形的判定与性 质.
01
如图,在△ABC中, ∠C=90°,点D是AB边上的 一点,DM⊥AB,且 DM=AC,过点M作 ME∥BC交AB于点E.求证: △ABC≌△MED。
02
证明:∵MD⊥AB,
∴∠MDE=∠C=90°,
∵ME∥BC,
∴∠B=∠MED,
在△ABC与△MED中, ∠B=∠MED ∠C=∠EDM DM=AC ,
∠D=∠B , ∴△ADF≌△CBE(ASA), ∴AF=CE, ∴AF+EF=CE+EF,即
AE=CF.
全等三角形的判定与性 质.
11.在△ABC中,AB=CB,∠ABC=90°,F为AB延 长线上一点,点E在BC上,且AE=CF.求证: Rt△ABE≌Rt△CBF;
证明:∵∠ABC=90°,
角平分线的性质;全等三角形的判定与性质.
全等三角形的判定.
如图,在△ABC中, AB=AC,AD平分 ∠BAC.求证: ∠DBC=∠DCB.
解:∵AD平分∠BAC, ∴∠BAD=∠CAD. ∴在△ACD和△ABD中 AB=AC ∠BAD=∠CAD
AD=AD , ∴△ACD≌△ABD, ∴BD=CD, ∴∠DBC=∠DCB.
:∵AC平分∠BAD,
∴∠BAC=∠DAC,
在△ABC和△ADC中, AB=AD ∠BAC=∠DAC AC=AC ,
∴△ABC≌△ADC.
全等三角形的判定.
9.如图,已知 点E,C在线段
BF上, BE=CF, AB∥DE, ∠ACB=∠F.
求证: △ABC≌△DEF

证明:∵AB∥DE,
∴∠B=∠DEF.
全等三角形的判定与性质.

下学期八年级数学专题复习三:几何计算题、证明题(Word版含解析、练习设计)

下学期八年级数学专题复习三:几何计算题、证明题(Word版含解析、练习设计)
行分类,列举一部分和本期几何部分(以《平行四边形》为
主)的计算题、证明题,让我们共同来探究、解析
.
,…… ,……
一 . 以平行四边形为桥梁搭建起来的图形
例 1. □ ABCD 中, AB 4cm, AD 7cm , ABC 的平分线交 AD 于 A
F
E
D
E , 交 CD 的延长线于 F , 求 DF 的长?
BD 2PO , 故 AC BD , 由 对角线相等的平行四边形是矩形 ,可判定 □ ABCD 是矩形 .
例 2. 如图 , 矩形 ABCD 中 AB 5, BC 12 , 对角线 AC、 BD 交于点 O ;点 P 为矩形 ABCD 的边
AD 上的一个固定点,过点 P 作 PE AC , PF BD , 垂足分别为 E、 F .
O
B
A
E
F
O
C D
B
C
3. 矩形 ABCD 中, DF 平分 ADC , BDF 15 . 求 DOC 与 COF 的度数?
4. 矩形 ABCD 中, CE∥ BD ,则⊿ ACE 为等腰三角形吗?为什么?
A
D
O
B
C
E
5. 如图,在矩形 ABCD 中,点 E、F 分别在 BC、CD 上,将⊿ ABE 沿 AE 折叠,使点 B 在 AC 上
分析:
B
C
本题要求的 DF 长的途径有两条:其一 . DF CF CD ;其二 . DF DE AD AE .
采取第一途径可以少一些环节,根据平行四边形的性质和角的平分线的定义可以比较容易得出⊿
BCF 是等腰三角形,可得 CF CB ;由于平行四边形的对边相等可以得出 : CD AB 4cm ,

(完整版)八年级几何证明题集锦及解答值得收藏

(完整版)八年级几何证明题集锦及解答值得收藏

(完整版)八年级几何证明题集锦及解答值得收藏八年级几何全等证明题归纳1.如图,梯形ABCD中,AD∥BC,∠DCB=45°,BD⊥CD.过点C作CE⊥AB 于E,交对角线BD于F,点G为BC中点,连接EG、AF.求证:CF=AB+AF.证明:在线段CF上截取CH=BA,连接DH,∵BD⊥CD,BE⊥CE,∴∠EBF+∠EFB=90°,∠DFC+∠DCF=90°,∵∠EFB=∠DFC,∴∠EBF=∠DCF,∵DB=CD,BA=CH,∴△ABD≌△HCD,∴AD=DH,∠ADB=∠HDC,∵AD∥BC,∴∠ADB=∠DBC=45°,∴∠HDC=45°,∴∠HDB=∠BDC—∠HDC=45°,∴∠ADB=∠HDB,∵AD=HD,DF=DF,∴△ADF≌△HDF,∴AF=HF,∴CF=CH+HF=AB+AF,∴CF=AB+AF.2.如图,ABCD为正方形,E为BC边上一点,且AE=DE,AE与对角线BD交于点F,连接CF,交ED于点G.判断CF与ED的位置关系,并说明理由.解:垂直.理由:∵四边形ABCD为正方形,∴∠ABD=∠CBD,AB=BC,∵BF=BF,∴△ABF≌△CBF,∴∠BAF=∠BCF,∵在RT△ABE和△DCE中,AE=DE,AB=DC,∴RT△ABE≌△DCE,∴∠BAE=∠CDE,∴∠BCF=∠CDE,∵∠CDE+∠DEC=90°,∴∠BCF+∠DEC=90°,∴DE⊥CF.3.如图,在直角梯形ABCD中,AD∥BC,∠A=90o,AB=AD,DE⊥CD交AB于E,DF平分∠CDE交BC于F,连接EF.证DA明:CF=EF解:EB F C过D作DG⊥BC于G.由已知可得四边形ABGD为正方形,∵DE⊥DC∴∠ADE+∠EDG=90°=∠GDC+∠EDG,∴∠ADE=∠GDC.又∵∠A=∠DGC且AD=GD,∴△ADE≌△GDC,∴DE=DC且AE=GC.在△EDF和△CDF中∠EDF=∠CDF,DE=DC,DF为公共边,∴△EDF ≌△CDF,∴EF=CF4.已知:在⊿ABC中,∠A=900,AB=AC,D是AC的中点,AE⊥BD,AE延长线交BC于F,求证:∠ADB=∠FDC。

八年级下册几何证明题精选

八年级下册几何证明题精选

八年级下册几何证明题精选1、如图,矩形ABCD 中,AC 与BD 交于O 点,BE AC ⊥于BD CF E ⊥,于F ,求证:CF BE =2、 如图,在平行四边形ABCD 中,DN CL BL AN ,,,分别为D C B A ∠∠∠∠,,,的角平分线,试证明:四边形MNKL 是矩形3、 如图,矩形ABCD 的对角线相交于点O ,DE ∥CE AC ,∥CE DE DB ,,相交于E ,请判断四边形DOCE 的形状,并说明理由4、 如图,△ABC 中,B ACB ∠︒=∠,90的平分线交高CD 于点E ,交AC 于F ,G AB FG ,⊥为垂足,请证明:四边形CEGF 是菱形5、 如图,平行四边形ABCD 的对角线相交于点O ,EF 经过点O ,分别与边AB ,DC 相交于点F E ,,点N M ,分别是线段OC OA ,的中点,求证:四边形ENFM 是平行四边形6、 已知,如图,点M H F E ,,,分别是正方形ABCD 的四条边上的点,并且DM CH BF AE ===,求证:四边形EFHM 是正方形7、 如图,在梯形ABCD 中,N M ,分别为梯形两腰AB ,CD 的中点,ME ∥AN 交BC 于点E ,试证明:NE AM =8、 如图,在△ABC 中,AC AB =,CE BD ,分别为ACB ABC ∠∠,的平分线,求证:四边形EBCD 是等腰梯形9、 如图,在直角梯形纸片ABCD 中,AB ∥DC ,︒=∠90A ,CD 〉AD ,将纸片沿过点D 的直线折叠,使点A 落在边CD 上的点E ,折痕为DF ,连结EF 并展开纸片。

(1)求证:四边形ADEF 是正方形;(2)取线段AF的中点G ,连结EG ,结果CD BG =,试说明四边形GBCE 是等腰梯形10、 如图,在平行四边形ABCD 中,点E 是AD 的中点,BE 的延长线与CD 的延长线交于点P (1)求证:△≅ABE △DFE ;(2)试连结AF BD ,,判断四边形ABDF 的形状,并证明你的结论11、 如图,在正方形ABCD 中,F E ,分别是BC AB ,边上的点,且BF AE =,请问(1)AF 与DE 相等吗?为什么?;(2)AF 与DE 是否垂直?说明你的理由12、 已知,如图,在△ABC 中,D 是AC 的中点,E 是线段BC 延长线上一点,过点A 作BE 的平行线与线段ED 的延长线交于点F ,连接AE ,CF ;(1)求证:CE AF =;(2)若EF AC =,试判断四边形AFCE 是什么样的四边形,并证明你的结论。

八年级下册几何证明题

八年级下册几何证明题

八年级下册几何证明题若盘1淀帽圾段相壽城鶴棚吾两兼矯段或两个划轴菩是平面几何证朗中彌本也是最亜要閱一神稲第关帚很多基它问题确都可化归为此娄I可题寂证亠证明两空裁段国两耳柑茸耐市用的方览足利用全工三甬牺的[谒.基它卯找段中亟找酌性僮、ffl 平分我的性厳注睡膺二角形的判良弓性质聲也经H月到*例 1 EJOL 如图L 浙示.j^ABC中"ZC=9C°;AC = BC r AD=DB, AE = CF淞证:D& = DF分祐由MHC呈等輕宜角三角形可刘,m = MB =45° >B DMAS中鼠M考虑谨結CD禺得8= AD, zncF = 456>从而不难友现iPCF = QE说割;在亘焉三角形中,愕耕边上的中线是冃用时艳助袋;在諄搐三角形中,作玖苗的平分践或庶逼上的中彼或吾是常用的器助馥.显撚.在等脸亘吊三闻形中.虫应潼连给CD,因芮CD抵是捋边上的中练乂是鹰妙上的中隸.本題亦叮延民HD到G, ffiDG=DE・珪结BO.证凹氏樂等腰曲三甫孰育兴趣的同学K妬一试BAE7;火/ /FC F E制:已知’知團二所示,AB-CD* AD-BC. AE-CFu求证* ZE= ZF说明.飙1用三角形全手辽明赣段来角H手.幣须傑辅助堀制适全手三角形.这时应汪意「(1)刹道的全弄—津形应分別邑拷琨证中-北,<:)廉轴助氏世歸直振骨到酌两仕第三闪射*2、^L>MH.«TTrW4<±l守两呆頁空的倚肓天缺平行耳垂頁呈两秤特秣柯悔百*运两亘纬平厅.可用同伉电*冋请角肃同番內爲的关系来证,也可通过迪对应成比例、三角形电位疲定理还明*证两糸宜线垂宜,可韩化为证一亍角等于90° , 車利用两牛锐角互苏.爭弄禮三角形“三議甘一”来证.例弓如圈弓所示.谆RP、CQ予MECM內角平廿线.AH.人K分别为A到RP、匚Q的垂纬*球证,KH^TJC分祈「匚已知* BH平分/ARC卫.BH丄AH,延世AH兗EC于K,则B A=BNi AH=HN^同理,延长AK^BC i~M,R|JCA=CM- AK=KA“从面由三曲刑鬧中检统定理.SO KH BC □讣咽=延-^AH X BC于& 延怅丸K袞BC于MTRH 平分ZABC :.竺= £科EH又BH丄兀匕,-.ZAHB = ANHB= 90°..M閃=IBM [AS.4)BH=BH.-.BA- 5.V, AH HN同理.CA =C\t,AK = KA1二畑担JU3 ⑺电位线「.直占V.V 即KH BC说明*当一‘I二銷宪中出毘萌平吩践、冲些实長甥虫2时.则此三第出必为零將三滑刑・我们也可理斛应押- 5百(6一悒屯:沼垂口E讪朋祈(■轴对隊)而吐-沖翌HS一111上.祟证| FD_LED(o.育勇荐三角死栄件对*忡属辺上的高.然靠辰仞上中鑑.或罪呗角平令址是市用离朝第(:).证明前宜誌丢亘的方法却P①苜九号析亲杵*规幕能否歸捋供垂自的定理帚到.包括■诱常臣辅助纯、刀丰題证二"②掴剥待证三直线所覩感的三甬形.证明耳中两个税対互余.③诃田二自嶽的夬角弄干90° ,氛址朋一终民和的间題(1)在较快戡段上魅取一线段尋一較握蚓曇证瞄真金部分尋于另一線理线段.1?1 5.已知,如亜勺所示社二也亡中"一£-60= ZBAt\ ZBCA的曲平另或蠱1XCE相农于6取证=AC = AE + CD图6 戲寿脚’ H AC二出験AF = AL a易剂上运。

(完整版)八年级下册几何证明题

(完整版)八年级下册几何证明题

天生我才,文成不怠!God rewards the diligent , though , not a genius. 1_ D_ C_B _ C_ A _ B_ A_ B_ E _ B四边形试题1.已知:在矩形ABCD 中,AE ⊥BD 于E ,∠DAE=3∠BAE ,求:∠EAC 的度数。

2.已知:直角梯形ABCD 中,BC=CD=a 且∠BCD=60︒,E 、F 分别为梯形的腰AB 、DC 的中点,求:EF 的长。

3、已知:在等腰梯形ABCD 中,AB ∥DC ,AD=BC ,E 、F 分别为AD 、BC 的中点,BD 平分∠ABC 交EF 于G ,EG=18,GF=10求:等腰梯形ABCD 的周长。

4、已知:梯形ABCD 中,AB ∥CD ,以AD ,AC 为邻边作平行四边形ACED ,DC 延长线交BE 于F ,求证:F 是BE 的中点。

5、已知:梯形ABCD 中,AB ∥CD ,AC ⊥CB ,AC 平分∠A ,又∠B=60︒,梯形的周长是20cm, 求:AB 的长。

天生我才,文成不怠!God rewards the diligent , though , not a genius.2_ A _ B_B_ C _B _F _ B _ C _ F6、从平行四边形四边形ABCD 的各顶点作对角线的垂线AE 、BF 、CG 、DH ,垂足分别是E 、F 、G 、H ,求证:EF ∥GH 。

7、已知:梯形ABCD 的对角线的交点为E 若在平行边的一边BC 的延长线上取一点F ,使S ABC ∆=S EBF ∆,求证:DF ∥AC 。

8、在正方形ABCD 中,直线EF 平行于对角线AC ,与边AB 、BC 的交点为E 、F ,在DA 的延长线上取一点G ,使AG=AD , 若EG 与DF 的交点为H ,求证:AH 与正方形的边长相等。

9、若以直角三角形ABC 的边AB 为边,在三角形ABC 的外部作正方形ABDE ,AF 是BC 边的高,延长FA 使AG=BC ,求证:BG=CD 。

初中数学-几何证明经典试题(含答案)

初中数学-几何证明经典试题(含答案)

初中几何证明题经典题(一)1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO .求证:CD =GF .(初二)2、已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150.求证:△PBC 是正三角形.(初二)AP C DB A F GC EB O D3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、CC 1、DD 1的中点.求证:四边形A 2B 2C 2D 2是正方形.(初二)D 2C 2 B 2 A 2D 1 C 1 B 1 C BD A A 14、已知:如图,在四边形ABCD中,AD=BC,M、N分别是AB、CD的中点,AD、BC的延长线交MN于E、F.求证:∠DEN=∠F.经典题(二)1、已知:△ABC中,H为垂心(各边高线的交点),O为外心,且OM⊥BC于M.(1)求证:AH=2OM;(2)若∠BAC=600,求证:AH=AO.(初二)2、设MN是圆O外一直线,过O作OA⊥MN于A,自A引圆的两条直线,交圆于B、C及D、E,直线EB及CD分别交MN于P、Q.F3、如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题:设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE ,设CD 、EB 分别交MN 于P 、Q .(初二)4、如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形CBFG ,点P 是EF 的中点.求证:点P 到边AB 的距离等于AB 的一半.(初二)经典题(三)1、如图,四边形ABCD为正方形,DE∥AC,AE=AC,AE与CD相交于F.2、如图,四边形ABCD 为正方形,DE ∥AC ,且CE =CA ,直线EC 交DA 延长线于F .求证:AE =AF .(初二)3、设P 是正方形ABCD 一边BC 上的任一点,PF⊥AP ,CF 平分∠DCE . 求证:PA =PF .(初二)D4、如图,PC切圆O于C,AC为圆的直径,PEF为圆的割线,AE、AF与直线PO相交于B、D.求证:AB=DC,BC=AD.(初三)经典题(四)1、已知:△ABC是正三角形,P是三角形内一点,PA=3,PB=4,PC=5.求:∠APB的度数.(初二)2、设P是平行四边形ABCD内部的一点,且∠PBA=∠PDA.求证:∠PAB=∠PCB.(初二)3、设ABCD为圆内接凸四边形,求证:AB·CD+AD·BC=AC·BD.(初三)4、平行四边形ABCD中,设E、F分别是BC、AB上的一点,AE与CF相交于P,且AE=CF.求证:∠DPA=∠DPC.(初二)经典难题(五)1、 设P 是边长为1的正△ABC 内任一点,L =PA +PB +PC , 求证:≤L <2.1的正方形ABCD 内的一点,求PA +PB +PC 的最小值.、P 为正方形ABCD 内的一点,并且PA =a ,PB =2a ,PC =3a ,求正方形的边长.APCBACBP D A CBPD4中,∠ABC=∠ACB=800,D、E分别是AB、AC上的点,∠=200,求∠BED的度数.参考答案经典题(一)1.如下图做GH⊥AB,连接EO。

(完整版)八年级几何证明题集锦及解答值得收藏

(完整版)八年级几何证明题集锦及解答值得收藏

八年级几何全等证明题归纳1.如图,梯形ABCD中,AD∥BC,∠DCB=45°,BD⊥CD.过点C作CE⊥AB 于E,交对角线BD于F,点G为BC中点,连接EG、AF.求证:CF=AB+AF.证明:在线段CF上截取CH=BA,连接DH,∵BD⊥CD,BE⊥CE,∴∠EBF+∠EFB=90°,∠DFC+∠DCF=90°,∵∠EFB=∠DFC,∴∠EBF=∠DCF,∵DB=CD,BA=CH,∴△ABD≌△HCD,∴AD=DH,∠ADB=∠HDC,∵AD∥BC,∴∠ADB=∠DBC=45°,∴∠HDC=45°,∴∠HDB=∠BDC—∠HDC=45°,∴∠ADB=∠HDB,∵AD=HD,DF=DF,∴△ADF≌△HDF,∴AF=HF,∴CF=CH+HF=AB+AF,∴CF=AB+AF.2.如图,ABCD为正方形,E为BC边上一点,且AE=DE,AE与对角线BD交于点F,连接CF,交ED于点G.判断CF与ED的位置关系,并说明理由.解:垂直.理由:∵四边形ABCD为正方形,∴∠ABD=∠CBD,AB=BC,∵BF=BF,∴△ABF≌△CBF,∴∠BAF=∠BCF,∵在RT△ABE和△DCE中,AE=DE,AB=DC,∴RT△ABE≌△DCE,∴∠BAE=∠CDE,∴∠BCF=∠CDE,∵∠CDE+∠DEC=90°,∴∠BCF+∠DEC=90°,∴DE⊥CF.3.如图,在直角梯形ABCD中,AD∥BC,∠A=90º,AB=AD,DE⊥CD交AB于E,DF平分∠CDE交BC于F,连接EF.证DA明:CF=EF解:EB F C过D作DG⊥BC于G.由已知可得四边形ABGD为正方形,∵DE⊥DC∴∠ADE+∠EDG=90°=∠GDC+∠EDG,∴∠ADE=∠GDC.又∵∠A=∠DGC且AD=GD,∴△ADE≌△GDC,∴DE=DC且AE=GC.在△EDF和△CDF中∠EDF=∠CDF,DE=DC,DF为公共边,∴△EDF ≌△CDF,∴EF=CF4.已知:在⊿ABC中,∠A=900,AB=AC,D是AC的中点,AE⊥BD,AE延长线交BC于F,求证:∠ADB=∠FDC。

初中经典几何证明练习题(含答案)

初中经典几何证明练习题(含答案)

初中几何证明题经典题(一)1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO .求证:CD =GF .(初二)证明:过点G 作GH ⊥AB 于H ,连接OE ∵EG ⊥CO ,EF ⊥AB∴∠EGO=90°,∠EFO=90° ∴∠EGO+∠EFO=180° ∴E 、G 、O 、F 四点共圆 ∴∠GEO=∠HFG∵∠EGO=∠FHG=90° ∴△EGO ∽△FHG∴FG EO =HGGO∵GH ⊥AB ,CD ⊥AB ∴GH ∥CD ∴CD CO HG GO = ∴CD CO FG EO = ∵EO=CO ∴CD=GF2、已知:如图,P 是正方形ABCD 内部的一点,∠PAD =∠PDA =15°。

求证:△PBC 是正三角形.(初二) 证明:作正三角形ADM ,连接MP ∵∠MAD=60°,∠PAD=15° ∴∠MAP=∠MAD+∠PAD=75° ∵∠BAD=90°,∠PAD=15°∴∠BAP=∠BAD-∠PAD=90°-15°=75° ∴∠BAP=∠MAP ∵MA=BA ,AP=AP ∴△MAP ≌△BAP∴∠BPA=∠MPA ,MP=BP 同理∠CPD=∠MPD ,MP=CP ∵∠PAD =∠PDA =15°∴PA=PD ,∠BAP=∠CDP=75° ∵BA=CD∴△BAP ≌∠CDP ∴∠BPA=∠CPD∵∠BPA=∠MPA ,∠CPD=∠MPD ∴∠MPA=∠MPD=75°∴∠BPC=360°-75°×4=60°∵MP=BP ,MP=CP ∴BP=CP ∴△BPC 是正三角形3、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC的延长线交MN 于E 、F . 求证:∠DEN =∠F .证明:连接AC ,取AC 的中点G,连接NG 、MG ∵CN=DN ,CG=DG∴GN ∥AD ,GN=21AD∴∠DEN=∠GNM ∵AM=BM ,AG=CG∴GM ∥BC ,GM=21BC∴∠F=∠GMN ∵AD=BC ∴GN=GM∴∠GMN=∠GNM ∴∠DEN=∠F经典题(二)1、已知:△ABC 中,H 为垂心(各边高线的交点),O 为外心,且OM ⊥BC 于M . (1)求证:AH =2OM ;(2)若∠BAC =600,求证:AH =AO .(初二) 证明:(1)延长AD 交圆于F ,连接BF ,过点O 作OG ⊥AD 于G ∵OG ⊥AF ∴AG=FG ∵AB⌒ =AB ⌒ ∴∠F=∠ACB又AD ⊥BC ,BE ⊥AC ∴∠BHD+∠DBH=90° ∠ACB+∠DBH=90° ∴∠ACB=∠BHD ∴∠F=∠BHD∴BH=BF 又AD ⊥BC ∴DH=DF∴AH=AG+GH=FG+GH=GH+DH+DF+GH=2GH+2DH=2(GH+DH )=2GD 又AD ⊥BC ,OM ⊥BC ,OG ⊥AD ∴四边形OMDG 是矩形 ∴OM=GD ∴AH=2OM (2)连接OB 、OC∵∠BAC=60∴∠BOC=120° ∵OB=OC ,OM ⊥BC∴∠BOM=21∠BOC=60°∴∠OBM=30°∴BO=2OM由(1)知AH=2OM ∴AH=BO=AO2、设MN 是圆O 外一条直线,过O 作OA ⊥MN 于A ,自A 引圆的两条割线交圆O 于B 、C 及D 、E ,连接CD 并延长交MN 于Q ,连接EB 并延长交MN 于P. 求证:AP =AQ .证明:作点E 关于AG 的对称点F ,连接AF 、CF 、QF ∵AG ⊥PQ ∴∠PAG=∠QAG=90°又∠GAE=∠GAF ∴∠PAG+∠GAE=∠QAG+∠GAF 即∠PAE=∠QAF∵E 、F 、C 、D 四点共圆 ∴∠AEF+∠FCQ=180° ∵EF ⊥AG ,PQ ⊥AG ∴EF ∥PQ∴∠PAF=∠AFE ∵AF=AE∴∠AFE=∠AEF ∴∠AEF=∠PAF ∵∠PAF+∠QAF=180° ∴∠FCQ=∠QAF ∴F 、C 、A 、Q 四点共圆 ∴∠AFQ=∠ACQ 又∠AEP=∠ACQ ∴∠AFQ=∠AEP3、设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE ,设CD 、EB 分别交MN 于P 、Q .求证:AP =AQ .(初二)证明:作OF ⊥CD 于F ,OG ⊥BE 于G ,连接OP 、OQ 、OA 、AF 、AG ∵C 、D 、B 、E 四点共圆 ∴∠B=∠D ,∠E=∠C ∴△ABE ∽△ADC∴DF BG FD 2BG 2DC BE AD AB === ∴△ABG ∽△ADF ∴∠AGB=∠AFD ∴∠AGE=∠AFC ∵AM=AN , ∴OA ⊥MN 又OG ⊥BE ,∴∠OAQ+∠OGQ=180° ∴O 、A 、Q 、E 四点共圆 ∴∠AOQ=∠AGE 同理∠AOP=∠AFC ∴∠AOQ=∠AOP又∠OAQ=∠OAP=90°,OA=OA ∴△OAQ ≌△OAP在△AEP 和△AFQ 中 ∠AFQ=∠AEP AF=AE ∠QAF=∠PAE ∴△AEP ≌△AFQ ∴AP=AQ∴AP=AQ4、如图,分别以△ABC 的AB 和AC 为一边,在△ABC 的外侧作正方形ABFG 和正方形ACDE ,点O 是DF 的中点,OP ⊥BC 求证:BC=2OP (初二)证明:分别过F 、A 、D 作直线BC 的垂线,垂足分别是L 、M 、N ∵OF=OD ,DN ∥OP ∥FL ∴PN=PL∴OP 是梯形DFLN 的中位线 ∴DN+FL=2OP ∵ABFG 是正方形∴∠ABM+∠FBL=90° 又∠BFL+∠FBL=90° ∴∠ABM=∠BFL又∠FLB=∠BMA=90°,BF=AB ∴△BFL ≌△ABM ∴FL=BM同理△AMC ≌△CND ∴CM=DN∴BM+CN=FL+DN ∴BC=FL+DN=2OP经典题(三)1、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F .求证:CE =CF .(初二)证明:连接BD 交AC 于O 。

精典平面几何题汇总(适合初二)精编版

精典平面几何题汇总(适合初二)精编版

一、等腰直角三角形 题一∠ACB=90°,AC=BC,ED ⊥DF,D 为AB 中点 ①②12 S △ABC =S △EDF +S △EFC ③S △EDF = 12 S △ABC +S △EFC①另知:DE ⊥AC, DF ⊥BC②E 、F 分别在AC 、BC 内②E 、F 分别在AC 、BC 外题二已知∠BAC=90°,CD 平分∠ACB ,AC=AB,CD ⊥AE,求证:CD=2(OA+OD )题三:已知∠BAC=90°, AC=AB,D 为AB 中点, CD ⊥AE,求证:∠BDE=∠CDA 换说法:求证A 到DE 的距离等于OA题四:已知∠BAC=90°, AC=AB,D 为AC 中点, CF ∥AB,求证:CF=AD题五:已知∠ACB=90°, AC=BC,DA 平分∠BAC ,H 为AB 中点, BE ⊥AD,求证:CF=EC 。

判断:①AF=BE ,②AF=2BD ,③AF 垂直平分BE ,④AC+CF=AB ,⑤S △ACG = S △AHG ⑥AG=BD垂直角平分线题六:已知AB=AE ,BC=CA ,BC ⊥CA ,AD 平分∠BAC ,H 为AB 的中点。

求证:①△AFC ≌△BCE ②2DE=AF ,③判断△BDG 的形状并证明垂直角平分线题七:已知∠B=45°,∠C=30°,DE ⊥CA ,AE=AF ,GE=DF ,求证:①△ADG 为等腰直角三角形,②GC=2BD ,③∠BAD=15°F AC ED B HG FA C E DB HG F A B D CG E F题八:已知正方形ABCD ,DE=AD ,DF=BD ,求证:①BF 平分∠DBC ,②FH=2DG ,③CD=CG , ④S △CDG =S DHGE ⑤G 为FH 中点题九:已知∠A=90°,AB=AC ,EF ⊥AC ,D 为BC 的中点。

八年级下册几何证明题甄选

八年级下册几何证明题甄选

_ O_ A_ D_ E_ E_ F_A _B _ D_ C_ G_ A _ B_ D_ C_ E_ F_ D_ A _ B_ C_ E_ F_ A_ B_ D_ C八年级下册几何证明题(优选.)四边形试题1.已知:在矩形ABCD 中,AEBD 于E ,∠DAE=3∠BAE ,求:∠EAC 的度数。

2.已知:直角梯形ABCD 中,BC=CD=a 且∠BCD=60,E 、F 分别为梯形的腰AB 、DC 的中点,求:EF 的长。

3、已知:在等腰梯形ABCD 中,AB ∥DC ,AD=BC ,E 、F 分别为AD 、BC 的中点,BD 平分∠ABC 交EF于G ,EG=18,GF=10求:等腰梯形ABCD 的周长。

4、已知:梯形ABCD 中,AB ∥CD ,以AD ,AC 为邻边作平行四边形ACED ,DC 延长线交BE 于F ,求证:F 是BE 的中点。

5、已知:梯形ABCD 中,AB ∥CD ,AC CB ,AC 平分∠A ,又∠B=60,梯形的周长是20cm, 求:AB的长。

6、从平行四边形四边形ABCD 的各顶点作对角线的垂线AE 、BF 、CG 、DH ,垂足分别是E 、F 、G 、H ,求证:EF ∥GH 。

_B_ C_B_ F_ B _ C_ F_ C_ D_ B_ F_ B _A_ E7、已知:梯形ABCD 的对角线的交点为E 若在平行边的一边BC 的延长线上取一点F ,使S ABC ∆=S EBF ∆,求证:DF ∥AC 。

8、在正方形ABCD 中,直线EF 平行于对角线AC ,与边AB 、BC 的交点为E 、F ,在DA 的延长线上取一点G ,使AG=AD ,若EG 与DF 的交点为H ,求证:AH 与正方形的边长相等。

9、若以直角三角形ABC 的边AB 为边,在三角形ABC ABDE ,AF 是BC 边的高,延长FA 使AG=BC ,求证:BG=CD 。

10、正方形ABCD ,E 、F 分别是AB 、AD 延长线 上的一,EF 交BC 于G ,交AC于K ,交CD 于H ,求证:EG=GC=CH=HF 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级下册几何证明题精选
1、如图,矩形ABCD 中,AC 与BD 交于O 点,BE AC ⊥于BD CF E ⊥,于F ,求证:CF BE =
2、 如图,在平行四边形ABCD 中,DN CL BL AN ,,,分别为D C B A ∠∠∠∠,,,的
角平分线,试证明:四边形MNKL 是矩形
3、 如图,矩形ABCD 的对角线相交于点O ,DE ∥CE AC ,∥CE DE DB ,,相
交于E ,请判断四边形DOCE 的形状,并说明理由
4、 如图,△ABC 中,B ACB ∠︒=∠,90的平分线交高CD 于点E ,
交AC 于F ,G AB FG ,⊥为垂足,请证明:四边形CEGF 是菱形
5、 如图,平行四边形ABCD 的对角线相交于点O ,EF 经过点O ,分别与
边AB ,DC 相交于点F E ,,点N M ,分别是线段OC OA ,
的中点,求证:四B
边形ENFM 是平行四边形
6、 已知,如图,点M H F E ,,,分别是正方形ABCD 的四条边上的点,并且
DM CH BF AE ===,求证:四边形EFHM 是正方形
F
B
7、 如图,在梯形ABCD 中,N M ,分别为梯形两腰AB ,CD 的中点,ME ∥
AN 交BC 于点E ,试证明:NE AM =
8、 如图,在△ABC 中,AC AB =,CE BD ,分别为ACB ABC ∠∠,
的平分线,求证:四边形EBCD 是等腰梯形
9、 如图,在直角梯形纸片ABCD 中,AB ∥DC ,︒=∠90A ,CD 〉AD ,
将纸片沿过点D 的直线折叠,使点A 落在边CD 上的点E ,折痕为DF ,连结EF 并展开纸片。

(1)求证:四边形ADEF 是正方形;(2)取线段AF 的中点G ,连结EG ,结果CD BG =,试说明四边形GBCE 是等腰梯形
10、 如图,在平行四边形ABCD 中,点E 是AD 的中点,BE 的延长线与CD
的延长线交于点P (1)求证:△≅ABE △DFE ;(2)试连结AF BD ,,判断四边形ABDF 的形状,并证明你的结论
11、 如图,在正方形ABCD 中,F E ,分别是BC AB ,边上的点,且BF AE =,
请问(1)AF 与DE 相等吗?为什么?;(2)AF 与DE 是否垂直?说明你的理由
12、 已知,如图,在△ABC 中,D 是AC 的中点,E 是线段BC 延长线上一
点,过点A 作BE 的平行线与线段ED 的延长线交于点F ,连接AE ,CF ;
(1)求证:CE AF =;(2)若EF AC =,试判断四边形AFCE 是什么样的四边形,并证明你的结论。

13、 如图,在△ABC 中,AC AB =,CE BD ,分别为ACB ABC ∠∠,的平分线,
求证:四边形EBCD 是等腰梯形
14、 如图,在直角梯形纸片ABCD 中,AB ∥DC ,CD A ,90︒=∠﹥AD ,将
纸片沿点D 的直线折叠,使点A 落在边CD 上的点E ,折痕为DF ,连结EF 并展开纸片。

(1)求证:四边形ADEF 是正方形;(2)取线段AF 的中点G ,连结EG ,结果CD BG =,试说明四边形GBCE 是等腰梯形
15、 如图,在直角梯形ABCD 中,AB ∥DC ,A BC ∠=,5为直角,
,7,4
==AB DC 求AD 的长
16、 如图,在梯形ABCD 中,AC AB ⊥,,12,6,60,==︒=∠=BC AD B
CD AB 求
梯形ABCD 的周长
17、 如图,在梯形ABCD 中,AD ∥BC ,DC AB =,P 为梯形ABCD 外一点,
且,PD PA =求证△≅ABP △DCP
18、 如图,在Rt △ABC 中,CF 为直角的平分线,CA FD ⊥于D ,BC EF ⊥
于E,则四边形CDFE是怎样的四边形,为什么?
19、如图,已知:在△ABC中,AD
BAC⊥
∠,于E,DF
ED
∠平分BC
90︒
=
C,
∥AB交AC于F,试判定四边形AFDE是菱形,并说明理由
20、如图,已知菱形ABCD的对角线12
=BD
AC,BC
16=
,
DE⊥于点E,求DE的长
21、如图,等腰△ABC中,,
AB=M是BC的中点,
AC
⊥垂足分别是DE
F
E
D
GF
,

,相交于
,
,
G,
DE
,AB
,

,
AC
,
MG⊥
AB
MD
GF
AC
H,四边形HGMD是菱形吗?请说明理由
22、如图,延长平行四边形ABCD的边BC至E,DA至F,使EF
CE,
=与
AF BD交于O,求证:EF与BD互相平分
23、如图,平行四边形ABCD的对角线相交于点,O EF过点O分别与
AD,相交于点F
BC
E,;(1)求证:△AOE≅△COF;(2)若=OE
=
AB试求四边形EFCD的周长
BC
,3
,7
,4=
24、如图,平行四边形ABCD中,F
AD,的中点,AF与BE交
E,分别是BC
于点CE
G,和DF交于点H,求证:四边形EGFH是平行四边形。

相关文档
最新文档