因式分解法、直接开平方法
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章因式分解
1.2.1 因式分解法、直接开平方法(1)
主备人备课时间
集体修订时间课型新授课
授课人许大精授课时间
教学札记教学目标:
1、进一步体会因式分解法适用于解一边为0,另一边可分解成两个一次因式乘
积的一元二次方程。
2、会用因式分解法解某些一元二次方程。
3、进一步让学生体会“降次”化归的思想。
知识与能力:
通过两种方法解简单的一元二次方程,初步培养学生解方程的能力,培养学生
观察、类比、转化的思维能力.
情感态度价值观:
通过平方根的理论,因式分解的理论求一元二次方程的解,使学生建立旧知
与新知的联系,由已有的知识形成新的数学方法,激发学生的学习兴趣,让学生
形成勤奋学习的积极情感,为以后学习打下良好的基础.通过解方程的教学,了
解“未知”可以转化为“已知”的思想.
教学重点:
掌握用因式分解法解某些一元二次方程。
教学难点:
用因式分解法将一元二次方程转化为一元一次方程。
教学课时:1课时
教学方法:自主、合作、探究
教学媒体:多媒体
教学过程:
(一)复习引入1、提问:
(1) 解一元二次方程的基本思路是什么?
(2) 现在我们已有了哪几种将一元二次方程“降次”为一元一次方程的方法?
2、用两种方法解方程:9(1-3x)2=25
(二)创设情境
说明:可用因式分解法或直接开平方法解此方程。解得x1= ,,x2=- 。
1、说一说:因式分解法适用于解什么形式的一元二次方程。
[解] (1) 原方程可变形为2(3x-2)+(3x-2)(x+1)=0,
(3x-2)(x+3)=0,3x-2=0,或x+3=0,
所以x l= ,x2=-3
(2) 去括号、整理得x2+2x-3=12,x2+2x-15=0,
(x+5)(x-3)=0,x+5=0或x-3=0,
所以x1=-5,x2=3
先让学生动手解方程,然后交流自己的解题经验,教师引导学生归纳:对于含括号的一元二次方程,若能把括号看成一个整体变形,把方程化成一边为0,另一边为两个一次式的积,就不用去括号,如上述(1);否则先去括号,把方程整理成一般形式,再看是否能将左边分解成两个一次式的积,如上述(2)。
布置作业