高二上学期期中考试数学试题
江苏省徐州市第一中学2024-2025学年高二上学期11月期中检测数学试题
江苏省徐州市第一中学2024-2025学年高二上学期11月期中检测数学试题一、单选题1.数列15-,17,19-,111,……的通项公式可能是n a =()A .(1)32nn -+B .1(1)23n n --+C .(1)23nn -+D .1(1)32n n --+2.双曲线2213y x -=的渐近线方程是()A .3y x =±B .y =C .3y x=±D .13y x=±3.如图,在四面体OABC 中,OA a = ,OB b = ,OC c = ,2CQ QB =,P 为线段OA 的中点,则PQ等于()A .112233a b c++ B .112233a b c--C .112233a b c-++D .121233a b c-++4.在数列{}n a =,18a =,则数列{}n a 的通项公式为()A .22(1)n a n =+B .4(1)n a n =+C .28n a n =D .4(1)n a n n =+5.已知空间向量3,2a b == ,且2a b ⋅= ,则b 在a 上的投影向量为()A .aB .29aC .92aD 6.计算1098210223233+⨯+⨯+⋅⋅⋅+=()A .111132-B .111132+C .1131-D .1121-7.已知抛物线2:2(0)C y px p =>的焦点为F ,点(3,1)A 在C 的内部,若点B 是抛物线C 上的一个动点,且ABF △周长的最小值为4p =()A .1B .2C .3D .48.椭圆C :22221(0)x y a b a b+=>>的左、右焦点分别为F 1,F 2,点P (x 1,y 1),Q (-x 1,-y 1)在椭圆C 上,其中x 1>0,y 1>0,若|PQ |=2|OF 2|,11||||QF PF )A .⎛ ⎝⎦B .2]-C .12⎛⎤⎥ ⎝⎦D .1]-二、多选题9.下列结论中正确的是()A .若直线l 的方程10x ++=,则直线l 的倾斜角为2π3B .已知曲线22:2||2||C x y x y +=+(x,y 不全为0),则曲线C 的周长为C .若直线3260ax y ++=与直线220x a y -+=垂直,则32a =D .圆22:2410O x y x y ++++=与圆22:1M x y +=的公切线条数为210.设等差数列{}n a 的前n 项和为n S ,若812S S =,且1(1)n n n S nS ++<()n *∈N ,则()A .数列{}n a 为递增数列B .10S 和11S 均为n S 的最小值C .存在正整数k ,使得0k S =D .存在正整数m ,使得3m mS S =11.已知抛物线28y x =(如图),过抛物线焦点F 的直线l 自上而下,分别交抛物线和圆22(2)4x y -+=于A ,C ,D ,B 四点,则()A .12OA OB ⋅=-B .4AC BD ⋅=C .当直线l1283AB AF ⋅=D .418AF BF +≥三、填空题12.已知等比数列{}n a 的前n 项和为n S ,且510S =,1030S =,则20S =.13.已知双曲线()2222:10,0x y C a b a b-=>>的左右焦点分别为12,F F ,过1F 的直线分别交双曲线的左,右两支于,P Q 两点,若2PQF 为正三角形,则双曲线C 的离心率为.14.已知数列{}n a 的前n 项和为12,1,3,n S a a ==且()11222nn n n S S S n +-+=+≥.若()n n S a λλ-++5≥(2-λ)n 对*n N ∀∈都成立,则实数λ的最小值为.四、解答题15.已知圆C 经过两点()2,2A --,()6,2B ,且圆心在直线230x y -+=上.(1)求圆C 的方程;(2)过点()2,4P --作直线l 与圆C 交于M ,N 两点,若8MN =,求直线l 的方程.16.在数列{}n a ,{}n b 中,111a b ==,{}n b 为各项均为正数的等比数列,且其前三项和为74,{}n n a b 为等差数列,且其前三项和为9.(1)求{}n a ,{}n b 的通项公式;(2)求{}n a 的前n 项和n T .17.抛物线22(0)y px p =>被直线23y x =-截得的弦的中点M 的纵坐标为1.(1)求p 的值及抛物线的准线方程;(2)过抛物线的焦点F 作两条互相垂直的直线1l ,2l ,直线1l 与拋物线相交于A ,B 两点,直线2l 与抛物线相交于C ,D 两点,求四边形ACBD 的面积S 的最小值.18.已知椭圆C :()222210+=>>x y a b a b 的离心率为2,H ⎛ ⎝⎭是C 上一点.(1)求C 的方程.(2)设A ,B 分别为椭圆C 的左、右顶点,过点()1,0D 作斜率不为0的直线l ,l 与C 交于P ,Q 两点,直线AP 与直线BQ 交于点M ,记AP 的斜率为1k ,BQ 的斜率为2k .证明:①12k k 为定值;②点M 在定直线上.19.对于*N n ∀∈,若数列{}n x 满足11n n x x +->,则称这个数列为“K 数列”.(1)已知数列1,2m ,21m +是“K 数列”,求实数m 的取值范围.(2)是否存在首项为−2的等差数列{}n a 为“K 数列”,且其前n 项和n S 使得212n S n n <-恒成立?若存在,求出数列{}n a 的通项公式;若不存在,请说明理由.(3)已知各项均为正整数的等比数列{}n a 是“K 数列”,数列12n a ⎧⎫⎨⎬⎩⎭不是“K 数列”,若11n n a b n +=+,试判断数列是否为“K 数列”,并说明理由.。
浙江省宁波三锋联盟2024-2025学年高二上学期期中考试数学试卷含答案
2024学年第一学期宁波三锋教研联盟期中联考高二年级数学学科试题(答案在最后)考生须知:1.本卷共4页满分150分,考试时间120分钟.2.答题前,在答题卷指定区域填写班级、姓名、考场号、座位号及准考证号并填涂相应数字.3.所有答案必须写在答题纸上,写在试卷上无效.4.考试结束后,只需上交答题纸.选择题部分一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知直线l 过点()1,2A ,()3,4B ,则直线l 的倾斜角为()A.π6-B.π3-C.π4 D.π3【答案】C 【解析】【分析】求出直线的斜率,由斜率与倾斜角关系即可求解.【详解】由题可得:42131l k -==-,所以直线l 的倾斜角为:45︒;故选:C2.直线1l :10x y -+=与直线2l :2230x y -+=的距离是()A.24B.22C.D.1【答案】A 【解析】【分析】将直线2l 的方程化为302x y -+=,进而根据平行线间的距离公式计算求解即可.【详解】直线2l :2230x y -+=化为302x y -+=,又直线1l :10x y -+=,所以12l l //,所以直线1l 与直线2l 的距离是4=.故选:A.3.“01t <<”是“曲线2211x y t t+=-表示椭圆”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【答案】B 【解析】【分析】根据曲线表示椭圆,可求得t 的范围,根据充分、必要条件的定义,即可得答案.【详解】因为曲线2211x y t t +=-为椭圆,所以0101t t t t>⎧⎪->⎨⎪≠-⎩,解得01t <<且12t ≠,所以“01t <<”是“01t <<且12t ≠”的必要而不充分条件.故选:B4.如图,空间四边形OABC 中,OA a = ,OB b = ,OC c =,点M 在线段OA 上,且2OM MA =,点N 为BC 的中点,则MN =()A.211322a b c-++B.121232a b c -+C.221332a b c +- D.221332a b c +- 【答案】A 【解析】【分析】根据向量的线性运算即可求解.【详解】由题可知()1221123322MN ON OM OB OC OA a b c =-=+-=-++ ,故选:A5.在直三棱柱111ABC A B C -中,AB AC ⊥,1AB AC ==,1AA =,则异面直线1AC 与BC 所成角的余弦值为()A.3B.3-C.6D.6-【答案】C 【解析】【分析】依据题目中的垂直关系,可建立空间直角坐标系,求出向量1AC uuu r 与BC的坐标,即可求得异面直线1AC 与BC 所成角的余弦值.【详解】由题意可知,1,,AB AC AA三线两两垂直,所以可建立空间直角坐标系,如图所示:则 ǡ ǡ,(()()1,1,0,0,0,1,0C C B .∴(()1,1,1,0AC BC ==-.∴111cos ,6AC BC AC BC AC BC⋅===.异面直线1AC 与1CB所成角的余弦值为6.故选:C .6.已知点()3,0A ,()5,0B ,()0,5C ,圆()()22:221M x y -++=,一条光线从A 点发出,经直线BC反射到圆M 上的最短路程为()A.3B.4C.5D.6【答案】B 【解析】【分析】根据点关于直线的对称可得()5,2A ',即可根据三角形三边关系结合共线求解.【详解】直线BC 方程为155x y+=,即5y x =-+,设点()3,0A 关于直线BC 的对称点为(),A a b ',则133522ba ab ⎧=⎪⎪-⎨+⎪-+=⎪⎩,解得5,2a b ==,故()5,2A ',圆心为()2,2M -,半径为1r =,故5A M ==',因此过A 经过BC 反射在P 处,由于4AP PQ A P PQ A Q A M r +=+≥'≥-'=',故光线从A点发出,经直线BC 反射到圆M 上的最短路程为4,故选:B7.已知直线l :20x y --=与圆O :221x y +=,过直线l 上的任意一点P 作圆O 的切线PA ,PB ,切点分别为A ,B ,则APB ∠的最大值为()A.3π4B.2π3 C.π2D.π6【答案】C 【解析】【分析】由题意可得1sin APO OP∠=,可知当OP 最小时,APB ∠最大,结合点到直线的距离公式运算求解.【详解】由题意可知:圆22:1O x y +=的圆心为 ǡ ,半径为1,则圆心O 到直线l 1=>,可知直线l 与圆O 相离,因为2APB APO ∠=∠,且1sin OA APO OPOP∠==,当 最小时,则sin APO ∠最大,可得APO ∠最大,即APB ∠最大,又因为 的最小值即为圆心O 到直线l ,此时2πsin ,24APO APO ∠=∠=,所以APB ∠取得最大值π2.故选:C .8.设椭圆C 的两个焦点是1F ,2F ,过点1F 的直线与椭圆C 交于点P ,Q 若212PF F F =,且1134PF QF =,则椭圆C 的离心率为()A.13B.57 C.35D.34【答案】B 【解析】【分析】根据题意,用,a c 表示出112,,PF QF QF ,两次利用余弦定理即可容易求得.【详解】连接2QF ,如下图所示:由椭圆定义,以及已知条件,可得:()21123132,22,,222PF c PF a c QF a c QF a c ==-=-=+,在12PF F 和12QF F 中,由余弦定理可得:22222211221122112112022PF F F PF QF F F QF PF F F QF F F +-+-+=⨯⨯,代值整理可得:()()3220a c a c -+-=,57a c =,则离心率57c e a ==.故选:B.【点睛】本题考查椭圆离心率的求解,涉及余弦定理的使用,椭圆的定义,属综合中档题.二、选择题:本题共三小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,有选错的得0分,部分选对的得部分分.9.已知F 1,F 2分别是椭圆C :22195x y +=的左,右焦点,P 为椭圆C 上异于长轴端点的动点,则下列结论正确的是()A.12PF F 的周长为10 B.12PF F 面积的最大值为C.椭圆C 的焦距为6 D.椭圆C 的离心率为49【答案】AB 【解析】【分析】由椭圆的性质直接分析即可.【详解】对A ,因为椭圆C :22195x y +=,3,2a b c ∴===12PF F 的周长为2210a c +=,故A 正确;对B ,因为124F F =,面积最大时高最大,为b ,所以12PF F 面积的最大值为122c b ⋅⋅=B 正确;对C ,椭圆C 的焦距为4,故C 错误;对D ,椭圆C 的离心率为23c e a ==,故D 错误;故选:AB10.已知圆221:20O x y x ++=与圆222:2220O x y x y +---=交于A ,B 两点,则()A.两圆的公切线有2条B.AB 直线方程为210x y ++=C.255AB =D.动点(),P x y 在圆1O 上,则()221x y +-1+【答案】ABD 【解析】【分析】根据圆心距与半径的关系可判断两圆相交,即可判断A ,根据两圆方程相减即可判断B ,根据弦长公式即可求解C ,根据点点距离公式即可判断D.【详解】由题意可知()11,0,1O r -=,()21,1,2O R =,故()121,3O O ==,故两圆相交,公切线有2条,A 正确,221:20O x y x ++=与圆222:2220O x y x y +---=相减可得210x y ++=,故AB 直线方程为210x y ++=,B 正确,()21,1O 到直线210x y ++=的距离为d =5AB ==,故C 错误,()221x y +-可看作是圆1O 上的一个点(),P x y 到点()0,1B 的距离的平方,故PB 最大值为11BO r +=+,D 正确,故选:ABD11.如图,已知正方体1111ABCD A B C D -的棱长为2,点E ,F 在四边形1111D C B A 所在的平面内,若AE =AC DF ⊥,则下述结论正确的是()A.二面角1A BD A --的平面角的正切值为2B.1CF AC ⊥C.点E 的轨迹是一个圆D.直线DF 与平面1A BD 所成角的正弦值的最大值为33【答案】BCD 【解析】【分析】根据二面角的几何法可得其平面角为1AOA ∠,即可求解A ,根据勾股定理可得11A E =,即可求解C ,建立空间坐标系,即可根据向量垂直判断B ,根据向量的夹角即可得sin α=23321λ+求解D.【详解】对于A,连接,AC BD 相交于O ,连接1OA ,由于,AO BD ⊥且11A B DA AB ==,故1,A O BD ⊥因此1AOA ∠为二面角1A BD A --的平面角,故112tan 22A A AOA AO ∠===,故A 错误,对于C :在正方体1111ABCD ABCD -中,1AA ⊥平面1111D C B A ,1AE ⊂平面1111D C B A ,所以11AA A E ⊥,故22211AE AA A E =+,则有11A E =,所以点E 的轨迹是以1A 为圆心,1为半径的圆,故选项C 正确;对于B :在正方体中,平面ABCD ⊥平面11B BDD ,且两平面交线为BD ,,AC BD AC ⊥⊂平面ABCD ,故AC ⊥平面11B BDD ,因为AC DF ⊥,则DF ⊂平面11B BDD ,故F 在11B D 上,建立如图所示的空间直角坐标系,因为点F 的轨迹是线段11B D ,设111D F D B λ=,则(2F λ,22λ-,2),则(0A ,0,0),1(0A ,0,2),(2B ,0,0),(0D ,2,0),()2,2,0C ,()12,2,2C ,则(22CF λ=-,2λ-,2),()12,2,2AC = ,故()1222440CF AC λλ⋅=--+= ,进而可得1CF AC ⊥,故1CF AC ⊥,B 正确,又1(2A B =,0,2)-,(2BD =- ,2,0),(2DF λ= ,2λ-,2),设平面1A BD 的一个法向量为(n x =,y ,)z ,则有100n A B n BD ⎧⋅=⎪⎨⋅=⎪⎩ ,即220220x z x y -=⎧⎨-+=⎩,令1x =,则1y =,1z =,故平面1A BD 的一个法向量为(1n =,1,1),设DF 与平面1A BD 所成的角为α,则sin |cos DF α=< ,2222223|3444321n λλλλλ-+>==⨯+++,当0λ=时,sin α有最大值33,故AE 与平面1A BD 所成角的正弦值的最大值33,故D 正确.故选:BCD .非选择题部分三、填空题:本题共3小题,每小题5分,共15分.12.()2,,1a x =- ,()1,2,0b = ,2a b ⋅=,则a = ________.【答案】5【解析】【分析】根据数量积的坐标运算可得0x =,即可由模长公式求解.【详解】222a b x ⋅=+= ,解得0x =,故()22215a =+-= ,故答案为:513.已知正四面体P ABC -的棱长为1,空间中一点M 满足PM xPA yPB zPC =++,其中x ,y ,z ∈R ,且1x y z ++=.则PM的最小值______.【答案】63【解析】【分析】由题设知M 与A ,B ,C 共面,则||PM的最小值为三棱锥的高,在正四面体中,利用几何法即可求得.【详解】由PM xPA yPB zPC =++,且1x y z ++=,可知M 与A ,B ,C 共面,则||PM的最小值为三棱锥的高,设O 为P 在平面ABC 上的射影,连接CO 并延长交AB 于点H ,则CH AB ⊥,所以32CH =,所以33CO =,所以三棱锥的高为2361()33-=.故答案为:6314.已知点P 是椭圆2212516x y +=上一动点,Q 是圆22(3)1x y ++=上一动点,点(6,4)M ,则|PQ |-|PM |的最大值为______.【答案】6【解析】【分析】易知圆22(3)1x y ++=的圆心是()13,0F -为椭圆的左焦点,利用椭圆的定义得到122110111PQ PF PF PF ≤+=-+=-,然后由211PQ PM PF PM -≤--求解.【详解】如图所示:由2212516x y +=,得2225,16a b ==,则3c ==,所以椭圆的左,右焦点坐标分别为()13,0F -,()23,0F ,则圆22(3)1x y ++=的圆心()3,0-为椭圆的左焦点,由椭圆的定义得12210PF PF a +==,所以122110111PQ PF PF PF ≤+=-+=-,又25MF ==,所以211PQ PM PF PM -≤--,()2211111156PF PM MF =-+≤-=-=,故答案为:6.四、解答题:本题共5小题,共77分.解答应写成文字说明,证明过程或验算步骤.15.已知直线1l 经过点()2,3A .(1)若1l 与直线2l :240x y ++=垂直,求1l 的方程;(2)若1l 在两坐标轴上的截距相等,求1l 的方程.【答案】(1)210x y --=(2)50x y +-=或320x y -=【解析】【分析】(1)根据两直线垂直得到1l 的斜率,进而利用点斜式求出直线方程;(2)考虑截距为0和不为0两种情况,设出直线方程,待定系数法求出直线方程.【小问1详解】由题可知,2l 的斜率为12-,设1l 的斜率为k ,因为12l l ⊥,所以112k -=-,则2k =,又1l 经过点()2,3A ,所以1l 的方程为()322y x -=-,即210x y --=;【小问2详解】若1l 在两坐标轴上的截距为0,即1l 经过原点,设1l 的方程为y kx =,将()2,3A 代入解析式得23k =,解得32k =,故1l 的方程为320x y -=,若1l 在两坐标轴上的截距不为0,则设1l 的方程为1x ya a+=,由231a a+=,得5a =,故1l 的方程为50x y +-=,综上,1l 的方程为50x y +-=或320x y -=.16.已知直线:1,l y kx l =+与圆22:(1)4C x y -+=交于,A B 两点,点Q 在圆C 上运动.(1)当AB =时,求k ;(2)已知点()2,1P ,求PQ 的中点M 的轨迹方程.【答案】(1)0k =(2)2231122x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭【解析】【分析】(1)根据题意可得圆心()1,0C 到直线l 的距离1d =,结合点到直线的距离公式运算求解;(2)设(),M x y ,利用相关点法求点的轨迹方程.【小问1详解】由题意可知:圆22:(1)4C x y -+=的圆心()1,0C ,半径2r =,则圆心()1,0C 到直线l 的距离1d ==,1=,解得0k=.【小问2详解】设(),M x y ,因为点()2,1P ,且M 为PQ 的中点,则()22,21Q x y --,又因为点Q 在圆C 上,则()()22221214x y --+-=,整理得2231122x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭,所以点M 的轨迹方程为2231122x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭.17.在直三棱柱111ABC A B C -中,D 、E 分别是1AA 、BC 的中点,1AC BC ==,12AA =,90BCA ∠=︒.(1)求证://AE 平面1C BD ;(2)求点E 到平面1C BD 的距离.【答案】(1)证明见解析(2)66【解析】【分析】(1)根据题意,建立空间直角坐标系,利用空间向量的坐标运算即可证明线面平行;(2)根据题意,利用空间向量的距离求法,即可得到结果.【小问1详解】因为111ABC A B C -为直三棱柱,则1C C ⊥平面ABC ,且90BCA ∠=︒,以C 的原点,1,,CA CB CC 分别为x 轴,y 轴,z 轴的正半轴,建立如图所示的空间直角坐标系,因为1AC BC ==,12AA =,且D ,E 分别是1AA ,BC 的中点,则()()()()()110,0,0,1,0,0,0,0,2,0,1,0,1,0,1,0,,02C A C BDE ⎛⎫ ⎪⎝⎭,所以11,,02AE ⎛⎫=- ⎪⎝⎭ ,()()110,1,2,1,0,1C B C D =-=- ,设平面1C BD 的法向量为(),,n x y z =,则11200n C B y z n C D x z ⎧⋅=-=⎪⎨⋅=-=⎪⎩,则2x z y z =⎧⎨=⎩,取1z =,则1,2x y ==,则平面1C BD 的一个法向量为()1,2,1n =,因为AE ⊄平面1C BD ,且0AE n ⋅=,则//AE 平面1C BD .【小问2详解】由(1)可知,平面1C BD 的一个法向量为()1,2,1n =,且10,,02EB ⎛⎫= ⎪⎝⎭ ,则点E 到平面1C BD 的距离12626EB nd n⨯⋅===.18.如图,已知等腰梯形ABCD 中,//AD BC ,122AB AD BC ===,E 是BC 的中点,AE BD M = ,将BAE 沿着AE 翻折成1B AE △,使平面1B AE ⊥平面AECD.(1)求证:CD ⊥平面1B DM ;(2)求1B E 与平面1B MD 所成的角;(3)在线段1B C 上是否存在点P ,使得//MP 平面1B AD ,若存在,求出11B PB C的值;若不存在,说明理由.【答案】(1)证明见解析;(2)30°;(3)存在,1112B P BC =.【解析】【分析】(1)首先根据已知条件并结合线面垂直的判定定理证明AE ⊥平面1B MD ,再证明//AE CD 即可求解;(2)根据(1)中结论找出所求角,再结合已知条件即可求解;(3)首先假设存在,然后根据线面平行的性质以及已知条件,看是否能求出点P 的具体位置,即可求解.【详解】(1)因为//AD BC ,E 是BC 的中点,所以122AB AD BE BC ====,故四边形ABED 是菱形,从而AE BD ⊥,所以BAE 沿着AE 翻折成1B AE △后,1AE B M ⊥,AE DM ⊥,又因为1B M DM M ⋂=,所以AE ⊥平面1B MD ,由题意,易知//AD CE ,=CE AD ,所以四边形AECD 是平行四边形,故//AE CD ,所以CD ⊥平面1B DM ;(2)因为AE ⊥平面1B MD ,所以1B E 与平面1B MD 所成的角为1EB M ∠,由已知条件,可知AB AE CD ==,122AB AD BE BC ====,所以1B AE △是正三角形,所以130EB M ∠=,所以1B E 与平面1B MD 所成的角为30°;(3)假设线段1B C 上是存在点P ,使得//MP 平面1B AD ,过点P 作//PQ CD 交1B D 于Q ,连结MP ,AQ,如下图:所以////AM CD PQ ,所以A ,M ,P ,Q 四点共面,又因为//MP 平面1B AD ,所以//MP AQ ,所以四边形AMPQ 为平行四边形,故12AM PQ CD ==,所以P 为1B C 中点,故在线段1B C 上存在点P ,使得//MP 平面1B AD ,且1112B P BC =.19.已知1F 、2F 分别为椭圆 t的左、右焦点,点,13P ⎛⎫ ⎪ ⎪⎝⎭在椭圆C 上,离心率为12.(1)求椭圆C 的方程;(2)设A 为椭圆C 的左顶点,过点2F 的直线l 交椭圆C 于D 、E 两点,1827ADE S =△,求直线l 的方程.(3)若过椭圆上一点 ǡ 的切线方程为00221x x y ya b+=,利用上述结论,设d 是从椭圆中心到椭圆在点Q 处切线的距离,当Q 在椭圆上运动时,判断212d QF QF 是否为定值.若是求出定值,若不是说明理由.【答案】(1)22143x y +=(2)()1y x =±-(3)为定值,且定值为12,【解析】【分析】(1)根据椭圆上的点和a ,b ,c 的数量关系即可求出a ,b ,即得椭圆方程;(2)联立直线与椭圆方程,得韦达定理,即可根据三角形面积公式,代入化简求解斜率.(3)根据0(Q x ,0)y 的切线方程为00221x x y ym n+=,计算原点到切线的距离d =式可得101|||4|2QF x =+和201|||4|2QF x =-,对212||||d QF QF 化简计算即得.【小问1详解】设1(,0)F c -,2(,0)F c ,12c e a ==,故2a c =, 点26,13P ⎛⎫ ⎪ ⎪⎝⎭在椭圆C 上,则2224119a b +=,222b ac =- ,故得22224119a a c +=-,即2222411912aa a +=⎛⎫- ⎪⎝⎭解得2,a b ==,故椭圆C 的方程为22143x y +=.【小问2详解】由(1)知,(2,0)A -,2(1,0)F ,若直线l 的斜率不存在,则1x =,代入椭圆方程可得21143y +=,故32y =,此时211182233227ADE S y AF ==⨯⨯≠,故直线有斜率,直线l 的斜率为k ,则l 的方程为(1)y k x =-,由22(1)143y k x x y =-⎧⎪⎨+=⎪⎩消去y 得,2222(43)84120k x k x k +-+-=,①显然0∆>,设1(D x ,1)y ,2(E x ,2)y ,则221212228412,4343k k x x x x k k -+=⋅=++,于是,()2122111322ADE S y y AF k x x =-=⨯-==1827===,化简可得4217180k k +-=,即()()22117180k k -+=,解得1k =±,所以直线的方程为()1y x =±-【小问3详解】由于椭圆2222:1,(0)x y C m n m n+=>>上一点0(Q x ,0)y 的切线方程为00221x x y y m n +=.依题意,设椭圆上的点0(Q x ,0)y ,则过点0(Q x ,0)y 的切线方程为00143x x y y +=,即0034120x x y y +-=,原点到切线的距离为d ==由两点间距离公式可得,10142QF x ==+,同理201|||4|2QF x =-,则22120011|||||16|(16)44QF QF x x =-=-,故22120201441||||(16)124834d QF QF x x =⨯-=-为定值.【点睛】方法点睛:圆锥曲线中最值与定值问题的常见求法:(1)几何法,若题目的条件能明显体现几何特征和意义,则考虑利用图形性质来解决;(2)代数法,若题目的条件能体现一种明确的函数关系,则可首先建立目标函数,再求这个函数的最值或定值.。
广东省部分名校2024-2025学年高二上学期期中联考数学试题(含解析)
2024—2025年度高二上学期期中考试数学注意事项:1.答题前,考生务必将自己的姓名、考生号、考场号、座位号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.4.本试卷主要考试内容:北师大版选择性必修第一册第一章至第三章.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.绕原点逆时针旋转90°后所对应的直线的斜率为( )A.C.2.椭圆的两个焦点分别为,,长轴长为10,点在椭圆上,则的周长为( )A.16B.18C. D.203.已知抛物线的焦点为,点在抛物线上,定点,则的最小值为( )A.6B.7C.8D.94.已知双曲线的两个焦点分别为,,双曲线上有一点,若,则( )A.9B.1C.1或9D.11或95.在正方体中,,,则( )A. B.C. D.6.过抛物线的焦点作圆的切线,该切线交抛物线C 于A ,B 两点,则( )0y +=22:19x y C m+=1F 2F P C 12PF F △10+212y x =F P (5,2)Q ||||PQ PF +22:1412x y C -=1F 2F C P 15PF =2PF =1111ABCD A B C D -13AE AB = 134BF BD = EF =11231234AB AD AA -++ 11331244AB AD AA -+11121243AB AD AA --+ 11331244AB AD AA -++2:4C y x =22:(3)1P x y -+=||AB =A. B.14 C.15 D.167.如图,在四棱锥中,平面,与底面所成的角为,底面为直角梯形,,,,三棱锥的外接球为球,则平面截球所得截面圆的面积为( )A.B.C.D.8.圆幂是指平面上任意一点到圆心的距离与半径的平方差.在平面上任给两个不同圆心的圆,则两圆圆幂相等的点的集合是一条直线,这条线被称为这两个圆的根轴.已知圆与圆,是这两个圆根轴上一点,则的最大值为( )B. C. D.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知直线,直线,圆,则下列选项正确的是( )A.若,则B.若,则C.若与圆相交于,两点,则D.过上一点向圆作切线,切点为,则10.在菱形中,,,E 为AB 的中点,将沿直线DE 翻折至的位置,使得二面角为直二面角,若为线段的中点,则( )P ABCD -PA ⊥ABCD PB ABCD π4ABCD π2ABC BAD ∠=∠=2AD =1PA BC ==P ACD -O PBC O 9π811π89π411π421:2C x x +20y +=222:68160C x y x y +--+=P 21PC PC -1:(1)50l ax a y ++-=2:3450l x y -+=22:(3)(4)9C x y ++-=12//l l 37a =-12l l ⊥4a =-1l C A B min ||2AB =2l P C Q min ||PQ =ABCD 2AB =60BAD ∠=︒ADE △1A DE △1A DE C --P 1A CA.平面B.C.异面直线,所成的角为D.与平面11.已知椭圆的左、右焦点分别为,,是上任意一点,则下列结论正确的是( )A.若存在点,使得,则椭圆的离心率的取值范围为B.若存在点,使得,则椭圆的离心率的取值范围为C.若存在点,使得,且,则椭圆D.若存在点,使得,且,则椭圆三、填空题:本题共3小题,每小题5分,共15分.12.已知向量,,则向量在向量上的投影向量的模为___________.13.双曲线以椭圆的焦点为顶点,长轴的顶点为焦点,则双曲线的标准方程为___________,渐近线方程为___________.14.已知圆,直线,为圆上一动点,为直线上一动点,定点,则的最小值为___________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)已知椭圆上的点到其焦点的距离的最大值为16,最小值为4.(1)求椭圆的方程;(2)直线与椭圆相交于A ,B 两点,若线段AB 的中点坐标为,求直线的方程.16.(15分)//BP 1A DE DP EC⊥PB 1A D π31A B PBD 2222:1(0)x y C a b a b+=>>1F 2F P C P 12π2F PF ∠=C ⎛ ⎝P ||2aOP =C ⎫⎪⎪⎭P 122PF PF =12π3F PF ∠=C P 2||3a OP =122π3F PF ∠=C (5,9,1)a =(2,1,1)b = a b C 2212036x y +=C 22:(1)(3)4C x y ++-=:280l x y --=M C N l (7,4)P --||||MN PN +2222:1(0)x y C a b a b+=>>C l C (3,4)--l已知的顶点,,顶点满足,记顶点的轨迹为.(1)求曲线的方程.(2)过点的直线(斜率不为0)与曲线交于不同的两点P ,Q ,O 为坐标原点,试判断直线OP ,OQ 的斜率之积是否为定值.若为定值,求出该定值;若不是,说明理由.17.(15分)如图,在几何体中,平面平面,四边形和是全等的菱形,且平面平面,是正三角形,,.(1)求该几何体的体积;(2)求平面与平面夹角的余弦值.18.(17分)已知动点到点的距离比它到直线的距离小,记动点的轨迹为.(1)求轨迹的方程.(2)已知直线与轨迹交于A ,B 两点,以A ,B 为切点作两条切线,分别为,,且,相交于点.若,求.19.(17分)在平面内,若直线将多边形分为两部分,且多边形在两侧的顶点到的距离之和相等,则称为多边形的一条“等线”.已知双曲线与双曲线有相同的离心率,,分别为双曲线的左、右焦点,为双曲线右支上一动点,双曲线在点处的切线与双曲线的渐近线交于A ,B 两点(A 在B 上方),当轴时,直线为的等线.(1)求双曲线的方程;(2)若是四边形的等线,求四边形的面积;(3)已知为坐标原点,直线OP 与双曲线的右支交于点,试判断双曲线在点处的切线是否为的等线,请说明理由.ABC △(2,0)A -(3,0)B C 3||2||CA CB =C W W A l W 111ABDC A B C -111//A B C ABDC 11A ACC ABDC 11A ACC ⊥ABDC 111A B C △2AB =160A AC BAC ︒∠=∠=11A ABB 11B C D M 30,2⎛⎫⎪⎝⎭30y +=32M C C :3l y kx =+C 1l 2l 1l 2l P ||||AB AP =k l l l l 22122:1(0,0)x y C a b a b-=>>222:31C x y -=1F 2F 1C P 1C 1C P 1l 1C 2PF x ⊥y =12PF F △1C y =12AF BF 12AF BF O 2C Q 2C Q 2l 12AF F △[注]双曲线在其上一点处的切线方程为.2222:1(0,0)x y C a b a b-=>>()00,P x y 00221x x y y a b -=2024—2025年度高二上学期期中考试数学参考答案1.D的斜率为,倾斜角为120°,所以绕原点逆时针旋转90°后所对应的直线的倾斜角为30°,斜率为.2.B 因为长轴长为10,所以长半轴长,短半轴长,半焦距,故的周长为.3.C 因为等于点到准线的距离,所以当PQ 垂直于准线时,有最小值,最小值为.4.A因为,所以,故.5.D 因为,,所以.因为,所以.6.D 记抛物线的焦点为,则.记切点为,因为圆的圆心为,所以,,所以,所以直线AB 的方程为.设,,联立方程组得,所以,所以.7.A 如图,建立空间直角坐标系,则,,.易知三棱锥的外接球球心为PD 的中点,所以.设平面的法向量为,因为,,所以令,得.因为,所以点到平面的距离.0y +=tan 30=︒5a =3b =4c ==12PF F △2218a c +=||PF P ||||PQ PF +82Q px +=156PF a c =<+=2124PF PF a -==29PF =13AE AB = 134BF BD = 12334EF EB BF AB BD =+=+111BD BD DD AD AB AA =+=-+()1123133341244EF AB AD AB AA AB AD AA =+-+=-++C F (1,0)F Q P (3,0)P ||2PF =||1PQ =30PFQ ∠=︒1)y x =-()11,A x y ()22,Bx y 21),4,y x y x ⎧=-⎪⎨⎪=⎩21410x x -+=1214x x +=12||16AB x x p =++=(0,0,1)P (1,0,0)B (1,1,0)C P ACD -O 10,1,2O ⎛⎫ ⎪⎝⎭PBC (,,)n x y z = (1,0,1)BP =- (0,1,0)BC = 0,0,n BP x z n BC y ⎧⋅=-+=⎪⎨⋅==⎪⎩1x =(1,0,1)n = 10,1,2OP ⎛⎫=- ⎪⎝⎭ O PBC ||||OP n d n ⋅===设截面圆的半径为,则,所以截面圆的面积为.8.A 由题知,圆的圆心为,半径;圆的圆心为,半径.设点为圆与圆的根轴上的任意一点,则,所以,整理得,即圆与圆的根轴为直线.取关于对称的点,则.因为,所以在上,所以当,,三点共线时,取得最大值.因为到到,所以,即的最大值为.9.ABD 若,则,得,故A 正确.若,则,得,故B 正确.因为过定点,所以,故C 不正确.因为,所以当时,取得最小值.因为圆心到直线的距离,所以,故D 正确.10.AC 如图,建立空间直角坐标系,则,,,,.r222519||488r OP d =-=-=9π81C 1(1,0)C -11r =2C 2(3,4)C 23r =(,)P x y 1C 2C l 22221122PC r PC r -=-()()()22222211343x y x y++-=-+--20x y +-=1C 2C l 20x y +-=1C l1C '11PC PC '=12C C l ⊥1C '12C C P 1C '2C 2121PC PC PC PC '-=-12C C '1C l 2C l 12C C '=21PC PC -12//l l 15345a a +-=≠-37a =-12l l ⊥34(1)0a a -+=4a =-1l (5,5)M -min ||4AB ===2222||||||||9PQ PC CQ PC =-=-2PC l ⊥||PQ C 2l 4d ==min ||PQ ==1(0,0,1)A (1,0,0)B C D 12P ⎛⎫⎪ ⎪⎝⎭对于A ,因为,平面的一个法向量为,所以,所以平面,故A 正确.对于B ,因为,,所以,所以DP ,EC 不垂直,故B 错误.对于C ,因为,,所以,所以异面直线,所成的角为,故C 正确.对于D ,设平面的法向量为,因为,,所以令,得.设与平面所成的角为,因为,所以,,故D 错误.11.BCD 对于A ,只需,因为,所以,所以,故A 错误.对于B ,若存在,则只需,所以,故B 正确.对于C,因为,,所以,.因为,所以,,所以,故C 正确.12BP ⎛⎫= ⎪ ⎪⎝⎭1A DE (1,0,0)m =0BP m ⋅= //BP 1ADE 11,2DP ⎛⎫= ⎪ ⎪⎝⎭EC =102DP EC ⋅=≠ 10,2PB ⎛⎫=- ⎪ ⎪⎝⎭ 11)A D =-1cos ,PB A D = 1112PB A D PB A D ⋅=PB 1A D π3PBD (,,)n x y z =12BP ⎛⎫= ⎪ ⎪⎝⎭(BD =- 10,20,n BP y z nBD x ⎧⋅=+=⎪⎨⎪⋅=-+=⎩ x =n = 1A B PBD θ1(1,0,1)A B =-111sin cos ,A B n A B n A B nθ⋅====cos θ=b c ≤222b ac =-2222b ac c =-≤c e a ⎫=∈⎪⎪⎭||2a OP =2ab ≥e ⎫=⎪⎪⎭122PF PF =122PF PF a +=143a PF =223aPF =12π3F PF ∠=2221644214299332a a c a a =+-⨯⨯⨯223c a =c e a ==对于D ,因为,所以.因为,所以,所以.因为,所以,所以.由,得D 正确.向量在向量上的投影向量的模为.13.; 设双曲线的方程为,因为椭圆的焦点为,长轴顶点为,所以,,所以.故双曲线的标准方程为,渐近线方程为.14.11 设圆心关于对称的点为,则解得即,连接,(图略),所以,故的最小值为.15.解:(1)由题意,可知解得因为,所以椭圆的方程为.(2)设,,则122PF PF PO += 2221212122cos 4||PF PF PF PF F PF PO ++∠=122PF PF a +=()2222121212121639PF PF PF PF PF PF PF PF a +-=+-=2122027PF PF a =222121212122cos PF PF PF PF F PF F F +-∠=()2212124PF PF PF PF c +-=221244PF PF a c =-222204427a a c =-e =ab ||||b a b ⋅= 2211620y x -=y x =C 22221(0,0)y x a b a b-=>>2212036x y +=(0,4)±(0,6)±4a =6c =b ==C 2211620y x -=a y x x b =±=(1,3)C -l ()000,C x y 000013280,2232,1x y y x -+⎧-⨯-=⎪⎪⎨-⎪=-+⎪⎩005,9,x y =⎧⎨=-⎩0(5,9)C -0C N 0C P 0013CN PN C N PN C P +=+≥=MN PN +13211-=16,4,a c a c +=⎧⎨-=⎩10,6.a c =⎧⎨=⎩22264b a c =-=C 22110064x y +=()11,A x y ()22,B x y 221122221,100641,10064x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩两式相减得,整理可得.因为线段AB 的中点坐标为,所以,,.所以直线的斜率,故直线的方程为,即.16.解:(1)设,因为,所以,所以,所以的方程为.(2)设,,.联立方程组得,所以,.因为,所以,故直线OP ,OQ 的斜率之积为定值,且定值为.17.解:取AC 的中点,连接,,则,.因为平面平面,且交于AC ,所以平面.如图,以为坐标原点,,,的方向分别为x ,y ,z 轴的正方向建立空间直角坐标系,则,,,,,,,.(1)连接BC .因为,所以.因为,,所以,2222121210064x x y y --+=121212121625y y x xx x y y -+=-⨯-+(3,4)--126x x +=-128y y +=-l 1212121216166122525825y y x x k x x y y -+-==-⨯=-⨯=--+-l 124(3)25y x +=-+12251360x y ++=(,)C x y 3||2||CA CB =22229(2)94(3)4x y x y ++=-+22120x y x ++=W 22120(0)x y x y ++=≠:2l x my =-()11,P x y ()22,Q x y 222,120,x my x y x =-⎧⎨++=⎩()2218200m y my ++-=12281m y y m +=-+122201y y m =-+()()()222121212122222016422244111m m x x my my m y y m y y m m m -=--=-++=++=+++12125OP OQ y y k k x x ⋅==-5-O 1A O BO 1A O AC ⊥BO AC ⊥11A ACC ⊥ABDC 1A O ⊥ABDC O OB OC 1OA(0,1,0)A -B (0,1,0)C 2,0)D 1A 1B 1(0,C 1222ABC S =⨯⨯=△1OA =11113A B C ABC ABC V S OA -=⋅=△(BC = 1BB = 1cos ,BC BB = 1114||BC BB BC BB ⋅=则.设平面的法向量为,则令,得,因为,所以点到平面的距离所以,所以该几何体的体积.(2)设平面的法向量为,因为,,所以令,则.设平面的法向量为,因为,,所以所以.设平面与平面的夹角为,则,所以平面与平面夹角的余弦值为.18.解:(1)由题意知动点的轨迹是以为焦点,为准线的抛物线,所以轨迹的方程为.(2)设,,联立方程组得,则,.易知,的斜率存在,设的方程为,1sin B BC ∠=11B BCC S =四边形11B BCC (,,)n x y z = 10,0,n BC y n BB y ⎧⋅=+=⎪⎨⋅=+=⎪⎩ 1x =()1n =- (0,2,0)DB =- D 11B BCC ||||DB n d n ⋅==1111123D B BCC B BCC V S d -=⋅=四边形111115A B C ABC D B BCC V V V --=+=11A ABB ()111,,p x y z =AB = 1AA = 111110,0,p AB y p AA y ⎧⋅=+=⎪⎨⋅=+=⎪⎩ 11x =(1,p = 11B C D ()222,,q x y z =11(B C = 1(0,1,B D = 11221220,0,q B C y q B D y ⎧⋅=+=⎪⎨⋅=-=⎪⎩q = 11A ABB 11B C D θ||1cos |cos ,|||||5p q p q p q θ⋅=〈〉==11A ABB 11B C D 15M 30,2⎛⎫⎪⎝⎭32y =-C 26x y =2111,6A x x ⎛⎫ ⎪⎝⎭2221,6B x x ⎛⎫⎪⎝⎭26,3,x y y kx ⎧=⎨=+⎩26180x kx --=126x x k +=1218x x =-1l 2l 1l ()21116y x m x x -=-联立方程组得.由,解得,所以的方程为.同理可得,的方程为. 由解得即点.因为,,,且,所以,即,化简得,因此或故.因为直线为的等线,所以点在轴的上方,即.由,得因为双曲线的离心率为2,所以双曲线的离心率为,又因为,所以,所以,,所以双曲线的方程为.(2)设,则双曲线在点处的切线的方程为.双曲线的渐近线方程为,可得,()21121,66y x m x x x y⎧-=-⎪⎨⎪=⎩2211660x mx mx x -+-=()221136460m mx x ∆=--=13x m =1l 2111136y x x x =-2l 2221136y x x x =-21122211,3611,36y x x x y x x x ⎧=-⎪⎪⎨⎪=-⎪⎩1212,2,6x x x x x y +⎧=⎪⎪⎨⎪=⎪⎩1212,26x x x x P +⎛⎫ ⎪⎝⎭222121,6x x AB x x ⎛⎫-=- ⎪⎝⎭ ()12121,26x x x x x AP -⎛⎫-=⎪⎝⎭()22121,26x x x x x PB -⎫-⎛=⎪ ⎝⎭ ||||AB AP =()0AB AP PB +⋅=()()()()()222221212212112210236436x x x x x x x x x x x x x AB PB AP PB -+---⋅+⋅=+++= 22122227290x x x x ++=-=126,3x x =-⎧⎨=⎩126,3,x x =⎧⎨=-⎩12k =±y =12PF F △P x 2,b Pc a⎛⎫ ⎪⎝⎭2b a -=2b a=2C 1C 2ca=222c a b =+223b a =a =3b =1C 22139x y -=()00,P x y 1C P 1l 00139x x y y-=1C y =A x =B x =所以,所以是线段AB 的中点.因为点,到过原点的直线的距离相等,所以过原点的等线必定满足点A ,B 到该等线的距离相等,且分别位于两侧,所以该等线必过点,即直线OP 的方程为.方程组解得或所以.所以,,所以,故.(3)设,则双曲线在点处的切线的方程为.易知与在的右侧,在的左侧,因为,,所以点到的距离由得.因为,,所以,,所以因为点到的距离,点到的距离所以,即为的等线.02A B x x x +=+=P 1F 2F O O P y =22,1,39y x y⎧=⎪⎨-=⎪⎩3,x y =⎧⎪⎨=⎪⎩3,x y =-⎧⎪⎨=-⎪⎩P A A y ===+B B y ===--A B y y -=1212113622A B AF BF S F F y y =⋅-=⨯=四边形()11,Q x y 2C Q 2l 11310x x y y --=A 2F 2l 1F 2l A x =A y =A 2l 1d 0022,31,y y x x x y ⎧=⎪⎨⎪-=⎩22022003x x x y =-10x >220039x y -=013x x =013y y =1d 2F 2l 2d =1(F -2l 3d =123d d d +=2l 12AF F △。
2024-2025学年酒泉市高二数学上学期期中考试卷附答案解析
2024-2025学年酒泉市高二数学上学期期中考试卷考试时间120分钟,满分150分一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知数列1,3,……,则该数列的第25项是()A.7B.C. D.52.已知数列{}n a 的前n 项和()22n S n =+,则567a a a ++的值为()A.81B.36C.45D.333.在等差数列{}n a 中,67821a a a ++=,则59a a +的值为()A.7B.14C.21D.284.20y -+=的倾斜角为()A.π6B.π 3 C.2π3D.5π65.设n S 为数列{}n a 的前n 项和,若21n n S a =-,则791012a a a a ++的值为()A.8B.4C.14D.186.若点()1,2P -在圆22:0C x y x y m ++++=的外部,则m 的取值一定不是()A.4- B.1- C.0D.27.已知等差数列{}n a 的前n 项和为n S ,10a >,且316=S S ,则下列说法正确的是()A.公差0d >B.190S >C.使0nS <成立的n 的最小值为20D.110a >8.已知,A B 是圆224x y +=上的两个动点,且AB =,点()00,M x y 是线段AB 的中点,则004x y +-的最大值为()A.12B. C.6D.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知直线l 过点()0,4,40y -+=及x 轴围成等腰三角形,则直线l 的方程可能为()A.40y +-=B.40y -+=C.30y -+=D.3120y -+=10.已知数列{}n a 的前n 项和为n S ,则下列说法中正确的是()A.若2n S n =,则{}n a 是等差数列B.若2nn S =,则{}n a 是等比数列C.若{}n a 是等差数列,则202510132025S a =D.若{}n a 是等比数列,且0n a >,则221212n n nS S S -+⋅>11.已知圆221:20x y x O +-=和圆222:240O x y x y ++-=,则下列结论中正确的是()A.圆1O 与圆2O 相交B.圆1O 与圆2O 的公共弦AB 所在的直线方程为0x y -=C.圆1O 与圆2O 的公共弦AB 的垂直平分线方程为10x y +-=D.若AB 为圆1O 与圆2O 的公共弦,P 为圆1O 上的一个动点,则△PAB面积的最大值为1+三、填空题:本题共3小题,每小题5分,共15分.12.已知直线l 的方向向量为()1,2,且直线l 经过点()2,3-,则直线l 的一般式方程为________.13.圆C :22650x y x +-+=,0,0为圆C 上任意一点,则y x 的最大值为______.14.已知等比数列{}n a 的前n 项和2n n S a =-,N n +∈,则a =________;设数列{}n a 的前n 项和为n T ,若5n T n λ>+对N n +∈恒成立,则实数λ的取值范围为________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知直线()1:220l x m y +-=,2:220l mx y +-=,且满足12l l ⊥,垂足为C .(1)求m 的值及点C 的坐标.(2)设直线1l 与x 轴交于点A ,直线2l 与x 轴交于点B ,求ABC V 的外接圆方程.16.设{}n a 是等差数列,{}n b 是各项都为正数的等比数列,且111a b ==,3521a b +=,5313a b +=.(1)求{}n a ,{}n b 的通项公式;(2)求数列{}n n a b +的前n 项和n S .17.已知圆C :2244100x y x y m +----=,点()1,0P .(1)若17m =-,过P 的直线l 与C 相切,求l 的方程;(2)若C 上存在到P 的距离为1的点,求m 的取值范围.18.已知数列{}n a 满足:()*312232222n na a a a n n +++⋅⋅⋅+=∈N ,数列{}nb 满足5012n nb a =+.(1)求数列{}n a 的通项公式;(2)求100n n b b -+的值;(3)求12399b b b b +++⋅⋅⋅+的值.19.已知等差数列{}n a 的前n 项和为n S ,11a =,410S =,数列{}n b 满足13b =,121n n b b +=-.(1)证明:数列{}1n b -是等比数列;(2)证明:2112n n n n S b S b ++⋅>⋅;(3)若()421nn n a c b =-,求数列{}n c 的前n 项和nT 2024-2025学年酒泉市高二数学上学期期中考试卷考试时间120分钟,满分150分一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知数列1,3,……,则该数列的第25项是()A.7B.C. D.5【答案】A 【解析】【分析】根据数列的规律及通项可得数列的项.【详解】由已知数列1,,3,……,,……,则数列的第n第257=,故选:A.2.已知数列{}n a 的前n 项和()22n S n =+,则567a a a ++的值为()A.81B.36C.45D.33【答案】C 【解析】【分析】根据数列的前n 项和,可得数列的项,进而可得值.【详解】由已知数列{}n a 的前n 项和()22n S n =+,则75746a a a S S ++=-()()227242=+-+45=,故选:C.3.在等差数列{}n a 中,67821a a a ++=,则59a a +的值为()A.7B.14C.21D.28【答案】B 【解析】【分析】由等差中项的性质计算即可;【详解】因为在等差数列{}n a 中,67821a a a ++=,所以678773217a a a a a ++==⇒=,所以759214a a a ==+,故选:B.4.20y -+=的倾斜角为()A.π6B.π 3 C.2π3D.5π6【答案】B 【解析】【分析】先由直线方程得到斜率,进而可得其倾斜角.【详解】由题意可得直线的斜率为k =设其倾斜角为α,则tan α=,又[)0,πα∈,所以π3α=,故选:B5.设n S 为数列{}n a 的前n 项和,若21n n S a =-,则791012a a a a ++的值为()A.8B.4C.14D.18【答案】D 【解析】【分析】易知数列前n 和求出通项公式,再由等比数列的性质化简求得结果.【详解】当1n =时,11121a S a ==-,∴11a =,当2n ≥时,1121n n S a --=-,则1122n n n n n a S S a a --=-=-,∴12n n a a -=,即数列{}n a 是首项11a =,公比2q =的等比数列,即12n n a -=,∴()()27793210121011181a q a a a a q a q ++===++故选:D.6.若点()1,2P -在圆22:0C x y x y m ++++=的外部,则m 的取值一定不是()A.4-B.1- C.0D.2【答案】D 【解析】【分析】根据点在圆外及方程表示圆求出m 的范围得解.【详解】因为点()1,2P -在圆C :220x y x y m ++++=的外部,所以22(1)2120m -+-++>,解得6m >-,又方程表示圆,则1140m +->,即12m <,所以162m -<<,结合选项可知,m 的取值一定不是2.故选:D.7.已知等差数列{}n a 的前n 项和为n S ,10a >,且316=S S ,则下列说法正确的是()A.公差0d >B.190S >C.使0nS <成立的n 的最小值为20D.110a >【答案】C 【解析】【分析】根据等差数列的通项公式,前n 项和公式,结合条件10a >,逐项进行判断即可求解.【详解】设等差数列{}n a 的公差为d ,由316=S S ,得113316120a d a d +=+,即1131170a d +=,即11090a d a +==,又10a >,所以0d <,所以110a <;故AD 错,()1191910191902a a S a +===,故B 错因为190S =,0d <,所以180S >,200S <,所以0nS <成立的n 的最小值为20.故C 正确.故选:C8.已知,A B 是圆224x y +=上的两个动点,且AB =,点()00,M x y 是线段AB 的中点,则004x y +-的最大值为()A.12 B.C.6D.【答案】C 【解析】【分析】先根据题意求出M 的轨迹方程为222x y +=,设()00,M x y 到直线40x y +-=的距离为d ,由此可得004x y +-=,将问题转化为求圆222x y +=上的点到直线40x y +-=距离的最大值,先求圆心到直线的距离再加半径即可求解.【详解】根据已知有,圆心0,0,半径2r =,因为弦AB =,所以圆心到AB 所在直线的距离d ==又因为M 为AB 的中点,所以有OM =,所以M 的轨迹为圆心为0,0,半径为1r =的圆,M 的轨迹方程为222x y +=;令直线为40x y +-=,则()00,M x y 到直线40x y +-=的距离为d ,则d =,即004x y +-=,所以当d 最大时,004x y +-=也取得最大值,由此可将问题转化为求圆222x y +=上的点到直线40x y +-=距离的最大值的2倍,设圆心0,0到直线的距离为0d ,则0d ==,所以max 0d d =+=所以004x y +-的最大值为6.故选:C二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知直线l 过点()0,4,40y -+=及x 轴围成等腰三角形,则直线l 的方程可能为()A.40y +-=B.40y -+=C.30y -+= D.3120y -+=【答案】AD 【解析】【分析】由题意知直线l 过点()0,4,所以根据直线l 是否存在斜率进行分类讨论,结合等腰三角形等知识,即可求解.【详解】设()0,4为点A ,易知点()0,4A 40y -+=上,直线40y -+=与x轴的交点,03B ⎛⎫- ⎪ ⎪⎝⎭,当直线l 的斜率不存在时,因为直线l 过点()0,4,所以直线l 的方程为0x =,与x 轴的交点为()0,0O ;此时4OA =,3OB =,3AB =,所以AOB V 不是等腰三角形,故直线l 存在斜率;设B 关于y轴的对称点为C ⎫⎪⎭,当直线l 过A ,C 两点时,AB AC =,ABC V 是等腰三角形,同时直线ABπ3,所以ABC V 是等边三角形,所以AC BC =,此时直线l 的方程为144x y +=40y +-=,设直线l 与x 轴相交于点D,如图所示,若AB BD =,则π6ADB ∠=,所以直线AD ,即直线l的斜率为3,此时方程为343y x =+3120y -+=;所以直线l40y +-=3120y -+=故选:AD.10.已知数列{}n a 的前n 项和为n S ,则下列说法中正确的是()A.若2n S n =,则{}n a 是等差数列B.若2nn S =,则{}n a 是等比数列C.若{}n a 是等差数列,则202510132025S a =D.若{}n a 是等比数列,且0n a >,则221212n n nS S S -+⋅>【答案】AC 【解析】【分析】利用n S 和n a 的关系即可判断A ,B 选项;利用等差数列的求和公式即可判断C 选项;通过举例即可判断D 选项.【详解】对于A ,若2n S n =,则当1n >时,121n n n a S S n -=-=-,当1n =时,111a S ==,符合21n a n =-,故21n a n =-,则{}n a 是等差数列,故A 正确;对于B ,若2nn S =,则112a S ==,2212a S S =-=,3324a S S =-=,故a a a a ≠2312,{}n a 不是等比数列,故B 错误;对于C ,若{}n a 是等差数列,则()1202520251013202520252a a S a +==,故C 正确;对于D ,若1n a =,符合{}n a 是等比数列,且0n a >,此时()()22121212141n n S S n n n -+⋅-+==-,2224n S n =,不满足221212n n n S S S -+⋅>,故D 错误.故选:AC11.已知圆221:20x y x O +-=和圆222:240O x y x y ++-=,则下列结论中正确的是()A.圆1O 与圆2O 相交B.圆1O 与圆2O 的公共弦AB 所在的直线方程为0x y -=C.圆1O 与圆2O 的公共弦AB 的垂直平分线方程为10x y +-=D.若AB 为圆1O 与圆2O 的公共弦,P 为圆1O 上的一个动点,则△PAB 面积的最大值为1+【答案】ABC 【解析】【分析】根据圆的一般方程确定圆心、半径,判断1212||,,O O r r 的关系判断A ,两圆方程相减求相交线方程判断B ;应用点斜式写出公共弦AB 的垂直平分线方程判断C ;数形结合判断使△PAB 面积最大时P 点的位置,进而求最大面积判断D.【详解】由题设2121)1:(x O y -+=,则1(1,0)O ,半径11r =,222:(1)(2)5O x y ++-=,则2(1,2)O -,半径2r =,所以12||1,1)O O =,两圆相交,A 对;两圆方程相减,得公共弦AB 所在直线为0x y -=,B 对;公共弦AB 的垂直平分线方程为20(1)(1)11y x x -=⋅-=----,即10x y +-=,C 对;如下图,若O 与B 重合,而1O 到0x y -=的距离d =,且||2AB ==,要使△PAB 面积最大,只需P 到AB 的距离最远为11d r +=,所以最大面积为1121)22+=,D 错.故选:ABC三、填空题:本题共3小题,每小题5分,共15分.12.已知直线l 的方向向量为()1,2,且直线l 经过点()2,3-,则直线l 的一般式方程为________.【答案】270x y --=【解析】【分析】根据点斜式求得直线方程,并化为一般式.【详解】直线l 的方向向量为()1,2,所以直线l 的斜率为2,所以直线方程为()32224,270y x x x y +=-=---=.故答案为:270x y --=13.圆C :22650x y x +-+=,0,0为圆C 上任意一点,则0y x 的最大值为______.【答案】5【解析】【分析】设0y k x =,则直线00y kx =与圆有公共点,联立方程消元后,利用判别式即可得解.【详解】设y k x =,则00y kx =,联立0022000650y kx x y x =⎧⎨+-+=⎩,消元得()22001650k x x +-+=,由()2Δ362010k=-+≥,解得252555k -≤≤,所以00y x 的最大值为5.故答案为:514.已知等比数列{}n a 的前n 项和2n n S a =-,N n +∈,则a =________;设数列{}n a 的前n 项和为n T ,若5n T n λ>+对N n +∈恒成立,则实数λ的取值范围为________.【答案】①.1②.9λ<-【解析】【分析】根据等比数列的性质,结合2n n S a =-,有(2)(21)2n n a a --=-,即可求a 值,进而有12n n a -=即(1)l 2n n =-,结合5n T n λ>+对N n +∈恒成立求λ的范围即可.【详解】由等比数列的前n 项和2n n S a =-知,1q ≠,所以1(1)21n n n a q S a q-==--,所以2q =,而112a S a ==-,2q =,∴(2)(21)2n n a a --=-,即1a =,由上知:12nn a -=,则(1)l 2n n =-,∴==2−>5+,即226(3)9,N n n n n λ+<-=--∈,当3n =时,2(3)9,N n n +--∈的最小值为9-,所以9λ<-.故答案为:1;9λ<-四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知直线()1:220l x m y +-=,2:220l mx y +-=,且满足12l l ⊥,垂足为C .(1)求m 的值及点C 的坐标.(2)设直线1l 与x 轴交于点A ,直线2l 与x 轴交于点B ,求ABC V 的外接圆方程.【答案】(1)12m =;()1,1C .(2)()2211x y -+=【解析】【分析】(1)根据题意,求得两直线的斜率,结合121k k ×=-,求得12m =,得出直线的方程,联立方程组,求得交点坐标.(2)由(1)中的直线方程,求得()0,0A ,()2,0B ,得到ABC V 的外接圆是以AB 为直径的圆,求得圆心坐标和半径,即可求解.【小问1详解】解:显然1m ≠,可得1122k m =--,22k m =-,由12l l ⊥,可得121k k ×=-,即()12122m m ⎛⎫-⋅-=- ⎪-⎝⎭,解得12m =,所以直线1l :0x y -=,直线2l :20x y +-=,联立方程组020x y x y -=⎧⎨+-=⎩,解得11x y =⎧⎨=⎩,所以点()1,1C .【小问2详解】解:由直线1l :0x y -=,直线2l :20x y +-=,可得()0,0A ,()2,0B ,所以ABC V 的外接圆是以AB 为直径的圆,可得圆心1,0,半径112r AB ==,所以ABC V 的外接圆方程是()2211x y -+=.16.设{}n a 是等差数列,{}n b 是各项都为正数的等比数列,且111a b ==,3521a b +=,5313a b +=.(1)求{}n a ,{}n b 的通项公式;(2)求数列{}n n a b +的前n 项和n S .【答案】(1)21n a n =-,12n n b -=;(2)221nn S n =+-.【解析】【分析】(1)设公差为d ,公比为q ()0q >,根据已知列出方程可求出2=d ,2q =,代入通项公式,即可求出结果;(2)分组求和,分别求出{}n a 和{}n b 的前n 项和,加起来即可求出结果.【小问1详解】设{}n a 公差为d ,{}n b 公比为q ()0q >,因为111a b ==,则由3521a b +=可得,41221d q ++=,即4202q d =-,由5313a b +=可得,21413d q ++=,解得2124q d =-,则3d <.所以有()24202124q d d =-=-,整理可得2847620d d -+=,解得2=d 或3138d =>(舍去).所以2=d ,则212424q =-⨯=,解得2q =±(舍去负值),所以2q =.所以有()12121n a n n =+-=-,11122n n n b --=⨯=.【小问2详解】由(1)知,21n a n =-,12n n b -=,则1212n n n a b n -+=-+.()()()1122n n n S a b a b a b =++++++L 1212n n a a a b b b =+++++++ ()()112112212n n n n ⨯--=⨯++-221n n =+-.17.已知圆C :2244100x y x y m +----=,点()1,0P .(1)若17m =-,过P 的直线l 与C 相切,求l 的方程;(2)若C 上存在到P 的距离为1的点,求m 的取值范围.【答案】(1)1x =或3430x y --=(2)1212⎡---+⎣【解析】【分析】(1)对直线l 的斜率是否存在讨论,根据直线与圆的位置关系列式运算;(2)要使圆C 上存在到点P 的距离为1的点,则圆心C 到()1,0P 的距离d 满足,11180r d r m -≤≤+⎧⎨+>⎩,运算得解.【小问1详解】因为17m =-,所以圆C 的方程为()()22221x y -+-=①当l 的斜率不存在时,l 的方程为1x =,与圆C 相切,符合题意;②当l 的斜率存在时,设l 的方程为()1y k x =-,即kx y k 0--=,圆心C 到l 的距离1d =,解得34k =,则l 的方程为()314y x =-,即3430x y --=,综上可得,l 的方程为1x =或3430x y --=.【小问2详解】由题意可得圆C :()()222218x y m -+-=+,圆心()2,2C ,半径r =,则圆心C 到()1,0P 的距离d ==要使C 上存在到P 的距离为1的点,则11180r d r m -≤≤+⎧⎨+>⎩,即11180m -≤+>⎪⎩,解得1212m ---+≤≤,所以m 的取值范围为1212⎡---+⎣.18.已知数列{}n a 满足:()*312232222n n a a a a n n +++⋅⋅⋅+=∈N ,数列{}n b 满足5012n n b a =+.(1)求数列{}n a 的通项公式;(2)求100n n b b -+的值;(3)求12399b b b b +++⋅⋅⋅+的值.【答案】(1)2nn a =(2)5012(3)51992【解析】【分析】(1)根据题意,当2n ≥时,可得311223112222n n a a a a n --+++⋅⋅⋅+=-,两式相减,求得2n n a =,再由1n =,得到12a =,即可求得数列的通项公式.(2)由(1)得50122n n b =+,结合指数幂的运算法则,即可求得100n n b b -+的值;.(3)由(2)知1005012n n b b -+=,结合倒序相加法,即可求解.【小问1详解】由数列满足:()*312232222n n a a a a n n +++⋅⋅⋅+=∈N ,当2n ≥时,可得311223112222n n a a a a n --+++⋅⋅⋅+=-,两式相减,可得12n n a=,所以2n n a =,当1n =,可得112a =,所以12a =,适合上式,所以数列的通项公式为2n n a =.【小问2详解】由数列满足505011222n n n b a ==++,则100100505010050502222211122222nn n nn nn b b --+++++++==⋅5050505505005022+212(2+2)(222)21+22n n n n n =+==+.【小问3详解】由(2)知1005012n n b b -+=,可得123995050129509111222222b b b b +++⋅⋅⋅+++++++=,则999899997150580510211122222b b b b +++⋅⋅⋅++++++=+ ,两式相加可得123995099(2)2b b b b +++⋅⋅=⋅+,所以1239951992b b b b +++⋅⋅⋅=+.19.已知等差数列{}n a 的前n 项和为n S ,11a =,410S =,数列{}n b 满足13b =,121n n b b +=-.(1)证明:数列{}1n b -是等比数列;(2)证明:2112n n n n S b S b ++⋅>⋅;(3)若()421nn n a c b =-,求数列{}n c 的前n 项和n T .【答案】(1)证明见解析;(2)证明见解析;(3)11634994n n n T -+=-⋅.【解析】【分析】(1)由递推关系得112(1)n n b b +-=-,结合等比数列定义证明;(2)由等差数列前n 项和求基本量,结合(1)结论,写出等差、等比数列通项公式、前n 项和公式,再应用作差法比较大小即可;(3)应用错位相减、等比数列前n 项和求结果.【小问1详解】由题设112112(1)n n n n b b b b ++=-⇒-=-,而112b -=,所以{}1n b -是首项、公比均为2的等比数列,得证.【小问2详解】令数列{}n a 的公差为d ,而414646101S a d d d =+=+=⇒=,所以(1)(1)22n n n n n S n -+=+=,又12nn b -=,则2111(21)()222(1)22222n n n n n n n S b n n b n S ++++++=⨯-⨯⋅⋅-⨯(21)(1)22(1)2n n n n n n =++⨯-+⨯(1)20n n =+⨯>恒成立,所以2112n n n n S b S b ++⋅>⋅,得证.【小问3详解】由上知n a n =,则()4214441nn n n n a n nc b -===-,则21231444n n n T -=++++L ,即2311231444444n n n T n n --=+++++ ,所以2311131111411444444414n n n n n T n n --=+++++-=-- ,即11634994n n n T -+=-⋅。
浙江省宁波市镇海2024-2025学年高二上学期期中测试数学试卷含答案
镇海2024学年第一学期期中考试高二数学试题卷(答案在最后)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是正确的.1.在等差数列{}n a 中,已知12a =,315S =,则4a 等于()A.11B.13C.15D.16【答案】A 【解析】【分析】根据等差数列通项公式和前n 项和表达式即可得到方程,解出即可.【详解】设等差数列的公差为d ,则3111215S a a d a d =++++=,即6315d +=,解得3d =,则4132911a a d =+=+=.故选:A.2.若椭圆2212x y m +=的右焦点与抛物线24y x =的焦点重合,则m 的值为()A .1B.3C.4D.5【答案】B 【解析】【分析】求出抛物线的焦点坐标,可得出关于m 的等式,即可得解.【详解】对于抛物线24y x =,24p =,可得2p =,12p=,故该抛物线的焦点为()10F ,,由题意可知,椭圆的右焦点为()10F ,,则22221c a b m =-=-=,解得3m =,故选:B.3.若点P 到直线1x =-和它到点()1,0的距离相等,则点P 的轨迹方程为()A.2x y =B.2y x= C.24x y= D.24y x=【答案】D 【解析】【分析】分析可知点P 的轨迹是以点()1,0为焦点,直线1x =-为准线的抛物线,即可得解.【详解】因为点P 到直线1x =-和它到点()1,0的距离相等,所以,点P 的轨迹是以点()1,0为焦点,直线1x =-为准线的抛物线,设其方程为22y px =,则12p=,可得2p =,故点P 的轨迹方程为24y x =.故选:D.4.任取一个正整数,若是奇数,就将该数乘3再加上1;若是偶数,就将该数除以2.反复进行上述两种运算,经过有限次步骤后,必进入循环圈1421→→→.这就是数学史上著名的“冰雹猜想”(又称“角谷猜想”等).已知数列{}n a 满足:11a =,1,231,nn n n n a a a a a +⎧⎪=⎨⎪+⎩当为偶数当为奇数,则2024S =()A.4720B.4722C.4723D.4725【答案】C 【解析】【分析】根据“冰雹猜想”结合递推关系,利用规律求解即可【详解】1234561,4,2,1,4,2,a a a a a a ====== ,可知数列{}n a 是以3为周期的数列,因为202423674-=⨯,所以()2024674142144723S =⨯++++=,故选:C5.已知函数()f x 是奇函数,函数()g x 是偶函数,且当0x >时,()0f x '>,()0g x '>,则0x <时,以下说法正确的是()A.()()0f x g x ''+>B.()()0f xg x ''->C.()()0f x g x ''> D.()()0f x g x ''>【答案】B 【解析】【分析】通过函数的奇偶性与导函数的符号,判断当0x <时导函数的符号结合不等式性质即可判断各项.【详解】因为函数()f x 是奇函数,所以函数在对称区间上单调性相同,又当0x >时,()0f x '>;所以当0x <时,()0f x '>;因为函数()g x 是偶函数,所以函数在对称区间上单调性相反;又当0x >时,()0g x '>;所以当0x <时,()0g x '<;而当()()g x f x ''>时,()()0f x g x ''+<,故A 错;由()0g x '<,则()0g x '->,又()0f x '>,所以()()0f x g x ''->,故B 对;()(),f x g x ''异号,所以()()0f x g x ''<,()()0f x g x ''<,故CD 错;故选:B6.若函数()211kx f x x +=+在[)2,+∞上单调递增,则k 的取值范围为()A.43k ≥-B.1k ≤- C.1k ≤ D.43k ≤-【答案】D 【解析】【分析】求出导函数,根据单调性把问题转化为不等式恒成立,利用函数单调性求出最值即可【详解】由()211kx f x x +=+,得()()22221kx x k f x x --++'=,又()f x 在[)2,+∞上单调递增,所以′≥0在[)2,+∞上恒成立,即220kx x k +-≤在[)2,+∞上恒成立,即21k x x ≤-在[)2,+∞上恒成立,只需求出21x x-的最小值即可,又1t x x =-在[)2,+∞单调递减,所以32t ≤-,则2103t -≤<,所以4203t-≤<,故43k ≤-.故选:D7.已知2023log 2024a =,2024log 2025b =,2025log 2026c =,则()A.a b c >>B.a c b>> C.c b a>> D.c a b>>【答案】A【解析】【分析】构造函数()()ln 1ln x f x x+=,其中1x >,利用导数分析函数()f x 在()1,+∞上的单调性,可得出()2023a f =,()2024b f =,()2025c f =,结合函数()f x 的单调性可得出a 、b 、c 的大小关系.【详解】构造函数()()ln 1ln x f x x+=,其中1x >,当1x >时,11x x +>>,()ln 1ln 0x x +>>,由不等式的性质可得()()1ln 1ln x x x x ++>,()()()()()()()22ln 1ln ln 1ln 110ln 1ln x x x x x x x x f x x x x x +--+++'==<+⋅,所以,函数()f x 在()1,+∞上为减函数,因为()2023ln 2024log 20242023ln 2023a f ===,()2024ln 2025log 20252024ln 2024b f ===,()2025ln 2026log 20262025ln 2025c f ===,所以,()()()202320242025f f f >>,即a b c >>,故选:A.8.已知椭圆22:13627x y C +=,左焦点为F ,在椭圆C 上取三个不同点P 、Q 、R ,且2π3PFQ QFR RFP ∠=∠=∠=,则123FP FQ FR ++的最小值为()A.4336- B.4339- C.42339- D.4333-【答案】B 【解析】【分析】以F 为顶点,x 轴的正方向为θ始边的方向,FP 为角θ的终边,推导出92cos PF θ=-,同理可得出92π2cos 3FQ θ=⎛⎫-+ ⎪⎝⎭,94π2cos 3FR θ=⎛⎫-+ ⎪⎝⎭,然后利用三角恒等变换化简可得出123FP FQ FR++的最小值.【详解】在椭圆C 中,6a =,b =3c =,如下图所示:椭圆的左准线为212a x c=-=-,以F 为顶点,x 轴的正方向为θ始边的方向,FP 为角θ的终边,当π02θ<<时,过点P 作PN l ⊥,过点F 作FM PN ^,垂足分别为点N 、M ,易知四边形EFMN 为矩形,则21239a MN EF c c==-=-=,由椭圆第二定义可得12PF e PN==,则2PN PF =,又因为//PN x 轴,则FPN θ∠=,所以,cos PM PFθ=,所以,cos PM PF θ=,因为PN PM MN =+,即2cos 9PF PF θ=+,所以,92cos PF θ=-,同理可知,当θ为任意角时,等式92cos PF θ=-仍然成立,同理可得92π2cos 3FQ θ=⎛⎫-+ ⎪⎝⎭,94π2cos 3FR θ=⎛⎫-+ ⎪⎝⎭,因此,2π4π42cos 63cos 1232cos 33999FP FQ FR θθθ⎛⎫⎛⎫-+-+ ⎪ ⎪-⎝⎭⎝⎭++=++412π4πcos 2cos 3cos 3933θθθ⎡⎤⎛⎫⎛⎫=-++++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦413cos cos cos 3922θθθθθ⎛⎫=--+-- ⎪ ⎪⎝⎭4134πsin cos 3922393θθθ⎛⎫⎛⎫=++=++ ⎪ ⎪ ⎪⎝⎭⎝⎭,故123FP FQ FR ++的最小值为4339-.故选:B.【点睛】方法点睛:圆锥曲线中的最值问题解决方法一般分两种:一是几何法,特别是用圆锥曲线的定义和平面几何的有关结论来求最值;二是代数法,常将圆锥曲线的最值问题转化为二次函数或三角函数的最值问题,然后利用基本不等式、函数的单调性或三角函数的有界性等求最值.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对得6分,部分选对的得部分分,有选错的得0分.9.下列选项正确的是()A.1y x =,21y x'=- B.2x y =,2ln2x y '=C.ln y x =,1y x'=D.cos2y x =,sin2y x=-'【答案】ABC 【解析】【分析】对于ABC ,由基本初等函数的导数公式即可判断;对于D ,由复合函数的求导法则即可求出函数cos2y x =的导函数,从而得解.【详解】对于A ,1y x =,则21y x'=-,故A 正确;对于B ,2x y =,则2ln2x y '=,故B 正确;对于C ,ln y x =,则1y x'=,故C 正确;对于D ,cos2y x =,则()22sin 2sin2x x y =⨯=--',故D 错误.故选:ABC.10.已知抛物线2:4C y x =,F 为其焦点,直线l 与抛物线交C 于()11,M x y ,()22,N x y 两点,则下列说法正确的是()A.若点A 为抛物线上的一点,点B 坐标为()3,1,则AF AB +的最小值为3B.若直线l 过焦点F ,则以MN 为直径的圆与1x =-相切C.若直线l 过焦点F ,当MN OF ⊥时,则5OM ON ⋅=D.设直线MN 的中点坐标为()()000,0x y y ≠,则该直线的斜率与0x 无关,与0y 有关【答案】BCD 【解析】【分析】利用抛物线的定义以及数形结合可判断A 选项;利用抛物线的焦点弦公式可判断B 选项;求出M 、N 的坐标,利用两点间的距离公式可判断C 选项;利用点差法可判断D 选项.【详解】对于A 选项,如下图所示:抛物线的焦点为()10F ,,准线为:1l x =-,设点A 在直线l 上的射影点为D ,由抛物线的定义可得AD AF =,则AB AF AB AD +=+,当且仅当A 、B 、D 三点共线时,即当BD l ⊥时,AB AF +取最小值314+=,A 错;对于B 选项,若直线l 过焦点F ,则122=++MN x x ,线段MN 的中点E 到直线l 的距离为1212x x d +=+,所以,2MN d =,因此,以MN 为直径的圆与1x =-相切,B 对;对于C 选项,当MN OF ⊥时,直线MN 的方程为1x =,联立214x y x =⎧⎨=⎩可得12x y =⎧⎨=±⎩,不妨取()1,2M 、()1,2N -,则OM ON ==,此时,5OM ON ⋅=,C 对;对于D 选项,线段MN 的中点坐标为()()000,0x y y ≠,若MN x ⊥轴,则线段MN 的中点在x 轴上,不合乎题意,所以直线MN 的斜率存在,由题意可得12012022x x x y y y +=⎧⎨+=⎩,由21122244y x y x ⎧=⎨=⎩作差得()()()1212124y y y y x x -+=-,所以,121212004422MN y y k x x y y y y -====-+,D 对.故选:BCD.11.数列{}n a 满足11a =,22a =,21n n n a a a ++>+,则下列结论中一定正确的是()A .1050a > B.20500a < C.10100a < D.20500a >【答案】AD 【解析】【分析】根据数列的递推关系可判断各项的取值范围.【详解】由题意得,数列{}n a 为递增数列.n *∀∈N ,21n n n a a a ++>+,11a =,22a =,所以,3213a a a >+=,4325a a a >+>,5438a a a >+>,65413a a a >+>,76521a a a >+>,87634a a a >+>,98755a a a >+>,109889a a a >+>,11109144a a a >+>,121110233a a a >+>,131211377a a a >+>,141312610a a a >+>,151413987a a a >+>,1615141597a a a >+>,1716152584a a a >+>,1817164181a a a >+>,1918176765a a a >+>,20191810946a a a >+>.故选:AD.【点睛】关键点点睛:解本题的关键在于利用递推公式逐项求解各项的范围即可.三、填空题:本题共3小题,每小题5分,共15分.12.已知1n a +=,11a =,则100a =__________.【答案】110##0.1【解析】【分析】把递推公式变形并判断数列21n a ⎧⎫⎨⎬⎩⎭是等差数列,然后求出通项即可求得【详解】由1n a +=,得221111n n a a +-=,又11a =,则2111a =,所以数列21n a ⎧⎫⎨⎬⎩⎭首项为1,公差为1的等差数列,所以21nn a =,又1n a +=可得10nn a a +>,又11a =,所以0n a >,得n a =,所以100110a ==,故答案为:11013.已知双曲线22221x y a b-=与直线1y x =-相交于A ,B 两点,其中AB 中点的横坐标为23-,则该双曲线的离心率为_____.【答案】2【解析】【分析】根据点差法可求,a b 的关系,从而可求离心率.【详解】设1,1,2,2,AB 中点为M ,则23M x =-,故53M y =-,因为2222112222221,1x y x y a b a b -=-=,故()()()()1212121222x x x x y y y y a b -+-+-=,所以()()12122225330x x y y a a ⎛⎫⎛⎫-⨯--⨯- ⎪ ⎪⎝⎭⎝⎭-=,而1AB k =,故2225033a b -+=,故22222522b a c a ==-,故2c a =,故答案为:214.已知函数()()()5e ln 155xf x a x a x =++-+-,若()0f x ≥在()0,∞+上恒成立,则实数a 的取值范围为__________.【答案】5a ≤【解析】【分析】就0a >、0a ≤分类讨论,前者再就05,5a a ≤≤>分类后结合导数的符号讨论单调性后可得相应范围,后者结合常见的函数不等式可得恒成立,故可得参数的取值范围.【详解】当0a >时,()()15e 55e ,011x x a a f x a a x x x '=+--=+++-->,设()()5e ,011xa g x a x x =++-->,则()()25e 1x a g x x '=-+因为0a >,故()25e 1,xay x y =-+=均为()0,∞+上的增函数,故()g x '在()0,∞+上为增函数,若50a -≥即05a <≤,则()0g x '>在()0,∞+上恒成立,故()g x 在()0,∞+上为增函数,故()()00g x g >=恒成立,故()f x 为()0,∞+上为增函数,故()()00f x f >=恒成立,故05a <≤符合,若50a -<即5a >,此时()050g a '=-<,而)1110g '=->,故存在()01x ∈,使得()00g x '=,且()00,x x ∀∈,()0g x '<即()g x 在()00,x 上为减函数,故()00,x x ∀∈,()()00g x g <=即()f x 在()00,x 上为减函数,故()()00f x f <=,与题设矛盾,当0a ≤时,设()()ln 1,0s x x x x =-+>,则()01xs x x '=>+,故()s x 在()0,∞+上为增函数,故()()00sx s >=即ln(1)0,0x x x -+>>,设()e 1,0xt x x x =-->,则()e 10xt x '=->,()t x 在()0,∞+上为增函数,故()()00t x t >=即e 10,0x x x -->>,而0a ≤,故()()5e 1ln 10xx a x x ⎡⎤----+>⎣⎦,即()()5e ln 1550xa x a x ++-+->即()0f x >,故()0f x ≥也成立,综上,5a ≤,故答案为:5a ≤.【点睛】思路点睛:不等式的恒成立,注意验证区间的端点处的函数值,如果函数值为零,则往往需要讨论导数(或二阶导数)在端点处的函数值的符号,从而得到分类讨论的标准.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知函数()e xf x x =.(1)求()f x 的最小值;(2)求()f x 在点()1,e 处的切线方程.【答案】(1)()min 1ef x =-(2)2e e y x =-【解析】【分析】(1)求出函数的导数后讨论其符号,结合单调性可求最小值;(2)求出函数在1x =处的导数后可求切线方程.【小问1详解】()()1e x f x x '=+,当1x <-时,()0f x '<;当1x >-时,()0f x '>,故()f x 在(),1∞--上为减函数,在()1,-+∞上为增函数,故()()min 11ef x f =-=-.【小问2详解】由(1)可得()12e f '=,而()1e f =,故切线方程为:()2e 1e 2e e y x x =-+=-,即切线方程为:2e e y x =-.16.设等比数列{}n a 的前n 项和为n S ,且11a =-,122n n n S S S ++=+.(1)求数列{}n a 的通项公式.(2)求数列()1nn n a ⎧⎫-⋅⎪⎪⎨⎬⎪⎪⎩⎭的前n 项和n T .【答案】(1)()12n n a -=--(2)42219332nn T n ⎛⎫⎛⎫=-+- ⎪⎪⎝⎭⎝⎭【解析】【分析】(1)根据题设的递归关系可得212n n a a ++=-,故可得公比,从而可求通项;(2)利用错位相减法可求n T .【小问1详解】因为122n n n S S S ++=+,所以12122n n n n S S S S +++-=-,所以212n n a a ++=-,而为等比数列,故公比2q =-,故()12n n a -=--.【小问2详解】()()()1111122nnn n nnn n a ---⋅-⋅⎛⎫==- ⎪⎝⎭--,故012111111232222n n T n -⎛⎫⎛⎫⎛⎫⎛⎫=⨯-+⨯-+⨯-++⨯- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,所以1231111112322222nn T n ⎛⎫⎛⎫⎛⎫⎛⎫-=⨯-+⨯-+⨯-++⨯- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ ,所以01213111111222222n nn T n -⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⨯-+-+-++--- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭2112211322332n n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=----=-+-⎢⎥ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦,故42219332nn T n ⎛⎫⎛⎫=-+- ⎪⎪⎝⎭⎝⎭.17.已知双曲线22:13y C x -=(1)求双曲线C 的渐近线方程;(2)已知点()0,4P 、()2,0Q ,直线PQ 与双曲线C 交于A 、B 两点,1PQ QA λ=,2PQ QB λ=,求12λλ+的值.【答案】(1)y =(2)83-【解析】【分析】(1)根据双曲线的方程可得出其渐近线方程;(2)设点1,1、2,2,将直线PQ 的方程与双曲线的方程联立,列出韦达定理,利用平面向量的坐标运算结合韦达定理可求得12λλ+的值.【小问1详解】在双曲线22:13y C x -=中,1a =,b =,所以,该双曲线的渐近线方程为by x a=±=.【小问2详解】由题意可知,直线PQ 的方程为124x y+=,即24y x =-+,且()2,4PQ =- ,设点1,1、2,2,联立222433y x x y =-+⎧⎨-=⎩,可得216190x x -+=,2164190∆=-⨯>,由韦达定理可得1216x x +=,1219x x =,()112,QA x y =- ,()222,QB x y =- ,且1PQ QA λ=,2PQ QB λ=,则()()()1112222,42,2,x y x y λλ-=-=-,所以,()()1122222x x λλ-=-=,()()()()()12121212121212242422222224x x x x x x x x x x x x λλ+-+-+=+==-----++()216424819216493⨯-===--⨯+-.18.已知函数()()21ln f x mx x m x =+-∈R ,()21e 1x g x x x x=---,其中()f x 在1x =处取得极值(1)求m 的值;(2)求函数()f x 的单调区间;(3)若()()nx g x f x ≤-恒成立,求实数n 的取值范围.【答案】(1)1m =-(2)增区间为()0,1,减区间为()1,+∞(3)(],1-∞【解析】【分析】(1)由题意可得()10f '=,可求出m 的值,然后检验即可;(2)利用函数的单调性与导数的关系可求得函数()f x 的增区间和减区间;(3)由参变量分离法可得出ln 1e xx n x +≤-,利用导数求出函数()ln 1e xx h x x+=-在0,+∞上的最小值,即可得出实数n 的取值范围.【小问1详解】因为()()21ln f x mx x m x =+-∈R ,则()2112f x mx x x=++',其中0x >,因为函数()f x 在1x =处取得极值,则()1220f m +'==,解得1m =-,经检验,合乎题意.因此,1m =-.【小问2详解】由(1)可知,()21ln f x x x x=-+-,其中0x >,则()()()23222122111212x x x x x f x x x x x x--++-++=-++==',由()0f x '=,可得1x =,列表如下:所以,函数()f x 的增区间为0,1,减区间为1,+∞.【小问3详解】()()2211e 1ln e ln 1x x g x f x x x x x x x x x ⎛⎫-=-----+-=-- ⎪⎝⎭,当0x >时,由()()e ln 1xnx g x f x x x ≤-=--,可得ln 1e xx n x+≤-,令()ln 1e xx h x x +=-,其中0x >,则()()22221ln 1ln e ln e e x x x x x x x x x h x x x x ⋅-++=-=+=',令()2e ln xp x x x =+,其中0x >,则′=2+2e +1>0,所以,函数()p x 在区间0,+∞上单调递增,因为1=e >0,11e2e21e 1e 10e ep -⎛⎫=-=-< ⎪⎝⎭,由零点存在定理可知,存在唯一的1,1e t ⎛⎫∈ ⎪⎝⎭,使得2e ln 0t t t +=,即111e ln ln tt t t t t=-=,即11e ln e ln t ttt=,令()ln q x x x =,其中1x >,则′=1+ln >0,所以,函数()q x 在1,+∞上为增函数,因为1,1e t ⎛⎫∈ ⎪⎝⎭,则e 1t >,11t >,由11e ln e ln t tt t =,可得()1etq q t ⎛⎫= ⎪⎝⎭,则1e tt =,所以,1ln ln tt t ==-,且当0x t <<时,()0p x <,即ℎ′<0,当x t >时,()0p x >,即ℎ′>0,所以,函数ℎ的减区间为()0,t ,增区间为(),t ∞+,所以,()()min ln 111e 1tt th x h t t t t+-==-=-=,则1n ≤,所以,实数n 的取值范围是(],1-∞.【点睛】结论点睛:利用参变量分离法求解函数不等式恒(能)成立,可根据以下原则进行求解:(1)x D ∀∈,()()min m f x m f x ≤⇔≤;(2)x D ∀∈,()()max m f x m f x ≥⇔≥;(3)x D ∃∈,()()max m f x m f x ≤⇔≤;(4)x D ∃∈,()()min m f x m f x ≥⇔≥.19.在必修一中,我们曾经学习过用二分法来求方程的近似解,而牛顿(Issac Newton ,1643-1727)在《流数法》一书中给出了“牛顿切线法”求方程的近似解.具体步骤如下:设r 是函数=的一个零点,任意选取0x 作为r 的初始近似值,曲线=在点0,0处的切线为1l ,设1l 与x 轴交点的横坐标为1x ,并称1x 为r 的1次近似值;曲线=在点1,1处的切线为2l ,设2l 与x 轴交点的横坐标为2x ,称2x 为r 的2次近似值.一般地,曲线=在点()()(),N n n x f x n ∈处的切线为1n l+,记1n l +与x 轴交点的横坐标为1n x +,并称1n x +为r 的1n +次近似值.不断重复以上操作,在一定精确度下,就可取n x 为方程()0f x =的近似解.现在用这种方法求函数()22f x x =-的大于零的零点r 的近似值,取02x =.(1)求1x 和2x ;(2)求n x 和1n x -的关系并证明()*N n ∈;(3()1*1N i i n x n ∑=<<+∈.【答案】(1)132x =;21712x =(2)21122n n n x x x --+=,证明见解析(3)证明见解析【解析】【分析】(1)根据题干中的1x 为r 的1次近似值和2x 为r 的2次近似值的定义即可求解;(2)求出直线n l 的方程,直接求横截距即可.(3)借助第(22n x <≤,后面再根据此不等式进行放缩得到()2211224n n x x --<-,再进行放缩得12n n x <+,利用不等式的性质和数列分组求和即可【小问1详解】()2f x x '=,()24f '=,()1:242l y x -=-,令0y =,得132x =,332f ⎛⎫= ⎪⎭'⎝,所以213:342l y x ⎛⎫-=- ⎪⎝⎭,令0y =,得21712x =,【小问2详解】由题意得,()()2111:22n n n n l y x x x x -----=-,令0y =,得21122n n n x x x --+=【小问3详解】由(2)知,2111121222n n n n n x x x x x ----⎛⎫+==+ ⎪⎝⎭,所以221211444n n n x x x --⎛⎫=++ ⎪⎝⎭,由几何意义易知:2n x <≤,1iinx∑=<,由22nx>得,()222211121141414464424n n n nnx x x xx----⎛⎫⎛⎫=++<++=+⎪ ⎪⎝⎭⎝⎭,即()221164n nx x-<+,所以()()22210112222444nn n nx x x-⎛⎫-<-<<-=⎪⎝⎭,所以12n nx<<,所以21111122111212nii nnx∑=⎛⎫-⎪⎝⎭<+=+-<+-,()1*1Niinx n∑=<<+∈【点睛】关键点点睛:第(1)问的关键是对新定义的理解,然后结合所学知识进行每一个的处理即可得出,第(2)问的关键是求出切线n l的方程即可得证,第(3)问的关键是由几何意义得到2nx<≤,从而可以放缩,放缩后的类比等比数列的构造,为不等式的证明提供了关键性的处理.。
河南省信阳2024-2025学年高二上学期期中考试 数学含答案
河南省信阳2024-2025学年高二上期期中测试数学试题(答案在最后)命题人:一.选择题(共8小题,满分40分,每小题5分)1.已知直线l 经过点(1,0)P ,且方向向量(1,2)v =,则l 的方程为()A.220x y +-=B.220x y --=C.210x y +-= D.210x y --=2.已知()()2,2,11,1,a b k ==-- ,,且2a b ⊥ ,则k 的值为()A.5B.5- C.3D.43.“3m =-”是“直线()1:1210l m x y +++=与直线2:310l x my ++=平行”的()A.充要条件B.必要不充分条件C.充分不必要条件D.既不充分也不必要条件4.以点()1,5C --为圆心,并与x 轴相切的圆的方程是()A.22(1)(5)9x y +++=B.22(1)(5)16x y +++=C.22(1)(5)9x y -+-= D.22(1)(5)25x y +++=5.空间四边形OABC 中,,,OA a OB b OC c ===,点M 在OA 上,2,3OM OA = 点N 为BC 的中点,则MN = ()A.121232a b c -+B.211322a b c-++C.111222a b c +- D.221332a b c +-6.已知抛物线2:8C x y =的焦点为,F P 是抛物线C 上的一点,O 为坐标原点,OP =PF =()A.4B.6C.8D.107.已知椭圆222210x y a b a b+=>>的两个焦点分别为()()12,,,0330F F -,上的顶点为P ,且1260F PF ∠=︒,则此椭圆长轴为()A.B. C.6 D.128.已知双曲线C :()222210,0x y a b a b-=>>的左、右焦点分别为1F ,2F ,点Q 在C 的右支上,2QF 与C的一条渐近线平行,交C 的另一条渐近线于点P ,若1OQ PF ∥,则C 的离心率为()A.B.C.2D.二.多选题(共4小题,满分20分,每小题5分)9.已知向量()2,0,2a =r ,13,1,22b ⎛⎫=-- ⎪⎝⎭ ,()1,2,3c =-,则下列结论正确的是()A.a 与b垂直B.b 与c共线C.a 与c所成角为锐角D.a ,b ,c,可作为空间向量的一组基底10.下列说法正确的是()A.330y +-=的倾斜角为150︒B.若直线0ax by c ++=经过第三象限,则0ab >,0bc <C.点()1,2--在直线()()()212430x y λλλλ++-+-=∈R 上D.存在a 使得直线32x ay +=与直线20ax y +=垂直11.如图,已知正方体1111ABCD A B C D -的棱长为a ,则下列选项中正确的有()A.异面直线1B D 与1AA 的夹角的正弦值为63B.二面角1A BD A --C.四棱锥111A BB D D -的外接球体积为3π2a D.三棱锥1A BC D -与三棱锥111A B D D -体积相等12.在平面直角坐标系xOy 中,已知圆221:(1)2C x y -+=的动弦AB ,圆2228C :(x a )(y -+-=,则下列选项正确的是()A.当圆1C 和圆2C 存在公共点时,则实数a 的取值范围为[3,5]-B.1ABC 的面积最大值为1C.若原点O 始终在动弦AB 上,则OA OB ⋅不是定值D.若动点P 满足四边形OAPB 为矩形,则点P 的轨迹长度为三.填空题(共4小题,满分20分,每小题5分)13.两条平行直线1:3450l x y +-=与2:6850l x y +-=之间的距离是_______.14.已知双曲线()222:109x y C b b-=>的左、右焦点分别是1F 、2F ,离心率为43,P 为双曲线上一点,4OP =(O 为坐标原点),则12PF F 的面积为______.15.已知12,F F 是椭圆2222:1(0)x y C a b a b+=>>的两个焦点,P 为椭圆C 上的一点,且12PF PF ⊥ ,若12PF F 的面积为9,则b 的值为______.16.已知棱长为1的正四面体ABCD ,M 为BC 中点,N 为AD 中点,则BN DM ⋅=_______四.解答题(共6小题,满分70分)17.已知等腰ABC V 的一个顶点C 在直线l :240x y -+=上,底边AB 的两端点坐标分别为()1,3A -,()2,0B .(1)求边AB 上的高CH 所在直线方程;(2)求点C 到直线AB 的距离.18.已知圆C 的方程为:()()22314x y -++=.(1)若直线:0l x y a -+=与圆C 相交于A 、B 两点,且AB =,求实数a 的值;(2)过点()1,2M 作圆C 的切线,求切线方程.19.已知椭圆M :22221(3x y a a a +=>-倍.(1)求M 的方程;(2)若倾斜角为π4的直线l 与M 交于A ,B 两点,线段AB 的中点坐标为1,2m ⎛⎫⎪⎝⎭,求m .20.如图,已知PA ⊥平面ABCD ,底面ABCD 为正方形,2PA AD AB ===,M ,N 分别为AB ,PC 的中点.(1)求证:MN ⊥平面PCD ;(2)求PD 与平面PMC 所成角的正弦值.21.设抛物线C :22y px =(0p >)的焦点为F ,点()2,P n 是抛物线C 上位于第一象限的一点,且4=PF .(1)求抛物线C 的方程;(2)如图,过点P 作两条直线,分别与抛物线C 交于异于P 的M ,N 两点,若直线PM ,PN 的斜率存在,且斜率之和为0,求证:直线MN 的斜率为定值.22.已知四棱柱1111ABCD A B C D -中,底面ABCD 为梯形,1//,AB CD A A ⊥平面,ABCD AD AB ⊥,其中12,1AB AA AD DC ====.N 是11B C 的中点,M 是1DD 的中点.(1)求证1//D N 平面1CB M ;(2)求平面1CB M 与平面11BB CC 的夹角余弦值;(3)求点B 到平面1CB M 的距离.河南省信阳2024-2025学年高二上期期中测试数学试题命题人:一.选择题(共8小题,满分40分,每小题5分)1.已知直线l 经过点(1,0)P ,且方向向量(1,2)v =,则l 的方程为()A.220x y +-=B.220x y --=C.210x y +-= D.210x y --=【答案】B 【解析】【分析】由直线的方向向量求出斜率,再由点斜式得到直线方程即可;【详解】因为直线的方向向量(1,2)v =,所以直线的斜率为2,又直线l 经过点(1,0)P ,所以直线方程为()021y x -=-,即220x y --=,故选:B.2.已知()()2,2,11,1,a b k ==-- ,,且2a b ⊥ ,则k 的值为()A.5B.5- C.3D.4【答案】D 【解析】【分析】由题意可得20⋅=a b ,代入坐标计算可得答案.【详解】由题意可得()22,2,2b k =-- ,则24420a b k ⋅=--+= ,解之可得4k =.故选:D .3.“3m =-”是“直线()1:1210l m x y +++=与直线2:310l x my ++=平行”的()A.充要条件B.必要不充分条件C.充分不必要条件D.既不充分也不必要条件【答案】A 【解析】【分析】根据直线平行的条件,判断“3m =-”和“直线()1:1210l m x y +++=与直线2:310l x my ++=平行”之间的逻辑关系,即可得答案.【详解】当3m =-时,直线11:02l x y --=与21:03l x y -+=平行;当直线()1:1210l m x y +++=与直线2:310l x my ++=平行时,有()1230m m +-⨯=且1210m ⨯-⋅≠,解得3m =-,故“3m =-”是“直线()1:1210l m x y +++=与直线2:310l x my ++=平行”的充要条件.故选:A.4.以点()1,5C --为圆心,并与x 轴相切的圆的方程是()A.22(1)(5)9x y +++=B.22(1)(5)16x y +++=C.22(1)(5)9x y -+-=D.22(1)(5)25x y +++=【答案】D 【解析】【分析】由题意确定圆的半径,即可求解.【详解】解:由题意,圆心坐标为点()1,5C --,半径为5,则圆的方程为22(1)(5)25x y +++=.故选:D .5.空间四边形OABC 中,,,OA a OB b OC c ===,点M 在OA 上,2,3OM OA = 点N 为BC 的中点,则MN = ()A.121232a b c -+B.211322a b c-++C.111222a b c +- D.221332a b c +- 【答案】B 【解析】【分析】由向量的三角形法则和平行四边形法则,利用基底表示向量.【详解】点N 为BC 的中点,则有()12ON OB OC =+,所以()1221123322MN ON OM OB OC OA a b c =-=+-=-++ .故选:B.6.已知抛物线2:8C x y =的焦点为,F P 是抛物线C 上的一点,O 为坐标原点,43OP =PF =()A.4B.6C.8D.10【答案】B 【解析】【分析】求出抛物线焦点和准线方程,设()(),0P m n m ≥,结合3OP =4n =,由焦半径公式得到答案.【详解】抛物线2:8C x y =的焦点为()0,2F ,准线方程为2y =-,设()(),0P m n m ≥,则2228,3,m n m n ⎧=⎪+=,解得4n =或12n =-(舍去),则26PF n =+=.故选:B .7.已知椭圆222210x y a b a b+=>>的两个焦点分别为()()12,,,0330F F -,上的顶点为P ,且1260F PF ∠=︒,则此椭圆长轴为()A.3B.23C.6D.12【答案】D 【解析】【分析】根据焦点坐标得到c ,再由1260F PF ∠=得到a ,c 的关系求解.【详解】因为椭圆222210x y a b a b+=>>的两个焦点分别为()()123,0,3,0F F -,则3c =,又上顶点为P ,且1260F PF ∠=,所以1sin 302c a =︒=,所以6a =,故长轴长为12.故选:D8.已知双曲线C :()222210,0x y a b a b-=>>的左、右焦点分别为1F ,2F ,点Q 在C 的右支上,2QF 与C的一条渐近线平行,交C 的另一条渐近线于点P ,若1OQ PF ∥,则C 的离心率为()A.B.C.2D.【答案】A 【解析】【分析】设出直线2PF 的方程,与渐近线的方程联立,求出P 的坐标,由O 为12F F 的中点,1OQ PF ∥,得Q 为2PF 的中点,求出Q 的坐标,代入双曲线的方程求解即可.【详解】令()2,0F c ,由对称性,不妨设直线2PF 的方程为()by x c a=-,由()b y x c a b y x a ⎧=-⎪⎪⎨⎪=-⎪⎩,解得2x c =,2bc y a =-,即点P 的坐标为,22c bc a ⎛⎫- ⎪⎝⎭,由O 为12F F 的中点,1OQ PF ∥,得Q 为2PF 的中点,则点Q 的坐标为3,44c bc a ⎛⎫-⎪⎝⎭,代入双曲线的方程,有222222911616c b c a a b -=,即222c a =,222c a=,解得e =,所以双曲线C.故选:A二.多选题(共4小题,满分20分,每小题5分)9.已知向量()2,0,2a =r ,13,1,22b ⎛⎫=-- ⎪⎝⎭,()1,2,3c =- ,则下列结论正确的是()A.a 与b垂直B.b 与c共线C.a 与c所成角为锐角D.a ,b ,c,可作为空间向量的一组基底【答案】BC 【解析】【分析】对A :计算出a b ⋅ 即可得;对B :由向量共线定理计算即可得;对C :计算a c ⋅ 并判断a 与c是否共线即可得;对D :借助空间向量基本定理即可得.【详解】对A :132********a b ⎛⎫⎛⎫⋅=⨯-+⨯+⨯-=--=- ⎪ ⎝⎭⎝⎭r r ,故a 与b 不垂直,故A 错误;对B :由13,1,22b ⎛⎫=-- ⎪⎝⎭ 、()1,2,3c =-,有12b c = ,故b 与c 共线,故B 正确;对C :()21022380a c ⋅=⨯+⨯-+⨯=> ,且a 与c不共线,故a 与c所成角为锐角,故C 正确;对D :由b 与c 共线,故a ,b ,c不可作为空间向量的一组基底,故D 错误.故选:BC .10.下列说法正确的是()A.330y +-=的倾斜角为150︒B.若直线0ax by c ++=经过第三象限,则0ab >,0bc <C.点()1,2--在直线()()()212430x y λλλλ++-+-=∈R 上D.存在a 使得直线32x ay +=与直线20ax y +=垂直【答案】ACD 【解析】【分析】求出直线的斜率,从而得到倾斜角,即可判断A ;利用特殊值判断B ;将点的坐标代入方程即可判断C ;根据两直线垂直求出参数的值,即可判断D.【详解】对于A:直线330y +-=的斜率33k =-,所以该直线的倾斜角为150︒,故A 正确;对于B :当0a =,0bc >时,直线cy b=-经过第三象限,故B 错误;对于C :将()1,2--代入方程,则()2212430y λλ----+-=,即点()1,2--在直线上,故C 正确;对于D :若两直线垂直,则320a a +=,解得0a =,故D 正确.故选:ACD.11.如图,已知正方体1111ABCD A B C D -的棱长为a ,则下列选项中正确的有()A.异面直线1B D 与1AA 的夹角的正弦值为63B.二面角1A BD A --C.四棱锥111A BB D D -的外接球体积为3π2a D.三棱锥1A BC D -与三棱锥111A B D D -体积相等【答案】ACD【解析】【分析】对于选项A :根据异面直线的夹角分析求解;对于B :分析可知1AOA ∠为二面角1A BD A --的平面角,运算求解即可;对于C :四棱锥111A BB D D -的外接球即为正方体的外接球,求正方体的外接球即可;对于D :根据锥体的体积公式分析判断即可.【详解】对于A :因为11//AA BB ,在1Rt B BD 中,1BB D ∠就是异面直线所成的角,且1,BD B D ==,则1sin3BB D ∠==,故A 正确;对于B :连接AC 交BD 于点O ,连接1A O ,因为1AA ⊥平面ABCD ,BD ⊂平面ABCD ,则1AA ⊥BD ,又因为BD ⊥AO ,1AA AO A ⋂=,1,AA AO ⊂平面1AOA ,可得BD ⊥平面1AOA ,且1AO ⊂平面1AOA ,则BD ⊥1A O ,可知1AOA ∠为二面角1A BD A --的平面角,在1Rt A AO △中,1tan 222A OA a∠==B 错误;对于C ,显然四棱锥111A BB D D -的外接球即为正方体的外接球,因为正方体外接球的半径32R a =,所以正方体的外接球体积为3343ππ32V R a ==,故C 正确;对于D ,因为111111A B D D D A B D V V --=,三棱锥1A ABD -的高1AA 与三棱锥111D A B D -的高1DD 相等,底面积111ABD A B D S S =△△,故三棱锥1A ABD -与三棱锥111A B D D -体积相等,故D 正确.故选:ACD .12.在平面直角坐标系xOy 中,已知圆221:(1)2C x y -+=的动弦AB ,圆22228C :(x a )(y -+-=,则下列选项正确的是()A.当圆1C 和圆2C 存在公共点时,则实数a 的取值范围为[3,5]-B.1ABC 的面积最大值为1C.若原点O 始终在动弦AB 上,则OA OB ⋅不是定值D.若动点P 满足四边形OAPB 为矩形,则点P的轨迹长度为【答案】ABD【解析】【分析】根据两圆位置关系列不等式求解实数a 的范围判断A ,根据三角形面积结合正弦函数可求出面积最大值判断B ,分类讨论,设直线方程,利用韦达定理结合数量积数量积坐标运算求解判断C ,先根据矩形性质结合垂径定理得到点P 的轨迹,然后利用圆的周长公式求解判断D .【详解】对于A ,圆221:(1)2C x y -+=的圆心为1,0圆2228C :(x a )(y -+-=的圆心为(a,半径为当圆1C 和圆2C存在公共点时,12C C ≤≤2(1)a ≤-+≤,解得35a -≤≤,所以实数a 的取值范围为[3,5]-,正确;对于B ,1ABC的面积为1111sin sin 12ABC S AC B AC B =∠=∠≤ ,当1π2AC B ∠=时,1ABC 的面积有最大值为1,正确;对于C ,当弦AB 垂直x 轴时,()()0,1,0,1A B -,所以()0111OA OB ⋅=+⨯-=- ,当弦AB 不垂直x 轴时,设弦AB 所在直线为y kx =,与圆221:(1)2C x y -+=联立得,()221210k x x +--=,设1122()A x y B x y ,,(,),则12211x x k -=+,()()2221212121212211111OA OB x x y y x x k x x k x x k k -⋅=+=+=+=+⨯=-+ ,综上1OA OB ⋅=- ,恒为定值,错误;对于D ,设0,OP 中点00,22x y ⎛⎫ ⎪⎝⎭,该点也是AB 中点,且ABOP ==,又AB =,所以=,化简得()220013x y -+=,所以点P 的轨迹为以1,0的圆,其周长为长度为,正确.故选:ABD三.填空题(共4小题,满分20分,每小题5分)13.两条平行直线1:3450l x y +-=与2:6850l x y +-=之间的距离是_______.【答案】12##0.5【解析】【分析】将直线1l 的方程可化为68100x y +-=,利用平行线间的距离公式可求得结果.【详解】直线1l 的方程可化为68100x y +-=,且直线2l 的方程为6850x y +-=,所以,平行直线1l 与2l之间的距离为12d ==.故答案为:12.14.已知双曲线()222:109x y C b b-=>的左、右焦点分别是1F 、2F ,离心率为43,P 为双曲线上一点,4OP =(O 为坐标原点),则12PF F 的面积为______.【答案】7【解析】【分析】由双曲线的离心率可求得c 的值,可求得12F F 的值,推导出12F PF ∠为直角,利用勾股定理结合双曲线的定义可求出12PF PF ⋅的值,再利用三角形的面积公式可求得12PF F 的面积.【详解】如图所示:因为双曲线C 的离心率433c c e a ===,所以4c =,128F F =,设点P 在双曲线的右支上,由1212142OP F F OF OF ====,可得22OPF OF P ∠=∠,11OPF OF P ∠=∠,所以,()121212121π22F PF OPF OPF OPF OPF OF P OF P ∠=∠+∠=∠+∠+∠+∠=,由双曲线定义可得126PF PF -=,由勾股定理可得222121264PF PF F F +==,所以()222121212236PF PF PF PF PF PF -=+-⋅=,可得1214PF PF ⋅=,因此12PF F 的面积为12172S PF PF =⋅=.故答案为:7.15.已知12,F F 是椭圆2222:1(0)x y C a b a b+=>>的两个焦点,P 为椭圆C 上的一点,且12PF PF ⊥ ,若12PF F 的面积为9,则b 的值为______.【答案】3【解析】【分析】由椭圆的性质结合三角形面积公式计算即可.【详解】122PF PF a += ,222121224PF PF PF PF a ∴++⋅=,①又12,PF PF ⊥222212124PF PF F F c ∴+==②∴①-②得:()22212244PF PF a c b ⋅=-=,2121,2PF PF b ∴⋅=12PF F △的面积为9,1221219,02PF F S PF PF b b ∴=⋅==> ,3.b ∴=故答案为:3.16.已知棱长为1的正四面体ABCD ,M 为BC 中点,N 为AD 中点,则BN DM ⋅=_______【答案】12-##0.5-【解析】【分析】由题意可得:111,222BN BA BD DM BC BD =+=- ,根据空间向量的数量积运算求解.【详解】由题意可知:1BA BC BD === ,且12BA BC BA BD BC BD ⋅=⋅=⋅= ,因为M 为BC 中点,N 为AD中点,则111,222BN BA BD DM BM BD BC BD =+=-=- ,所以111222BN DM BA BD BC BD ⎛⎫⎛⎫⋅=+⋅- ⎪ ⎪⎝⎭⎝⎭211114422BA BC BD BC BA BD BD =⋅+⋅-⋅-uu r uu u r uu u r uu u r uu r uu u r uu u r 1111111142422222=⨯+⨯-⨯-=-.故答案为:12-四.解答题(共6小题,满分70分)17.已知等腰ABC V 的一个顶点C 在直线l :240x y -+=上,底边AB 的两端点坐标分别为()1,3A -,()2,0B .(1)求边AB 上的高CH 所在直线方程;(2)求点C 到直线AB 的距离.【答案】(1)10x y -+=(2)722【解析】【分析】(1)求出AB 的中点H 的坐标,利用垂直关系得到高CH 所在直线的斜率,得到高CH 所在直线方程;(2)联立两直线得到点C 的坐标,利用点到直线距离公式求出答案.【小问1详解】由题意可知,H 为AB 的中点,()1,3A - ,()2,0B ,13,22H ⎛⎫∴ ⎪⎝⎭.又30112AB k -==---,11CH ABk k ∴=-=.CH ∴所在直线方程为3122y x -=-,即10x y -+=.【小问2详解】由24010x y x y -+=⎧⎨-+=⎩,解得32x y =-⎧⎨=-⎩,所以()3,2C --.又直线AB 方程为()2y x =--,即20x y +-=.∴点C 到直线AB 的距离722d ==.18.已知圆C 的方程为:()()22314x y -++=.(1)若直线:0l x y a -+=与圆C 相交于A 、B 两点,且AB =,求实数a 的值;(2)过点()1,2M 作圆C 的切线,求切线方程.【答案】(1)2a =-或6-;(2)1x =或512290x y +-=.【解析】【分析】(1)根据已知条件,结合点到直线的距离公式,以及垂径定理,即可求解;(2)结合切线的定义和点到直线的距离公式,即可分类讨论思想,即可求解.【小问1详解】圆C 的方程为:22(3)(1)4x y -++=,则圆C 的圆心为(3,1)-,半径为2,直线:0l x y a -+=与圆C 相交于A 、B 两点,且||AB ==,解得2a=-或6-;【小问2详解】当切线的斜率不存在时,直线1x=,与圆C相切,切线的斜率存在时,可设切线为2(1)y k x-=-,即20kx y k--+=,2=,解得512k=-,故切线方程为512290x y+-=,综上所述,切线方程为1x=或512290x y+-=.19.已知椭圆M:22221(3x y aa a+=>-倍.(1)求M的方程;(2)若倾斜角为π4的直线l与M交于A,B两点,线段AB的中点坐标为1,2m⎛⎫⎪⎝⎭,求m.【答案】(1)22163x y+=(2)1m=-【解析】【分析】(1)根据条件确定a的值,即得椭圆的标准方程;(2)涉及中点弦问题,可以考虑“点差法”解决问题.【小问1详解】由题意可得2a=26a=,所以M的方程为22163x y+=.【小问2详解】由题意得πtan14ABk==.设()11,A x y,()22,B x y,依题意可得12x x≠,且12122,1212x x my y+=⎧⎪⎨+=⨯=⎪⎩,由22112222163163x yx y⎧+=⎪⎪⎨⎪+=⎪⎩得()()()()12121212063x x x x y y y y-+-++=,则12122121106363y y m m x x -+⨯=+⨯=-,解得1m =-.经检验,点11,2⎛⎫- ⎪⎝⎭在椭圆M 内.所以1m =-为所求.20.如图,已知PA ⊥平面ABCD ,底面ABCD 为正方形,2PA AD AB ===,M ,N 分别为AB ,PC 的中点.(1)求证:MN ⊥平面PCD ;(2)求PD 与平面PMC 所成角的正弦值.【答案】(1)证明见解析(2)3【解析】【分析】(1)建立空间直角坐标系,空间向量法证明直线与法向量平行,即可证明结论成立;(2)建立空间直角坐标系,求出直线的方法向量,以及平面的一个法向量,计算向量夹角余弦值,即可得出结果;【小问1详解】以A 为原点,AB 为x 轴,AD 为y 轴,AP 为z轴,建立空间直角坐标系,则()()()()()0,0,2,2,2,0,0,2,0,1,0,0,1,1,1P C D M N ,()()0,2,2,2,0,0PD CD =-=- ,()0,1,1MN = ,设平面PCD 的一个法向量为(),,n x y z =,则22020n PD y z n CD x ⎧⋅=-=⎪⎨⋅=-=⎪⎩ ,取1y =,得()0,1,1n = ,因为//MN n ,所以MN ⊥平面PCD ;【小问2详解】()()()0,0,2,2,2,0,1,0,0,P C M ()1,0,2PM =- ,()1,2,0MC = ,设平面PMC 的一个法向量为(),,m a b c =,则2020m PM a c m MC a b ⎧⋅=-=⎪⎨⋅=+=⎪⎩ ,取2a =,得()2,1,1m =- ,()0,2,2,PD =- 设直线PD 与平面PMC 所成角为θ,则直线PD 与平面PMC所成角的正弦值为:3sin 3PD m PD m θ⋅===⋅ .21.设抛物线C :22y px =(0p >)的焦点为F ,点()2,P n 是抛物线C 上位于第一象限的一点,且4=PF.(1)求抛物线C 的方程;(2)如图,过点P 作两条直线,分别与抛物线C 交于异于P 的M ,N 两点,若直线PM ,PN 的斜率存在,且斜率之和为0,求证:直线MN 的斜率为定值.【答案】(1)28y x=(2)证明见解析【解析】【分析】(1)代入抛物线的焦半径公式求p ,即可求抛物线的标准方程;(2)首先根据(1)的结果求点P 的坐标,设直线PM 和PN 的直线方程与抛物线方程联立,求得点,M N 的坐标,并表示直线MN 的坐标,即可证明.【小问1详解】由抛物线的定义知422p PF ==+,解得4p =,所以抛物线C 的方程为28y x =.【小问2详解】因为点P 的横坐标为2,即282y =⨯,解得4y =±,故P 点的坐标为()2,4,由题意可知,直线PM ,PN 不与x 轴平行,设()11,M x y ,()22,N x y ,设直线PM :()42m y x -=-,即42x my m =-+,代入抛物线的方程得()2842y my m =-+,即2832160y my m -+-=,则148y m +=,故184y m =-,所以()211428442882x my m m m m m m =-+=--+=-+,即()2882,84M m m m -+-,设直线PN :()42m y x --=-,即42x my m =-++,同理可得284y m =--,则()222428442882x my m m m m m m =-++=---++=++,即()2882,84N m m m ++--直线MN 的斜率121216116MN y y m k x x m-===---,所以直线MN 的斜率为定值.【点睛】关键点点睛:本题的关键是利用直线PM 与PN 的斜率互为相反数,与抛物线方程联立,利用两根之和公式求点,M N 的坐标.22.已知四棱柱1111ABCD A B C D -中,底面ABCD 为梯形,1//,AB CD A A ⊥平面,ABCD AD AB ⊥,其中12,1AB AA AD DC ====.N 是11B C 的中点,M 是1DD 的中点.(1)求证1//D N 平面1CB M ;(2)求平面1CB M 与平面11BB CC 的夹角余弦值;(3)求点B 到平面1CB M 的距离.【答案】(1)证明见解析(2)22211(3)11【解析】【分析】(1)取1CB 中点P ,连接NP ,MP ,借助中位线的性质可得四边形1D MPN 是平行四边形,再利用平行四边形的性质结合线面平行的判定定理计算即可得;(2)建立适当空间直角坐标系,求出平面1CB M 与平面11BB CC 的法向量后结合空间向量夹角公式计算即可得;(3)借助空间中点到平面的距离公式计算即可得.【小问1详解】取1CB 中点P ,连接NP ,MP ,由N 是11B C 的中点,故1NP CC ∥,且112NP CC =,由M 是1DD 的中点,故1111122D M DD CC ==,且11D M CC ∥,则有1D M NP ∥、1D M NP =,故四边形1D MPN 是平行四边形,故1D N MP ∥,又MP ⊂平面1CB M ,1D N ⊄平面1CB M ,故1//D N 平面1CB M ;【小问2详解】以A为原点建立如图所示空间直角坐标系,有0,0,0、()2,0,0B 、()12,0,2B 、()0,1,1M 、1,1,0、()11,1,2C ,则有()11,1,2CB =- 、()1,0,1CM =- 、()10,0,2BB = ,设平面1CB M 与平面11BB CC 的法向量分别为 =1,1,1、 =2,2,2,则有111111200m CB x y z m CM x z ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩ ,1222122020n CB x y z n BB z ⎧⋅=-+=⎪⎨⋅==⎪⎩ ,分别取121x x ==,则有13y =、11z =、21y =、20z =,即()1,3,1m = ,()1,1,0n =,则cos ,11m n m n m n ⋅===⋅ ,故平面1CB M 与平面11BB CC 的夹角余弦值为11;【小问3详解】由()10,0,2BB = ,平面1CB M 的法向量为()1,3,1m = ,则有111BB m m ⋅== ,即点B 到平面1CB M 的距离为11.。
安徽省池州市贵池区2024-2025学年高二上学期期中检测数学试题含答案
2024~2025学年第一学期高二期中检测数学(答案在最后)全卷满分150分,考试时间120分钟.注意事项:1.答题前,先将自己的姓名、准考证号填写在试卷和答题卡上,并将条形码粘贴在答题卡上的指定位置.2.请按题号顺序在答题卡上各题目的答题区域内作答,写在试卷、草稿纸和答题卡上的非答题区域均无效.3.选择题用2B 铅笔在答题卡上把所选答案的标号涂黑;非选择题用黑色签字笔在答题卡上作答;字体工整,笔迹清楚.4.考试结束后,请将试卷和答题卡一并上交.5.本卷主要考查内容:选择性必修第一册第一章~第二章.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知向量()1,2,4a =,()1,0,2b =-r,则a b ⋅的值为()A.()1,0,8- B.9C.-7D.7【答案】D 【解析】【分析】根据空间向量数量积坐标运算法则进行计算.【详解】()()1,1,2,00874,21a b ⋅⋅=-=-++=.故选:D2.直线+1=0x 的倾斜角为()A.34π B.4π C.2π D.不存在【答案】C 【解析】【分析】根据倾斜角的定义可得结果【详解】因为直线+1=0x 即直线1x =-垂直于轴,根据倾斜角的定义可知该直线的倾斜角为2π,故选:C.3.与直线20x y +=垂直,且在x 轴上的截距为-2的直线方程为().A.220x y -+=B.220x y --= C.220x y -+= D.220x y --=【答案】A 【解析】【分析】先求出直线的斜率,再利用直线的点斜式方程求解.【详解】由题得所求直线的斜率为12,∴所求直线方程为10(2)2y x -=+,整理为220x y -+=.故选:A【点睛】方法点睛:求直线的方程,常用的方法:待定系数法,先定式(从直线的五种形式中选择一种作为直线的方程),后定量(求出直线方程中的待定系数).4.如图所示,在平行六面体1111ABCD A B C D -中,点E 为上底面对角线11A C 的中点,若1BE AA x AB y AD =++,则()A.11,22x y =-=B.11,22x y ==-C.11,22x y =-=-D.11,22x y ==【答案】A 【解析】【分析】根据空间向量的线性运算即可求解.【详解】根据题意,得;11()2BE BB BA BC =++11122AA BA BC=++111,22AA AB AD =-+ 1BE AA xAB y AD =++ 又11,,22x y =-=∴故选:A5.已知向量()0,0,2a = ,()1,1,1b =- ,向量a b + 在向量a上的投影向量为().A.()0,0,3 B.()0,0,6C.()3,3,9- D.()3,3,9--【答案】A 【解析】【分析】根据空间向量的坐标运算及投影向量的公式计算即可.【详解】由题意可知()1,13a b +=-,,()6,2a b a a +⋅== ,所以向量a b + 在向量a上的投影向量为()()()60,0,20,0,322a b a a a a +⋅⋅=⨯=⋅ .故选:A6.若圆()()2213425O x y -+-=:和圆()()()222228510O x y r r +++=<<:相切,则r 等于A.6B.7C.8D.9【答案】C 【解析】【分析】根据的圆标准方程求得两圆的圆心与半径,再根据两圆内切、外切的条件,分别求得r 的值并验证510r <<即可得结果.【详解】圆()()2213425O x y -+-=:的圆心()13,4O ,半径为5;圆()()2222:28O x y r +++=的圆心()22,8O --,半径为r.=|r-5|,求得r=18或-8,不满足5<r<10.=|r+5|,求得r=8或-18(舍去),故选C.【点睛】本题主要考查圆的方程以及圆与圆的位置关系,属于基础题.两圆半径为,R r ,两圆心间的距离为d ,比较d 与R r -及d 与R r +的大小,即可得到两圆的位置关系.7.在空间直角坐标系Oxyz 中,已知点()2,1,0D ,向量()4,1,2,m m =⊥平面DEF ,则点O 到平面DEF 的距离为()A.21B.7C.21D.21【答案】B 【解析】【分析】根据空间向量的坐标运算直接计算点O 到平面DEF 的距离.【详解】因为()2,1,0D ,所以()2,1,0OD = ,又向量()4,1,2,m m =⊥平面DEF ,所以()4,1,2m =是平面DEF 的一个法向量所以点O 到平面DEF的距离为7OD m d m ⋅===.故答案为:7.8.已知直线l :x -my +4m -3=0(m ∈R ),点P 在圆221x y +=上,则点P 到直线l 的距离的最大值为()A.3B.4C.5D.6【答案】D 【解析】【分析】先求得直线过的定点的坐标,再由圆心到定点的距离加半径求解.【详解】解:直线l :x -my +4m -3=0(m ∈R )即为()()340x y m -+-=,所以直线过定点()3,4Q ,所以点P 到直线l的距离的最大值为16OQ r +=+=,故选:D二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知直线2y x =与0x y a ++=交于点()1,P b ,则()A.3a =-B.2b =C.点P 到直线30ax by ++=的距离为13D.点P 到直线30ax by ++=的距离为13【答案】ABD 【解析】【分析】联立直线方程结合其交点坐标求参数a 、b ,进而应用点线距离公式求P 到直线30ax by ++=的距离即可.【详解】由题意,得:210b b a =⎧⎨++=⎩,解得3a =-,2b =,故A 、B 正确,∴()1,2到直线3230x y -++=的距离13d ==,故C 错误,D 正确.故选:ABD.10.已知空间向量()()3,1,2,3,3,1a b =--= ,则下列说法正确的是()A.()32//a b a+B.()57a a b⊥+C.a =D.b =【答案】BCD 【解析】【分析】根据题意,结合向量的坐标运算,以及向量的共线和垂直的坐标表示,准确计算,即可求解.【详解】因为向量()()3,1,2,3,3,1a b =--= ,可得214,10a a b =⋅=-,对于A 中,由()323,3,8a b +=-,设32a b a λ+= ,即()3,3,8(3,1,2)λ-=--,可得33382λλλ-=-⎧⎪=-⎨⎪=⎩,此时方程组无解,所以32a b + 与a 不平行,所以A 错误;对于B 中,由()257575147(10)0a a b a a b ⋅+=+⋅=⨯+⨯-=,所以()57a a b ⊥+,所以B 正确;对于C中,由a ==,所以C 正确;对于D中,由b == D 正确.故选:BCD.11.直线2y x m =+与曲线y =恰有两个交点,则实数m 的值可能是()A.4B.5C.3D.4110【答案】AD 【解析】【分析】做出函数图象,数形结合,求出m 的取值范围,再进行选择.【详解】做出函数2y x m =+与y =的草图.设2y x m =+与圆224x y +=2=⇒m =m =-(舍去).因为函数2y x m =+与y =有两个交点,所以4m ≤<.故选:AD三、填空题:本题共3小题,每小题5分,共15分.12.已知在空间直角坐标系xOy 中,点A 的坐标为(1,2,)3-,点B 的坐标为(0,1,4)--,点A 与点C 关于x 轴对称,则||BC =___________.【答案】【解析】【分析】首先根据对称求出点C 的坐标,然后根据两点间的距离公式求||BC 的值即可.【详解】因为点A 与点C 关于x 轴对称,所以点C 的坐标为()1,2,3-,又因为点B 的坐标为(0,1,4)--,所以BC ==.13.过点()2,4作圆224x y +=的切线,则切线方程为___________.【答案】2x =或34100x y -+=【解析】【分析】考虑直线斜率不存在和直线斜率存在两种情况,利用圆心到直线距离等于半径列出方程,求出切线方程.【详解】①直线的斜率不存在时2x =满足,②直线斜率存在时,设切线方程为()42y k x -=-,则324d k ==⇒=,所以切线方程为4y -=()324x -,即34100x y -+=.故答案为:2x =或34100x y -+=.14.在平面直角坐标系xOy 中,设直线y =-x +2与圆x 2+y 2=r 2(r >0)交于A ,B 两点.若圆上存在一点C ,满足5344OC OA OB =+,则r 的值为________.【答案】【解析】【详解】22225325539OC OA OB OA 2OA OB OB44164416⎛⎫=+=+⋅⋅+ ⎪⎝⎭即222225159r r r cos AOB r 16816=+∠+,整理化简得cos∠AOB=-35,过点O 作AB 的垂线交AB 于D,则cos∠AOB=2cos 2∠AOD-1=-35,得cos 2∠AOD=15.又圆心到直线的距离为OD==,所以cos 2∠AOD=15=22OD r=22r ,所以r 2.四、解答题:本题共5小题,共77分.解答应写出必要的文字说明、证明过程及演算步骤.15.已知直线l 过点()2,1P -.(1)若直线l 与直线230x y ++=垂直,求直线l 的方程(2)若直线l 在两坐标轴的截距互为相反数,求直线l 的方程.【答案】(1)240x y --=;(2)20x y +=或30x y --=.【解析】【分析】(1)根据直线方程垂直设出方程求解未知数即可;(2)根据截距的概念分类讨论求方程即可.【小问1详解】因为直线l 与直线230x y ++=垂直,所以可设直线l 的方程为20x y m -+=,因为直线l 过点()2,1P -,所以()2210m -⨯-+=,解得4m =-,所以直线l 的方程为240x y --=【小问2详解】当直线l 过原点时,直线l 的方程是2xy =-,即20x y +=.当直线l 不过原点时,设直线l 的方程为x y a -=,把点()2,1P -代入方程得3a =,所以直线l 的方程是30x y --=.综上,所求直线l 的方程为20x y +=或30x y --=16.已知向量()()1,1,,2,,a t t t b t t =--=.(1)若a b ⊥ ,求t 的值;(2)求b a -的最小值.【答案】(1)2(2)5【解析】【分析】(1)由空间向量垂直得到方程,求出答案;(2)计算出()1,21,0b a t t -=+-,利用模长公式得到b a -= ,求出最小值.【小问1详解】因为a b ⊥ ,所以0a b ⋅=,即()()22110t t t t -+-+=,解得2t=;【小问2详解】()1,21,0 b a t t-=+-所以b a-=.所以当15t=时,b a-取得最小值为5.17.如图,在四棱锥P ABCD-中,底面ABCD为直角梯形,//AD BC,AB BC⊥,AP⊥平面ABCD,Q为线段PD上的点,2DQ PQ=,1AB BC PA===,2AD=.(1)证明://BP平面ACQ;(2)求直线PC与平面ACQ所成角的正弦值.【答案】(1)证明见解析(2)13【解析】【分析】(1)利用三角形相似得2MD MB=,结合2DQ PQ=,则有//MQ BP,利用线面平行的判定即可证明;(2)以A为坐标原点,建立合适的空间直角坐标系,求出平面ACQ的法向量,利用线面角的空间向量法即可得到答案.【小问1详解】如图,连接BD与AC相交于点M,连接MQ,∵//BC AD,2AD BC=,则AMD CMB,∴2MD ADMB CB==,2MD MB=,∵2DQ PQ=,∴//MQ BP,BP ⊄ 平面ACQ ,MQ Ì平面ACQ ,∴//BP 平面ACQ ;【小问2详解】AP ⊥ 平面ABCD ,,AB AD ⊂平面ABCD ,,AP AB AP AD ∴⊥⊥,因为底面AB BC ⊥,则AB ,AD ,AP 两两垂直,以A 为坐标原点,建立如图所示空间直角坐标系,各点坐标如下:()0,0,0A ,()1,1,0C ,()0,0,1P ,220,,33Q ⎛⎫⎪⎝⎭.设平面ACQ 的法向量为(),,m x y z =,由()1,1,0AC = ,220,,33AQ ⎛⎫= ⎪⎝⎭ ,有02233AC m x y AQ m y z ⎧⋅=+=⎪⎨⋅=+=⎪⎩,令1x =,1y =-,1z =,可得()1,1,1m =- ,由()1,1,1CP =-- ,有1CP m ⋅=,CP m ==,则1cos ,3CP m == .故直线PC 与平面ACQ 所成角的正弦值为13.18.如图,在正方体1111ABCD A B C D -中,,F G 分别是棱1,CC AD 的中点,E 为棱AB 上一点,且异面直线1B E 与BG 所成角的余弦值为25.(1)证明:E 为AB 的中点;(2)求平面1B EF 与平面11ABC D 所成锐二面角的余弦值.【答案】(1)见解析(2)4242【解析】【分析】(1)以D 为坐标原点,建立如图所示的空间直角坐标系D xyz -,不妨令正方体的棱长为2,设()2,,0E a ,利用111cos ,B E BG B E BG B E BG⋅= ,解得1a =,即可证得;(2)分别求得平面1B EF 与平面11ABC D 的法向量m n ,,利用cos ,m n m n m n⋅=⋅ 求解即可.【小问1详解】证明:以D 为坐标原点,建立如图所示的空间直角坐标系D xyz -.不妨令正方体的棱长为2,则()0,0,0D ,()1,0,0G ,()2,2,0B ,()12,2,2B ,()0,2,1F ,设()2,,0E a ,则()10,2,2B E a =-- ,()1,2,0BG =-- ,所以()1121422cos ,5524B E BG a B E BG B E BG a ⋅-===-+ ,所以2430a a -+=,解得1a =(3a =舍去),即E 为AB 的中点.【小问2详解】由(1)可得()10,1,2B E =-- ,()2,1,1EF =- ,设(),,m x y z = 是平面1B EF 的法向量,则12020m B E y z m EF x y z ⎧⋅=--=⎪⎨⋅=-++=⎪⎩ .令2z =,得()1,4,2m =-- .易得平面11ABC D 的一个法向量为()12,0,2n DA == ,所以cos ,42m n m n m n ⋅===⋅ .所以所求锐二面角的余弦值为42.19.已知圆C 过点(1,0)M -且与直线20x +-=相切于点1,22⎛⎫ ⎪ ⎪⎝⎭,直线:30l kx y k --+=与圆C 交于不同的两点A ,B .(1)求圆C 的方程;(2)若圆C 与x 轴的正半轴交于点P ,直线PA ,PB 的斜率分别为1k ,2k ,求证:12k k +是定值.【答案】(1)221x y +=(2)证明见解析.【解析】【分析】(1)确定圆心和半径,可得圆C 的方程.(2)把直线方程与圆C 方程联立,得到12x x +,21x x ,再表示出12k k +,运算整理即可.【小问1详解】过点1,22⎛⎫ ⎪ ⎪⎝⎭且与直线20x +-=垂直的直线为:1022x y ⎛⎫⎫---= ⎪⎪ ⎪⎭⎝⎭0y -=.又线段MN,其中1,22N ⎛⎫ ⎪ ⎪⎝⎭的垂直平分线为:()222213122x y x y ⎛⎫⎛⎫++=-+- ⎪ ⎪ ⎪⎝⎭⎝⎭0y +=.由00y y -=+=,得圆心()0,0C ,又221r CM ==.故圆C 的方程为:221x y +=.【小问2详解】将()3y kx k =+-代入221x y +=得:()2231x kx k ⎡⎤++-=⎣⎦,整理得:()()()222123310k x k k x k ++-+--=.由0∆>⇒()()()22224341310k k k k ⎡⎤--+-->⎣⎦⇒43k >.设1,1,2,2,则()122231k k x x k -+=+,()2122311k x x k --=+.又()1,0P ,所以()111111133111k x y k k x x x -+===+---,同理:2231k k x =+-.所以121233211k k k x x +=++--()()()121236211x x k x x +-=+--()()1212123621x x k x x x x +-=+-++()()()22222336123123111k k k k k k k k k -⨯-+=+----+++()()()22222336123123111k k k k k k k k k -⨯-+=+----+++18629k k --=+23=-.所以1223k k +=-为定值.。
山东省菏泽市2024-2025学年高二上学期期中考试 数学(A卷)含答案
2024—2025学年度第一学期期中考试高二数学试题(A )(答案在最后)注意事项:1.本试卷分选择题和非选择题两部分.满分150分,考试时问120分钟.2.答题前,考生务必将姓名、班级等个人信息填写在答题卡指定位置.3.考生作答时,请将答案答在答题卡上.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑:非选择题请用直径0.5毫米黑色墨水签宇笔在答题卡上各题的答题区域内作答.超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效.一、选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合要求的.1.下列选项中,与直线:571l x y +=平行的直线是()A.10142x y += B.570x y -= C.750x y -= D.15211x y +=2.已知椭圆C :2219x y m+=,“34m =”是“点()0,5为C 的一个焦点”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.已知曲线2216x y +=,从曲线上任意一点P 向y 轴作垂线,垂足为P',且14PN PP'=,则点N 的轨迹方程为()A.221169x y +=B.221916x y += C.22116x y += D.22116y x +=4.已知不全为零的实数a 、b 、c 满足2a c b +=,则直线:20l ax by c -+=被圆225x y +=所截得的线段长的最小值为()A.B. C.D.5.已知椭圆C :221x y m n +=的一个焦点为()7,0,且C 过点()0,24A ,则m n +=()A.10B.49C.50D.12016.已知双曲线C :22221x y a b-=(0a >,0b >)的右焦点为()6,0F ,点()6,5P 在C 上,则C 的离心率为()A.32 B.23C.65D.567.直线l :60x ay --=与圆22124360x y x y +---=的公共点个数为()A.0B.1C.2D.1或28.已知椭圆C :221x y m n+=(0m >,0n >)的左、右焦点分别为1F ,2F ,点P 是C 上一点,直线1PF ,2PF 的斜率分别为12,2-,且12PF F 是面积为4的直角三角形.则C 的方程为()A.221169x y += B.22116x y += C.22194x y += D.221259x y +=二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.用一个平面去截一个圆柱的侧面,可以得到以下哪些图形()A .两条平行直线B.两条相交直线C.圆D.椭圆10.设抛物线C :214y x =的准线为l ,点P 为C 上的动点,过点P 作圆A :228150x y x +-+=的一条切线,切点为Q ,过点P 作l 的垂线,垂足为B .则()A.l 与圆A 相交B.当点P ,A ,B 共线时,PQ =C.2PB =时,PAB 的面积为2或6D.满足PA PB =的点P 恰有2个11.已知12,F F 分别为双曲线()2222:10,0x yC a b a b-=>>的左、右焦点,过2F 的直线l 与圆222:O x y a +=相切于点M ,l 与第二象限内的渐近线交于点Q ,则()A.双曲线C 的离心率e >B.若22::OF MF OQ QM =,则C 的渐近线方程为3y x =±C.若1MF =,则C 的渐近线方程为y =D.若224QF MF =,则C 的渐近线方程为2y x=±三、填空题:本题共3小题,每小题5分,共15分.12.已知圆2222340x y x y λ++--=与x 轴相切,则λ=__________.13.已知抛物线C :2y ax =的焦点F 恰为圆222240x y y +--=的圆心,点P 是C 与圆的一个交点,则点P 到直线OF 的距离为__________,点F 到直线OP 的距离为__________.14.已知曲线C 是椭圆2211612x y +=被双曲线2213y x -=(0x >)所截得的部分(含端点),点P 是C 上一点,()2,0A -,()2,0B ,则PA PB -的最大值与最小值的比值是__________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.著名古希腊数学家阿基米德首次用“逼近法”的思想得到了椭圆的面积公式πS ab =,(a ,b 分别为椭圆的长半轴长和短半轴长)为后续微积分的开拓奠定了基础,已知椭圆C :2211216x y +=.(1)求C 的面积;(2)若直线l :2y x =+交C 于A ,B 两点,求AB .16.已知椭圆C :2212x y +=上的左、右焦点分别为1F ,2F ,直线y x m =+与C 交于,A B 两点,若1F AB面积是2F AB 面积的3倍,求m 的值.17.已知椭圆C :221925x y +=,直线l 过原点,且与C 相交于A ,B 两点,并与点()0,4D 构成三角形.(1)求ABD △的周长的取值范围:(2)求ABD △的面积S 的最大值.18.已知椭圆2222:1(0)x y E a b a b +=>>的离心率为32,点31,2A ⎛⎫ ⎪ ⎪⎝⎭在椭圆E 上.(1)求椭圆E 的方程;(2)已知椭圆E 的右顶点为B ,过B 作直线l 与椭圆E 交于另一点C ,且||||7BC AB =,求直线l 的方程.19.若平面内的曲线C 与某正方形A 四条边的所在直线均相切,则称曲线C 为正方形A 的一条“切曲线”,正方形A 为曲线C 的一个“切立方”.(1)圆221x y +=的一个“切立方”A 的其中一条边所在直线的斜率是1,求这个“切立方”A 四条边所在直线的方程:(2)已知正方形A 的方程为2x y +=,且正方形A 为双曲线22221x y a b-=的一个“切立方”,求该双曲线的离心率e 的取值范围;(3)设函数312y x x =-的图象为曲线C ,试问曲线C 是否存在切立方,并说明理由.2024—2025学年度第一学期期中考试高二数学试题(A )注意事项:1.本试卷分选择题和非选择题两部分.满分150分,考试时问120分钟.2.答题前,考生务必将姓名、班级等个人信息填写在答题卡指定位置.3.考生作答时,请将答案答在答题卡上.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑:非选择题请用直径0.5毫米黑色墨水签宇笔在答题卡上各题的答题区域内作答.超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效.一、选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合要求的.1.下列选项中,与直线:571l x y +=平行的直线是()A.10142x y +=B.570x y -= C.750x y -= D.15211x y +=【答案】D 【解析】【分析】先将直线方程化为一般式方程,然后判断12210A B A B -=是否成立,注意分析重合情况.【详解】:571:5710l x y l x y +=⇔+-=,对于A :101425710x y x y +=⇔+-=,可知两直线重合,不符合;对于B :()57750⨯--⨯≠,所以不平行,不符合;对于C :()55770⨯--⨯≠,所以不平行,不符合;对于D :5217150⨯-⨯=,1152115703x y x y +=⇔+-=,且113-≠-,所以两直线平行,符合;故选:D.2.已知椭圆C :2219x y m+=,“34m =”是“点()0,5为C 的一个焦点”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】C 【解析】【分析】利用椭圆几何性质,根据焦点坐标与9,m 之间的关系式可得结论.【详解】若34m =可得221934x y +=得一个焦点坐标为()0,5,即充分性成立;若“点()0,5为C 的一个焦点”,则可得295m -=,即34m =,可知必要性成立,因此,“34m =”是“点()0,5为C 的一个焦点”的充要条件.故选:C3.已知曲线2216x y +=,从曲线上任意一点P 向y 轴作垂线,垂足为P',且14PN PP'=,则点N 的轨迹方程为()A.221169x y += B.221916x y += C.22116x y += D.22116y x +=【答案】B 【解析】【分析】由向量找到三点的关系,设所求点N 的坐标,由三点关系得到P 的坐标,然后代入曲线2216x y +=,得到点N 的轨迹方程.【详解】∵14PN PP'= ,∴,,'P N P 三点共线,且3''4P N PP =又∵'PP y ⊥轴,∴设(),N x y ,则()'0,P y ,4,3P x y ⎛⎫⎪⎝⎭,∵点P 在2216x y +=上,∴224163x y ⎛⎫+= ⎪⎝⎭,即221916x y +=.故选:B.4.已知不全为零的实数a 、b 、c 满足2a c b +=,则直线:20l ax by c -+=被圆225x y +=所截得的线段长的最小值为()A.B. C.D.【答案】B【解析】【分析】求出直线l 所过定点A 的坐标,分析可知,当OA l ⊥时,圆心到直线l 的距离最大,此时,直线l 截圆所得弦长最小,结合勾股定理即可得解.【详解】因为不全为零的实数a 、b 、c 满足2a c b +=,则直线:20l ax by c -+=的方程可化为()0ax a c y c -++=,即()()10a x y c y -+-=,由010x y y -=⎧⎨-=⎩可得1x y ==,即直线l 过定点()1,1A ,因为22115+<,即点A 在圆内,圆225x y +=的圆心为原点O ,半径为r =,当OA l ⊥时,圆心到l 的距离取最大值,且最大值为OA ==,所以,直线l 被圆截得的弦长的最小值为==故选:B.5.已知椭圆C :221x y m n +=的一个焦点为()7,0,且C 过点()0,24A ,则m n +=()A.10B.49C.50D.1201【答案】D 【解析】【分析】由条件知椭圆的焦点在x 轴上,半焦距长7c =,短半轴长24b =,根据,,a b c 的关系,可求,m n .【详解】椭圆C :221x y m n +=的一个焦点为()7,0,过点()0,24A ,∴24924m n n -=⎧⎨=⎩,∴625576m n =⎧⎨=⎩,∴1201m n +=.故选:D.6.已知双曲线C :22221x y a b-=(0a >,0b >)的右焦点为()6,0F ,点()6,5P 在C 上,则C 的离心率为()A.32 B.23C.65D.56【答案】A 【解析】【分析】由已知列方程组求得,a b ,再由离心率公式计算.【详解】点()6,5P 在C 上,右焦点为()6,0F ,0,0a b >>,则22223625136a ba b ⎧-=⎪⎨⎪+=⎩,解得4a b =⎧⎪⎨=⎪⎩,所以离心率为6342c e a ===,故选:A .7.直线l :60x ay --=与圆22124360x y x y +---=的公共点个数为()A.0 B.1 C.2D.1或2【答案】C 【解析】【分析】利用直线恒过定点,且定点在圆的内部,即可得到结论.【详解】由22124360x y x y +---=整理得:()()226276x y -+-=,可知圆22124360x y x y +---=圆心坐标为()6,2,半径为r =,再由直线l :60x ay --=恒过点()6,0,由圆心()6,2到点()6,0的距离为2,可知2<所以点()6,0在圆的内部,即直线l 与圆一定有两个交点.故选:C.8.已知椭圆C :221x y m n+=(0m >,0n >)的左、右焦点分别为1F ,2F ,点P 是C 上一点,直线1PF ,2PF 的斜率分别为12,2-,且12PF F 是面积为4的直角三角形.则C 的方程为()A.221169x y += B.22116x y += C.22194x y += D.221259x y +=【答案】C 【解析】【分析】由直线斜率的关系得到两直线垂直,且知道直角三角形中121tan 2PF F ∠=,得到122PF PF =,由面积求出12,PF PF 的值,由椭圆定义和椭圆的性质求出,m n 的值,得到椭圆方程.【详解】∵121PF PF k k ⨯=-,∴12π2F PF ∠=,∵12112PF PF k PF ==,∴设112,PF n PF n ==,则12212112422PF F S PF PF n n n ==⋅== ,∴2n =,∴126PF PF =+=,∴9m =,∵122c F F ===,∵c ==∴4n =,∴椭圆方程为:22194x y +=.故选:C二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.用一个平面去截一个圆柱的侧面,可以得到以下哪些图形()A.两条平行直线B.两条相交直线C.圆D.椭圆【答案】CD 【解析】【分析】分平面与底面平行和平面与底面的夹角为锐角两种情况,得到图形为圆和椭圆.【详解】一个平面去截一个圆柱的侧面,若平面与底面平行,则得到的图形为圆,若平面与底面的夹角为锐角时,可以得到的图形为椭圆.故选:CD10.设抛物线C :214y x =的准线为l ,点P 为C 上的动点,过点P 作圆A :228150x y x +-+=的一条切线,切点为Q ,过点P 作l 的垂线,垂足为B .则()A.l 与圆A 相交B.当点P ,A ,B共线时,PQ =C.2PB =时,PAB 的面积为2或6D.满足PA PB =的点P 恰有2个【答案】BCD 【解析】【分析】对于A ,由抛物线与圆的方程,可得准线方程与圆心半径,根据直线与圆的位置关系,可得答案;对于B ,由题意作图,求得点的坐标,根据圆的切线性质与勾股定理,可得答案;对于C ,根据抛物线的性质求得点的坐标,利用分类讨论,结合图象,可得答案;对于D ,根据抛物线的性质,求得固定线段的中垂线,联立方程求交点,可得答案.【详解】对于A ,由抛物线21:4C y x =,即24x y =,则准线:1l y =-,由圆22:8150A x y x +-+=整理可得()2241x y -+=,则圆心()4,0A ,半径=1,由圆心A 到直线=−1的距离为1r =,则圆A 与直线l 相切,故A 错误;对于B ,由题意作图如下:由,,P A B 共线,且()4,0A ,当4x =时,21444y =⨯=,则()4,4P ,()4,1B -,4PA =,PQ ===,故B 正确;对于C ,由2PB =,则令1y =,2114x =,解得2x =±,当()2,1P 时,PAB 的高为422-=,面积为1222PB ⨯⨯=,如下图:当()2,1P -时,PAB 的高为()426--=,面积为1662PB ⨯⨯=,如下图:故C 正确;对于D ,由题意可作图如下:.由抛物线21:4C y x =整理可得24x y =,则其焦点()0,1F ,易知PF PB =,由直线AF 的斜率011404k -==--,线段AF 中点12,2⎛⎫⎪⎝⎭,则线段AF 的中垂线方程为()1422y x -=-,整理可得1542y x =-,联立2154214y x y x ⎧=-⎪⎪⎨⎪=⎪⎩,消y 可得216300x x -+=,()2164301360∆=--⨯=>,所以线段AF 的中垂线与抛物线存在两个交点,故D 正确.故选:BCD.11.已知12,F F 分别为双曲线()2222:10,0x yC a b a b-=>>的左、右焦点,过2F 的直线l 与圆222:O x y a +=相切于点M ,l 与第二象限内的渐近线交于点Q ,则()A.双曲线C 的离心率2e >B.若22::OF MF OQ QM =,则C 的渐近线方程为33y x =±C.若16MF OM =,则C 的渐近线方程为2y x=±D.若224QF MF =,则C 的渐近线方程为2y x=±【答案】AC 【解析】【分析】利用2tan a MF O b∠=可得l ak b =-,与渐近线斜率相比较即可构造不等式求得离心率e ,知A 正确;根据斜率关系可知直线OM 为双曲线C 的一条渐近线,利用2cos QOF ∠可构造方程求得B 正确;分别利用1cos MOF ∠和cos QOF ∠可构造方程求得CD 正误.【详解】对于A ,2OM MF ⊥ ,2OF c =,OM a =,2MF b ∴==,2tan a MF O b ∴∠=,l ak b∴=-,又l 与第二象限内的渐近线交于点Q ,a bb a ∴->-,即2222a bc a <=-,222c a ∴>,c e a∴=>,A 正确;对于B ,由A 知:l ak b =-,又2OM MF ⊥,OM b k a∴=,∴直线OM 即为双曲线C 的一条渐近线,22::OF MF OQ QM = ,::OQ QM c b ∴=,又222OQ QM a -=,OQ c ∴=,QM b =,2222222242cos 2c c b c b QOF c c+--∴∠==,2tan b QOF a ∠=- ,2cos a QOF c ∴∠=-,2222c b ac c -∴=-2222c b a c c-∴=-,整理可得:()2222222c b c c a ac -=--=-,2220c ac a ∴--=,()()22210e e e e ∴--=-+=,2e ∴=,2=,解得:b a =C ∴的渐近线方程为y =,B 错误;对于C ,1MF == ,22222165cos 22a c a c a MOF ac ac +--∴∠==,12tan tan b MOF MOF a ∠=-∠=- ,1cos aMOF c∴∠=-,2252c a aac c -∴=-,整理可得:22252c a a -=-,即22223c a b a =+=,222b a ∴=,ba∴=,C ∴的渐近线方程为y =,C 正确;对于D ,2244QF MF b == ,3QM b ∴=,OQ ∴=22222222cos QOF ∴∠=,2tan b QOF a ∠=- ,2cos a QOF c ∴∠=-,222ac=-,整理可得:()()22222239a b a a b -=+,422915b a b ∴=,2253b a ∴=,3b a ∴=,C ∴的渐近线方程为3y x =±,D 错误.故选:AC.【点睛】关键点点睛:本题考查双曲线离心率、渐近线的求解问题,解题关键是能够利用余弦定理和渐近线斜率构造关于,,a b c 的方程,进而求得双曲线的离心率和渐近线方程.三、填空题:本题共3小题,每小题5分,共15分.12.已知圆2222340x y x y λ++--=与x 轴相切,则λ=__________.【答案】98-【解析】【分析】整理圆的方程为标准式,明确圆心与半径,由切线建立方程,可得答案.【详解】由圆的方程整理可得圆()2232514216x y λ⎛⎫++-=+ ⎪⎝⎭,则圆心3,14⎛⎫- ⎪⎝⎭,半径r =,由圆与x 1=,解得98-.故答案为:98-.13.已知抛物线C :2y ax =的焦点F 恰为圆222240x y y +--=的圆心,点P 是C 与圆的一个交点,则点P 到直线OF 的距离为__________,点F 到直线OP 的距离为__________.【答案】①.4②.22【解析】【分析】由圆标准方程得到圆心,从而知道焦点F 坐标和a 的值,写出抛物线方程后联立方程组,解得P 点坐标,根据点到直线的距离公式求得结果.【详解】∵圆的标准方程:()22215x y +-=,∴圆心为0,1,半径=5r ,∴114a =,即14a =,即抛物线C :24x y =,0,1联立方程组22242240x y x y y ⎧=⎪⎨⎪+--=⎩,解得4y =或y =-6(∵204xy =≥舍去)∴4x =±∴()4,4P 或()4,4P -∵直线OF 与y 轴重合,∴点P 到直线OF 的距离为4,由对称性可知,无论取哪个点P ,点F 到直线OP 的距离相等,∴取()4,4P ,直线:0OP x y -=,∴点F 到直线OP的距离2d ==,故答案为:①414.已知曲线C 是椭圆2211612x y +=被双曲线2213y x -=(0x >)所截得的部分(含端点),点P 是C 上一点,()2,0A -,()2,0B ,则PA PB -的最大值与最小值的比值是__________.【答案】2【解析】【分析】由椭圆的定义,可得焦半径的和,整理所求差值为函数,利用分类讨论并结合图象,可得答案.【详解】由椭圆2211612x y +=,则4,a b ==,2c =,易知,A B 为椭圆的左右焦点,由P 为椭圆上的点,则28PA PB a +==,可得8PB PA =-,所以28PA PB PA -=-,联立22221161213x y y x ⎧+=⎪⎪⎨⎪-=⎪⎩,解得2249x y ⎧=⎨=⎩,当()2,3P 时,PA5=,则PA PB -取得最小值2如下图:;当()4,0P 时,PA 取得最大值()426--=,则PA PB -取得最大值4,如下图:.所以PA PB -的最大值与最小值的比值为2.故答案为:2.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.著名古希腊数学家阿基米德首次用“逼近法”的思想得到了椭圆的面积公式πS ab =,(a ,b 分别为椭圆的长半轴长和短半轴长)为后续微积分的开拓奠定了基础,已知椭圆C :2211216x y +=.(1)求C 的面积;(2)若直线l :2y x =+交C 于A ,B 两点,求AB.【答案】(1)(2)487【解析】【分析】(1)由椭圆C 的方程可知,a b 的值,代入椭圆的面积公式即可;(2)联立直线与椭圆的方程,利用韦达定理及弦长公式求解.【小问1详解】由椭圆C 的方程可知4a =,b =所以,椭圆C的面积πS ab ==;【小问2详解】联立22112162x y y x ⎧+=⎪⎨⎪=+⎩,得2712360x x +-=,设1122()A x y B x y ,,(,),则12127x x +=-,12367x x =-,∴122427x x -==,所以,122424877AB x =-==.16.已知椭圆C :2212x y +=上的左、右焦点分别为1F ,2F ,直线y x m =+与C 交于,A B 两点,若1F AB面积是2F AB 面积的3倍,求m 的值.【答案】12-【解析】【分析】根据1F AB 与2F AB 同底不等高的特点将面积比表示为高之比,结合直线与椭圆联立后所得方程的判别式∆求解出m 的值.【详解】解:将直线y x m =+与椭圆联立2212y x m x y =+⎧⎪⎨+=⎪⎩,消去y 可得2234220x mx m ++-=,因为直线与椭圆相交于,A B 点,则()22Δ1643220m m =-⨯->,解得m <<,设1F 到AB 的距离为1d ,2F 到AB 的距离为2d ,易知1−1,0,21,0,则1d =,2d =所以12131F AB F ABS m S m-+===+ ,解得12m =-或2-(舍去),故12m =-.17.已知椭圆C :221925x y +=,直线l 过原点,且与C 相交于A ,B 两点,并与点()0,4D 构成三角形.(1)求ABD △的周长的取值范围:(2)求ABD △的面积S 的最大值.【答案】(1)[)16,20(2)12【解析】【分析】(1)由椭圆定义得到ABD △的周长为10AB +,设()3cos ,5sin A θθ,[)0,2πθ∈且π3π,22θ≠,求出[)6,10AB =,求出周长的取值范围;(2)表达出2ABD A B S x x =- ,结合06A B x x <-≤,得到面积的最大值.【小问1详解】由题可得5a =,3b =,则22216c a b =-=,故4c =,所以()0,4D 为椭圆的其中一个焦点,则另一个焦点坐标为()0,4E -,连接,AE BE ,由对称性可知,DB AE =,故210AD DB AD AE a +=+==,则ABD △的周长为10AB +,设()3cos ,5sin A θθ,[)0,2πθ∈,因为,,A B D 三点构成三角形,故,,A B D 不共线,所以π3π,22θ≠,故[)0,2πθ∈且π3π,22θ≠,则222229cos 25sin 2916sin AB AO θθθ==+=+因为[)2sin0,1θ∈,故[)22916sin 6,10AB θ=+,所以ABD △的周长[)1016,20AB +∈;【小问2详解】114222ABD AOD BOD A B A B A B S S S OD x x x x x x =+=⋅-=⨯⋅-=- ,,,A B D 不共线,故06A B x x <-≤,所以(]20,12ABD A B S x x =-∈ ,S 的最大值为12.18.已知椭圆2222:1(0)x y E a b a b +=>>的离心率为32,点31,2A ⎛⎫ ⎪ ⎪⎝⎭在椭圆E 上.(1)求椭圆E 的方程;(2)已知椭圆E 的右顶点为B ,过B 作直线l 与椭圆E 交于另一点C ,且7||||7BC AB =,求直线l 的方程.【答案】(1)2214x y +=(252250x y --=【解析】【分析】(1)利用给的条件列方程求得,a b 的值,进而得到椭圆的标准方程;(2)联立圆与椭圆的方程,先求得点C 的坐标,进而得到表达式,再化简即可求得.【小问1详解】由题可知2c a =,其中222c a b =-,所以12b a =,又点1,2A ⎛⎫ ⎪ ⎪⎝⎭在椭圆E 上,所以221314a b+=,即22131a a +=,解得224,1a b ==,所以椭圆E 的方程为2214x y +=.【小问2详解】由椭圆E 的方程2214x y +=,得(2,0)B ,所以2AB ==,设()00,C x y ,其中00[2,2),[1,1]x y ∈-∈-,因为||||17BC AB ==,所以()220021x y -+=,又点()00,C x y 在椭圆22:14x E y +=上,所以220014x y +=,联立方程组()20022002114x y x y ⎧-+=⎪⎨+=⎪⎩,得200316160x x -+=,解得043x =或04x =(舍),当043x =时,03y =±,即4,33C ⎛⎫ ⎪ ⎪⎝⎭或4,33C ⎛⎫- ⎪ ⎪⎝⎭.所以当C的坐标为4,33⎛⎫⎪ ⎪⎝⎭时,直线l20y +-=;当C的坐标为4,33⎛⎫-⎪⎪⎝⎭时,直线l20y --=.综上,直线l的方程为20y+-=20y--=.19.若平面内的曲线C与某正方形A四条边的所在直线均相切,则称曲线C为正方形A的一条“切曲线”,正方形A为曲线C的一个“切立方”.(1)圆221x y+=的一个“切立方”A的其中一条边所在直线的斜率是1,求这个“切立方”A四条边所在直线的方程:(2)已知正方形A的方程为2x y+=,且正方形A为双曲线22221x ya b-=的一个“切立方”,求该双曲线的离心率e的取值范围;(3)设函数312y x x=-的图象为曲线C,试问曲线C是否存在切立方,并说明理由.【答案】(1)y x=±,y x=-±(2)((3)曲线C存在切立方,理由见解析【解析】【分析】(1)根据“切立方”的定义,结合图象,找到一个“切立方”A的四条边所在直线的方程即可;(2)根据“切立方”的定义,联立2x y+=与双曲线22221x ya b-=,由于相切,则∆=,根据0∆=,即可求出双曲线的离心率e的取值范围;(3)设第一个切点为()3111,12x x x-,则切线为()23113122y x x x=--,根据函数312y x x=-的图象关于原点对称和正方形对边平行,因此可设第二条切线为()23113122y x x x=-+,同理求出第三条和第四条切线,然后验证四条切线形成的图形是否为正方形即可.【小问1详解】根据“切立方”的定义,设直线方程y x m=+,y x n=-+可得1d==,m=,1d ==,n =y x =,y x =-±;【小问2详解】由正方形A 的方程为2x y +=,则2y x =±+,由正方形A 为双曲线22221x y a b-=的一个“切立方”,则222212x y a b y x ⎧-=⎪⎨⎪=±+⎩,联立整理得22222112110x x a b b b ⎛⎫-±--= ⎪⎝⎭,则422216114Δ410b a b b ⎛⎫⎛⎫=+-+= ⎪⎪⎝⎭⎝⎭,整理得224b a =-,即2224c a =-,由图可知2a >,则()22222224421,2c a e a a a -===-∈,所以(e ∈【小问3详解】由曲线312y x x =-,设切点为()3111,12x x x -,联立()()311131212y x x k x x y x x ⎧--=-⎪⎨=-⎪⎩,得()()331111212x x x x k x x ---=-,即2211120x x x x k ++--=,点()3111,12x x x -在曲线和直线上,整理得21312k x =-,则过该点的一条切线方程为()()()32111112312y x x x x x --=--,即()23113122y x x x =--,由函数312y x x =-为奇函数,其图象关于原点对称,因此如果曲线C 是存在“切立方”,则正方形也关于原点对称,故与第一条边平行的正方形的另一条边所在直线为:()23113122y x x x =-+,设第三个切点为()3222,12x x x -(20x >),同理可得另两条切线为()33223122y x x x =-±,若存在正方形,即()()2212333123121x x ⎧--=-⎪⎪=由此可设()10,2x ∈,22x>,3310x -=,设()33f x x =,由()1.90f >,()1.950f <,且在()1.9,1.95x ∈上,函数图象连续不间断,则由零点存在性定理可知()0f x =在()1.9,1.95x ∈上有解,因此曲线C 存在切立方.【点睛】关键点点睛:本题的第三问的关键是采用设线法,再结合对称性和零点存在性定义即可证明.。
黑龙江省齐齐哈尔市第八中学校2024-2025学年高二上学期期中考试数学试卷
2024-2025学年度上学期期中考试高二数学试题一、单选题(每小题5分,共40分)1.某工厂生产三种不同型号的产品,它们的产量之比为,用分层抽样的方法抽取一个容量为的样本.若样本中型号的产品有120件,则样本容量为( )A .250B .200C .180D .1502.黑龙江省将从2022年秋季入学的高一年级学生开始实行高考综合改革,高考采用“3+1+2”模式,其中“1”为首选科目,即物理与历史二选一.某校为了解学生的首选意愿,对部分高一学生进行了抽样调查,制作出如下两个等高条形图,根据条形图信息,下列结论正确的是( )A .样本中选择物理意愿的男生人数少于选择历史意愿的女生人数B .样本中女生选择历史意愿的人数多于男生选择历史意愿的人数C .样本中男生人数少于女生人数D .样本中选择物理学科的人数较多3. 从1,2,3,4,5,6,7,8,9中不放回地依次取2个数,事件A 为“第一次取到的数是偶数”,事件B 为“第二次取到的数是奇数”,则( )A.B.C.D.4. 给出下列说法中错误的是( )A. 回归直线恒过样本点的中心B. 两个变量相关性越强,则相关系数就越接近1C. 某7个数的平均数为4,方差为2,现加入一个新数据4,此时这8个数的方差不变D. 在回归直线方程中,当变量x 增加一个单位时,平均减少0.5个单位5. 现有4道填空题,学生张三对其中3道题有思路,1道题思路不清晰.有思路的题做对的概率为,思路不清晰的题做对的概率为,张三从这4道填空题中随机选择1题,则他做对该题的概率为( ),,A B C 2:2:6n C n ()P B A =52451651258ˆˆˆy bx a =+()x y ||r ˆ20.5yx =-ˆy 3414A.B.C.D.6. .随机变量X 的分布列如表所示,若E(X)=,则D (3X ﹣2)=( )X ﹣101PabA .9B .5C .D .37.某次数学考试后,为分析学生的学习情况,某校从某年级中随机抽取了100名学生的成绩,整理得到如图所示的频率分布直方图.则下列说法错误的是( )A .估计该年级学生成绩的众数约为75B .C .估计该年级学生成绩的75百分位数约为85D .估计该年级成绩在80分及以上的学生成绩的平均数约为87.508.箱中有标号为1,2,3,4,5,6,7,8且大小相同的8个球,从箱中一次摸出3个球,记下号码并放回,如果三球号码之积能被10整除,则获奖.若有2人参加摸奖,则恰好有2人获奖的概率是( )A.B .C .D .二、多选题(每小题6分,共18分)9.有一散点图如图所示,在5个(x ,y )数据中去掉D (3,10)后,下列说法中正确的是( )A .相关系数r 变小 B .残差平方和变小C .决定系数R 2变小D .解释变量x 与响应变量y 的相关性变强10.下列命题正确的是( )A .数据4,5,6,7,8,8的第50百分位数为6B .设随机变量,若,则的最大值为43C .对于随机事件A ,B ,若,,,则A 与B 相互独立D .已知采用分层随机抽样得到的高三年级男生、女生各100名学生的身高情况为:男生样本581814340.05a =81784813929491849()6,X B p ~()2E X ≤()D X ()()P AB P A =∣()0P A >()0P B >平均数为172,方差为120,女生样本平均数为165,方差为120,则总体样本方差为12011.甲、乙、丙、丁四名同学每人从三种卡片中随机选取一张(每种卡片有多张),每种卡片至少有一人选择.事件为“甲选择卡片A ”,事件为“乙选择卡片”,则下列结论正确的是( )A .事件与不互斥B .C .D .三、填空题(每小题5分,共15分)12.若X 服从正态分布N (10,σ2),且P (X ≤8)=P (X ≥20﹣t ),则t 的值为 .13.在的展开式中,的系数为14.已知袋子中有a 个红球和b 个蓝球,现从袋子中随机摸球,则下列说法中正确的是 .①每次摸1个球,摸出的球观察颜色后不放回,则第2次摸到红球的概率为②每次摸1个球,摸出球观察颜色后不放回,则第1次摸到红球的条件下,第2次摸到红球的概率为③每次摸出1个球,摸出的球观察颜色后放回,连续摸n 次后,摸到红球的次数X 的方差为④从中不放回摸个球,摸到红球的个数X 的概率是四、解答题(共计77分)15.(13分)已知的展开式中所有项的二项式系数和为128,各项系数和为.(1)求n 和a 的值;(2)求展开式中项的系数(3)求的展开式中的常数项.16. (15分)共享汽车进驻城市,绿色出行引领时尚,某市有统计数据显示,某站点5天的使用汽车,,A B C M N B M N ()()||P N MP MN =()3136P M N =()23P M N ⋃=()()()()2391111x x x x ++++++++ 3x aa b+()()()11a a a b a b -++-naa b+()n n a ≤()C C C k n ka bn a bP X k -+==21nax x ⎛⎫+ ⎪⎝⎭1-4x -22112nx ax x x ⎛⎫⎛⎫-+ ⎪⎪⎝⎭⎝⎭用户的数据如下,用两种模型①:②分别进行拟合,进行残差分析得到如表所示的残差值及一些统计量的值:日期(天)12345用户(人)1322455568模型①的残差值模型②的残差值(1)残差值的绝对值之和越小说明模型拟合效果越好,根据残差,比较模型①,②的拟合效果,应选择哪一个模型?并说明理由;(2)求出(1)中所选模型的回归方程.(参考公式:,,参考数据:,)17.(15分)4月23日是联合国教科文组织确定的“世界读书日”.为了解某地区高一学生阅读时间的分配情况,从该地区随机抽取了500名高一学生进行在线调查,得到了这500名学生的日平均阅读时间(单位:小时),并将样本数据分成[0,2],(2,4],(4,6],(6,8],(8,10],(10,12],(12,14],(14,16],(16,18]九组,绘制成如图所示的频率分布直方图.(1)从这500名学生中随机抽取一人,日平均阅读时间在(10,12]内的概率;(2)为进一步了解这500名学生数字媒体阅读时间和纸质图书阅读时间的分配情况,从日平均阅读时间在(12,14],(14,16],(16,18]三组内的学生中,采用分层抽样的方法抽取了10人,现从这10人中随机抽取3人,记日平均阅读时间在(14,16]内的学生人数为X ,求X 的分布列和数学期望和方差;(3)以样本的频率估计概率,从该地区所有高一学生中随机抽取10名学生,用P (k )表示这10名学y bx a =+y a =+x y 1.1- 2.8- 1.2- 1.9-0.40.3 5.4- 3.2- 1.6- 3.81221ˆni ii nii x ynx y bxnx==-=-∑∑ˆˆay bx =-52155ii x==∑51752i i i x y ==∑生中恰有k 名学生日平均阅读时间在(8,12]内的概率,其中k =0,1,2,…,10.当P (k )最大时,写出k 的值.(写出证明)18.(17分)如图,在四棱锥中,平面平面,为棱的中点.(1)证明:平面;(2)若,(i )求平面PDM 与平面BDM 的余弦值;(ii )在线段上是否存在点Q ,使得点Q 到平面的的值;若不存在,说明理由.19.(17分)某中学举办“数学知识竞赛”,初赛采用“两轮制”方式进行,要求每个班级派出两个小组,且每个小组都要参加两轮比赛,两轮比赛都通过的小组才具备参与决赛的资格.高三(6)班派出甲、乙两个小组参赛,在初赛中,若甲、乙两组通过第一轮比赛的概率分别是34,35,通过第二轮比赛的概率分别是45,23,且各个小组所有轮次比赛的结果互不影响.(1)若高三(6)班获得决赛资格的小组个数为X ,求X 的分布列;(2)已知甲、乙两个小组在决赛中相遇,决赛以三道抢答题形式进行,抢到并答对一题得100分,答错一题扣100分,得分高的获胜.假设这两组在决赛中对每个问题回答正确的概率恰好是各自获得决赛资格的概率,且甲、乙两个小组抢到该题的可能性分别是13,23,假设每道题抢与答的结果均互不影响,求乙已在第一道题中得100分的情况下甲获胜的概率.P ABCD -PDC ⊥,,ABCD AD DC AB DC ⊥∥11,2AB CD AD M ===PC //BM PAD 1PC PD ==PA BDM PQ。
重庆市2024-2025学年高二上学期期中考试数学试卷含答案
重庆市2024—2025学年度上期高2026级半期考试数学试题(答案在最后)(满分150分,考试时间120分钟)注意事项1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知直线l 经过点()3,1,()2,0,则直线l 的倾斜角为()A.π4 B.π3C.2π3 D.3π4【答案】A 【解析】【分析】由两点坐标结合斜率公式直接求出斜率,再求出倾斜角,然后由点斜式写出直线方程.【详解】设直线l 的倾斜角为θ.直线l 经过点()3,1,()2,0,所以01123l k -==-,所以tan 1θ=,又0πθ≤<,所以π4θ=.故选:A.2.若直线210x ay ++=与直线220x y +-=互相垂直,则实数a 的值是()A.1 B.-1 C.4D.-4【答案】B 【解析】【分析】直接利用两直线垂直时系数的关系求解即可.【详解】由题可知,220a +=,解得1a =-.故选:B3.如图,在空间四边形ABCD 中,设,E F 分别是BC ,CD 的中点,则1()2AD DB DC →→→++=()A.AD →B.FA →C.AE →D.EF→【答案】C 【解析】【分析】根据平面向量的平行四边形法则得出2DB DC DE →→→+=,再由平面向量的三角形加法运算法则即可得出结果.【详解】解:由题可知,,E F 分别是BC ,CD 的中点,根据平面向量的平行四边形法则,可得2DB DC DE →→→+=,再由平面向量的三角形加法法则,得出:11()222AD DB DC AD DE AD DE AE →→→→→→→→++=+⨯=+=.故选:C.4.平面内点P 到()13,0F -、()23,0F 的距离之和是10,则动点P 的轨迹方程是()A.221259x y += B.2212516x y +=C.221259y x += D.2212516y x +=【答案】B 【解析】【分析】求出,,a b c 即可得出动点P 的轨迹方程.【详解】由题意,平面内点P 到()13,0F -、()23,0F 的距离之和是10,∴动点P 的轨迹E 为椭圆,焦点在轴上,3,210c a ==,解得:5a =,∴22216b a c =-=,∴轨迹方程为:2212516x y +=,故选:B.5.已如12,F F 是椭圆2212449x y +=的两个焦点,P 是椭圆上一点,1234PF PF =,则12PF F 的面积等于()A.24B.26C.D.【答案】A 【解析】【分析】由定义可得12214PF PF a +==,结合条件求出12,PF PF 即可求出面积.【详解】由椭圆方程可得焦点在y 轴上,7a =,b =,5c ==,由椭圆定义可得12214PF PF a +==,又1234PF PF =,则可解得128,6PF PF ==,12210F F c == ,满足2221212PF PF F F +=,则12PF PF ⊥,121212186242PF F PF P S F ⋅=⨯⨯∴==.故选:A.6.我国汉代初年成书的《淮南子毕术》中记载:“取大镜高悬,置水盆于下,则是四邻矣.”这是我国古代人民利用平面镜反射原理的首个实例,体现了传统文化中的数学智慧.已知从点()5,3-发出的一束光线,经x 轴反射后,反射光线恰好平分圆:()()22115x y -+-=的圆周,则反射光线所在的直线方程为()A.2310x y -+=B.2310x y --=C.3210x y -+=D.3210x y --=【答案】A 【解析】【分析】求得点()5,3-关于x 轴的对称点的坐标与圆的圆心坐标,由两点式可求反射光线所在直线方程.【详解】由()()22115x y -+-=,可得圆心(1,1)C ,由反射定律可知,点()5,3-关于x 轴的对称点()5,3--在反射光线上,又反射光线恰好平分圆:()()22115x y -+-=的圆周,所以反射光线过(1,1)C ,由直线的两点式方程可得反射光线所在直线方程为113151y x --=----,即2310x y -+=.故选:A.7.点P 是圆C :()()22332x y -+-=上一动点,过点P 向圆O :221x y +=作两条切线,切点分别为A ,B ,则四边形PAOB 面积的最大值为()A.B. C.D.【答案】D 【解析】【分析】将四边形PAOB 的面积表示为S =||PO 的最大值即可.【详解】由圆()()22:332C x y -+-=为,可得圆心为(3,3),由22:1O x y +=,可得圆心(0,0)O ,半径为1,连接PO ,则在PAO 中,||PA ==,所以四边形PAOB 的面积122||1||2PAO S S PA PA ==⨯⨯⨯== 所以||PO 最大时,四边形PAOB 面积的最大值,因为||CO ==,所以max ||||PO CO ==,所以四边形PAOB =故选:D.8.设A ,B 分别为椭圆C :22221x y a b+=(0a b >>)的左、右顶点,M 是C 上一点,且::3:5:7MA MB AB =,则C 的离心率为()A.13B.182C.11D.143【答案】D 【解析】【分析】由题意,根据余弦定理和同角的商数关系可得tan 11MA MAB k ∠==,tan 13MB MBA k ∠==-,设()00,M x y ,则22MA MBb k k a ⋅=-,得2245143b a =,结合离心率的概念即可求解.【详解】在MAB △中,由22237511cos 23714MAB +-∠==⨯⨯,得14sin MAB ∠=,所以tan 11MA MAB k ∠==,由22257313cos 25714MBA +-∠==⨯⨯,得sin MBA ∠=,所以tan 13MB MBA k ∠==-,设()00,M x y ,则200022000MA MBy y y k k x a x a x a⋅=⋅=+--,又2200221x y a b +=,∴()2222002b y x a a =--,∴22MA MB b k k a⋅=-,又451113143MA MBk k ⎛⎫⋅=⨯-=- ⎪ ⎪⎝⎭,∴2245143b a =,∴143e ==.故选:D.【点睛】关键点点睛:关键在于求得22MA MB b k k a ⋅=-,进而得2245143b a =,从而求得离心率,求解离心率问题常常需得到或构造,,a b c 的齐次式求解.二、多项选择题:本题共3小题,每小题满分6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对得6分,部分选对的得部分分,有选错的得0分.9.已知椭圆C 的中心为坐标原点,焦点12F F 、在x 轴上,短轴长等于2,焦距为,过焦点1F 作x 轴的垂线交椭圆C 于P 、Q 两点,则下列说法正确的是()A.椭圆C 的方程为2214x y += B.椭圆C的离心率为2C.1PQ =D.23PF =【答案】ABC 【解析】【分析】求出,,a b c 的值,可判断AB 选项的正误;设点1F为椭圆的左焦点,x =将代入椭圆方程,可求得||PQ 的长,可判断C 选项的正误;利用椭圆的定义可判断D 选项的正误.【详解】对于椭圆C,由已知可得222b c =⎧⎪⎨=⎪⎩1,2b c a ===,.对于A 选项,因为椭圆的焦点在x 轴上,故椭圆的方程为2214xy +=,故A 对;对于B选项,椭圆的离心率为2c e a ==,故B 正确;对于C 选项,设点1F为椭圆的左焦点,易知点1(F ,将x =代入椭圆方程可得12y =±,故||1PQ =,故C 正确;对于D 选项,111|||22|P PQ F ==,故212|17|2||42a PF PF =-=-=,故D 错误.故选:ABC.10.已知直线l :10kx y -+=和圆M :()()22124x y -+-=,则下列选项正确的是()A.直线l 恒过点()0,1B.圆M 与圆C :221x y +=有三条公切线C.直线l 被圆M 截得的最短弦长为D.圆M 上恰有4个点到直线l 的距离等于32,则474733k ⎛⎫∈ ⎪ ⎪⎝⎭【答案】ACD 【解析】【分析】根据定点的特征即可求解可判断A ,根据两圆的位置关系即可求解可判断B ,根据垂直时即可结合圆的弦长公式求解可判断C12<,求解即可判断D.【详解】对于A ,由直线l 的方程10kx y -+=,可知直线l 恒经过定点(0,1)P ,故A 正确;对于B ,由圆()()22124x y -+-=的方程,可得圆心(1,2)M ,半径2r =,由221x y +=,可得圆心(0,0)C ,半径为1,又||MC ==2121-<<+,所以圆M 与圆221x y +=相交,圆M 与圆C 有两条公切线,故B 错误;对于C ,由||PM =,根据圆的性质,可得当直线l 和直线PM 垂直时,此时截得的弦长最短,最短弦长为=,故C 正确;对于D ,当圆M 上恰有4个点到直线l 的距离等于32,则圆心M 到直线l :10kx y -+=的距离小于12,12<,整理得23830k k -+<,解得4433k +<<,故D 正确.故选:ACD.11.如图,点P 是棱长为2的正方体1111ABCD A B C D -的表面上一个动点,则()A.当P 在平面11BCC B 上运动时,三棱锥1P AA D -的体积为定值43B.当P 在线段AC 上运动时,1D P 与11A C 所成角的取值范围是ππ,32⎡⎤⎢⎥⎣⎦C.若F 是11A B 的中点,当P 在底面ABCD 上运动,且满足//PF 平面11B CD 时,PF 5D.使直线AP 与平面ABCD 所成的角为45°的点P 的轨迹长度为2π42+【答案】AB 【解析】【分析】对A :由1AA D △的面积不变,点P 到平面11AA D D 的距离不变,求出体积即可;对B :以D 为原点,建立空间直角坐标系,设(),2,0P x x -,则()1,2,2D P x x =-- ,()112,2,0A C =-,结合向量的夹角公式,可判定B 正确;对C :设(),,0P m n ,求得平面11CB D 的一个法向量为()1,1,1n =--,得到()2216FP m =-+ C 错误.对D :由直线AP 与平面ABCD 所成的角为45︒,作PM ⊥平面ABCD ,得到点P 的轨迹,可判定D 正确.【详解】对于A :1AA D △的面积不变,点P 到平面11AA D D 的距离为正方体棱长,所以三棱锥1P AA D -的体积不变,且1111142223323P AA D AA D V S AB -=⋅=⨯⨯⨯⨯= ,所以A 正确;对于B :以D 为原点,DA ,DC ,1DD 所在的直线分别为x 轴、y 轴和z 轴,建立空间直角坐标系,可得()12,0,2A ,()0,0,2D ,()10,2,2C ,设(),2,0P x x -,02x ≤≤,则()1,2,2D P x x =-- ,()112,2,0A C =-,设直线1D P 与11A C 所成角为θ,则111111111cos cos ,D P A C D P A C D P A C θ⋅===,因为011x ≤-≤,当10x -=时,可得cos 0θ=,所以π2θ=;当011x <-≤时,1cos 2θ==,由π0,2θ⎡⎤∈⎢⎥⎣⎦,所以ππ32θ≤<,所以异面直线1D P 与11A C 所成角的取值范围是ππ,32⎡⎤⎢⎥⎣⎦,所以B 正确;对于C ,由()12,2,2B ,()10,0,2D ,()0,2,0C ,()2,1,2F ,设(),,0P m n ,02m ≤≤,02n ≤≤,则()12,0,2CB = ,()10,2,2CD =- ,()2,1,2FP m n =---设平面11CB D 的一个法向量为 =s s ,则11220220n CD b c n CB a c ⎧⋅=-+=⎪⎨⋅=+=⎪⎩ 取1a =,可得1b =-,1c =-,所以()1,1,1n =--,因为//PF 平面1B CD ,所以()()2120FP n m n ⋅=---+=,可得1n m =+,所以FP =,当1m =时,等号成立,所以C 错误.对于D :因为直线AP 与平面ABCD 所成的角为45°,由1AA ⊥平面ABCD ,得直线AP 与1AA 所成的角为45°,若点P 在平面11DCC D 和平面11BCC B 内,因为145B AB ∠=︒,145D AD ∠=︒,故不成立;在平面11ADD A 内,点P 的轨迹是12AD =;在平面11ABB A 内,点P 的轨迹是122AB =;在平面1111D C B A 时,作PM ⊥平面ABCD ,如图所示,因为45PAM ∠=︒,所以PM AM =,又因为PM AB =,所以AM AB =,所以1A P AB =,所以点P 的轨迹是以1A 点为圆心,以2为半径的四分之一圆,所以点P 的轨迹的长度为12π2π4⨯⨯=,综上,点P 的轨迹的总长度为π42+D 错误;故选:AB.【点睛】方法点拨:对于立体几何的综合问题的解答方法:(1)立体几何中的动态问题主要包括:空间动点轨迹的判断,求解轨迹的长度及动态角的范围等问题,解决方法一般根据线面平行,线面垂直的判定定理和性质定理,结合圆或圆锥曲线的定义推断出动点的轨迹,有时也可以利用空间向量的坐标运算求出动点的轨迹方程;(2)对于线面位置关系的存在性问题,首先假设存在,然后在该假设条件下,利用线面位置关系的相关定理、性质进行推理论证,寻找假设满足的条件,若满足则肯定假设,若得出矛盾的结论,则否定假设;(3)对于探索性问题用向量法比较容易入手,一般先假设存在,设出空间点的坐标,转化为代数方程是否有解的问题,若有解且满足题意则存在,若有解但不满足题意或无解则不存在.三、填空题:本题共3小题,每小题5分,共15分.12.已知空间的量()6,2,1a = ,()2,,3b x =,若()a b a -⊥ ,则x =______.【答案】13【解析】【分析】利用空间向量的坐标表示及数量积公式计算即可.【详解】因为()a b a -⊥ ,所以()0a b a -=,所以20a a b -=,又因为()6,2,1a = ,()2,,3b x = ,所以3641(1223)0x ++-++=,解得13x =.故答案为:13.13.设b 为实数,若直线y x b =+与曲线x =有公共点,则实数b 的取值范围是______.【答案】2⎡⎤-⎣⎦【解析】【分析】曲线x =表示是以原点为圆心,2为半径的半圆,直线y x b =+是一条斜率为1的直线,画出图象,结合图象,即可得出答案.【详解】由x =可得()2240x y x +=≥,即x =表示以原点为圆心,2为半径的半圆,直线y x b =+是一条斜率为1的直线,()2240x y x +=≥与y 轴交于两点分别是()0,2A ,()0,2B -,当点()0,2A 在直线y x b =+上时2b =;当直线y x b =+与()2240x y x +=≥2=,所以b =(舍)或b =-所以直线y x b =+与曲线x =有公共点,实数b满足2b -≤≤.实数b的取值范围为2⎡⎤-⎣⎦.故答案为:2⎡⎤-⎣⎦.14.我国著名数学家华罗庚说过:“数缺形时少直观,形少数时难入微.”事实上,很多代数问题可以转化为几何问题加以解决.如:若实数,x y 满足228130x y x +-+=,则x y +的最小值为______,______.【答案】①.4-②.13+【解析】【分析】利用直线和圆的位置关系可得x y +的最小值,把转化为点(),x y到直线10x +-=的距离与它到()1,0A 距离比值的2倍,结合图形可得答案.【详解】由228130x y x +-+=得()2243x y -+=,令x y t +=,则直线x y t +=与圆()2243x y -+=有公共点,所以圆心到直线x y t +=的距离为d =≤44t ≤≤+所以x y +的最小值为4-2=可以看作点(),x y到直线10x +-=的距离与它到()1,0A 距离比值的2倍,设过点()1,0A 的直线与圆相切于点(),P x y.设直线方程为()1y k x =-,由()()22143y k x x y ⎧=-⎪⎨-+=⎪⎩,得()()2222182130k x k x k +-+++=,()()()22228241130k k k ∆=+-++=,解得2k =±,结合图形可知2k =,把2k =代入联立后的方程可得切点(P ,代入可得13+.故答案为:4613+.【点睛】关键点点睛:本题求解的关键是把目标式转化为点(),x y到直线10x +-=的距离与它到()1,0A 距离比值的2倍,数形结合可得答案.四、解答题:本题共5小题,共77分,(15题13分,16-17题15分,18-19题17分)解答应写出文字说明、证明过程或演算步骤.15.如图所示,在几何体ABCDEFG 中,四边形ABCD 和ABFE 均为边长为2的正方形,//AD EG ,AE ⊥底面ABCD ,M 、N 分别为DG 、EF 的中点,1EG =.(1)求证://MN 平面CFG ;(2)求直线AN 与平面CFG 所成角的正弦值.【答案】(1)证明见解析(2)3【解析】【分析】(1)建立空间直角坐标系,求得直线MN 的方向向量31,,12MN ⎛⎫=- ⎪⎝⎭ ,求得平面CFG 的法向量1n ,然后利用10n MN ⋅= ,证明1MN n ⊥,从而得出//MN 平面CFG ;(2)求得直线AN 的方向向量()1,0,2AN = ,由(1)知平面CFG 的法向量1n,结合线面角的向量公式即可得解.【小问1详解】因为四边形ABCD 为正方形,AE ⊥底面ABCD ,所以AB ,AD ,AE 两两相互垂直,如图,以A 为原点,分别以AB ,AD ,AE方向为x 轴、y 轴、z 轴正方向建立空间直角坐标系A xyz -,由题意可得0,0,0,()2,0,0B ,()2,2,0C ,()0,2,0D ,()0,0,2E ,()2,0,2F ,()0,1,2G ,30,,12M ⎛⎫⎪⎝⎭,()1,0,2N ,则()0,2,2CF =- ,()2,1,2CG =-- ,31,,12MN ⎛⎫=- ⎪⎝⎭ 设平面CFG 的一个法向量为1 =1,1,1,则11n CFn CG ⎧⊥⎪⎨⊥⎪⎩ ,故11·=0·=0n CF n CG ⎧⎪⎨⎪⎩ ,即11111220220y z x y z -+=⎧⎨--+=⎩,则111112y z x z =⎧⎪⎨=⎪⎩,令12z =,得()11,2,2n =,所以()1331,2,21,,111221022n MN ⎛⎫⎛⎫⋅=⋅-=⨯+⨯-+⨯= ⎪ ⎪⎝⎭⎝⎭ ,所以1MN n ⊥,又MN ⊄平面CFG ,所以//MN 平面CFG .【小问2详解】由(1)得直线AN 的一个方向向量为()1,0,2AN = ,平面CFG 的一个法向量为()11,2,2n =,设直线AN 与平面CFG 所成角为θ,则111sin cos ,3n AN n AN n AN θ⋅=====⋅ ,所以直线AN 与平面CFG所成角的正弦值为3.16.已知点()2,3-在圆22:860C x y x y m +-++=上.(1)求该圆的圆心坐标及半径长;(2)过点()1,1M -,斜率为43-的直线l 与圆C 相交于,A B 两点,求弦AB 的长.【答案】(1)圆心坐标为()4,3-,半径长为2(2)165【解析】【分析】(1)先根据点在圆上求出参数m ,再将圆的方程化为标准方程,即可得出圆心及半径;(2)先写出直线方程,求出圆心到直线的距离,再根据圆的弦长公式l =.【小问1详解】因为点()2,3-在圆22:860C x y x y m +-++=上,所以4916180m +--+=,解得21m =,所以该圆的标准方程为()()22434x y -++=,所以该圆的圆心坐标为()4,3-,半径长为2;【小问2详解】因为直线l 过点()1,1M -,斜率为43-,所以直线l 的方程为()4113y x +=--,即4310x y +-=,则圆心()4,3-到直线l 的距离65d ==,所以165AB ===.17.已知椭圆C :()222210x y a b a b +=>>经过点1,2M ⎛⎫ ⎪ ⎪⎝⎭,1F 、2F 是椭圆C 的左、右两个焦点,12F F =,P 是椭圆C 上的一个动点.(1)求椭圆C 的标准方程;(2)若点P 在第一象限,且1214PF PF ⋅≤ ,求点P 的横坐标的取值范围.【答案】(1)2214x y +=(2)(.【解析】【分析】(1)依题意得焦点坐标,再利用椭圆的定义求得a ,进而求得b 即可;(2)设(),(0,0)P x y x y >>,从而可求得()2212134PF PF x y ⋅=--+≤ ,再把2214x y =-代入求解即可.【小问1详解】由已知得2c =c ∴=,()1F ∴,)2F ,142MF +==,同理2432MF =,1224a MF MF ∴=+=,2a ∴=,1b ∴==,∴椭圆C 的标准方程为2214x y +=.【小问2详解】设(),(0,0)P x y x y >>,且2214x y +=,则()1,PF x y =- ,)2,PF x y =- ,()2212134PF PF x y ∴⋅=--+≤ .由椭圆方程可得()2213144x x --+-≤,整理得239x ≤,所以0x <≤,即点P 的横坐标的取值范围是(.18.如图,在三棱柱111ABC A B C -中,底面是边长为2的等边三角形,12CC =,D ,E 分别是线段AC ,1CC 的中点,1C 在平面ABC 内的射影为D .(1)求证:1A C ⊥平面BDE ;(2)若点F 为棱11B C 的中点,求点F 到平面BDE 的距离;(3)若点F 为线段11B C 上的动点(不包括端点),求平面FBD 与平面BDE 夹角的余弦值的取值范围.【答案】(1)证明过程见解析(2)4(3)1,22⎛ ⎝⎭【解析】【分析】(1)作出辅助线,得到BD ⊥平面11ACC A ,BD ⊥1AC ,又平行四边形11ACC A 为菱形,故1AC ⊥1AC ,又1//DE AC ,从而得到线面垂直,(2)建立空间直角坐标系,由(1)知,1AC ⊥平面BDE ;故平面BDE的一个法向量为(10,3,A C =- ,利用点到平面的距离向量公式求出答案;(3)设111,01C F C B λλ=<<,求出,Fλ,求出平面FBD 的法向量,结合平面BDE 的一个法向量为(10,3,A C =-,从而得到1cos ,A C m =,换元后,得到11cos ,,22AC m ⎛⎫= ⎪ ⎪⎝⎭ .【小问1详解】连接11,C D AC ,因为1C 在平面ABC 内的射影为D ,所以1C D ⊥平面ABC ,因为,BD AC ⊂平面ABC ,所以1C D ⊥BD ,1C D ⊥AC ,因为ABC V 为边长为2的等边三角形,D 是线段AC 的中点,所以BD ⊥AC ,因为1C D AC D = ,1,C D AC ⊂平面11ACC A ,所以BD ⊥平面11ACC A ,因为1A C ⊂平面11ACC A ,所以BD ⊥1AC ,因为112C C AC ==,四边形11ACC A 为平行四边形,所以平行四边形11ACC A 为菱形,故1AC ⊥1AC ,因为D ,E 分别是线段AC ,1CC 的中点,所以1//DE AC ,故1AC ⊥DE ,因为DE BD D ⋂=,,DE BD Ì平面BDE ,所以1AC ⊥平面BDE ;【小问2详解】由(1)知,1,,C D AC BD 两两垂直,以D 为坐标原点,1,,BD DA C D 所在直线分别为,,x y z 轴,建立空间直角坐标系,因为1C D ⊥AC ,D 是线段AC 的中点,所以由三线合一可得112C C AC ==,又2AC =,故1ACC △为等边三角形,(()()11110,,0,1,0,,,,,22A C B C F B ⎛- ⎝,由(1)知,1AC ⊥平面BDE ;故平面BDE的一个法向量为(10,3,A C =-,点F 到平面BDE 的距离11334DF A C d A C⋅== ;【小问3详解】点F 为线段11B C 上的动点(不包括端点),设111,01C F C B λλ=<<,(,Fs t ,则()),,0s t λ=,故,s tλ==,故,Fλ,设平面FBD 的法向量为(),,m x y z =,则())(),,0,,,0mDB x y z m DF x y z x y λλ⎧⋅=⋅==⎪⎨⋅=⋅=+=⎪⎩,解得0x =,令1y =,则33z =-,故30,1,3m ⎛⎫=- ⎪ ⎪⎝⎭,又平面BDE的一个法向量为(10,3,A C =-,故111cos ,A C m A C m A C m ⋅==⋅ ,令()32,3q λ-=∈,则1cos ,A C m ==,因为111,32q⎛⎫∈ ⎪⎝⎭,故2111124443q ⎛⎫⎛⎫-+∈ ⎪ ⎪ ⎪⎝⎭⎝⎭,13,22⎛⎫ ⎪⎪⎝⎭,平面FBD 与平面BDE 夹角的余弦值取值范围是1,22⎛⎫⎪ ⎪⎝⎭.【点睛】立体几何二面角求解方法:(1)作出辅助线,找到二面角的平面角,并结合余弦定理或勾股定理进行求解;(2)建立空间直角坐标系,求出平面的法向量,利用空间向量相关公式求解.19.已知点A ,B 是平面内不同的两点,若点P 满足PAPBλ=(0λ>,且1λ≠),则点P 的轨迹是以有序点对(),A B 为“稳点”的λ—阿波罗尼斯圆.若点Q 满足QA QB μ⋅=(0μ>),则点Q 的轨迹是以(),A B 为“稳点”的μ—卡西尼卵形线.已知在平面直角坐标系中,()2,0A -,(),B a b (2a ≠-).(1)当2a =,0b =时,若点P 的轨迹是以(),A B 为“稳点”阿波罗尼斯圆,求点P 的轨迹方程;(2)在(1)的条件下,若点Q 在以(),A B 为“稳点”的5—卡西尼卵形线上,求OQ (O 为原点)的取值范围;(3)卡西尼卵形线是中心对称图形,且只有1个对称中心,若0b =,λ=试判断是否存在实数a ,μ,使得以(),A B 为“稳点”—阿波罗尼斯圆与μ—卡西尼卵形线都关于同一个点对称,若存在,求出实数a ,μ的值,若不存在,请说明理由.【答案】(1)221240x y x +-+=(2)[]1,3(3)不存在,理由见解析【解析】【分析】(1)由题意可知PA PB =,设:(),P x y=,整理计算即可求解;(2)设(),Q x y ,由定义得到()222242516x y x ++=+,从而有2240y x =-≥,求得209x ≤≤,再由OQ =(3)由0b =,λ=(),A B 为“稳点”一阿波罗尼斯圆的方程:()22244240x y a x a +-++-=,再结合对称性及QA QB μ⋅=得到μ—卡西尼卵形线,关于点2,02a -⎛⎫ ⎪⎝⎭对称,从而得到2222a a -+=推出矛盾,即可解决问题.【小问1详解】由已知()2,0A -,()2,0B 且PA PB=(),P x y=,∴()()22222222++=-+x y x y ,整理得:221240x y x +-+=,∴点P 的轨迹方程为:221240x y x +-+=.【小问2详解】由(1)知()2,0A -,()2,0B ,设(),Q x y,由5QA QB ⋅=,5=,所以()222242516x y x ++=+,2240y x =-≥,整理得42890x x --≤,即()()22190x x +-≤,所以209x ≤≤,OQ ==209r ≤≤,得13OQ ≤≤,即OQ 的取值范围是[]1,3.【小问3详解】若0b =,则以(),A B 为“稳点”—阿波罗尼斯圆的方程为()()222222x y x a y ⎡⎤++=-+⎣⎦,整理得()22244240x y a x a +-++-=,该圆关于点()22,0a +对称.由点()2,0A -,(),0B a 关于点2,02a -⎛⎫ ⎪⎝⎭对称及QA QB μ⋅=,可得μ—卡西尼卵形线关于点2,02a -⎛⎫ ⎪⎝⎭对称,令2222a a -+=,解得2a =-,与2a ≠-矛盾,所以不存在实数a ,μ,使得以(),A B 一阿波罗尼斯圆与μ—卡西尼卵形线都关于同一个点对称.。
湖北省武汉市部分重点中学2024-2025学年高二上学期期中联考数学试题含答案
武汉市部分重点中学2024-2025学年度上学期期中联考高二数学试卷(答案在最后)本试卷共4页,19题.满分150分.考试用时120分钟.考试时间:2024年11月12日下午14:00—16:00祝考试顺利★注意事项:1.答题前,先将自己的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码贴在答题卡上的指定位置.2,选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.写在试卷、草稿纸和答题卡上的非答题区域均无效.3.非选择题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内.写在试卷、草稿纸和答题卡上的非答题区域均无效.4.考试结束后,请将本试卷和答题卡一并上交.一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题所给的四个选项中,只有一项是符合题目要求的)1.直线320x y --=在y 轴上的截距为()A .2-B .2C .23D .23-2.已知直线1:1l y x =-绕点(0,1)-逆时针旋转512π,得到直线2l ,则2l 不过第__________象限.A .四B .三C .二D .一3.已知某种设备在一年内需要维修的概率为0.2.用计算器进行模拟实验产生1~5之间的随机数,当出现随机数1时,表示一年内需要维修,其概率为0.2,由于有3台设备,所以每3个随机数为一组,代表3台设备一年内需要维修的情况,现产生20组随机数如下:412451312531224344151254424142435414135432123233314232353442据此估计一年内这3台设备都不需要维修的概率为()A .0.4B .0.45C .0.5D .0.554.已知事件A ,B 互斥,它们都不发生的概率为13,且()3()P A P B =,则()P B =()A .16B .13C .23D .565.现有一段底面周长为12π厘米和高为15厘米的圆柱形水管,AB 是圆柱的母线,两只蚂蚁分别在水管内壁爬行,一只从A 点沿上底部圆弧顺时针方向爬行2π厘米后再向下爬行5厘米到达P 点,另一只从B 沿下底部圆弧逆时针方向爬行2π厘米后再向上爬行4厘米爬行到达Q 点,则此时线段PQ 长(单位:厘米)为()A .B .12C .D .6.概率论起源于博弈游戏17世纪,曾有一个“赌金分配”的问题:博弈水平相当的甲、乙两人进行博弈游戏,每局比赛都能分出胜负,没有平局.双方约定:各出赌金210枚金币,先赢3局者可获得全部赎金.但比赛中途因故终止了,此时甲赢了2局,乙赢了1局,问这420枚金币的赌金该如何分配?数学家费马和帕斯卡都用了现在称之为“概率”的知识,合理地给出了赌金分配方案.该分配方案是()A .甲315枚,乙105枚B .甲280枚,乙140枚C .甲210枚,乙210枚D .甲336枚,乙84枚7.在平面直角坐标系中,点P 的坐标为50,2⎛⎫ ⎪⎝⎭,圆22121:10504C x x y y -+-+=,点(,0)T t 为x 轴上一动点.现由点P 向点T 发射一道粗细不计的光线,光线经x 轴反射后与圆C 有交点,则t 的取值范围为()A .1527,88⎡⎤⎢⎣⎦B .710,43⎡⎤⎢⎥⎣⎦C .727,48⎡⎤⎢⎥⎣⎦D .1510,83⎡⎤⎢⎥⎣⎦8.如图所示,四面体ABCD 的体积为V ,点M 为棱BC 的中点,点E ,F 分别为线段DM 的三等分点,点N 为线段AF 的中点,过点N 的平面α与棱AB ,AC ,AD 分别交于O ,P ,Q ,设四面体AOPQ 的体积为V ',则V V'的最小值为()A .14B .18C .116D .127二、多项选择题(本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对得6分,部分选对得部分分,有选错的得0分)9.给出下列命题,其中是真命题的是()A .已知{,,}a b c 是空间的一个基底,若23m a c =+ ,则,,}a b m 〈也是空间的一个基底B .平面α经过三点(2,1,0)A ,(1,3,1)B -,(2,2,1)C -,向量(1,,)n u t =是平面α的法向量,则2u t +=C .若0a b ⋅> ,则,a b <>是锐角D .若对空间中任意一点O ,有111362OM OA OB =++,则M ,A ,B ,C 四点不共面10.下列命题正确的是()A .设A ,B 是两个随机事件,且1()2P A =,1()3P B =,若1()6P AB =,则A ,B 是相互独立事件B .若()0P A >,()0P B >,则事件A ,B 相互独立与A ,B 互斥有可能同时成立C .若三个事件A ,B ,C 两两相互独立,则满足()()()()P ABC P A P B P C =D .若事件A ,B 相互独立,()0.4P A =,()0.2P B =,则()0.44P AB AB = 11.平面内到两个定点A ,B 的距离比值为一定值(1)λλ≠的点P 的轨迹是一个圆,此圆被称为阿波罗尼斯圆,俗称“阿氏圆”.已知平面内点(2,0)A ,(6,0)B ,动点P 满足||1||3PA PB =,记点P 的轨迹为τ,则下列命题正确的是()A .点P 的轨迹τ的方程是2230x y x +-=B .过点(1,1)N 的直线被点P 的轨迹τ所截得的弦的长度的最小值是1C .直线220x y -+=与点P 的轨迹τ相离D .已知点3,02E ⎛⎫⎪⎝⎭,点M 是直线:270l x -+=上的动点,过点M 作点P 的轨迹τ的两条切线,切点为C ,D ,则四边形ECMD 面积的最小值是3三、填空题(本大题共3小题,每小题5分,共15分)12.同时扡掷两颗质地均匀的骰子,则两颗骰子出现的点数之和为6的概率为__________.13.已知曲线1y =+与直线y x b =+有两个相异的交点,那么实数b 的取值范围是__________.14.在空间直角坐标系中,(0,0,0)O ,(0,,3)A a ,(3,0,)B a ,(,3,0)C a ,33,3,2D ⎛⎫ ⎪⎝⎭,P 为ABC △所确定的平面内一点,设||PO PD -的最大值是以a 为自变量的函数,记作()f a .若03a <<,则()f a 的最小值为__________.四、解答题(本大题共5小题,共77分.解答应写出必要的文字说明、证明过程或演算步骤)15.(本题满分13分)“体育强则中国强,国运兴则体育兴”.为备战2025年杭州举办的国际射联射击世界杯,某射击训练队制订了如下考核方案:每一次射击中10环、中8环或9环、中6环或7环、其他情况,分别评定为A ,B ,C ,D 四个等级,各等级依次奖励6分、4分、2分、0分.假设评定为等级A ,B ,C 的概率分别是12,14,18.(1)若某射击选手射击一次,求其得分低于4分的概率;(2)若某射击选手射击两次,且两次射击互不影响,求这两次射击得分之和为8分的概率.16.(本题满分15分)已知ABC △的顶点(4,2)A ,边AB 上的中线CD 所在直线方程为7250x y +-=,边AC 上的高线BE 所在直线方程为40x y +-=.(1)求边BC 所在直线的方程;(2)求BCD △的面积.17.(本题满分15分)如图所示,已知斜三棱柱111ABC A B C -中,AB a = ,AC b = ,1AA c =,在1AC 上和BC 上分别有一点M 和N 且AM k AC = ,BN k BC =,其中01k ≤≤.(1)求证:MN ,a ,c共面;(2)若||||||2a b c ===,13AB =且160BAC BB C ∠=∠=︒,设P 为侧棱1BB 上靠近点1B 的三等分点,求直线1PC 与平面11ACC A 所成角的正弦值.18.(本题满分17分)已知在平面直角坐标系xOy 中,(1,0)A -,(7,0)B -,平面内动点P 满足||2||PB PA =.(1)求点P 的轨迹方程;(2)点P 轨迹记为曲线C ,若曲线C 与x 轴的交点为M ,N 两点,Q 为直线:17l x =上的动点,直线MQ ,NQ 与曲线C 的另一个交点分别为E ,F ,求|EF|的最小值.19.(本题满分17分)对于三维向量()(),,,,N,0,1,2,k k k k k k k a x y z x y z k =∈= ,定义“F 变换”:()1F k k a a += ,其中,1k k k x x y +=-,1k k k y y z +=-,1k k k z z x +=-.记k k k k a x y z = ,k k k k a x y z =++.(1)若0(2,3,1)a =,求2a 及2a ;(2)证明:对于任意0a ,必存在*k ∈N ,使得0a 经过k 次F 变换后,有0k a = ;(3)已知1(,2,)()a p q q p =≥ ,12024a = ,将1a再经过m 次F 变换后,m a 最小,求m 的最小值.武汉市部分重点中学2024-2025学年度上学期期中联考高二数学试卷参考答案与评分细则题号1234567891011答案ADCDBA DCABADACD12.53613.1)+14.215.解:(1)设事件A ,B ,C ,D 分别表示“被评定为等级A ,B ,C ,D ”.由题意得,事件A ,B ,C ,D 两两互斥,所以1111()12488P D =---=.所以111()()()884P C D P C P D =+=+= .因此其得分低于4分的概率为14;(2)设事件i A ,i B ,i C ,i D 表示"第i 次被评定为等级A ,B ,C ,D ,i 1,2=.(2)设事件i A ,i B ,i C ,i D 表示“”第i 次被评定为等级A ,B ,C ,D ,i 1,2=.则“两次射击得分之和为8分”为事件()()()121221B B AC A C ,且事件12B B ,12AC,21A C 互斥,()121114416P B B =⨯=,()()12211112816P AC P A C ==⨯=,所以两次射击得分之和为8分的概率()()()()()()121221*********2161616P P B B AC A C P B B P ACP A C ⎡⎤==++=+⨯=⎣⎦ .16.解:(1)因为AC BE ⊥,所以设直线AC 的方程为:0x y m -+=,将(4,2)A 代入得2m =-,所以直线AC 的方程为:20x y --=,联立AC ,CD 所在直线方程:207250x y x y --=⎧⎨+-=⎩,解得(1,1)C -,设()00,B x y ,因为D 为AB 的中点,所以0042,22x y D ++⎛⎫⎪⎝⎭,因为()00,B x y 在直线BE 上,D 在CD 上,所以0040x y +-=,0042725022x y ++⨯+⨯-=,解得06x =-,010y =,所以(6,10)B -,10(1)11617BC k --==---,所以BC 所在直线的方程为:111(1)7y x +=--,即11740x y +-=.(2)由(1)知点(1,6)D -到直线BC 的距离为:d ==,又||BC ==,所以12722BCD S ==△.17.(1)证明:因为1AM k AC kb kc ==+,()(1)AN AB BN a k BC a k a b k a kb =+=+=+-+=-+,所以(1)(1)MN AN AM k a kb kb kc k a kc =-=-+--=-- .由共面向量定理可知,MN ,a ,c共面.(2)取BC 的中点为O ,在1AOB △中,1AO B O ==13AB =,由余弦定理可得22211cos2AOB ∠=-,所以12π3AOB ∠=,依题意ABC △,1B BC △均为正三角形,所以BC AO ⊥,1BC B O ⊥,又1B O AO O = ,1B O ⊂平面1B AO ,AO ⊂平面1B AO ,所以BC ⊥平面1AOB ,因为BC ⊂平面ABC ,所以平面1AOB ⊥平面ABC ,所以在平面1AOB 内作Oz OA ⊥,则Oz ⊥平面ABC ,以OA ,OC ,Oz 所在直线为x 轴、y 轴、z 轴建立空间直角坐标系如图所示:则1332B ⎛⎫ ⎪⎝⎭,(0,1,0)B -,3,0,0)A ,(0,1,0)C ,1332C ⎛⎫⎪⎝⎭,1332A ⎫⎪⎝⎭设(,,)n x y z =是平面11ACC A 的一个法向量,(3,1,0)AC =,13332AC ⎛⎫= ⎪⎝⎭ ,则100n AC n AC ⎧⋅=⎪⎨⋅=⎪⎩ ,即303332022y x y z ⎧+=⎪⎨-++=⎪⎩,取1z =得(3,3,1)n =-- ,依题意可知123BP BB =,则11112332333713,,,323232C P C B BP C B BB ⎫⎛⎫⎛⎫=+=+=--+⨯-=--⎪ ⎪⎝⎭⎝⎭⎝⎭ .设直线1PC 与平面11ACC A 所成角为θ,则11169sin cos ,13213||133n C PC P n n C Pθ⋅====⋅⨯.故直线1PC 与平面11ACC A 所成角的正弦值为913.18.解:(1)设动点坐标(,)P x y ,因为动点P 满足||2||PB PA =,且(1,0)A -,(7,0)B -,2222(7)2(1)x y x y ++=++化简可得,222150x y x +--=,即22(1)16x y -+=,所以点P 的轨迹方程为22(1)16x y -+=.(2)曲线22:(1)16C x y -+=中,令0y =,可得2(1)16x -=,解得3x =-或5x =,可知(3,0)M -,(5,0)N ,当直线EF 为斜率为0时,||||EK FK +即为直径,长度为8,当直线EF 为斜率不为0时,设EF 的直线方程为x ny t =+,()11,E x y ,()22,F x y ,联立22(1)16x ny t x y =+⎧⎨-+=⎩消去x 可得:22(1)16ny t y +-+=,化简可得;()2212(1)(3)(5)0n y t ny t t ++-++-=由韦达定理可得1221222(1)1(3)(5)1t n y y n t t y y n -⎧+=⎪⎪+⎨+-⎪=⎪+⎩,因为()11,E x y ,()22,F x y ,(3,0)M -,(5,0)N ,所以EM ,FN 的斜率为113EM y k x =+,225FN y k x =-,又点()11,E x y 在曲线C 上,所以()2211116x y -+=,可得()()()22111116135y x x x =--=+-,所以111153EM y x k x y -==+,所以EM ,FN 的方程为115(3)x y x y -=+,22(5)5y y x x =--,令17x =可得()1212205125Q x y y y x -==-,化简可得;()()121235550y y x x +--=,又()11,E x y ,()22,F x y 在直线x ny t =+上,可得11x ny t =+,22x ny t =+,所以()()121235550y y ny t ny t ++-+-=,化简可得;()()221212535(5)5(5)0n y y n t y y t ++-++-=,又1221222(1)1(3)(5)1t n y y n t t y y n -⎧+=⎪⎪+⎨+-⎪=⎪+⎩,代入可得()2222(3)(5)2(1)535(5)5(5)011t t t n n n t t n n +--++-+-=++,化简可得()()222253(3)(5)10(5)(1)5(5)10n t t n t t t n ++-+--+-+=,()222222(5)3951510105525250t t n t n n n t n t t n -++++-++--=,(5)(816)0t t --=,所以2t =或5t =,当5t =时EF 为5x ny =+,必过(5,0),不合题意,当2t =时EF 为2x ny =+,必过(2,0),又||EF 为圆的弦长,所以当EF ⊥直径MN 时弦长||EF 最小,此时半径4r =,圆心到直线EF 的距离为211-=||8EF =,综上,||EF的最小值.19.解:(1)因为0(2,3,1)a = ,1(1,2,1)a = ,2(1,1,0)a = ,所以21100a =⨯⨯= ,21102a =++=,(2)设{}max ,,(0,1,2)k k k k M x y z k == 假设对N k ∀∈,10k a +≠,则1k x +,1k y +,1k z +均不为0;所以12k k M M ++>,即123M M M >>> ,因为*(1,2)k M k ∈=N ,112321121M M M M M M +≥+≥+≥≥++ ,所以121M M +≤-,与120M M +>矛盾,所以假设不正确;综上,对于任意0a ,经过若干次F 变换后,必存在K N*∈,使得0K a =.(3)设()0000,,a x y z = ,因为1(,2,)()a p q q p =≥,所以有000x y z ≤≤或000x y z ≥≥,当000x y z ≥≥时,可得0000002p x y y z q z x=-⎧⎪=-⎨⎪-=-⎩,三式相加得2q p -=又因为12024a =,可得1010p =,1012q =;当000x y z ≤≤时,也可得1010p =,1012q =,所以1(1010,2,1012)a =;设k a的三个分量为()*2,,2m m m +∈N 这三个数,当2m >时,1k a +的三个分量为2m -,2,m 这三个数,所以14k k a a +=- ;当2m =时,k a 的三个分量为2,2,4,则1k a + 的三个分量为0,2,2,2k a +的三个分量为2,0,2,所以124k k a a ++=== ;所以,由12024a = ,可得5058a = ,5064a =;因为1(1010,2,1012)a = ,所以任意k a的三个分量始终为偶数,且都有一个分量等于2,所以505a 的三个分量只能是2,2,4三个数,506a的三个分量只能是0,2,2三个数,所以当505m <时,18m a +≥ ;当505m ≥时,14m a +=,所以m 的最小值为505.。
浙江省温州市十校联合体2024-2025学年高二上学期11月期中联考数学试题(含答案)
浙江省温州市十校联合体2024-2025学年高二上学期11月期中联考数学试题考生须知:1.本卷共4页满分150分,考试时间120分钟;2.答题前,在答题卷指定区域填写班级、姓名、考场号、座位号及准考证号并填涂相应数字.3.所有答案必须写在答题纸上,写在试卷上无效;4.考试结束后,只需上交答题纸.选择题部分一、单选题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项时符合题目要求的)1.直线的倾斜角为( )A.B.C.D.2.已知椭圆,则椭圆的短轴长为( )B. C.2D.43.直线与直线的距离为( )A.14.“”是“直线与双曲线只有一个公共点”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.过直线上的点作圆的两条切线,当直线关于直线对称时,则点的坐标为( )A. B. C. D.6.已知点在确定的平面内,点是平面ABC 外任意一点,满足,且,则的最小值为( )y =π6π32π35π622:142x y C +=1:210l x y -+=2:2430l x y -+=12k =±1y kx =+2214x y -=21y x =-P 22:(2)(3)1C x y ++-=12,l l 12,l l 21y x =-P (1,1)21,55⎛⎫-⎪⎝⎭31,55⎛⎫⎪⎝⎭67,55⎛⎫ ⎪⎝⎭D ABC V O 2CD OC xOA yOB =--0,0x y >>21x y+A.B.C.D.7.已知椭圆的左、右焦点分别为为坐标原点,以为圆心,为半径的圆与椭圆交于M ,N 两点,若,则椭圆的离心率为( )B.D.8.如图所示,在四棱锥中,平面平面ABCD,四边形ABCD 为矩形,为等腰直角三角形,且,点在线段AD 上,则三棱锥外接球的表面积的取值范围为( )A. B. C.D.二、多选题(本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对得6分,选对但不全的得部分分,有选错的得0分)9.在平面直角坐标系中,已知点,点是平面内的一个动点,则下列说法正确的是( )A.若,则点的轨迹是双曲线B.若,则点的轨迹是椭圆C.若,则点的轨迹是一条直线D.若,则点的轨迹是圆10.已知直三棱柱中,,点为的中点,则下列说法正确的是( )3432+94+3+2222:1(0)x y C a b a b+=>>12,,F F O 2F 12F F C 1||OM MF =C 12-1-2E ABCD -AED ⊥AED V 2,AE ED AB AD ====F E FBC -32π,12π3⎡⎤⎢⎥⎣⎦[11π,12π]31π,12π3⎡⎤⎢⎥⎣⎦31π,11π3⎡⎤⎢⎥⎣⎦(1,0),(1,0)A B -M ||||||1MA MB -=M ||||2MA MB +=M ||||MA MB =M 2MA MB ⋅=M 111ABC A B C -12,AB AC AA AB AC ===⊥E 11B CA. B.平面C.异面直线AE 与D.点到平面ACE11.已知圆,圆,直线,直线与圆相交于A ,B 两点,则以下选项正确的是( )A.若时,圆与圆有两条公切线 B.若时,两圆公共弦所在直线的方程为C.弦长的最小值为 D.若点,则的最大值为三、填空题(本题共3小题,每小题5分,共15分)12.经过椭圆的左焦点作直线交椭圆于A ,B 两点,为椭圆的右焦点,则的周长为______.13.在空间直角坐标系中,经过点且方向向量为的直线方程为,已知空间中一条直线方程为,则点到直线的距离为______.14.平面直角坐标系xOy 中,已知圆与双曲线有唯一公共点,若圆心在双曲线的一条渐近线上且直线MA 平行于另一条渐近线,则圆的方程为______.四、解答题(本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.)15.已知圆和圆外一点(1)求的取值范围(2)若,过点作圆的切线,求切线方程16.如图,在四棱台中,底面ABCD 为平行四边形,平面,11122AE AB AC AA =++ 1//AB 1ACE 1AC 1A 221:280C x y y +--=2222:240C x mx y m -++-=:210l tx y t+--=l 1C 0m =1C 2C 2m =240x y --=AB (2,4)P ||PA PB +2+22198x y +=1F l 2F 2AF B ∆O xyz -()000,,P x y z (,,)(0)n X Y Z XYZ =≠000x x y y z z X Y Z ---==l 2142z x y --=-=(4,3,3)A l ()()22200:M x x y y r -+-=2222:1(0,0)x y C a b a b-=>>(8,1)A M C M 22:20C x y x y m +-++=C (1,2)P m *m N ∈P C 1111ABCD A B C D -1A A ⊥,45ABCD ABC ︒∠=1112AB A A C BC ===(1)证明:平面平面(2)求直线与平面所成角的大小17.在平面直角坐标系xOy 中,动点到点的距离之和为4,点的轨迹为,曲线与轴正半轴交于点.(1)求曲线的方程(2)若过点的直线与交于E ,F 两点(点在轴上方),点为BF 的中点,若,求直线的方程18.如图,在三棱锥中,为正三角形,平面,点为线段BC 上的动点,(1)若点为BC 中点,证明:(2)在(1)的条件下,求平面PAC 与平面ACF 夹角的余弦值(3)求线段长的最小值19.阅读材料:极点与极线,是法国数学家吉拉德•笛沙格(Girard Desargues ,1591-1661)于1639年在射影几何学的奠基之作《圆锥曲线论稿》中正式阐述,它是圆锥曲线的一种基本特征.已知圆锥曲线,则称点和直线是圆锥曲线的一对极点和极线.事实上,在圆锥曲线方程中,以替换,以替换(另一变量也是如此),即可得到点对应的极线方程.特别地,对于椭圆,与点对应的极线方程为;对于双曲线11CDD C ⊥11ACC A 1BB 1CDD C P (0,1),(0,1)A B -P C C y D C B l C E x M //OM DE l P ABC -ABC V PA ⊥1,12ABC PA AB ==E AF PE⊥E AF FC⊥CF 22:220C Ax By Dx Ey F ++++=()00,P x y ()()0000:0l Ax x By y D x x E y y F ++++++=C 0x x 2x 02x x+x y ()00,P x y 22221x y a b +=()00,P x y 00221x x y ya b+=,与点对应的极线方程为;即对于确定的圆锥曲线,每一对极点与极线是一一对应的关系.其中,极点与极线有以下基本性质和定理①当在圆锥曲线上时,其极线是曲线在点处的切线;②当在外时,其极线是曲线从点所引两条切线的切点所确定的直线(即切点弦所在直线);③当在内时,其极线是曲线过点的割线两端点处的切线交点的轨迹.根据上述材料回答下面问题:已知双曲线,右顶点到,已知点是直线上的一个动点,点对应的极线与双曲线交于点A ,B ,(1)若证明:极线AB 恒过定点.(2)在(1)的条件下,若该定点为极线AB 的中点,求出此时的极线方程(3)若,极线AB 交的右支于A ,B 两点,点在轴上方,点是双曲线的左顶点,直线AE ,直线BP 分别交轴于M ,N 两点,点为坐标原点,求的值22221x y a b -=()00,P x y 00221x x y y a b-=P C l C P P C l C P P C l C P 2222:1(0,0)x y C a b a b-=>>(1,0)E C G 0mx ny q ++=G 3,1m n q ===-1102m n q ===-,,C A x P C y O ||||OM ON参考答案一、单选题题号12345678答案CBDADBBA二、多选题题号91011答案ACDABDBD三、填空题四、解答题15.(5分+8分)解:(1)根据题意:…………………………………………2分点在圆外,则…………………………………………………………4分………………………………………………………………………………………………5分(2)……………………………………………………………………………………6分则圆的方程为:当不存在时,直线,满足题意……………………………………………………………………8分当存在时,设切线方程为.………………………………………………………………………………………10分……………………………………………………………………………………………………12分切线方程为…………………………………………………………………………13分综上,切线方程为:或16.(6分+9分)解:(1)不妨设,则,由余弦定理得225414404D E F mm +-=+->⇒<P 141408m m +-++>⇒>-584m ∴-<<*1m N m ∈∴= 2211(1)24x y ⎛⎫-++=⎪⎝⎭k 1x =k 2(1)y k x -=-12d 3512k ∴=∴3512110x y --=3512110x y --=1x =4BC =0145AB A A ABC ==∠= ∴222AC AB AC BC AB AC=+=∴⊥四边形ABCD 是平行四边形………………………………………………2分平面……………………………………………………………………4分又平面平面平面………………………6分(2)法1:延长线段交于点,过点作交PC 于点,由(1)知,平面平面PAC ,平面平面平面PAC平面平面平面PCD点到平面PCD 的距离等于点到平面PCD 的距离在Rt 中,……………………………………9分过点作平面PCD 于点,则为直线PB 与平面PCD 所成的角………………11分…………………………………………………………………………13分,即所以与平面所成的角为…………………………………………………………15分几何法采分点说明:1.正确PB 的值给2分;2.正确AH 的值给3分;2.指出线面角或作出线面角给2分;3.答案给2分法2:由(1)可知AB ,AC ,AP 两两相互垂直,则分别以AB ,AC ,AP 为轴,轴,轴的正半轴,建立如图所示空间直角坐标系则.....................................................................8分 (10)分//AB CD CD AC ∴∴⊥1A A ⊥ 1,ABCD A A CD ∴⊥1A A AC A CD ⋂=∴⊥11AC CA ∴11C D DC ⊥11AC CA 1111,,,AA BB CC DD P A AHPC ⊥H PCD ⊥PCD ⋂,PAC PC AH =⊂AH ∴⊥//,PCD AB CD AB ⊂/ //PCD AB ∴∴A B PACV 4,2PA AC PC AH ==∴==B BO ⊥O BPO ∠2,4BO AH PB === 1sin 2BPO ∴∠=30BPO ︒∠=1BB 11C D DC 30︒x yz 11(0,0,0),(0,((A B C D D B -1(CD DD ∴=-=1(BB ∴=设平面的法向量为则令,则………………………………13分所以与平面所成的角为………………………………………………………………15分建系法采分点说明:1.有正确的两两垂直的空间直角坐标系给2分2.有正确的给2分3.正确法向量给3分4.答案给2分(其他方式建系情况同样给分)17.(4分+11分)解:(1)由题意可知:动点的轨迹是焦点在轴的椭圆所以即分所以轨迹方程为……………………………………………………………………………4分(2)显然直线的斜率存在,则设直线的方程为:………………………………………6分由设11CDD C (,,)n x y z =10000n CD n DD ⎧⎧⋅=-=⎪⎪⇒⎨⋅==⎪⎩1y =(0,1,1)n = 111sin 2||BB n BB n θ⋅∴==⋅1BB 11C D DC 30︒1BBP C y 24,2||2a c AB ===2,1,a cb ===C 22134x y +=l l 1y kx =+()2222143690134y kx k x kx x y =+⎧⎪⇒++-=⎨+=⎪⎩()()1122,,,E x y F x y由韦达定理可得:①…………………………………………8分(有写出韦达定理就给2分)分别是BF ,AB 的中点,②……………………………………………………………………11分(其他方式得到的关系,同样给分)由①②可得分所以直线的方程为:…………………………………………………………………15分18.(4分+6分+7分)解:(1)法1:为正三角形平面平面PAE ……………………………………………………2分又平面………………………………………………………………………4分法2:在中,,………………………………………………………………………………2分(正确写出任意一条给2分)………………………………………………………………………………………………4分(2)以为原点,建立如图所示空间直角坐标系,其中EC ,EA 为轴,轴的正半轴则……………………………………………6分设平面PAC 的法向量为12122269,4343k x x x xk k -+=-⋅=++,M O //////OM AF OM DE DE AF∴∴1212||12||2x BD x x AB x ∴==∴=-21,x x k =l 1y x =+ABC V AE BC∴⊥PA ⊥ ABC PA BC BC ∴⊥∴⊥BC AF ∴⊥,PE AF BC PE E⊥∴⋂= AF ∴⊥PBC AF FC ∴⊥,,PA AE AF PE ⊥⊥∴ Rt PAE V 3|||2AF EF ==||EF EC FC ⊥∴=AF FC ,222||||||FC AF AC ∴+=AF FC ∴⊥E x y 3(0,0,0),(1,0,0),4E P A C F ⎛⎫ ⎪ ⎪⎝⎭3(0,0,1),(1,4AP AC AF ⎛⎫∴=== ⎪ ⎪⎝⎭(,,)m x y z =则,令,则法向量为同理可得平面ACF 的法向量为…………………………………………………………8分设平面PAC 与平面ACF 夹角为,则…………………………………………………………10分(有其它的方法或建系同样给分)建系法采分点说明:1.有正确的两两垂直的空间直角坐标系给2分2.有任意一条正确的法向量给2分3.答案给2分(其他建系方式同样给分)(3)法1:建系同(2)设………………………………………………………………………………11分………………………………………………………13分令则………………………………………………………15分(有写出就给2分)000z m AP x m AC ⎧=⎧⋅=⎪⎪⇒⎨⎨=⎪⋅=⎪⎩⎩ 1y =m = n =θ||cos |cos ,|||||m n m n m n θ⋅=<>==(,0,0)(11),(,,)E t t PF PE t λλλ-≤≤==-(,1)F t λλ∴-(,,1),(,1)AF t PE t λλ∴=-=-22104104AF PE t t λλλ⋅=∴+-=∴=+()222222227||(1))(1)42(4)554t CF t t t t λλλλ--∴=-++-=+-++=++ 27,[9,5]t x x --=∈--2244||5565146514x CF x x x x=+=+++++ 2CF = 一次式二次式在上单调递减,上单调递增当时,……………………………………17分(其他建系方式或方法同样给分)法2:设BC 的中点为,取PA 中点,过点作平面PBC 垂线,垂足为且平面点的轨迹为以PA 为直径,即的球与平面PBC 的相交圆弧,…………13分由(1)可知,,相交圆半径………………15分点轨迹为在平面PBC 中的以为圆心,为半径的圆弧,………………………………………………17分19.(5分+4分+8分)解:(1)右顶点为由双曲线的标准方程为 (2)分点在直线上,设,根据阅读材料可得极线AB 为:………………………………………………4分则由定点为………………………………………………………………………………5分(2)若定点为AB 的中点,设,则2||CF [9,x∈-[5]x ∈-∴x =2min min ||||CF CF == ,E AF PE '''⊥T T ,H PA PF ⊥ F ∈,PBC F ∴12R =2A PBC T PBC d d --==平面平面14r ==F ∴H 14min 111444CF CH ∴=-=-= (1,0),1E a ∴=d b ===∴2213y x -= G 310x y --=∴()00,31G x x -()003113x y x x --=1,3x y y =⎧⎪∴⎨=⎪⎩(3,3)(3,3)()()1122,,,A x y B x y由点差法可得…………………………………………………………………7分所以极线方程为:……………………………………………………………………………9分(3)由题意,设:则极线AB 为:即…………………………11分由设,由韦达定理可得………………………………………………13分(有写出韦达定理就给2分)直线,得直线,得(其它方法所得给同样分)…………………………………………………………………………17分221122221313y x y x ⎧-=⎪⎪⎨⎪-=⎪⎩①②3AB k =36y x =-12G t ⎛⎫ ⎪⎝⎭1123ty x -=223ty x =+()2222223432427013ty x t y ty y x ⎧=+⎪⎪⇒-++=⎨⎪-=⎪⎩()()1122,,,A x y B x y 12122224274343t y y y y t t +=-=--11:(1)1y AE y x x =--110,1y M x ⎛⎫- ⎪-⎝⎭22:(1)1y BP y x x =++220,1y M x ⎛⎫ ⎪-⎝⎭()()()()1212112121211221222393331||344433312||114443t y y y y y y y y x OM ty ON y x y y y y y y ⎛⎫+-++- ⎪+⎝⎭∴=====-⎛⎫-++-++ ⎪⎝⎭。
四川省2024-2025学年高二上学期期中调研测试数学试题含答案
四川省2024-2025学年上学期期中调研测试高二数学试卷(答案在最后)试卷共4页,19小题,满分150分.考试用时120分钟.注意事项:1,考查范围:必修第二册第十章,选择性必修第一册第一章和第二章.2.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡指定位置上.3.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.4.考生必须保持答题卡的整洁.考试结束后,请将答题卡交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.直线2025π:cos4l x =的倾斜角为()A.π2 B.2025π4 C.π4D.0【答案】A 【解析】【分析】根据直线的方程可得出其倾斜角.【详解】因为2025πcos 4为常数,故直线2025π:cos 4l x =的倾斜角为π2.故选:A.2.直线3230x y +-=与320x y +=之间的距离为()A.5B.13C.9D.13【答案】D 【解析】【分析】根据两平行直线的距离公式计算即可求解.【详解】因为直线3230x y +-=和320x y +=平行,由两条平行直线间的距离公式可得13d ===.故选:D .3.圆221:4C x y +=与圆222:(2)(3)9C x y -+-=的公切线条数为()A.0B.1C.2D.3【答案】C 【解析】【分析】根据两圆的位置关系可判断两圆公切线的条数.【详解】圆221:4C x y +=,则圆心()10,0C ,半径12r =,圆222:(2)(3)9C x y -+-=,则圆心()22,3C ,半径23r=,则12CC ==15<,即211212r r C C r r -<<+,故圆1C 与圆2C 相交,其公切线条数为2.故选:C .4.过点()1,3P -作圆22(1)(1)2x y -++=的切线,则切线的斜率为()A.1-或7-B.1- C.2-或7- D.2-【答案】A 【解析】【分析】设出直线的方程,由点到直线距离得到方程,求出1k =-或7k =-.【详解】因为圆22(1)(1)2x y -++=的圆心为()1,1-,易知过点()1,3P -的切线l 斜率存在,设l 的方程为()31y k x -=+,即30kx y k -++=,则d ==,解得1k =-或7k =-.故选:A .5.若连续抛掷一枚质地均匀的骰子两次,则两次抛掷骰子的点数之积为奇数的概率为()A.12B.14C.15D.16【答案】B【解析】【分析】利用列举法写出满足题意的样本点,结合古典概型的概率公式计算即可求解.【详解】连续抛掷一枚质地均匀的骰子两次,基本事件总数为6636⨯=个.其中事件“两次抛掷骰子的点数之积为奇数”包含的样本点有:()()()()()()()()()1,1,3,3,5,5,1,3,1,5,3,1,3,5,5,1,5,3,共9个,故91364P ==.故选:B .6.在正方体1111ABCD A B C D -中,Q 为11B C 的中点,则平面ABQ 与平面11ACC A 夹角的余弦值为()A.63B.4C.15D.5【答案】D 【解析】【分析】设正方体的棱长为1,利用向量法求平面ABQ 与平面11ACC A 夹角的余弦值.【详解】1,,DA DC DD 两两垂直,故以D 为坐标原点,1,,DA DC DD 所在的直线分别为,,x y z 轴建立如图所示的空间直角坐标系,设1DA =,取1BB 的中点为P ,连接CP ,则()()()10,1,0,1,1,,1,1,0,0,0,02C P B D ⎛⎫ ⎪⎝⎭,1,1,1,2Q ⎛⎫ ⎪⎝⎭1,0,0,()11,0,1A ,则11,0,1,1,0,,0,22QB CP QB CP QB CP ⎛⎫⎛⎫=-=∴⋅=∴⊥ ⎪ ⎪⎝⎭⎝⎭,()10,1,0,1,0,,0,2AB CP CP AB CP AB⎛⎫==∴⋅=∴⊥ ⎪⎝⎭又因为QB CP ⊥,CP AB ⊥,AB BQ B = ,,QB AB ⊂平面ABQ ,故⊥CP 平面ABQ ,所以11,0,2CP ⎛⎫= ⎪⎝⎭ 为平面ABQ 的一个法向量,设平面11ACC A 的一个法向量为(),,n x y z =,则11001000x n AC x y y z n AA z =⎧⎧⋅=-+=⎧⎪⎪⇒⇒=⎨⎨⎨=⋅=⎩⎪⎪⎩=⎩,所以()1,1,0n =-- ()1,1,0n =--为平面11ACC A 的一个法向量,设平面ABQ 与平面11ACC A 的夹角为α,则P cos 5C nCP nα⋅=== ,故平面ABQ 与平面11ACC A夹角的余弦值为5.故选:D.7.如图,E 是棱长为1的正方体1111ABCD A B C D -内部(含表面)一动点,则EA EB ED ++的最大值为()A.B.C.D.【答案】C 【解析】【分析】建立空间直角坐标系,求出向量坐标,然后根据模的坐标求法求出最值即可.【详解】以A 为坐标原点,1,,AB AD AA 所在的直线分别为,,x y z 轴,建立如图所示的空间直角坐标系,则()()()0,0,0,1,0,0,0,1,0A B D ,设()(),,01,01,01E x y z x y z ≤≤≤≤≤≤,则()(),,,(1,,),,1,EA x y z EB x y z ED x y z =---=---=---,则()13,13,3EA EB ED x y z ++=---.故EA EB ED ++= 1x y z ===.故选:C .8.如图,在直三棱柱111ABC A B C -中,ABC V 为腰长为1的等腰直角三角形,且AB AC >,侧面11ACC A 为正方形,2,AB AE P =为平面1A BC 内一动点,则PA PE +的最小值是()A.62B.32C.D.265【答案】A 【解析】【分析】建立空间直角坐标系,设A 关于平面1A BC 的对称点为A ',利用对称点A 、A '到平面1A BC 距离相等,得出A 关于平面1A BC 的对称点为A ',利用对称点求出最短路径即可【详解】由题意,以C 为坐标原点,1,,CA CB CC 所在的直线分别为,,x y z 轴,建立如图所示的空间直角坐标系-C xyz ,则()()()()1111,0,1,0,1,0,0,0,0,1,0,0,,,022A B C A E ⎛⎫⎪⎝⎭,所以()()()110,1,0,1,0,1,0,0,1CB CA AA ===,设A 关于平面1A BC 的对称点为(),,,0A x y z z >',则()()11,,1,1,,A A x y z AA x y z =---'=-',设平面1A BC 的法向量()111,,n x y z =,则10,0,CB n CA n ⎧⋅=⎪⎨⋅=⎪⎩ 即1110,0,y x z =⎧⎨+=⎩令11x =,则110,1y z ==-,所以()1,0,1n =-为平面1A BC 的一个法向量,所以A 与A '到平面1A BC的距离112AA n A A n d n n ⋅⋅==='=,即1x z -+=①,又AA n '∥,所以1,x z y -=-⎧⎨=⎩②,所以由①②得211z -=,又由0z >可得0,0,1x yz ===,所以()0,0,1A ',所以2PA PE PA PE A E +=+≥==='',当且仅当,,A P E '三点共线时取等号,所以PA PE +的最小值为62.故选:A.二、选择题:本题共3小题,每小题6分,共18分在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.9.在空间直角坐标系O xyz -中,下列叙述正确的是()A.点()1,1,0-与点()1,1,0关于x 轴对称B.点()3,1,6--与点()3,1,6-关于z 轴对称C.点()2,5,7与点()2,5,7-关于平面xOy 对称D.坐标轴两两确定的平面把空间分为12个部分【答案】AC 【解析】【分析】ABC 选项,根据空间直角坐标系内点的坐标特征得到AC 正确,B 错误;D 选项,坐标轴确定的平面把空间分为8个部分.【详解】A 选项,点()1,1,0-与点()1,1,0关于x 轴对称,A 正确;B 选项,点()3,1,6--关于z 轴的对称点是()3,1,6,B 错误;C 选项,点()2,5,7与点()2,5,7-关于平面xOy 对称,C 正确;D 选项,坐标轴两两确定的平面把空间分为8个部分,D 错误.故选:AC .10.已知直线()1:120l ax y a -+-=在x 轴上的截距大于0,直线2:240l x y +-=与y 轴交于点B ,则()A.0a < B.1l 恒过定点2,1C.点B 到直线1l 的距离可能为3 D.不存在a 使得12//l l 【答案】BD 【解析】【分析】运用截距概念求解即可判断A 、C ;运用消去参数判断B ;根据1l 恒过定点判断D 【详解】对于A ,把0y =代入()120ax y a -+-=,得210a x a -=>,所以0a <或12a >,A 错误;对于B ,将直线()120ax y a -+-=改写为()()210x a y -+-+=,所以2010x y -=⎧⎨-+=⎩,所以21x y =⎧⎨=⎩,所以1l 恒过定点()2,1C ,B 正确;对于C ,对于2:240l x y +-=,令0x =可得()0,2B ,易得当1BC l ⊥时,点B 到直线1l 的距离取得最大值=,C 错误;对于D ,因为直线1l 恒过的定点()2,1C 也在直线2l 上,即12,l l 至少有一个交点C ,D 正确.故选:BD .11.已知平面内一动点M 到坐标原点的距离为1,以M 为圆心、1为半径的动圆与圆22:(1)(2)5N x y -+-=交于,A B 两点,则()A.存在唯一的圆M ,使得,A B 两点重合B.1MN ⎤∈-⎦C.若ABN 存在,则其不可能为等边三角形D.tan ANB ∠的最大值为43【答案】BCD 【解析】【分析】由给定条件可得坐标原点与点,A B 之一重合,利用动圆M 与圆N 的位置关系判断A ;由圆上的点与定点距离最值判断B ;求出AB 最大值判断C ;由余弦定理求解判断D.【详解】依题意,坐标原点与点,A B 之一重合,不妨设坐标原点为A ,圆22:(1)(2)5N x y -+-=的圆心(1,2)N ,半径,对于A ,当动圆M 与圆N 内切或外切时,均有,A B 两点重合,A 错误;对于B ,点M 在以A 为圆心、1为半径的圆上运动,||AN =||1]MN ∈+,B 正确;对于C ,||BN =,要使ABN 为等边三角形,则||AB =,而2||||||AB MA MB ≤+=,当且仅当点,,A M B 共线时取等号,则ABN 不可能为等边三角形,C 正确;对于D ,要使tan ANB ∠最大,即ANB ∠最大,只需||AB 取最大值2,此时2223cos5ANB ∠=,44sin ,tan 53ANB ANB ∠=∠=,D 正确.故选:BCD三、填空题:本题共3小题,每小题5分,共15分.12.已知空间向量()()2,1,3,,21,3a b m n =-=+ 满足a b ⊥ ,则m n +=______.【答案】4【解析】【分析】根据空间向量的坐标表示和垂直向量的坐标表示计算即可求解.【详解】因为a b ⊥ ,故()()2,1,3,21,322190m n m n -⋅+=++-=,解得4m n+=.故答案为:413.已知圆P 过()()()1,1,7,3,5,7---三点,则圆P 的面积为______.【答案】25π【解析】【分析】设圆的一般方程,将3点的坐标代入方程,利用待定系数法求解圆的方程,结合圆的面积公式计算即可求解.【详解】设圆P 的方程为220x y Dx Ey F ++++=,代入()()()1,1,7,3,5,7---三点坐标可得110,499730,2549570,D E F D E F D E F +-++=⎧⎪++-+=⎨⎪++-+=⎩解得4,6,12,D E F =-⎧⎪=⎨⎪=-⎩所以圆P 的方程为2246120x y x y +-+-=,其标准方程为22(2)(3)25x y -++=,故其面积2π25πS r ==.故答案为:25π14.在正三棱锥P ABC -中,AB AP =⊥平面PBC ,点P 在底面ABC 内的投影为点,O M 是平面ABC 内以O 为圆心、1为半径的圆上一动点,则异面直线PM 与AB 所成角的余弦值最大为______.【答案】3【解析】【分析】过点O 作AB 的平行线交BC 于点E ,以O 为坐标原点,建立如下图所示的空间直角坐标系,设()[)cos ,sin ,0,0,2πM ααα∈,由异面直线所成角的向量公式结合三角函数的性质即可得出答案.【详解】正三棱锥P ABC -中,因为AP ⊥平面PBC ,又,PB PC ⊂平面PBC ,因此,PA PB PA PC ⊥⊥,故PB PC ⊥,故22sin60223PA PB PC AB AO AB =====︒=,则PO ==,延长CO 交AB 于点D ,过点O 作AB 的平行线交BC 于点E ,易知,,OD OE OP 两两垂直,以O 为坐标原点,建立如下图所示的空间直角坐标系,则()()(1,,,0,0,A B P ,设()[)cos ,sin ,0,0,2πM ααα∈,则(cos ,sin ,PM αα=,()0,AB =,设直线PM 与AB 所成的角为θ,则3cos 3PM AB PM ABθα⋅===≤,当π2α=或3π2时,取最大值3.故答案为:3.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知()()()2,2,2,6,4,2A B C ---三点,点P 在圆22:4E x y +=上运动.(1)若直线PA 与圆E 有唯一公共点,求PA ;(2)求222PA PB PC ++的最小值.【答案】(1)2(2)56【解析】【分析】(1)求出圆心和半径,根据题意得到直线PA 与圆E 相切,且唯一公共点为点P ,由勾股定理求出切线长;(2)设s ,且224x y +=,表达出2228012PA PB PCy ++=-,而22y -≤≤,故当2y =时,取得最小值56.【小问1详解】由题意知,圆E 的圆心为()0,0E ,半径2r =,故2AE ==>,由题意可得直线PA 与圆E 相切,且唯一公共点为点P ,在Rt APE 中,由勾股定理可得2PA ==.【小问2详解】设s ,且224x y +=,故222222222(2)(2)(2)(6)(4)(2)PA PB PC x y x y x y ++=++-+++-+-++()22312681268128012x y y y y =+-+=+-=-,而22y -≤≤,当2y =时,222PA PB PC ++取得最小值56.16.已知在ABC V 中,()()()0,0,2,0,1,3,,A B C D E ,分别在线段,AC AB 上,且//DE BC .(1)求AC 边上的高所在直线的斜截式方程;(2)若ADE V 的面积为ABC V 面积的14,求直线DE 的一般式方程.【答案】(1)1233y x =-+;(2)330x y +-=.【解析】【分析】(1)由AC 的斜率和垂直关系可得AC 边上的高所在直线的斜率,接着由点斜式即可求出所求直线方程,再转化成斜截式即可.(2)先由题意得12AD AE AC AB ==,即E 为AB 的中点,接着由中点坐标公式、直线BC 的斜率和平行关系即可由点斜式求出直线DE 的方程,再转化成一般式即可.【小问1详解】由题直线AC 的斜率为130310k -==-,所以AC 边上的高所在直线的斜率为1113k -=-,所以AC 边上的高所在直线的方程为()1023y x -=--,化为斜截式为1233y x =-+.【小问2详解】因为ADE V 的面积为ABC V 面积的1,,4D E 分别在线段,AC AB 上,且//DE BC ,所以1,2AD AE E AC AB ==为AB 的中点,即()1,0E ,又直线BC 的斜率为30312-=--,所以直线DE 的斜率也为3-,所以直线DE 的方程为()031y x -=--,即330x y +-=,所以直线DE 的一般式方程为330x y +-=.17.如图,在四面体OABC 中,3OA = ,且26,,3OA OB OA OC CD CB G ⋅=⋅== 为AD 的中点,点H 是线段OA 上的动点(含端点).(1)以{},,OA OB OC 为基底表示OG ;(2)求DH OH ⋅的最小值.【答案】(1)111236OG OA OB OC =++ (2)-1【解析】【分析】(1)利用空间向量基本定理得到2133AD OA OB OC =-++ ,111236OG OA AG OA OB OC =+=++ ;(2)设()01OH OA λλ=≤≤ ,得到2133DH OA OB OC λ=-- ,求出()29601DH OH λλλ⋅=-≤≤ ,当13λ=时,DH OH ⋅ 取得最小值1-.【小问1详解】由题意可得()2233AD AC CD AC CB OC OA OB OC =+=+=-+- 2133OA OB OC =-++ ,所以11212233OG OA AG OA AD OA OA OB OC ⎛⎫=+=+=+-++ ⎪⎝⎭111236OA OB OC =++ ;【小问2详解】设()01OH OA λλ=≤≤ ,因为()2133DH OH OD OA OA AD OA OA O B A OC O λλ⎛⎫=-=-+=--++ ⎪⎝⎭ 2133OA OB OC λ=-- ,所以2212()3333DH OH OA OB OC OA OA OA OB OA OC λλλλλ⎛⎫⋅=--⋅=-⋅-⋅ ⎪⎝⎭()29601λλλ=-≤≤,故当13λ=时,DH OH ⋅ 取得最小值,最小值为1196193⨯-⨯=-.18.已知在空间直角坐标系中,点()()()()0,0,0,1,0,1,0,1,1,2,1,1O P Q R --.(1)证明:,,OP OQ OR 不共面;(2)求点O 到平面PQR 的距离;(3)设S 为平面PQR 上的一个动点,且222PS = ,求,PO PS 的夹角θ取得最小值时,OS 的值.【答案】(1)证明见解析(2)11(3)62【解析】【分析】(1)用反正法证明即可;(2)求出OP 和平面PQR 的一个法向量,利用空间向量求解即可;(3)求出OP 和平面PQR 的一个法向量,利用空间向量的夹角公式求解余弦值,进而可知正弦值,利用向量的模长公式求解即可.【小问1详解】由题意假设存在,a b ∈R ,使得OR aOP bOQ =+成立,则()()()2,1,11,0,10,1,1a b =-+-,即()()2,1,1,,a b a b =--,可得2,1,1,a b a b =-⎧⎪=⎨⎪=-⎩此方程组无解,所以假设不成立,故,,OP OQ OR 不共面.【小问2详解】由题意可得()()()1,0,1,1,1,2,3,1,0OP PQ PR =-=-= ,设平面PQR 的法向量为 =s s ,所以20,30,x y z x y +-=⎧⎨+=⎩令1x =-,则3,1y z ==,故平面PQR 的一个法向量为()1,3,1n =-,故点O 到平面PQR 的距离21111OP n d n ⋅== .【小问3详解】设,OP n 的夹角为α,则cos OP n OP nαα⋅==== 所以min π2θα=-,所以OS OP PS =+=2=.19.现定义:若圆A 上一动点M ,圆A 外一定点N ,满足MN 的最大值为其最小值的两倍,则称N 为圆A 的“上进点”.若点G 同时是圆A 和圆B 的“上进点”,则称G 为圆“A B ⊗”的“牵连点”.已知圆221:(1)(1)3A x y +++=.(1)若点C 为圆A 的“上进点”,求点C 的轨迹方程并说明轨迹的形状;(2)已知圆22:(2)(2)1B x y -+-=,且,P Q 均为圆“A B ⊗”的“牵连点”.(ⅰ)求直线PQ 的方程;(ⅱ)若圆H 是以线段PQ 为直径的圆,直线1:3l y kx =+与H 交于,I J 两点,探究当k 不断变化时,在y 轴上是否存在一点W ,使得0IW JW k k +=(IW k 和JW k 分别为直线IW 和JW 的斜率)恒成立?若存在,求出点W 的坐标;若不存在,请说明理由.【答案】(1)轨迹方程为22(1)(1)3x y +++=,点C 的轨迹是以()1,1A --为半径的圆.(2)(ⅰ)0x y +=;(ⅱ)存在,()0,3W 【解析】【分析】(1)由“上进点”的定义知C 是圆A 的“上进点”,则()2CA r CA r +=-,(其中r 是圆A 的半径),由此得点C 的轨迹.(2)(ⅰ)由“牵连点”的定义知,若,P Q 均为圆“A B ⊗”的“牵连点”,则,P Q 均同时为圆A 与圆B 的“上进点”,所以,P Q 应为圆A 、圆B 的“上进点”所成的两轨迹(圆)的交点,由此可求直线PQ 的方程;(ⅱ)先求出圆H 的方程,设()()112212,,,,0I x y J x y x x ≠,假设y 轴上存在点()0,W t ,使得0IW JW k k +=.则1212t 0y t y x x --+=,联立221,31,y kx x y ⎧=+⎪⎨⎪+=⎩结合韦达定理可求解.【小问1详解】因为点C 为圆A的“上进点”,所以233CA CA ⎛⎫+=- ⎪ ⎪⎝⎭,即CA =,所以C 的轨迹方程为22(1)(1)3x y +++=,所以点C 的轨迹是以()1,1A --【小问2详解】(ⅰ)∵P 为圆“A B ⊗”的“牵连点”,∴P 同时为圆A 与圆B 的“上进点”,由P 为圆B 的“上进点”,得()121PB PB +=-,所以3PB =,即点P 在圆22(2)(2)9x y -+-=上,由P 为圆A 的“上进点”,得点P 在圆22(1)(1)3x y +++=上;∴点P 是圆22(1)(1)3x y +++=和22(2)(2)9x y -+-=的交点.因为,P Q 均为圆“A B ⊗”的“牵连点”,所以直线PQ 即为圆22(1)(1)3x y +++=和22(2)(2)9x y -+-=的公共弦所在直线,两圆方程相减可得0x y +=,故直线PQ 的方程为0x y +=.(ⅱ)设22(1)(1)3x y +++=的圆心为()1,1S --22(2)(2)9x y -+-=的圆心为()2,2T ,半径为3.直线ST 的方程为y x =,与y 0x +=联立得PQ 的中点坐标为()0,0,点S 到直线0x y +=的距离为=,则12PQ ==,所以圆H 的方程为221x y +=.假设y 轴上存在点()0,W t 满足题意,设()()112212,,,,0I x y J x y x x ≠.则0IW JW k k +=,即1212t 0y t y x x --+=,整理得()()21120x y t x y t -+-=.将11223,113y kx y kx =+=+,代入上式可得211211033x kx t x kx t ⎛⎫⎛⎫+-++-= ⎪ ⎪⎝⎭⎝⎭,整理得()12121203kx x t x x ⎛⎫+-+=⎪⎝⎭①,联立221,31,y kx x y ⎧=+⎪⎨⎪+=⎩可得()222810,Δ039k x kx ++-=>,所以1212222839,11k x x x x k k -+=-=++,代入(1)并整理得2203k kt -+=,此式对任意的k 都成立,所以3t =.故y 轴上存在点()0,3W ,使得0IW JW k k +=恒成立.。
浙江省余姚中学2024-2025学年高二上学期期中考试数学参考答案
余姚中学2024学年第一学期高二上期中数学试题一、选择题: 本大题共 8 小题, 每小题 5 分, 共 40 分. 每小题给出的四个选项中, 只有一选项是正确的,请把正确的选项填涂在答题卡相应的位置上.1.M 是双曲线x 24−y 212=1上一点,点F 1,F 2分别是双曲线的左、右焦点,若|MF 1|=5,则|MF 2|= ( ) A. 9或1 B. 1 C. 9 D. 9或2【答案】C【解析】【分析】本题考查双曲线的性质,考查运算求解能力,属于中档题. 根据双曲线的定义即可求解结论. 【解答】解:由x 24−y 212=1,得{a 2=4,c 2=a 2+b 2=16,所以{a =2,c =4, 由双曲线的定义可知||MF 1|−|MF 2||=2a =4,所以|MF 2|=1或9,又|MF 2|≥c −a =2,所以|MF 2|=9. 故选C .2.在各项均为正数的等比数列{a n }中,a 6=2a 5+3a 4,若存在两项a m ,a k 使得√ a m a k =3a 1,则1m+4k 的最小值为 ( )A. 73B. 52C. 94D. 2【答案】A 【解析】【分析】本题考查了等比数列的性质,属于简单题本题先求出该等比数列的公比,再将后式化简,得出m 和k 的关系,即可求解 【解答】设等比数列{a n }的公比为q(q >0), 因为a 6=2a 5+3a 4,所以q 2=2q +3,即q 2−2q −3=0,解得q =3或q =−1(舍去).因为√ a m a k =3a 1,所以a m a k =9a 12,即a 12⋅3m+k−2=9a 12,所以m +k =4, 所以{m =1,k =3或{m =2,k =2或{m =3,k =1,所以1m +4k 的值为73或52或133,所以1m+4k 的最小值为73.故选A .3.若动点P (x,y )3=,则动点P 的轨迹方程为( )A .2219744x y −= B .2219744x y += C .22184x y += D .2211612x y −=解析:由题意得点P (x,y )到点A (−2,0)与点()2,0B 的距离之差的绝对值为3,且43>, 故动点P 的轨迹方程是以A (−2,0)与()2,0B 为焦点的双曲线,故23,2a c ==,所以222397,4244a b c a ==−=−=,所以双曲线的方程为2219744x y −=.故选:A. 4.阅读材料: 在空间直角坐标系Oxyz 中, 过点()000,,P x y z 且一个法向量为(,,)a b c =n 的平面α的方程为()()00(a x x b y y c z −+−+− )00z =. 阅读上面材料,解决下面问题: 已知平面α的方程为22x y z −+=, 点(1,2,1)M−, 则点M 到平面α的距离为( )A.102B. 34C. 6D . 6 [解] 因为平面 α 的方程为 22x y z −+=, 所以平面 α的一个法向量为(2,1,1)=−n , 在平面 α 上任取一点 (1A , 1,1), 则 (2,1,0)MA =−, 所以点 M到平面 α的距离 d =||||6MA ⋅==n n . 故选 C. 5. 已知直四棱柱1111ABCD A B C D −的底面AB −CD 为矩形,1,3AB BC ==,且1112C M MB=,若点B 到平面11AB D 的距离为2, 则点C 到直线AM 的距离为()B.2[解] 以D 为原点, 建立如图所示的空间直角坐标系,连接AC ,由题得(3,0,0),(3,1,0),(0,1,0)A B C , 令1(0)DD a a =>, 则11(0,0,),(3,1D a B , a),M(1,11,),(3,0,)a AD a =−,1(0,1,)AB a =, 设平面11AB D 的法向量为(,,)x y z =n , 则1130,0,AD x az AB y az ⎧⋅=−+=⎪⎨⋅=+=⎪⎩n n 令3z =, 得(,3,3)a a =−n . 而(0,1,0)AB =, 由点B 到平面11AB D的距离为2, 得||||2AB ⋅==n n ,解得4a =,于是1,1,,2,1,44M AM ⎛⎫⎛⎫=− ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭, 而 (3,1,0)AC =−,则||||AC AM AM ⋅==, 所以点C 到直线AM 的距离为2||(2AC −==. 故选D .6. 长方体11ABCD ABC D −,1AB BC ==,12BB =,动点P 满足1(,[0,1])BP BC BB λμλμ=+∈,1AP BD ⊥,则二面角P AD B −−的正切值的取值范围是( )A .10,4⎡⎤⎢⎥⎣⎦B .10,2⎡⎤⎢⎥⎣⎦C .11,42⎡⎤⎢⎥⎣⎦D .1,12⎡⎤⎢⎥⎣⎦【详解】以D 为原点,分别以1,,DA DC DD 所在直线为,,x y z 轴建立空间直角坐标系.已知1AB BC ==,12BB =,则(1,0,0)A ,()1,1,0B ,()11(1,1,2),0,0,2B D ,()()0,0,0,0,1,0D C . 因为1(,[0,1])BP BC BB λμλμ=+∈,所以()()()11,0,00,0,2,0,2BP BC BB λμλμλμ=+=−+=−,(0,1,0AP AB BP =+=,(11,BD =−,所以1AP BD λ⋅=−的法向量为1(0,0,1)n =的法向量为(22,n x =,(1,0,0)DA =(AP λ=−220n DA n AP ⎧⋅=⎪⎨⋅=⎪⎩,即,令20x =,则2μ,2z =则2(0,2n =为平面ADP 的一个法向量AD B −为α,由图可知α为锐角,所以1212cos n n n n α⋅.1200n n ⋅=⨯+11n =,22222||(1)404n μμ=−+=2,sin αμ则1tan 0,2α⎡⎤=∈⎢⎥⎣⎦.则二面角的正切值的取值范围是故选:B.7. 若圆2244100x y x y +−−−=上至少有三个不同的点到直线:0l ax by +=的距离为,则直线l 的倾斜角的取值范围是( )5.,1212A ππ⎡⎤⎢⎥⎣⎦ 5.,912B ππ⎡⎤⎢⎥⎣⎦5.,1211C ππ⎡⎤⎢⎥⎣⎦ 5.,911D ππ⎡⎤⎢⎥⎣⎦解:为使得圆2244100x y x y +−−−=上至少有三个不同的点到直线:0l ax by +=的距离为,只要圆228x y +=的两条平行切线与圆2244100x y x y +−−−=都相交或者一条与圆相交,另一条与圆相切。
河南省部分学校大联考2024-2025学年高二上学期11月期中数学试题(含答案)
大联考2024—2025学年(上)高二年级期中考试数学考生注意:1.答题前,考生务必将自己的姓名、考生号填写在试卷和答题卡上,并将考生号条形码粘贴在答题卡上的指定位置.2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号,回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知直线的倾斜角为,且经过点,则的方程为()A B. C. D. 2. 椭圆与,且的()A. 长轴长相等B. 短轴长相等C. 焦距相等D. 离心率相等3. 已知中心在原点的双曲线的一条渐近线的斜率为2,且一个焦点的坐标为,则的方程为()A. B. C. D. 4. 在四面体中,为棱的中点,为线段的中点,若,则()A.B. 1C. 2D. 3l 3π4l ()1,2-l 30x y ++=10x y +-=240x y -+=20x y +=22194x y +=221(494x y m m m+=<--0)m ≠C (C 22128x y -=2214y x -=22146y x -=22182-=y x ABCD M CD E AM BE aBC bBD cBA =++ca=125. 若直线与圆相离,则点()A. 在圆外 B. 在圆内C. 在圆上D. 位置不确定6. 设为椭圆上一动点,分别为椭圆的左、右焦点,,则的最小值为()A. 8B. 7C. 6D. 47. 已知为抛物线的焦点,的三个顶点都在上,且为的重心.若的最大值为10,则()A. 1B. 2C. 3D. 48. 如图,在多面体中,底面是边长为1的正方形,为底面内的一个动点(包括边界),底面底面,且,则的最小值与最大值分别为()A.B. C.D.二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 已知方程,则()A. 当时,方程表示椭圆B. 当时,方程表示焦点在轴上的双曲线C. 存在,使得方程表示两条直线D. 存在,使得方程表示抛物线10. 已知直线的方程为,则下列结论正确的是()A. 点不可能在直线上:40l ax by --=22:4O x y +=(),P a b O O O P 221259x y +=12,F F ()1,0Q -2||||PF PQ +F ()2:20E x py p =>ABC V E F ABC V FA FB +p =EF ABCD -ABCD M ABCD AE ⊥,ABCD CF ⊥ABCD 2AE CF ==ME MF ⋅7,423,47,5257,22()()22:251C m x m y -+-=25m <<C 5m >C x m C m C l ()()0,1,1,3,3ax y a M N --=-M lB. 直线恒过点C. 若点到直线的距离相等,则D. 直线上恒存在点,满足11. 如图,在三棱锥中,平面分别为中点,是的中点,是线段上的动点,则()A. 存在,使得B. 不存在点,使得C.的最小值为D. 异面直线与三、填空题:本题共3小题,每小题5分,共15分.12. 在空间直角坐标系中,点与关于原点对称,则点坐标为__________.13. 若圆关于直线对称,则点与圆心的距离的最小值是__________.14. 已知椭圆的任意两条相互垂直的切线的交点的轨迹是圆,这个圆被称为“蒙日圆”,它的圆心与椭圆的中心重合,半径的平方等于椭圆长半轴长和短半轴长的平方和.如图为椭圆及其蒙日圆,点分别为蒙日圆与坐标轴的交点,分别与相切于点,则四边形与四边形EFGH 的面积的比值为__________.的的l ()1,0,M N l 2a =l Q 0MQ NQ ⋅=A BCD -,BD BC AB ⊥⊥,2,,,,BCD AB BC BDEFGH ===,,,AB BD BC CD M EF N GH 0,0a b >>GM aGH bGE =+N MN EH⊥MN AG EF Oxyz (),0,23P a b -(),0,Q a b O Q 22:(2)(1)1C x y -+-=220ax by ++=(),a b C ()2222Ω:10x y a b a b+=>>,ΩO ,,,A B C D O ,,,AB BC CD AD Ω,,,E F G H ABCD四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. 已知圆的圆心在直线和直线的交点上,且圆过点.(1)求圆的方程;(2)若圆的方程为,判断圆与圆的位置关系.16. 如图,在四棱锥中,四边形是矩形,为的中点.(1)证明:;(2)求直线与平面所成角的正弦值.17. 已知是抛物线的焦点,是上一点,且在的准线上的射影为.(1)求方程;(2)过点作斜率大于的直线与交于另一点,若的面积为3,求的方程.18. 如图,在斜三棱柱中,平面平面是边长为2的等边三角形,为的中点,且为的中点,为的中点,.的C 2y x =240x y +-=C ()1,1-C B 224430x y x y +-++=B C P ABCD -ABCD 2,4,PA AB AD PB PD N =====CD PA BN ⊥AB PBN F 2:2(03)C y px p =<<()0,4P x C P C ,5Q PQ =C P 43l C M PFM △l 111ABC A B C -11AA C C ⊥,ABC ABC △11,AA A C O =AC 12,A O D =1AC E AD 114BF BB =(1)设向量为平面的法向量,证明:;(2)求点到平面距离;(3)求平面与平面夹角的余弦值.19. 已知双曲线的离心率为2,左、右焦点分别是是的右支上一点,的中点为,且(为坐标原点),是的右顶点,是上两点(均与点不重合).(1)求的方程;(2)若不关于坐标轴和原点对称,且的中点为,证明:直线与直线的斜率之积为定值;(3)若不关于轴对称,且,证明:直线过定点.的a ABC 0EF a ⋅=A BCD BCD 1B DC ()2222:10,0x y C a b a b-=>>12,,F F P C 1PF Q 11QF QO -=O A C ,M N C AC ,M N MN H OH MN ,M N y AM AN ⊥MN大联考2024—2025学年(上)高二年级期中考试数学一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【答案】B2.【答案】C3.【答案】D4.【答案】C5.【答案】B6.【答案】B7.【答案】D8.【答案】A二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.9.【答案】BC10.【答案】ABD11.【答案】BCD三、填空题:本题共3小题,每小题5分,共15分.12.【答案】13.【答案】14.【答案】##四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. 【解析】【分析】(1)先求出两直线的交点,结合两点的距离公式和圆的标准方程计算即可求解;(2)由题意知的圆心为,半径,结合两圆的位置关系即可下结论.【小问1详解】由,得,即圆心坐标为.圆的方程为.【小问2详解】由(1)知,圆的圆心为,半径圆的方程可化为,则圆的圆心为,半径.,,圆与圆相交.16. 【解析】【分析】(1)根据已知数据结合勾股定逆定理可证得,,然后利用线面垂直的判定定理得平面,再由线面垂直的性质可证得结论;(0,0,1)83223B ()2,2B -2r =2240y x x y =⎧⎨+-=⎩12x y =⎧⎨=⎩()1,2=∴C 22(1)(2)5x y -+-=C ()1,2C 1r =B 224430x y x y +-++=22(2)(2)5x y -++=B ()2,2B -2r =CB == 12120r r CB r r ∴=-<<+=∴C B PA AD ⊥PA AB ⊥PA ⊥ABCD(2)由题意可得两两垂直,所以以为坐标原点,直线分别为轴、轴、轴建立如图所示的空间直角坐标系,利用空间向量求解即可.【小问1详解】证明:,,.,,.平面,平面,又平面,.【小问2详解】解:四边形是矩形,,平面,平面,,所以以为坐标原点,直线分别为轴、轴、轴建立如图所示的空间直角坐标系,则,.设平面的法向量为,则,令,可得,,,AB AD AP A ,,AB AD AP x yz 2,4PA PD AD === 222PD PA AD ∴=+PA AD ∴⊥2,PA AB PB === 222PB PA AB ∴=+PA AB ∴⊥,,AB AD A AB AD ⋂=⊂ ABCD PA ∴⊥ABCD BN ⊂ABCD PA BN ∴⊥ ABCD AB AD ∴⊥PA ⊥ ABCD ,AB AD ⊂ABCD ,PA AB PA AD ∴⊥⊥A ,,AB AD AP x y z ()()()()0,0,0,2,0,0,1,4,0,0,0,2A B N P ()()()2,0,0,1,4,0,2,0,2AB BN BP ∴==-=-PBN 40220n BN x y n BP x z ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩ 1y =4,4x z ==平面的一个法向量为.设直线与平面所成的角为,则,直线与平面.17. 【解析】【分析】(1)根据点在抛物线上得,结合抛物线定义列方程求参数,即可得方程;(2)设直线,联立抛物线,应用韦达定理、弦长及点线距离公式,结合三角形面积列方程求参数t ,即可得结果.【小问1详解】是上一点,,则,由抛物线的定义,知,,则,的方程为.【小问2详解】由(1),知.∴PBN ()4,1,4n =AB PBN θsin θ∴AB PBN 08x p=()3:4404l x t y t ⎛⎫-=-<< ⎪⎝⎭()0,4P x C 2042px ∴=01682x p p==852pPQ p =+=03p << 2p =C ∴24y x =()()1,0,4,4F P设直线,即,代入,整理得,,,又点到的距离为,,即,解得或(舍去),直线的方程为,即.18. 【解析】【分析】(1)先建立空间直角坐标系,应用面面垂直性质定理得出平面,进而得出法向量,最后应用空间向量数量积运算即可;(2)应用空间向量法求法向量及向量应用公式运算即可;(3)应用空间向量法求二面角余弦值即可.【小问1详解】如图,连接.,平面平面,平面平面平面,平面.是边长为2的等边三角形,.以为坐标原点,直线分别为轴、轴、轴建立空间直角坐标系,则,.()3:4404l x t y t ⎛⎫-=-<<⎪⎝⎭44x ty t =-+24y x =2416160y ty t -+-=4161644M P M M y y y t y t ∴==-⇒=-(4442P PM y t ∴=-=--=-F l d (1142322PMF S PM d t ∴==⨯-= 2(2)(34)3t t --=12t =94t =∴l ()1442x y -=-240x y --=1A O ⊥ABC ()0,2,0,AC =BO 111,AA A C A O AC =∴⊥ 11AA C C ⊥ABC 11AA C C 1,ABC AC AO =⊂11AAC C 1A O ∴⊥ABC ABC ,BO AC BO ∴⊥=O 1,,OB OC OA x y z ()()0,0,0,0,1,0O A -)()())11111,0,1,0,0,0,2,2,0,,1,0,,242BC A BDE ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭是平面的一个法向量,令.,,.【小问2详解】.设平面的法向量为,则令,可得,平面的一个法向量为,点到平面的距离为.【小问3详解】.设平面的法向量为,则令,可得,()10,0,2OA = ABC 1a OA = ()111110,1,2,0,,442BB BF BB ⎛⎫=∴== ⎪⎝⎭111,,,0422F EF ⎫⎫∴∴=⎪⎪⎭⎭1000202EF a ∴⋅=+⨯+⨯= ()()10,2,0,,0,,12AC BC CD ⎛⎫===- ⎪⎝⎭ BCD (),,m x y z =0,10,2m BC y m CD y z ⎧⋅=+=⎪⎨⋅=-+=⎪⎩2x=z =∴BCD (2,m = ∴ABCD d)12CB = 1B DC (),,n a b c =120,10,2n CB c n CD b c ⎧⋅=+=⎪⎨⋅=-+=⎪⎩2a=b c =-=平面的一个法向量为.由(2)可知平面的一个法向量为.设平面与平面的夹角为,则,平面与平面夹角的余弦值为..19.【解析】【分析】(1)由题设及双曲线定义得,再结合离心率、双曲线参数关系求双曲线方程;(2)设且,应用点在双曲线上、中点公式得,即可证结论;(3)设直线的方程为,联立双曲线,应用韦达定理及向量垂直的坐标表示列方程求参数t ,即可证结论.【小问1详解】设,连接.是的中点,是的中点,,,则.又.,的方程为.【小问2详解】设且的中点为,则,∴1B DC (2,n =- BCD (2,m = BCD 1B DC θ11cos 19n m n m θ⋅=== ∴BCD 1B DC 11191a =()()()(1122000,,,,,0M x y N x y H x y x ≠)00y ≠0121203x y y x x y -=-MN ()1x my t t =+≠()()()12,0,,00F c F c c ->2PF Q 1PF O 12F F //QO ∴221,2PF QO PF =1212222a PF PF QF QO ∴=-=-=1a =e 222c c a a==⇒==22222213b c a ∴=-=-=C ∴2213y x -=()()()(1122000,,,,,0M x y N x y H x y x ≠)00y ≠MN H 1201202,2x x x y y y +=+=是上的两点,①,②,①②,得,即,即,可得,,直线与直线的斜率之积为定值3.【小问3详解】易知,且不关于轴对称,直线的斜率不为0,设直线的方程为,代入,整理得,,,,M N C 221113y x ∴-=222213y x -=-2222121203y y x x ---=()()()()1212121203y y y y x x x x +-+--=()()0120122203y y y x x x ---=0121203x y y x x y -=-012120030MN OH y y y k k x x x --∴=⨯=--OH MN ()1,0A ,M N y ∴MN MN ()1x my t t =+≠2213y x -=()222316330m y mty t -++-=()()()222222310,Δ(6)4313312310,m mt m t m t ⎧-≠⎪∴⎨=---=+->⎪⎩2121222633,3131mt t y y y y m m -∴+=-=--AM AN ⊥ ()()()()112212121,1,11AM AN x y x y x x y y ∴⋅=-⋅-=--+ ()()()()()22121212121111(1)my t my t y y m y y m t y y t =+-+-+=++-++-()()()2222213361(1)3131m t mt m t t m m +-⨯-=-+---22222222222223333663632131m t m t m t m t m t m t m t t m -+--++-+-+-=-,解得或(舍去),直线过定点.22224031t t m +-==-2t =-1t =∴MN ()2,0-。
安徽A10联盟2024—2025学年高二上学期11月期中数学试题及答案
2023级高二上学期11月期中考数学(人教A 版)试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分150分,考试时间120分钟。
请在答题卡上作答。
第I 卷(选择题共58分)一、选择题:本大题共8个小题,每小题5分,共40分.在每小题所给四个选项中,只有一项是符合题意的.1.在空间直角坐标系Oxyz 中,已知点()2,1,4A --,点()2,1,4B ---,则()A.点A 和点B 关于x 轴对称B.点A 和点B 关于Oyz 平面对称C.点A 和点B 关于y 轴对称D.点A 和点B 关于Oxz 平面对称2.已知空间向量()2,1,3a =- ,()1,2,2b =- ,()1,,2c m =- ,若a ,b ,c共面,则实数m 的值为()A.1B.0C.-1D.-23.已知入射光线所在的直线的倾斜角为π3,与y 轴交于点(0,2),则经y 轴反射后,反射光线所在的直线方程为()20y +-=20y ++=20y --=20y -+=4.若点(-2,1)在圆220x y x y a ++-+=的外部,则实数a 的取值范围是()A.()2,-+∞ B.(),2-∞- C.12,2⎛⎫- ⎪⎝⎭D.()1,2,2⎛⎫-∞-+∞ ⎪⎝⎭5.已知空间向量()2a =,1,0,22b ⎛⎫= ⎪ ⎪⎝⎭,则向量a 在向量b 上的投影向量为()A.)B.()C.(D.1,0,44⎛⎫⎪ ⎪⎝⎭6.已知椭圆C :2216x y m+=(0m >且6m ≠),直线340x y +-=与椭圆C 相交于A ,B 两点,若(1,1)是线段AB 的中点,则椭圆的焦距为()A.2B.4C.7.古希腊数学家阿波罗尼奥斯与欧几里得、阿基米德齐名.他的著作《圆锥曲线论》是古代数学光辉的科学成果,阿氏圆(阿波罗尼斯圆)是其成果之一.在平面上给定相异两点A ,B ,设点P 在同一平面上,且满足PA PB λ=,当0λ>且1λ≠时,点P 的轨迹是圆,我们把这个轨迹称之为阿波罗尼斯圆.在ABC △中,2AB =,且2CA CB =,当ABC △面积取得最大值时,cos C =()A.5B.5C.35D.458.已知点P 在椭圆C :22143x y +=上(点P 不是椭圆的顶点),1F ,2F 分别为椭圆C 的左、右焦点,2PF 交y 轴于点G ,且112PF G GF F ∠=∠,则线段1PF 的长为()A.32B.53C.85D.374二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知直线1l :()1230m x y m +++-=,2l :220x my m ++-=,则下列说法正确的是()A.若12l l ∥,则1m =或2m =-B.若12l l ⊥,则23m =-C.若直线1l 不经过第四象限,则1m <-D.若直线1l 与x 轴负半轴和y 轴正半轴分别交于点A ,B ,O 为坐标原点,则AOB △面积的最小值是2010.已知椭圆C :2214x y +=的左、右焦点分别是1F ,2F ,左、右顶点分别是A ,B ,M 是椭圆C 上的一个动点(不与A ,B 重合),则()A.离心率1e 2=B.12MF F △的周长与点M 的位置无关C.122MF -<<+D.直线MA 与直线MB 的斜率之积为定值11.如图,正方体1111ABCD A B C D -的棱长为2,P 为上底面1111A B C D 内部一点(包括边界),M ,N 分别是棱AB 和BC 的中点,则下列说法正确的是()A.当直线1AA 和直线AP 所成的角是30°时,点P的轨迹长度是3B.若AP ∥平面1B MN ,则1B P的最小值为2C.若()111111A P mA D m A B =+-,则直线AP 和底面ABCD 所成的最大角是45°D.平面1D MN 被正方体所截的截面形状是六边形第Ⅱ卷(非选择题共92分)三、填空题:本大题共3个小题,每小题5分,共15分.12.已知圆C 过()1,3A ,()4,2B 两点,且圆心C 在直线30x y +-=上,则该圆的半径为_________.13.已知实数x ,y满足1y =+,则14y x ++的取值范围为_________.14.已知椭圆C :()222210x y a b a b+=>>,1F ,2F 分别是椭圆C 的左、右焦点122F F c =,若椭圆上存在点P ,满足12111PF PF c+=,则椭圆C 的离心率的取值范围为_________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)已知直线l 过点()2,1A -,求满足下列条件的直线l 的方程.(1)与直线m :50x y +-=垂直;(2)两坐标轴上截距相反.16.(15分)如图,在四棱锥P ABCD -中,四边形ABCD 为正方形,PA ⊥平面ABCD ,M ,N 分别为PB ,BC 的中点,2AF AE PGFD EB GC===,3AB PA ==.(1)求证:异面直线EF 和MN 垂直;(2)求点A 到平面MFG 的距离17.(15分)已知过点()1,0P 的直线l 与圆O :224x y +=相交于A ,B 两点.(1)若弦AB l 的方程;(2)在x 轴正半轴上是否存在定点Q ,无论直线l 如何运动,x 轴都平分AQB ∠?若存在,请求出点Q 的坐标;若不存在,请说明理由.18.(17分)如图1,在矩形ABCD 中,2AB =,BC =,连接AC ,DAC △沿AC 折起到PAC △的位置,如图2,PB =.(1)求证:平面PAC ⊥平面ABC ;(2)若点M 是线段PA 的中点,求平面MBC 与平面PAB 夹角的余弦值.19.(17分)已知椭圆E :()222210x y a b a b+=>>的左、右焦点分别为1F ,2F ,离心率5e 5=,短轴长为4.(1)求E 的标准方程;(2)过点()2,0T 的直线交E 于P ,Q 两点,若以PQ 为直径的圆过E 的右焦点2F ,求直线PQ 的方程;(3)两条不同的直线1l ,2l 的交点为E 的左焦点1F ,直线1l ,2l 分别交E 于点A ,B 和点C ,D ,点G ,H 分别是线段AB 和CD 的中点,1l ,2l 的斜率分别为1k ,2k ,且1240k k +=,求OGH △面积的最大值(O 为坐标原点)2023级高二上学期11月期中考数学(人教A 版)参考答案一、选择题:本题共8小题,每小题5分,共40分.在每小题的四个选项中,只有一项是最符合题目要求的.题号12345678答案BDACABDC1.B 已知点A 和点B 的横坐标互为相反数,纵坐标和竖坐标相等,所以点A 和点B 关于Oyz 平面对称.故选B.2.D 由题意得,c xa yb =+ ,即()()()1,,22,1,31,2,2m x y -=-+-,所以122232x y m x y x y =-⎧⎪=+⎨⎪-=-+⎩,解得012x y m =⎧⎪=-⎨⎪=-⎩.故选D.3.A由题意得,所求直线的斜率为πtan 3⎛⎫-=⎪⎝⎭,且与y 轴交于点(0,2),则所求直线的方程为2y =+20y +-=.故选A.4.C 由点(-2,1)在圆220x y x y a ++-+=的外部,得()()2222114021210a a ⎧+-->⎪⎨-+--+>⎪⎩,解得122a -<<,故选C.5.A 向量a 在向量b上的投影向量为)230313,0,122a bb a b b bb b⎛⋅⋅+⋅=⋅== ⎝⎭.故选A.6.B 设()11,A x y ,()22,B x y ,则12122x x y y +=+=,将A ,B 的坐标代入椭圆方程得:221116x y m +=,222216x y m +=,两式相减,得:2222121206x x y y m--+=,变形为()()121212126m x x y y x x y y +-=--+,又直线AB 的斜率为121213yy x x -=--,所以12362m ⨯-=-⨯,即2m =,因此椭圆的焦距为4=,故选B.7.D 由题意设()1,0A -,()1,0B ,()(),0C x y y ≠,由2CA CB ==化简得()22516039x y y ⎛⎫-+=≠ ⎪⎝⎭.∵122ABC S y y =⨯⨯=△,∴当43y =时,ABC △面积最大,此时不妨设54,33C ⎛⎫ ⎪⎝⎭,则453CA =,253CB =.∴22245252334cos 5C ⎛⎫⎛+- ⎪ ==.故选D.8.C 根据对称,不妨设()00,P x y ,00x <.由题意得,2a =,b =,1c =则离心率1e 2c a ==,左准线方程为24a x c=-=-,所以()()1001442PF e x x =+=+,因为112PF G GF F ∠=∠,所以由角平分线定理得1122PF PGF F GF =,即()0014221x x +-=,解得045x =-,所以185PF =.故选C.二、选择题:本题共3小题,每小题6分,共18分。
江苏省泰州2024-2025学年高二上学期11月期中考试 数学含答案
江苏省泰州2024~2025学年度第一学期期中考试高二数学试题(答案在最后)(考试时间:120分钟;总分:150分)命题人:一、选择题:(本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项符合题目要求,请将答案填涂到答题卡相应区域.)1.直线x =的倾斜角为()A.0B.30oC.60oD.902.“1a =-”是“直线330ax y ++=和直线()210x a y +-+=平行”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件3.抛物线214x y =的焦点到准线的距离是()A.18B.14C.1D.24.与双曲线22154x y -=有公共焦点,且短轴长为2的椭圆方程为()A.2212x y += B.22154x y += C.22110x y += D.221134x y +=5.已知圆2260x y x +-=,过点(1,2)的直线被该圆所截得的弦的长度的最小值为()A.1B.2C.3D.46.油纸伞是中国传统工艺品,至今已有1000多年的历史,为宣传和推广这一传统工艺,某市文化宫于春分时节开展油纸伞文化艺术节.活动中,某油纸伞撑开后摆放在户外展览场地上,如图所示,该伞的伞沿是一个半径为1的圆,圆心到伞柄底端的距离为1,阳光照射油纸丛在地面上形成了一个椭圆形的影子(春分时,该市的阳光照射方向与地面的夹角为60o ),若伞柄底端正好位于该椭圆的左焦点位置,则()A.该椭圆的离心率为312B.该椭圆的离心率为23C.该椭圆的焦距为3263- D.该椭圆的焦距为31-7.如图,平面直角坐标系中,曲线(实线部分)的方程可以是.A.()()22110x y x y --⋅-+= B.()22110x y x y ---+=C.()22110x y x y ---+ D.22110x y x y ---+=8.已知椭圆()221112211:10x y C a b a b +=>>与双曲线()222222222:10,0x y C a b a b -=>>具有相同的左、右焦点1F ,2F ,点P 为它们在第一象限的交点,动点Q 在曲线1C 上,若记曲线1C ,2C 的离心率分别为1e ,2e ,满足121e e ⋅=,且直线1PF 与y 轴的交点的坐标为230,2a ⎛⎫⎪⎝⎭,则12F QF ∠的最大值为()A.π3B.π2C.2π3 D.5π6二、多选题:(本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分,请将答案填涂到答题卡相应区域.)9.已知直线()()()()12:12250,:3480R l t x t y t l x y t +-+++=-+=∈,则()A.直线1l 过定点()1,3B.当1t =时,12l l ⊥C.当2t =时,12l l ∥ D.当12l l ∥时,两直线12,l l 之间的距离为110.已知F 是抛物线2:C y x =的焦点,A ,B 是抛物线C 上的两点,O 为坐标原点,则()A.若54AF =,则AOF 的面积为18 B.若BB '垂直C 的准线于点B ',且2BB OF '=,则四边形OFBB '的周长为354C.若直线AB 过点F ,则AB 的最小值为1D .若14OA OB ⋅=- ,则直线AB 恒过定点1,02⎛⎫ ⎪⎝⎭11.已知双曲线22:13y C x -=的左、右焦点分别为12,F F ,点P 是双曲线C 的右支上一点,过点P 的直线l 与双曲线C 的两条渐近线分别交于,M N ,则()A.2212PF PF -的最小值为8B.212PF PF OP -为定值C.若直线l 与双曲线C 相切,则点,M N 的纵坐标之积为2-;D.若直线l 经过2F ,且与双曲线C 交于另一点Q ,则PQ 的最小值为6.三、填空题:(本题共3小题,每小题5分,共15分.)12.经过点()1,2P ,且在x 轴上的截距是在y 轴上的截距的2倍的直线l 的方程是______.13.已知P 为椭圆22:193x y C +=上的一个动点,过P 作圆22:(1)2M x y -+=的两条切线,切点分别为,A B ,则AB 的最小值为__________.14.已知双曲线2222:1(0,0)x y C a b a b-=>>与平行于x 轴的动直线交于,A B 两点,点A 在点B 左侧,双曲线C 的左焦点为F ,且当AF AB ⊥时,AF AB =.则双曲线的离心率是__________;当直线运动时,延长BF 至点P 使AF FP =,连接AP 交x 轴于点Q ,则FQ FP的值是__________.四、解答题:(本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.)15.已知ABC V 的顶点()1,2A ,AB 边上的中线所在直线的方程为30x y +=,AC 边上的高BH 所在直线的方程为2340x y --=.(1)求点B ,C 的坐标;(2)求ABC V 的面积.16.已知抛物线24y x =的焦点为F ,过点(5,2)-的直线与抛物线交于P ,Q 两点.(1)求||||PF QF +的最小值;(2)判断点(1,2)N 是否在以PQ 为直径的圆上,并说明理由.17.椭圆E 的中心在坐标原点O ,焦点在x 轴上,离心率为1.2点3(1,2P 、A 、B 在椭圆E 上,且(R)PA PB mOP m +=∈.(1)求椭圆E 的方程及直线AB 的斜率;(2)当3m =-时,证明原点O 是PAB 的重心,并求直线AB 的方程.18.已知A ,B 分别是双曲线22:14y E x -=的左,右顶点,直线l (不与坐标轴垂直)过点()2,0N ,且与双曲线E 交于C ,D 两点.(1)若3CN ND =,求直线l 的方程;(2)若直线AC 与BD 相交于点P ,求证:点P 在定直线上.19.已知曲线C 由()2240x x y +=≤和221(0)84x y x +=>组成,点()2,0A -,点()2,0B ,点,P Q 在C上.(1)求PA PB +的取值范围(当P 与A 重合时,0PA =);(2)若OP OQ ⊥,求OPQ △面积的取值范围.江苏省泰州2024~2025学年度第一学期期中考试高二数学试题(考试时间:120分钟;总分:150分)命题人:一、选择题:(本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项符合题目要求,请将答案填涂到答题卡相应区域.)1.直线x =的倾斜角为()A.0B.30oC.60oD.90【答案】D 【解析】【分析】根据直线斜率和倾斜角关系可直接求得结果.【详解】 直线x =的斜率不存在,∴直线x =的倾斜角为90 .故选:D.2.“1a =-”是“直线330ax y ++=和直线()210x a y +-+=平行”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】C 【解析】【分析】根据直线平行的等价条件求出a 的值,结合充分条件和必要条件的定义进行判断即可.【详解】当1a =-,则直线分别为330x y -++=和直线310x y -+=满足平行,即充分性成立,若直线330ax y ++=和直线(2)10x a y +-+=平行,当0a =时,直线分别为330y +=和210x y -+=,不满足条件,当0a ≠时,满足12133a a -=≠,即(2)3a a -=,解得3a =或1a =-,当3a =时,两直线重合,故不满足条件,故1a =-,即必要性成立,综上“1a =-”是“直线330ax y ++=和直线(2)10x a y +-+=平行”的充要条件,故选:C .3.抛物线214x y =的焦点到准线的距离是()A.18B.14C.1D.2【答案】A 【解析】【分析】根据抛物线方程确定焦准距p 的值,即得答案.【详解】因为抛物线方程为214x y =,故焦准距18p =,即焦点到准线的距离是18,故选:A.4.与双曲线22154x y -=有公共焦点,且短轴长为2的椭圆方程为()A.2212x y += B.22154x y += C.22110x y += D.221134x y +=【答案】C 【解析】【分析】设出椭圆方程,由短轴长求出1b =,求出双曲线的焦点坐标,进而求出210a =,得到椭圆方程.【详解】设椭圆方程为22221x y a b+=,双曲线22154x y -=的焦点坐标为()()3,0,3,0-,又短轴长为2,故22b =,解得:1b =,则29110a =+=,故椭圆方程为22110x y +=.故选:C5.已知圆2260x y x +-=,过点(1,2)的直线被该圆所截得的弦的长度的最小值为()A.1B.2C.3D.4【答案】B 【解析】【分析】当直线和圆心与点(1,2)的连线垂直时,所求的弦长最短,即可得出结论.【详解】圆2260x y x +-=化为22(3)9x y -+=,所以圆心C 坐标为(3,0)C ,半径为3,设(1,2)P ,当过点P 的直线和直线CP 垂直时,圆心到过点P 的直线的距离最大,所求的弦长最短,此时||CP ==根据弦长公式得最小值为2==.故选:B.【点睛】本题考查圆的简单几何性质,以及几何法求弦长,属于基础题.6.油纸伞是中国传统工艺品,至今已有1000多年的历史,为宣传和推广这一传统工艺,某市文化宫于春分时节开展油纸伞文化艺术节.活动中,某油纸伞撑开后摆放在户外展览场地上,如图所示,该伞的伞沿是一个半径为1的圆,圆心到伞柄底端的距离为1,阳光照射油纸丛在地面上形成了一个椭圆形的影子(春分时,该市的阳光照射方向与地面的夹角为60o ),若伞柄底端正好位于该椭圆的左焦点位置,则()A.该椭圆的离心率为12B.该椭圆的离心率为2C.该椭圆的焦距为3- D.该椭圆的焦距为1-【答案】BC 【解析】【分析】先求得1BF ,结合椭圆的知识以及正弦定理求得,a c ,进而求得椭圆的离心率和焦距.【详解】()62sin 6045sin 60cos 45cos 60sin 454+︒+︒=︒︒+︒︒=,如图,,A B 分别是椭圆的左、右顶点,1F 是椭圆的左焦点,BC 是圆的直径,D 为该圆的圆心.因为111,BD DF DF BC ==⊥,所以1BF =设椭圆的长轴长为2a ,焦距为2c ,则a c +=因为60,45,2,2A B BC AB a ∠∠====,由正弦定理得()22sin60sin 6045a=+ ,解得6a =,所以6c a ==,所以223c c a ==-=.故选:BC7.如图,平面直角坐标系中,曲线(实线部分)的方程可以是.A.()()22110x y x y --⋅-+= B.()2210x y -+=C.()10x y -- D.=【答案】C 【解析】【分析】结合图象,对选项一一验证,找到方程所表示的曲线的图形满足题意即可.【详解】因为曲线表示折线段的一部分和双曲线,A 选项等价于10x y --=或2210x y -+=,表示折线y 1x =-的全部和双曲线,故错误;B 选项,等价于221010x y x y ⎧--≥⎨-+=⎩或10x y --=,又10x y --=表示折线y 1x =-的全部,故错误;C 选项,等价于221010x y x y ⎧--=⎨-+≥⎩或2210x y -+=,∴221010x y x y ⎧--=⎨-+≥⎩表示折线y 1x =-在双曲线外部(包含有原点)的部分,2210x y -+=表示双曲线2x -21y =,符合题中的图象,故C 正确.D 选项,等价于221010x y x y ⎧--=⎨-+≥⎩或221010x y x y ⎧--≥⎨-+=⎩,221010x y x y ⎧--=⎨-+≥⎩表示折线y 1x =-在双曲线外部(包含有原点)的部分,和221010x y x y ⎧--≥⎨-+=⎩表示双曲线在x 轴下方的部分,故错误.故选C.【点睛】本题考查曲线的方程和方程的曲线概念,关键在于考虑问题要周全,即在每个因式等于0时同时需保证另一个因式有意义,此题是中档题,也是易错题.8.已知椭圆()221112211:10x y C a b a b +=>>与双曲线()222222222:10,0x y C a b a b -=>>具有相同的左、右焦点1F ,2F ,点P 为它们在第一象限的交点,动点Q 在曲线1C 上,若记曲线1C ,2C 的离心率分别为1e ,2e ,满足121e e ⋅=,且直线1PF 与y 轴的交点的坐标为230,2a ⎛⎫⎪⎝⎭,则12F QF ∠的最大值为()A.π3B.π2C.2π3 D.5π6【答案】A 【解析】【分析】根据椭圆、双曲线的定义可得112212PF a a PF a a ⎧=+⎪⎨=-⎪⎩,结合离心率可得11211a c e a e c⎧=⎪⎨⎪=⎩,在12PF F 中,利用余弦定理可得112e =,进而结合椭圆性质可知:当Q 为椭圆短轴顶点时,12F QF ∠取到最大值,分析求解即可.【详解】由题意可知:12112222PF PF a PF PF a ⎧+=⎪⎨-=⎪⎩,解得112212PF a a PF a a ⎧=+⎪⎨=-⎪⎩,又因为1122121c e a c e a e e ⎧=⎪⎪⎪=⎨⎪⎪⋅=⎪⎩,可得11211a c e a e c ⎧=⎪⎨⎪=⎩,由直线1PF 与y 轴的交点的坐标为230,2a ⎛⎫ ⎪⎝⎭可得12cos PF F ∠=,在12PF F 中,由余弦定理可得()()()()()2222221212112212112122cos 222a a c a a PF F F PF PF F PF F F a a c ++--+-∠==⋅+⋅()22212121111211a a c c c a a c e c e c c e e ++===+⎛⎫++ ⎪⎝⎭,1121e e =+,整理得42118210e e +-=,解得2114e =或2112e =-(舍去),且10e >,所以112e =,由椭圆性质可知:当Q 为椭圆短轴顶点时,12F QF ∠取到最大值,此时12111sin22F QF c e a ∠===,且()120,πFQF ∠∈,则12π0,22F QF ⎛∠⎫∈ ⎪⎝⎭,所以12π26F QF ∠=,即12π3F QF =∠.故选:A..【点睛】关键点睛:本题解决的关键在于找到12cos PF F ∠的两种表达方式,构造了关于1e 的方程,从而得解.二、多选题:(本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分,请将答案填涂到答题卡相应区域.)9.已知直线()()()()12:12250,:3480R l t x t y t l x y t +-+++=-+=∈,则()A.直线1l 过定点()1,3B.当1t =时,12l l ⊥C.当2t =时,12l l ∥ D.当12l l ∥时,两直线12,l l 之间的距离为1【答案】AC 【解析】【分析】对于A ,将直线1l 化简整理为()2250t x y x y -++-+=,令20250x y x y -+=⎧⎨-+=⎩,解方程组即可求出所过定点;对于B ,将1t =代入直线1l 中,分别求出直线1l 与2l 的斜率,通过两条直线垂直的判定条件判断选项正误即可;对于C ,将2t =代入直线1l 中,分别求出直线1l 与2l 的斜率,通过两条直线平行的判定条件判断选项正误即可;对于D ,通过12l l //,求出参数2t =,然后根据平行线间距离公式求解即可.【详解】对于A ,直线()()()1:12250l t x t y t +--++=化为()2250t x y x y -++-+=,令20250x y x y -+=⎧⎨-+=⎩,解得:13x y =⎧⎨=⎩,所以直线1l 过定点()1,3,故A 选项正确;设直线1l 的斜率为1k ,设直线2l 的斜率为2k ,对于B ,当1t =时, 1:2370l x y -+=,∴123k =,2:3480l x y -+= ,234k ∴=,又 1k 与2k 均存在且121k k ⋅≠-,1l ∴与2l 不垂直,故B 选项错误;对于C ,当2t =时,1:3490l x x -+= ,∴134k =,2:3480l x y -+= ,234k ∴=,又12k k = ,且1l 与2l 不重合,1l ∴与2l 平行,故C 选项正确;对于D ,12//l l ,()()4132t t ∴-+=-+,解得:2t =,得1:3490l x y -+=,2:3480l x y -+=,故两条直线之间的距离为15d =,故D 选项错误.故选:AC10.已知F 是抛物线2:C y x =的焦点,A ,B 是抛物线C 上的两点,O 为坐标原点,则()A.若54AF =,则AOF 的面积为18 B.若BB '垂直C 的准线于点B ',且2BB OF '=,则四边形OFBB '的周长为354C.若直线AB 过点F ,则AB 的最小值为1D.若14OA OB ⋅=- ,则直线AB 恒过定点1,02⎛⎫ ⎪⎝⎭【答案】ACD 【解析】【分析】利用抛物线焦点弦的性质,可判定A ,C 正确;利用拋物线的定义,数形结合求解四边形OFBB '的周长,可判定判断B 不正确;设直线AB 的方程为x my t =+,联立方程组,结合根与系数的关系,求得t 的值,可判定D 正确.【详解】对于选项A 中,设()11,A x y ,由焦半径公式得11544x +=,解得11x =,所以11y =±,所以1111248AOF S =⨯⨯=△,所以A 正确;对于选项B 中,由题意知14OF =,根据抛物线的定义可知12BF BB '==,设BB '与y 轴的交点为D ,易知12OD BF ==,14B D '=,故4OB '==,所以四边形OFBB '的周长为111542244++++=,所以B 错误;对于选项C 中,若直线AB 过点F ,则当AB x ⊥轴时,AB 最小,且最小值为1,所以C 正确;对于选项D ,设直线:AB x my t =+,()11,A x y ,()22,B x y ,联立直线AB 与抛物线方程得20y my t --=,则12y y t =-,所以2221212x x y y t ==,由14OA OB ⋅=- 可得121214x x y y +=-,即214t t -=-,解得12t =,故直线AB 的方程为12x my =+,即直线AB 恒过定点1,02⎛⎫⎪⎝⎭,选项D 正确.故选ACD .【点睛】对于抛物线的焦点弦的性质的结论拓展:若AB 是一条过抛物线22(0)y px p =>焦点F 的弦,当AB 所在直线的倾斜角为α,设()11,A x y ,()22,B x y ,可得121cos p p AF x α=+=-,则221cos p p BF x α=+=+,弦长1222sin p AB x x p α=++=;同时通径是指过抛物线的焦点且垂直于抛物线对称轴的弦,弦长等于2p ,且通径是过焦点的最短的弦.11.已知双曲线22:13y C x -=的左、右焦点分别为12,F F ,点P 是双曲线C 的右支上一点,过点P 的直线l 与双曲线C 的两条渐近线分别交于,M N ,则()A.2212PF PF -的最小值为8B.212PF PF OP -为定值C.若直线l 与双曲线C 相切,则点,M N 的纵坐标之积为2-;D.若直线l 经过2F ,且与双曲线C 交于另一点Q ,则PQ 的最小值为6.【答案】AB 【解析】【分析】设00(,)P x y ,由222128PF PF x -=,可判定A 正确;化简2122PF PF OP -=,可判定B 正确;设直线l 的方程为x my n =+,联立方程组,结合0∆=,得到2213n m =-,在化简123y y =-,可判定C 不正确;根据通经长和实轴长,可判定D 错误.【详解】由题意,双曲线2213y x -=,可得1,a b ==2c ==,所以焦点12(2,0),(2,0)F F -,且1222PF PF a -==,设00(,)P x y ,则01x ≥,且220013y x -=,即220033=-y x ,双曲线C 的两条渐近线的方程为y =,对于A 中,由()][()22222212000002288PF PF x y x y x ⎡⎤-=++--+=≥⎣⎦,所以A 正确;对于B中,2221200()PF PF OP x y -=-+2200(33)x x =-+-2000(21)(21)(43)2x x x =+---=(定值),所以B 正确;对于C 中,不妨设1122(,),(,)M x y N x y ,直线l 的方程为x my n =+,联立方程组2213x my ny x =+⎧⎪⎨-=⎪⎩,整理得222(31)6330m y mny n -++-=,若直线l 与双曲线C 相切,则22223612(31)(1)0m n m n ∆=---=,整理得2213n m =-,联立方程组x my n y =+⎧⎪⎨=⎪⎩,解得y =M的纵坐标为1y =联立方程组x my n y =+⎧⎪⎨=⎪⎩,解得y =N的纵坐标为2y =,则点,M N的纵坐标之积为21222233(13)33113y n m mm y ---==-=--所以C 不正确;对于D 中,若点Q 在双曲线的右支上,则通经最短,其中通经长为226b a=,若点Q 在双曲线的左支上,则实轴最短,实轴长为226a =<,所以D 错误.故选:AB.三、填空题:(本题共3小题,每小题5分,共15分.)12.经过点()1,2P ,且在x 轴上的截距是在y 轴上的截距的2倍的直线l 的方程是______.【答案】20x y -=和250x y +-=;【解析】【分析】根据直线过原点和不经过原点两种情况,即可由待定系数的方法求解.【详解】若直线经过原点,则设直线方程为y kx =,将()1,2P 代入可得20x y -=,若直线不经过原点,设直线方程为12x ya a+=,将()1,2P 代入可得52a =,所以直线方程为1552x y+=,即250x y +-=,故答案为:20x y -=和250x y +-=;13.已知P 为椭圆22:193x y C +=上的一个动点,过P 作圆22:(1)2M x y -+=的两条切线,切点分别为,A B ,则AB 的最小值为__________.【答案】5【解析】【分析】设(),,P x y MAB θ∠=,解三角形可得AB θ=,sin PMθ=,利用两点距离公式求PM 的最小值,结合平方关系可求A 的最小值.【详解】设(),,P x y MAB θ∠=,由已知MA AP ⊥,由对称性可得AB PM ⊥,所以ππ,22PAB MAB MPA PAB ∠+∠=∠+∠=,则AB θ=,MPA MAB ∠∠θ==,且sin PMθ=,因为PM ===,因为33x -≤≤,所以2PM ≥,当且仅当32x =时等号成立,所以sinPM θ=≤π0,2θ⎛⎫∈ ⎪⎝⎭,所以cos5θ=,所以521055AB θ=≥=.所以A 的最小值为5.故答案为:5.14.已知双曲线2222:1(0,0)x y C a b a b-=>>与平行于x 轴的动直线交于,A B 两点,点A 在点B 左侧,双曲线C 的左焦点为F ,且当AF AB ⊥时,AF AB =.则双曲线的离心率是__________;当直线运动时,延长BF 至点P 使AF FP =,连接AP 交x 轴于点Q ,则FQ FP的值是__________.【答案】①.1+##1②.1##1-【解析】【分析】根据条件,设0(,)A c y -,代入双曲线方程得4202b y a =,再根据条件即可得22b c a=,从而求出结果;利用PQF PAB ,得到FQ AB AB FPBPAF BF==+,设(,)A x y ,则有2AB x =,AF =,BF =.【详解】当AF AB ⊥时,设0(,)A c y -,则有220221y c a b -=,解得4202b y a =,又AF AB =,所以22b c a=,又222b c a =-,所以222c a ac -=,两边同除2a ,得到2210e e --=,解得1e =+1e =-,因为PQF PAB ,有FQ AB AB FPBPAF BF==+,设(,)A x y ,则(,)B x y -,2AB x =,AF =,BF =所以22FQ a aFPc c==,又1ca=+,所以1a c ==,1+;1-.【点睛】关键点点晴:本题的关键在于第二空,利用PQF PAB ,得到FQ AB AB FPBPAF BF==+,设(,)A x y ,(,)B x y -,求出,,AB AF BF ,化简并结合双曲线定义,即可求解.四、解答题:(本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.)15.已知ABC V 的顶点()1,2A ,AB 边上的中线所在直线的方程为30x y +=,AC 边上的高BH 所在直线的方程为2340x y --=.(1)求点B ,C 的坐标;(2)求ABC V 的面积.【答案】(1)()1,2B --,()3,1C -(2)7【解析】【分析】(1)设点(),B a b ,由题意可知点(),B a b 坐标满足BH 的方程,再表示出AB 的中点,代入AB 边上的中线方程,解方程组可求出点B 的坐标,求出AC 的斜率,可求出直线AC 的方程,再与30x y +=联立,可得点C 的坐标,(2)利用两点间的距离公式求出AC 的长,再利用点到直线的距离公式求出B 到直线AC 的距离,从而可求出三角形的面积.【小问1详解】设点(),B a b ,因为B 在直线BH 上,所以2340a b --=,①又A ,B 的中点为12,22a b D ++⎛⎫⎪⎝⎭,且点D 在AB 的中线上,所以123022a b+++⨯=,②联立①②,得12a b =-⎧⎨=-⎩,即点()1,2B --.由题意,得1AC BH k k ⋅=-,所以32AC k =-,所以AC 所在直线的方程为32(1)2y x -=--,即3270x y +-=,③因为点C 在AB 边上的中线上,所以点C 的坐标满足直线方程30x y +=,④联立③④,得31x y =⎧⎨=-⎩,即()3,1C -.【小问2详解】由(1)得AC =,B 到直线AC的距离为13d ==,所以17213ABC S ==△,故ABC V 的面积为7.16.已知抛物线24y x =的焦点为F ,过点(5,2)-的直线与抛物线交于P ,Q 两点.(1)求||||PF QF +的最小值;(2)判断点(1,2)N 是否在以PQ 为直径的圆上,并说明理由.【答案】(1)11(2)在,理由见解析【解析】【分析】(1)需对直线分斜率存在和不存在,分别将两种情况下的直线与抛物线联立,从而求解.(2)由(1)知分情况对以PQ 为直径的圆对点N 进行验证,从而求解.【小问1详解】从而求(2)由(1)中当直线斜率,由题意知:抛物线焦点()1,0F ,准线:=−1,直线过定点()5,2-,且定点在抛物线内,所以得:直线的斜率不为0,设直线方程为()25x m y =++,当0m =时,直线率不存在,即直线方程为:5x =,此时:(5,P,(5,Q -,所以:12255212PF QF x x +=++=++=;当0m ≠时,即直线斜率存在时,得直线方程为:()25x m y =++,将直线与抛物线联立得:()2425y x x m y ⎧=⎪⎨=++⎪⎩,化简得:()248200y my m --+=,()()22164820161640m m m ∆=+⨯+=++>,设:211,4y P y ⎛⎫ ⎪⎝⎭,222,4y Q y ⎛⎫⎪⎝⎭,由根与系数关系得:()12124820y y m y y m +=⎧⎨=-+⎩,()()22221212121228162820882444y y y y m m y y PF QF x x +-+++++++=++===()224412211111m m m =++=++≥,所以:当直线斜率存在时,PF QF +的最小值为:11.综上所述:PF QF +的最小值为:11.【小问2详解】在,理由如下:由(1)知:当直线斜率不存在时:直线为:5x =,(5,P,(5,Q -以PQ 为直径的圆方程为:()22520x y -+=,将()1,2N 代入得:()2215220-+=,所以点N 在以PQ 为直径的圆上;当直线斜率存在时:由(1)知:2114,24y NP y ⎛⎫-=-⎪⎝⎭ ,2224,24y NQ y ⎛⎫-=- ⎪⎝⎭,()()()()22222212121212121241644·22244416y y y y y y NP NQ y y y y y y -++--=⨯+--=+-++ ()()()22254410820850m m m m m =+-++-+-+=,所以得:NP NQ ⊥,90PNQ ∠=︒,所以得:点N 在以PQ 为直径的圆上.综上所述:点N 在以PQ 为直径的圆上.17.椭圆E 的中心在坐标原点O ,焦点在x 轴上,离心率为1.2点3(1,2P 、A 、B 在椭圆E 上,且(R)PA PB mOP m +=∈.(1)求椭圆E 的方程及直线AB 的斜率;(2)当3m =-时,证明原点O 是PAB 的重心,并求直线AB 的方程.【答案】(1)22143x y +=,12-;(2)证明见解析,220x y ++=.【解析】【分析】(1)设出椭圆方程,利用给定条件列出方程组求解;再设出点,A B 的坐标,利用点差法求解作答;(2)证明PAB 的重心坐标为(0,0),确定AB 中点坐标,点差法求出AB 的斜率,即可求解AB 的方程.【小问1详解】设椭圆E 的方程为22221(0)x y a b a b +=>>,则222114b e a =-=,且221914a b +=,解得224,3a b ==,所以椭圆E 的方程为22143x y +=;设1122()A x y B x y ,,(,),而3(1,)2P ,则112233(1,),(1,)22PA x y PB x y =--=-- ,由PA PB mOP += ,得12122332x x m y y m +-=⎧⎪⎨+-=⎪⎩,即12122332x x m y y m +=+⎧⎪⎨+=+⎪⎩,又由22112222143143x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,得12121212()()()()043x x x x y y y y -+-++=,则直线AB 的斜率121212123()3(2)134()24(3)2AB y y x x m k x x y y m -++==-=-=--++.【小问2详解】当3m =-时,由(1)知,点1122()A x y B x y ,,(,)的坐标满足1212132x x y y +=-⎧⎪⎨+=-⎪⎩,而3(1,)2P ,因此PAB 的重心坐标为(0,0),所以原点O 是PAB 的重心;显然线段AB 的中点坐标为13(,)24--,此点在椭圆E 内,即直线AB 与椭圆E 必相交,由(1)知直线AB 的斜率121212123()3(1)134()24()2AB y y x x k x x y y -+⨯-==-=-=--+⨯-,所以直线AB 的方程为311(422y x +=-+,即220x y ++=.18.已知A ,B 分别是双曲线22:14y E x -=的左,右顶点,直线l (不与坐标轴垂直)过点()2,0N ,且与双曲线E 交于C ,D 两点.(1)若3CN ND = ,求直线l 的方程;(2)若直线AC 与BD 相交于点P ,求证:点P 在定直线上.【答案】(1)0y --=或0y +-=;(2)证明见解析.【解析】【分析】(1)设直线l 的方程为2x my =+并联立双曲线根据韦达定理可得1y 与2y 关系,结合3CN ND = 可得123y y =-,从而求得m 值得直线方程;(2)列出直线AC 与BD 方程,并求点P 坐标得12P x =,故得证.【详解】解:设直线l 的方程为2x my =+,设()11,C x y ,()22,D x y ,把直线l 与双曲线E 联立方程组,22214x my y x =+⎧⎪⎨-=⎪⎩,可得()224116120m y my -++=,则1212221612,4141m y y y y m m +=-=--,(1)()112,CN x y =-- ,()222,ND x y =- ,由3CN ND = ,可得123y y =-,即22841m y m =-①,22212341y m -=-②,把①式代入②式,可得22281234141m m m ⎛⎫-= ⎪--⎝⎭,解得2120m =,10m =±,即直线l的方程为0y --=或0y +-=.(2)直线AC 的方程为()1111y y x x =++,直线BD 的方程为()2211y y x x =--,直线AC 与BD 的交点为P ,故()1111y x x ++()2211y x x =--,即()1113y x my ++()2211y x my =-+,进而得到122121311my y y x x my y y ++=-+,又()121234my y y y =-+,故()()122121212133391433134y y y y y x x y y y y y -++-++===----++,解得12x =故点P 在定直线12x =上.【点晴】方法点晴:直线与圆锥曲线综合问题,通常采用设而不求,结合韦达定理求解.19.已知曲线C 由()2240x x y +=≤和221(0)84x y x +=>组成,点()2,0A -,点()2,0B ,点,P Q 在C 上.(1)求PA PB +的取值范围(当P 与A 重合时,0PA =);(2)若OP OQ ⊥,求OPQ △面积的取值范围.【答案】(1)4,⎡⎣(2)2,⎡⎣【解析】【分析】(1)注意到,A B 是椭圆的左右焦点,且是圆与x 轴的交点,分点P 是否在y 轴的右侧两种情况讨论即可得解;(2)当两点在半椭圆上时(不含y 轴),设()1:,:0OP y kx OQ y x k k==-≠,求出O ,同理求出O ,进而可求出面积的表达式,再讨论两点都在半圆上,一点在半圆上一点在半椭圆上(不含y 轴)和一点在y 轴上一点在半椭圆上三种情况讨论,进而可得出答案.【小问1详解】注意到,A B 是椭圆的左右焦点,且是圆与x 轴的交点,当点P 在y 轴的右侧时,由椭圆的定义可得PA PB +=;当点P 不在y 轴的右侧时,设π,0,4PBA αα⎡⎤∠=∈⎢⎥⎣⎦,则π4sin 4cos 4PA PB ααα⎛⎫+=+=+ ⎪⎝⎭,因为π0,4α⎡⎤∈⎢⎥⎣⎦,所以πππ,442α⎡⎤+∈⎢⎥⎣⎦,所以π4,4PA PB α⎛⎫⎡+=+∈ ⎪⎣⎝⎭,综上所述,4,PA PB ⎡+∈⎣;【小问2详解】记OPQ △的面积为S ,当两点在半椭圆上时(不含y 轴),设()1:,:0OP y kx OQ y x k k==-≠,联立22184x y y kx ⎧+=⎪⎨⎪=⎩,则有22821P x k =+,故()()222222281121P P P k OP x y k x k +=+=+=+,同理可得()2222218181221k k OQ k k ⎛⎫+ ⎪+⎝⎭==++,故()()()22222221614212k OP OQS k k +==++,令21,1t k t =+>,则21k t =-,则()()222216161611211119224t S t t t t t ===-+⎛⎫-++--+ ⎪⎝⎭,由1t >,得101t<<,所以221664,8911924S t ⎡⎫=∈⎪⎢⎣⎭⎛⎫--+ ⎪⎝⎭,所以8,3S ⎡∈⎢⎣;当两点都在半圆上时,2OP OQ ==,则22OP OQS ==;当一点在半圆上一点在半椭圆上时(不含y 轴),由对称性,可设点P 在半椭圆上,则2OQ =,故()222222814442121k OP OQS k k +===+++,由0k ≠,可得2211k +>,所以()22444,821S k =+∈+,所以(2,S ∈;当一点在y 轴上一点在半椭圆上时,由对称性,可设点Q 是曲线与y 轴的交点,则点P 为椭圆的右顶点,则2,OQ OP ==2OP OQS ==,综上所述,OPQ △面积的取值范围为2,⎡⎣.【点睛】方法点睛:圆锥曲线中取值范围问题的五种求解策略:(1)利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围;(2)利用已知参数的范围,求新的参数的范围,解这类问题的核心是建立两个参数之间的等量关系;(3)利用隐含的不等关系建立不等式,从而求出参数的取值范围;(4)利用已知的不等关系建立不等式,从而求出参数的取值范围;(5)利用求函数值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围.。
湖北省部分重点中学2024_2025学年高二数学上学期期中试题含解析
湖北省部分重点中学2024-2025学年高二数学上学期期中试题(含解析)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,全卷满分150分,考试时间120分钟. 留意事项:1.答卷前,考生务必将自己的姓名、准考证号精确地写在答题卡上。
2.全部试题的答案均写在答题卡上。
对于选择题,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案。
3.答第Ⅱ卷时,必需用0.5毫米墨水签字笔在答题卡上书写。
在试题卷上作答无效。
第I 卷(选择题)一、选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中只有一项是符合题目要求的1.已知点(-3,2)A ,(0,1)B -,则直线AB 的倾斜角为( ) A .030B .045C .0135D .01202.某工厂为了对40个零件进行抽样调查,将其编号为00,01,…,38,39.现要从中选出5个,利用下面的随机数表,从第一行第3列起先,由左至右依次读取,则选出来的第5个零件编号是( ) 0347 4373 8636 9647 3661 4698 6371 6233 2616 8045 6011 1410 9577 7424 6762 4281 1457 2042 5332 3732 2707 3607 5124 5179 A .36B .16C .11D .143.ABC ∆的内角,,A B C 的对边分别为,,a b c ,且3A π=,4c =,26a =,则角C =( )A .34π B .4π C .4π或34π D .3π或23π4.已知αβ、是平面,l m 、是直线,αβ⊥且=l αβ,m α⊂,则“m β⊥”是“m l ⊥”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 5.若圆O 1:x 2+y 2=5与圆O 2:(x -m )2+y 2=20()m R ∈相交于A ,B 两点,且两圆在点A 处的切线相互垂直,则线段AB 的长度是( )A .2B .4C .5D .106.已知直线l :2(0,0)x ya b a b+=>>经过定点(1,1)M ,则32a b +的最小值是( ) A .3222+ B .526+C .562+ D .37.某学校随机抽查了本校20个学生,调查他们平均每天进行体育熬炼的时间(单位:min ),依据所得数据的茎叶图,以5为组距将数据分为8组,分别是[0,5),[5,10),…,[35,40],作出频率分布直方图如图所示,则原始的茎叶图可能是( )第7题图A .B .C .D .8.棱长为1的正方体ABCD-A 1B 1C 1D 1中,点P 在线段AD 上(点P 异于A 、D 两点),线段DD 1的中点为点Q ,若平面BPQ 截该正方体所得的截面为四边形,则线段AP 长度的取值范围为( ) A .103⎛⎤ ⎥⎝⎦,B .112⎛⎤ ⎥⎝⎦,C .1[,1)3D .102⎛⎤ ⎥⎝⎦,二、选择题:本题共4小题,每小题5分,共20分,在每小题给出的选项中有多项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得3分 9.下列说法正确的是( ) A .命题“x R∀∈,21x >-”的否定是“0x ∃∈R ,201x <-”B .命题“0(3,)x ∃∈-+∞,209x ≤”的否定是“(3,)x ∀∈-+∞,29x >”C .“0m <”是“关于x 的方程220x x m -+=有一正一负根”的充分不必要条件D .“5a >”是命题“2,0x R x ax a ∀∈++≥”为假命题的充分不必要条件10.抛掷一枚骰子1次,记“向上的点数是4,5,6”为事务A ,“向上的点数是1,2”为事务B ,“向上的点数是1,2,3”为事务C ,“向上的点数是1,2,3,4”为事务D ,则下列关于事务A ,B ,C ,D 推断正确的是( ) A .A 与B 是互斥事务但不是对立事务 B .A 与C 是互斥事务也是对立事务 C .A 与D 是互斥事务 D .C 与D 不是对立事务也不是互斥事务 11.以下四个命题为真命题的是( )A .过点()10,10-且在x 轴上的截距是在y 轴上截距的4倍的直线的方程为11542y x =-+ B .直线3y +2=0的倾斜角的范围是50,[,)66πππ⎡⎤⎢⎥⎣⎦ C .曲线22120C :x y x ++=与曲线222480C :x y x y m +--+=恰有一条公切线,则4m =D .设P 是直线20x y --=上的动点,过P 点作圆O :221x y +=的切线PA ,PB ,切点为A ,B ,则经过A ,P ,O 三点的圆必过两个定点。
重庆市2024-2025学年高二上学期期中考试数学试卷含答案
重庆市高2026届高二上期期中考试数学试题(答案在最后)2024.11注意事项:1.本试卷满分为150分,考试时间为120分钟.2.答卷前,考生务必将自己的姓名、班级、准考证号填写在答题卡上.3.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷上无效.4.考试结束后,将本试卷和答题卡一并交回.一、单项选择题:本题共8小题,每题5分,共40分.1.直线l 过(,),(,)()P b c b Q a c a a b ++≠两点,则直线l 的斜率为()A.a b a b+- B.a b a b-+ C.1D.1-【答案】C 【解析】【分析】利用直线上两点的坐标求斜率即可.【详解】由题意可知,斜率()()1a b a bk a c b c a b--===+-+-,故选:C.2.若平面α的法向量为()4,4,2n =--,方向向量为(),2,1x 的直线l 与平面α垂直,则实数x =()A.4B.4- C.2D.2-【答案】D 【解析】【分析】根据直线垂直于平面,则直线的方向向量平行于平面的法向量,即可求解.【详解】由直线l 与平面α垂直,故直线l 方向向量(),2,1x 与平面α的法向量()4,4,2n =--平行,设()()4,4,2,2,1x λ--=,即4422xλλλ=⎧⎪-=⎨⎪-=⎩,解得22x λ=-⎧⎨=-⎩.故选:D.3.圆心为(1,1)-且过原点的圆的一般方程是()A.22220x y x y ++-= B.22220x y x y +-+=C.22220x y x y +--= D.222210x y x y ++-+=【答案】B 【解析】【分析】先求半径,再得圆的标准方程,最后转化为圆的一般方程.【详解】由题意知,()0,0在圆上,圆心为(1,1)-,所以圆的半径r ==,所以圆的标准方程为()()22112x y -++=,则一般方程为:22220x y x y +-+=,故选:B.4.椭圆22221x y a b +=和2222(0,0,,0)x y k a b a b k a b+=>>≠>一定具有()A.相同的离心率B.相同的焦点C.相同的顶点D.相同的长轴长【答案】A 【解析】【分析】先将方程化为标准方程,再根据离心率,焦点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二上学期期中考试数学试题第Ⅰ卷(选择题,共60分)一、选择题(本大题12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一个是符合题目要求的,请将你认为正确答案的代号填在答题卷上。
)1.已知直线的倾斜角为600,且经过原点,则直线的方程为A、B、C、D、2.已知两条直线和互相垂直,则等于A、B、C、D、3.给定条件,条件,则是的A、既不充分也不必要条件B、必要而不充分条件C、充分而不必要条件D、充要条件4.已知F1、F2是椭圆+=1的两个焦点,过F1的直线与椭圆交于M、N两点,则△MNF2的周长为A.8B.16C.25D.325.双曲线的焦距为6.椭圆上的一点M到一条准线的距离与它到对应于lxy3=xy33=xy3-=xy33-=2y ax=-()21y a x=++a 2101-:12p x+>1:13qx>-p⌝q⌝162x92y221102x y-=116922=+yx这条准线的焦点的距离 之比为 A . B. C. D.7.P是双曲线-=1上一点,双曲线的一条渐近线方程为3x -2y =0,F 1、F 2分别是双曲线的左、右焦点.若|PF 1|=3,则|PF 2|等于 A.1或5B.6C.7D.98.经过圆的圆心C ,且与直线平行的直线方程是A 、B 、C 、D 、 9.设动点坐标(x ,y )满足 (x -y +1)(x +y -4)≥0, x ≥3,A. B. C.10D.12.实数满足等式,那么的最大值是77445475422ax 92y 2220x x y ++=0x y +=10x y ++=10x y +-=10x y -+=10x y --=510217y x ,3)2(22=+-y x xy 则x 2+y 2的最小值为A 、B 、C 、D 、二.填空题:本大题共5小题,每小题4分,共20分。
把答案填在答题卷题中横线上。
13.离心率,一条准线为的椭圆的标准方程是。
14.椭圆的内接矩形面积的最大值为。
15.若,则关于的不等式的解集是. 16.已知满足约束条件,则的最小值为;17.若直线与曲线恰有一个公共点,则实数的取值范围是 .三、解答题(本大题共5小题,每小题14分,共70分) 18.已知圆和轴相切,且圆心在直线上,且被直线截得弦长为,求这个圆的方程.(14分)19.已知双曲线与椭圆有公共焦点,它们的离心率213323335=e 3=x )0(12222>>=+b a by a x b a ≠x 0222≤---ab x b a x ,x y 001x y x y ≥⎧⎪≥⎨⎪+≥⎩2z x y =+b x y +=21y x -=by 03=-y x x y =7125922=+y x之和为,求双曲线方程.(14分)20.已知等腰直角三角形的斜边所在直线方程是:3x -y +2=0,直角顶点C (),求两条直角边所在的直线方程.(14分)21.已知椭圆C 的焦点F 1(-,0)和F 2(,0),长轴长6,设直线交椭圆C 于A 、B 两点,求线段AB 的中点坐标。
(14分) 22.P 为椭圆上一点,左、右焦点分别为F 1,F 2。
(14分)若PF 1的中点为M ,求证51452,51422222+=x y 2212516x y +=1152MO PF =-若,求之值。
求的最值。
数学答案第Ⅰ卷(选择题,共60分)一、选择题(本大题12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一个是符合题目要求的,请将你认为正确答案的代号填在答题卷上。
)1.已知直线的倾斜角为600,且经过原点,则直线的方程为A A 、B 、C 、D 、 2.已知两条直线和互相垂直,则等于D A 、B 、C 、D 、1260F PF∠=12PFPF 12PF PF l l x y 3=x y 33=x y 3-=x y 33-=2y ax =-()21y a x =++a 2101-3.给定条件,条件,则是的CA、既不充分也不必要条件B、必要而不充分条件C、充分而不必要条件D、充要条件4.已知F1、F2是椭圆+=1的两个焦点,过F1的直线与椭圆交于M、N两点,则△MNF2的周长为BA.8B.16C.25D.325.双曲线的焦距为D6.椭圆上的一点M到一条准线的距离与它到对应于这条准线的焦点的距离之比为AA. B. C. D.7.P是双曲线-=1上一点,双曲线的一条渐近线方程为3x-2y=0,F1、F2分别是双曲线的左、右焦点.若|PF1|=3,则|PF2|等于CA.1或5B.6C.7D.98.经过圆的圆心C,且与直线平行的直线方程是AA、B、C、D、9.设动点坐标(x,y)满足:12p x+>1:13qx>-p⌝q⌝162x92y221102x y-=116922=+yx77445475422ax92y2220x x y++=0x y+=10x y++=10x y+-=10x y-+=10x y--=(x -y +1)(x +y -4)≥0, x ≥3,CA. B. C.10D.10.双曲线虚轴的一个端点为M ,两个焦点为F 1、F 2,∠F 1MF 2=120°,则双曲线的离心率为B A .B .C .D .11.若椭圆和双曲线有相同的焦点,为椭圆与双曲线的公共点,则的面积为B A. B.1C.2D.不确定12.实数满足等式,那么的最大值是DA 、B 、C 、D 、二.填空题:本大题共5小题,每小题4分,共20分。
把答案填在答题卷题中横线上。
13.离心率,一条准线为的椭圆的标准方程是。
14.若直线与曲线恰有一个公共点,则实数的取值范围是 .15.若,则关于的不等式的解集是. 5102173263633)1(122>=+m y m x )0(122>=-n y nx 21,F F P 21F PF ∆21y x ,3)2(22=+-y x xy 213323335=e 3=x 1209522=+x x b x y +=21y x -=b11,2≤--=b or b b a ≠x 0222≤---abx b a x ()22,2b a ab +则x 2+y 2的最小值为16.已知满足约束条件,则的最小值为1;17.椭圆的内接矩形面积的最大值为2ab 。
三、解答题18.已知圆和轴相切,且圆心在直线上,且被直线截得弦长为,求这个圆的方程.(14分)解:设圆方程为,为弦长,为圆心到线的距离,则,所求圆的方程为或19.已知双曲线与椭圆共焦点,它们的离心率之和为,求双曲线方程.(14分)20.已知等腰直角三角形的斜边所在直线方程是:3x -y +2=0,,x y 001x y x y ≥⎧⎪≥⎨⎪+≥⎩2z x y =+)0(12222>>=+b a by a x y 03=-y x x y =72229)()3(b b y b x =-+-l d 222)21(d r +=21)23()27(9222±=⇒-+=∴b b b b ∴49)21()23(22=-+-y x 49)21()23(22=+++y x 125922=+y x 514直角顶点C (),求两条直角边所在的直线方程(14分)21.已知椭圆C 的焦点F 1(-,0)和F 2(,0),长轴长6,设直线交椭圆C 于A 、B 两点,求线段AB 的中点坐标。
(14分)52,51422222+=xy。