正弦函数、余弦函数的性质导学案

合集下载

高中数学学案43第五章三角函数的图象与性质

高中数学学案43第五章三角函数的图象与性质

5.4 三角函数的图象与性质 5.4.1 正弦函数、余弦函数的图象【学习目标】1.了解正弦函数、余弦函数的图象. 2.会用五点法画正弦函数、余弦函数的图象.3.能利用正弦函数、余弦函数的图象解决简单问题.【自主学习】一.正弦函数的图象正弦函数的图象叫做 ,是一条“波浪起伏”的连续光滑曲线.五点法:在函数y =sin x ,x ∈[0,2π]的图象上,以下五个点: ,⎝ ⎛⎭⎪⎫π2,1, ,⎝ ⎛⎭⎪⎫3π2,-1,在确定图象形状时起关键作用.描出这五个点,函数y =sin x ,x ∈[0,2π]的图象形状就基本确定了.因此,在精确度要求不高时,常先找出这五个关键点,再用光滑的曲线将它们连接起来,得到正弦函数的简图. 二.余弦函数图象1.变换法将正弦函数的图象向左平移π2个单位长度,就得到余弦函数的图象,如图所示.余弦函数y =cos x ,x ∈R 的图象叫做余弦曲线.它是与正弦曲线具有相同形状的“波浪起伏”的连续光滑曲线.2.五点法:y =cos x ,x ∈[-π,π]的五个关键点为: ,⎝ ⎛⎭⎪⎫-π2,0, ,⎝ ⎛⎭⎪⎫π2,0, ,用光滑曲线连接这五个点可得到x ∈[-π,π]的简图.注意:(1)“五点法”作图中的“五点”是指函数的最高点、最低点以及图象与坐标轴的交点,这是作正弦函数、余弦函数图象最常用的方法.(2)“五点法”画正弦函数、余弦函数的图象时要注意图象的对称性和凸凹方向.【小试牛刀】1.思考辨析(正确的画“√”,错误的画“×”)(1)正、余弦函数的图象形状相同,位置不同.( ) (2)正、余弦函数的图象向左、右和上、下无限伸展.( )(3)将正弦曲线向右平移π2个单位就得到余弦曲线.( )(4)函数y =sin x ,x ∈⎣⎢⎡⎦⎥⎤π2,5π2的图象与函数y =cos x ,x ∈[0,2π]的图象的形状完全一致.( )(5)函数y =sin x ,x ∈[2k π,2(k +1)π]k ∈Z ,且k ≠0的图象与y =sin x ,x ∈[0,2π]的图象形状完全一致.( ) 2.用五点法作函数y =sin 2x ,x ∈[0,π]的简图的五个点的横坐标为( ) A .0,π2,π,3π2,2π B .0,π4,π2,3π4,π C .0,π,2π,3π,4π D .0,π6,π3,π2,2π3【经典例题】题型一 用“五点法”作三角函数图象点拨:用“五点法”画函数y =A sin x +b (A ≠0)在[0,2π]上的简图的步骤 1.列表2.描点:在平面直角坐标系中描出下列五个点:(0,y 1),⎝ ⎛⎭⎪⎫2,y 2,(π,y 3),⎝ ⎛⎭⎪⎫2,y 4,(2π,y 5).3.连线:用光滑的曲线将描出的五个点连接起来. 例1 用“五点法”作出下列函数的简图:(1)y =-sin x (0≤x ≤2π); (2)y =1+cos x (0≤x ≤2π).【跟踪训练】1 用“五点法”作出函数y =cos ⎝ ⎛⎭⎪⎫x +π6,x ∈⎣⎢⎡⎦⎥⎤-π6,11π6的图象.题型二 利用正、余弦函数的图象解简单的三角不等式 点拨:用三角函数图象解三角不等式的步骤1.作出相应的正弦函数或余弦函数在[0,2π]上的图象(也可以是[-π,π]上的图象);2.在[0,2π]上或([-π,π]上)写出适合三角不等式的解集;3.根据公式一写出定义域内的解集.例2 利用正弦曲线,求满足12<sin x ≤32的x 的集合.【跟踪训练】2 求下列函数的定义域.(1)y =lg(-cos x ); (2)y =2sin x - 2.题型三 利用正弦(余弦)函数图象解决图象交点问题 点拨:方程根(或个数)的两种判断方法1.代数法:直接求出方程的根,得到根的个数.2.几何法:(1)方程两边直接作差构造一个函数,作出函数的图象,利用对应函数的图象,观察与x 轴的交点个数,有几个交点原方程就有几个根.(2)转化为两个函数,分别作这两个函数的图象,观察交点个数,有几个交点原方程就有几个根. 例3 方程x +sin x =0的根有( )A .0个B .1个C .2个D .无数个【跟踪训练】3 方程sin x =lg x 的解的个数是________.【当堂达标】1.对于余弦函数y =cos x 的图象,有以下三项描述: ①向左向右无限延伸; ②与x 轴有无数多个交点;③与y =sin x 的图象形状一样,只是位置不同. 其中正确的有( )A .0个B .1个C .2个D .3个2.函数y =1-sin x ,x ∈[0,2π]的大致图象是( )3.使不等式2-2sin x ≥0成立的x 的取值集合是( ) A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ 2k π+π4≤x ≤2k π+3π4,k ∈Z B.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ 2k π+π4≤x ≤2k π+7π4,k ∈Z C.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ 2k π-5π4≤x ≤2k π+π4,k ∈Z D.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪2k π+5π4≤x ≤2k π+7π4,k ∈Z4.方程x 2-cos x =0的实数解的个数是________.5.若方程sin x =4m +1在[0,2π]上有解,则实数m 的取值范围是________.6.求下列函数的定义域.(1)y = sin x -12+cos x ;(2)y =sin x +25-x 2.7.在[0,2π]内用“五点法”作出y =-2cos x +3的简图.。

高中数学 第一章 三角函数 1.4.2 正弦函数、余弦函数的性质(一)导学案 新人教A版必修4-新人

高中数学 第一章 三角函数 1.4.2 正弦函数、余弦函数的性质(一)导学案 新人教A版必修4-新人

1.4.2 正弦函数、余弦函数的性质(一) 学习目标 1.了解周期函数、周期、最小正周期的定义.2.会求函数y =A sin(ωx +φ)及y =A cos(ωx +φ)的周期.3.掌握函数y =sin x ,y =cos x 的奇偶性,会判断简单三角函数的奇偶性.知识点一 函数的周期性思考1 如果函数f (x )满足f (x +3)=f (x ),那么3是f (x )的周期吗?答案 不一定.必须满足当x 取定义域内的每一个值时,都有f (x +3)=f (x ),才可以说3是f (x )的周期.思考2 所有的函数都具有周期性吗?答案 不是.只有同时符合周期函数定义中的两个条件的函数才具有周期性.思考3 周期函数都有最小正周期吗?答案 周期函数不一定存在最小正周期.例如,对于常数函数f (x )=c (c 为常数,x ∈R ),所有非零实数T 都是它的周期,而最小正周期是不存在的,所以常数函数没有最小正周期. 梳理 函数的周期性(1)对于函数f (x ),如果存在一个非零常数T ,使得当x 取定义域内的每一个值时,都有f (x +T )=f (x ),那么函数f (x )就叫做周期函数,非零常数T 叫做这个函数的周期.(2)如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数叫做f (x )的最小正周期.知识点二 正弦函数、余弦函数的周期性思考1 证明函数y =sin x 和y =cos x 都是周期函数.答案 ∵sin(x +2π)=sin x ,cos(x +2π)=cos x ,∴y =sin x 和y =cos x 都是周期函数,且2π就是它们的一个周期.思考2 证明函数f (x )=A sin(ωx +φ)(或f (x )=A cos(ωx +φ))(Aω≠0)是周期函数. 答案 由诱导公式一知,对任意x ∈R ,都有A sin[(ωx +φ)+2π]=A sin(ωx +φ),所以A sin[ω⎝ ⎛⎭⎪⎫x +2πω+φ]=A sin(ωx +φ), 即f ⎝ ⎛⎭⎪⎫x +2πω=f (x ),所以f (x )=A sin(ωx +φ)(ω≠0)是周期函数,2πω就是它的一个周期. 同理,函数f (x )=A cos(ωx +φ)(ω≠0)也是周期函数.梳理 由sin(x +2k π)=sin x ,cos(x +2k π)=cos x (k ∈Z )知,y =sin x 与y =cos x 都是周期函数,2k π (k ∈Z 且k ≠0)都是它们的周期,且它们的最小正周期都是2π. 知识点三 正弦函数、余弦函数的奇偶性思考 对于x ∈R ,sin(-x )=-sin x ,cos(-x )=cos x ,这说明正弦函数、余弦函数具备怎样的性质?答案 奇偶性.梳理 (1)对于y =sin x ,x ∈R 恒有sin(-x )=-sin x ,所以正弦函数y =sin x 是奇函数,正弦曲线关于原点对称.(2)对于y =cos x ,x ∈R 恒有cos(-x )=cos x ,所以余弦函数y =cos x 是偶函数,余弦曲线关于y 轴对称.类型一 三角函数的周期性例1 求下列函数的最小正周期.(1)y =sin(2x +π3)(x ∈R ); (2)y =|sin x |(x ∈R ).解 (1)方法一 令z =2x +π3,因为x ∈R ,所以z ∈R . 函数f (x )=sin z 的最小正周期是2π,即变量z 只要且至少要增加到z +2π,函数f (x )=sin z (z ∈R )的值才能重复取得.而z +2π=2x +π3+2π=2(x +π)+π3,所以自变量x 只要且至少要增加到x +π,函数值才能重复取得,所以函数f (x )=sin ⎝⎛⎭⎪⎫2x +π3(x ∈R )的最小正周期是π. 方法二 f (x )=sin ⎝⎛⎭⎪⎫2x +π3的最小正周期为2π2=π. (2)因为y =|sin x |=⎩⎪⎨⎪⎧ sin x (2k π≤x ≤2k π+π),-sin x (2k π+π<x ≤2k π+2π)(k ∈Z ).其图象如图所示,所以该函数的最小正周期为π.反思与感悟 对于形如函数y =A sin(ωx +φ),Aω≠0时的最小正周期的求法常直接利用T =2π|ω|来求解,对于y =|A sin ωx |的周期情况常结合图象法来求解. 跟踪训练1 求下列函数的周期.(1)y =sin ⎝ ⎛⎭⎪⎫-12x +π3;(2)y =|cos 2x |. 解 (1)T =2π|-12|=4π. (2)T =π2. 类型二 三角函数的奇偶性例2 判断下列函数的奇偶性.(1)f (x )=sin ⎝ ⎛⎭⎪⎫-12x +π2; (2)f (x )=lg(1-sin x )-lg(1+sin x );(3)f (x )=1+sin x -cos 2x 1+sin x. 解 (1)显然x ∈R ,f (x )=cos 12x , ∵f (-x )=cos ⎝ ⎛⎭⎪⎫-12x =cos 12x =f (x ), ∴f (x )是偶函数.(2)由⎩⎪⎨⎪⎧ 1-sin x >0,1+sin x >0,得-1<sin x <1.解得定义域为{x |x ∈R 且x ≠k π+π2,k ∈Z }. ∴f (x )的定义域关于原点对称.又∵f (x )=lg(1-sin x )-lg(1+sin x ),∴f (-x )=lg[1-sin(-x )]-lg[1+sin(-x )]=lg(1+sin x )-lg(1-sin x )=-f (x ).∴f (x )为奇函数.(3)∵1+sin x ≠0,∴sin x ≠-1,∴x ∈R 且x ≠2k π-π2,k ∈Z . ∵定义域不关于原点对称,∴该函数是非奇非偶函数.反思与感悟 判断函数奇偶性应把握好两个关键点:关键点一:看函数的定义域是否关于原点对称;关键点二:看f (x )与f (-x )的关系.对于三角函数奇偶性的判断,有时可根据诱导公式先将函数式化简后再判断.跟踪训练2 判断下列函数的奇偶性.(1)f (x )=cos ⎝ ⎛⎭⎪⎫32π+2x +x 2sin x ; (2)f (x )=1-2cos x +2cos x -1.解 (1)f (x )=sin 2x +x 2sin x ,∵x ∈R ,f (-x )=sin(-2x )+(-x )2sin(-x )=-sin 2x -x 2sin x =-f (x ),∴f (x )是奇函数.(2)由⎩⎪⎨⎪⎧ 1-2cos x ≥0,2cos x -1≥0,得cos x =12. ∴f (x )=0,x =2k π±π3,k ∈Z . ∴f (x )既是奇函数又是偶函数.类型三 三角函数的奇偶性与周期性的综合应用例3 定义在R 上的函数f (x )既是偶函数又是周期函数,若f (x )的最小正周期是π,且当x ∈⎣⎢⎡⎦⎥⎤0,π2时,f (x )=sin x ,求f ⎝ ⎛⎭⎪⎫5π3的值. 解 ∵f (x )的最小正周期是π,∴f ⎝ ⎛⎭⎪⎫5π3=f ⎝ ⎛⎭⎪⎫5π3-2π=f ⎝ ⎛⎭⎪⎫-π3. ∵f (x )是R 上的偶函数,∴f ⎝ ⎛⎭⎪⎫-π3=f ⎝ ⎛⎭⎪⎫π3=sin π3=32. ∴f ⎝ ⎛⎭⎪⎫5π3=32. 反思与感悟 解决此类问题的关键是运用函数的周期性和奇偶性,把自变量x 的值转化到可求值区间内.跟踪训练3 若f (x )是以π2为周期的奇函数,且f ⎝ ⎛⎭⎪⎫π3=1,求f ⎝ ⎛⎭⎪⎫-5π6的值. 解 因为f (x )是以π2为周期的奇函数,所以f ⎝ ⎛⎭⎪⎫-5π6=f ⎝ ⎛⎭⎪⎫-5π6+π2=f ⎝ ⎛⎭⎪⎫-π3=-f ⎝ ⎛⎭⎪⎫π3=-1.类型四 函数周期性的综合应用例4 已知函数f (x )=cos π3x ,求f (1)+f (2)+f (3)+…+f (2 020)的值. 解 ∵f (1)=cos π3=12,f (2)=cos 2π3=-12,f (3)=cos π=-1,f (4)=cos 4π3=-12,f (5)=cos 5π3=12,f (6)=cos 2π=1, ∴f (1)+f (2)+f (3)+f (4)+f (5)+f (6)=0.同理,可得每连续六项的和均为0.∴f (1)+f (2)+f (3)+…+f (2 020)=f (2 017)+f (2 018)+f (2 019)+f (2 020)=cos 2 017π3+cos 2 018π3+cos 2 019π3+cos 2 020π3=cos π3+cos 2π3+cos π+cos 4π3=12+(-12)+(-1)+(-12)=-32. 反思与感悟 当函数值的出现具有一定的周期性时,可以首先研究它在一个周期内的函数值的变化情况,再给予推广求值.跟踪训练4 设函数f (x )=sin π3x ,则f (1)+f (2)+f (3)+…+f (2 015)= .解析 ∵f (x )=sin π3x 的周期T =2ππ3=6, ∴f (1)+f (2)+f (3)+…+f (2 015)=335[f (1)+f (2)+f (3)+f (4)+f (5)+f (6)]+f (2 011)+f (2 012)+f (2 013)+f (2 014)+f (2 015)=335⎝ ⎛⎭⎪⎫sin π3+sin 23π+sin π+sin 43π+sin 53π+sin 2π +f (335×6+1)+f (335×6+2)+f (335×6+3)+f (335×6+4)+f (335×6+5)=335×0+f (1)+f (2)+f (3)+f (4)+f (5)=sin π3+sin 23π+sin π+sin 43π+sin 53π=0.1.函数f (x )=3sin ⎝ ⎛⎭⎪⎫x 2-π4,x ∈R 的最小正周期为( ) A.π2B.πC.2πD.4π 答案 D2.下列函数中最小正周期为π的偶函数是( )A.y =sin x 2B.y =cos x2 C.y =cos xD.y =cos 2x 答案 D3.设函数f (x )=sin ⎝⎛⎭⎪⎫2x -π2,x ∈R ,则f (x )是( ) A.最小正周期为π的奇函数B.最小正周期为π的偶函数C.最小正周期为π2的奇函数 D.最小正周期为π2的偶函数解析 ∵sin ⎝ ⎛⎭⎪⎫2x -π2=-sin ⎝ ⎛⎭⎪⎫π2-2x =-cos 2x , ∴f (x )=-cos 2x .又f (-x )=-cos(-2x )=-cos 2x =f (x ),∴f (x )是最小正周期为π的偶函数.4.函数y =sin(ωx +π4)的最小正周期为2,则ω的值为 . 答案 ±π解析 ∵T =2π|ω|=2,∴|ω|=π,∴ω=±π. 5.若函数f (x )的定义域为R ,最小正周期为3π2,且满足 f (x )=⎩⎪⎨⎪⎧ cos x ,-π2≤x <0,sin x ,0≤x <π,则f ⎝⎛⎭⎪⎫-15π4= . 答案 22 解析 f ⎝ ⎛⎭⎪⎫-154π=f ⎝ ⎛⎭⎪⎫-15π4+3π2×3 =f ⎝ ⎛⎭⎪⎫3π4=sin 3π4=22.1.求函数的最小正周期的常用方法:(1)定义法,即观察出周期,再用定义来验证;也可由函数所具有的某些性质推出使f (x +T )=f (x )成立的T .(2)图象法,即作出y =f (x )的图象,观察图象可求出T ,如y =|sin x |.(3)结论法,一般地,函数y =A sin(ωx +φ)(其中A 、ω、φ为常数,A ≠0,ω>0,x ∈R )的周期T =2πω. 2.判断函数的奇偶性,必须坚持“定义域优先”的原则,准确求函数定义域和将式子合理变形是解决此类问题的关键.如果定义域关于原点对称,再看f (-x )与f (x )的关系,从而判断奇偶性.课时作业一、选择题1.下列函数中,周期为π2的是( ) A.y =sin x 2B.y =sin 2xC.y =cos x 4D.y =cos(-4x ) 答案 D解析 T =2π|-4|=π2. 2.函数f (x )=sin ⎝⎛⎭⎪⎫ωx +π6的最小正周期为π5,其中ω>0,则ω等于( ) A.5 B.10 C.15 D.20答案 B3.已知a ∈R ,函数f (x )=sin x -|a |(x ∈R )为奇函数,则a 等于( )A.0B.1C.-1D.±1答案 A解析 因为f (x )为奇函数,所以f (-x )=sin(-x )-|a |=-f (x )=-sin x +|a |,所以|a |=0,从而a =0,故选A.4.下列函数中是奇函数,且最小正周期是π的函数是( )A.y =cos|2x |B.y =|sin x |C.y =sin ⎝ ⎛⎭⎪⎫π2+2x D.y =cos ⎝ ⎛⎭⎪⎫3π2-2x 答案 D 解析 y =cos|2x |是偶函数,y =|sin x |是偶函数,y =sin ⎝ ⎛⎭⎪⎫π2+2x =cos 2x 是偶函数,y =cos ⎝ ⎛⎭⎪⎫3π2-2x =-sin 2x 是奇函数,根据公式求得其最小正周期T =π. 5.函数y =cos ⎝ ⎛⎭⎪⎫k 4x +π3(k >0)的最小正周期不大于2,则正整数k 的最小值应是( ) A.10 B.11 C.12 D.13答案 D解析 ∵T =2πk 4≤2,即k ≥4π, ∴正整数k 的最小值是13.6.函数y =|sin x |(1-sin x )1-sin x的奇偶性为( ) A.奇函数B.既是奇函数也是偶函数C.偶函数D.非奇非偶函数答案 D解析 由题意知,当1-sin x ≠0,即sin x ≠1时,y =|sin x |(1-sin x )1-sin x=|sin x |, 所以函数的定义域为{x |x ≠2k π+π2,k ∈Z }, 由于定义域不关于原点对称,所以该函数是非奇非偶函数.7.函数f (x )=3sin(23x +15π2)是( ) A.周期为3π的偶函数B.周期为2π的偶函数C.周期为3π的奇函数D.周期为4π3的偶函数 答案 A二、填空题8.若0<α<π2,g (x )=sin(2x +π4+α)是偶函数,则α的值为 . 答案 π4解析 要使g (x )=sin(2x +π4+α)为偶函数, 则需π4+α=k π+π2,k ∈Z ,∴α=k π+π4,k ∈Z . ∵0<α<π2,∴α=π4. 9.函数f (x )=2sin ⎝⎛⎭⎪⎫5π2+2x +1的图象关于 对称.(填“原点”或“y 轴”) 答案 y 轴解析 f (x )=2sin ⎝ ⎛⎭⎪⎫5π2+2x +1=2cos 2x +1, ∵f (-x )=f (x ),∴f (x )是偶函数.∵偶函数的图象关于y 轴对称,∴f (x )的图象关于y 轴对称.10.关于x 的函数f (x )=sin (x +φ)有以下说法: ①对任意的φ,f (x )都是非奇非偶函数; ②存在φ,使f (x )是偶函数;③存在φ,使f (x )是奇函数;④对任意的φ,f (x )都不是偶函数.其中错误的是 .(填序号)答案 ①④解析 当φ=0时,f (x )=sin x 是奇函数.当φ=π2时,f (x )=cos x 是偶函数. 三、解答题11.判断下列函数的奇偶性.(1)f (x )=cos(π2+2x )cos(π+x ); (2)f (x )=1+sin x +1-sin x ;(3)f (x )=e sin x +e -sin x e sin x -e-sin x . 解 (1)∵x ∈R ,f (x )=cos(π2+2x )cos(π+x ) =-sin 2x ·(-cos x )=sin 2x cos x .∴f (-x )=sin(-2x )cos(-x )=-sin 2x cos x=-f (x ),∴y =f (x )是奇函数.(2)∵对任意x ∈R ,-1≤sin x ≤1,∴1+sin x ≥0,1-sin x ≥0,∴f (x )=1+sin x +1-sin x 的定义域是R .又∵f (-x )=1+sin (-x )+1-sin (-x ), =1-sin x +1+sin x =f (x ),∴y =f (x )是偶函数.(3)∵e sin x -e -sin x ≠0,∴sin x ≠0,∴x ∈R 且x ≠k π,k ∈Z .∴定义域关于原点对称.又∵f (-x )=e sin (-x )+e -sin (-x)e sin (-x )-e-sin (-x ) =e -sin x +e sin x e -sin x -esin x =-f (x ),∴y =f (x )是奇函数. 12.已知f (x )是以π为周期的偶函数,且当x ∈⎣⎢⎡⎦⎥⎤0,π2时,f (x )=1-sin x ,求当x ∈⎣⎢⎡⎦⎥⎤52π,3π时,f (x )的解析式. 解 当x ∈⎣⎢⎡⎦⎥⎤52π,3π时,3π-x ∈⎣⎢⎡⎦⎥⎤0,π2, ∵当x ∈⎣⎢⎡⎦⎥⎤0,π2时,f (x )=1-sin x , ∴f (3π-x )=1-sin(3π-x )=1-sin x .又∵f (x )是以π为周期的偶函数,∴f (3π-x )=f (-x )=f (x ), ∴f (x )的解析式为f (x )=1-sin x ,x ∈⎣⎢⎡⎦⎥⎤52π,3π. 13.已知函数f (x )满足f (x +2)=-1f (x ),求证:f (x )是周期函数,并求出它的一个周期. 证明 ∵f (x +4)=f (x +2+2)=-1f (x +2)=f (x ),∴f (x )是周期函数,且4是它的一个周期.四、探究与拓展14.若函数f (x )=2cos ⎝⎛⎭⎪⎫ωx +π3的最小正周期为T ,且T ∈(1,4),则正整数ω的最大值为 .答案 6解析 ∵T =2πω,1<2πω<4,则π2<ω<2π. ∴ω的最大值是6.15.欲使函数y =A sin ωx (A >0,ω>0)在闭区间[0,1]上至少出现50个最小值,求ω的最小值.解 函数y =A sin ωx 的最小正周期为2πω,因为在每一个周期内,函数y =A sin ωx (A >0,ω>0)都只有一个最小值,要使函数y =A sin ωx 在闭区间[0,1]上至少出现50个最小值,则y 在区间[0,1]内至少含4934个周期,即⎩⎪⎨⎪⎧ T =2πω,4934T ≤1,解得ω≥199π2,所以ω的最小值为199π2.。

高中数学必修4教案1.4.2正弦函数余弦函数的性质(教、学案)

高中数学必修4教案1.4.2正弦函数余弦函数的性质(教、学案)

§1.4.2正弦函数余弦函数的性质【教材分析】《正弦函数和余弦函数的性质》是普通高中课程标准实验教材必修4中的内容,是正弦函数和余弦函数图像的继续,本课是根据正弦曲线余弦曲线这两种曲线的特点得出正弦函数和余弦函数的性质。

【教学目标】1. 会根据图象观察得出正弦函数、余弦函数的性质;会求含有x x cos ,sin 的三角式的性质;会应用正、余弦的值域来求函数)0(sin ≠+=a b x a y 和函数c x b x a y ++=cos cos 2)0(≠a 的值域2. 在探究正切函数基本性质和图像的过程中,渗透数形结合的思想,形成发现问题、提出问题、解决问题的能力,养成良好的数学学习习惯.3. 在解决问题的过程中,体验克服困难取得成功的喜悦.【教学重点难点】教学重点:正弦函数和余弦函数的性质。

教学难点:应用正、余弦的定义域、值域来求含有x x cos ,sin 的函数的值域【学情分析】知识结构:在函数中我们学习了如何研究函数,对于正弦函数余弦函数图像的学习使学生已经具备了一定的绘图技能,类比推理画出图象,并通过观察图象,总结性质的能力。

心理特征:高一普通班学生已掌握三角函数的诱导公式,并了解了三角函数的周期性,但学生运用数学知识解决实际问题的能力还不强;能够通过讨论、合作交流、辩论得到正确的知识。

但在处理问题时学生考虑问题不深入,往往会造成错误的结果。

【教学方法】1.学案导学:见后面的学案。

2.新授课教学基本环节:预习检查、总结疑惑→情境导入、展示目标→合作探究、精讲点拨→反思总结、当堂检测→发导学案、布置预习【课前准备】1.学生的学习准备:预习“正弦函数和余弦函数的性质”,初步把握性质的推导。

2.教师的教学准备:课前预习学案,课内探究学案,课后延伸拓展学案。

【课时安排】1课时【教学过程】一、预习检查、总结疑惑检查落实了学生的预习情况并了解了学生的疑惑,使教学具有了针对性。

二、复 习导入、展示目标。

正弦函数、余弦函数的性质区公开课教案

正弦函数、余弦函数的性质区公开课教案

正弦函数、余弦函数的性质区公开课教案第一章:正弦函数的定义与性质1.1 教学目标了解正弦函数的定义及图像特点掌握正弦函数的单调性、奇偶性、周期性等基本性质1.2 教学内容正弦函数的定义及表达式正弦函数的图像特点正弦函数的单调性、奇偶性、周期性等基本性质1.3 教学方法通过多媒体展示正弦函数的图像,引导学生观察并总结性质利用数学软件或模型演示正弦函数的单调性和奇偶性举例说明正弦函数在不同区间上的性质变化1.4 教学活动引入正弦函数的定义,引导学生理解正弦函数的概念让学生自主探究正弦函数的图像特点,分组讨论并汇报成果教师讲解正弦函数的单调性、奇偶性、周期性等基本性质学生进行习题训练,巩固所学知识第二章:余弦函数的定义与性质2.1 教学目标了解余弦函数的定义及图像特点掌握余弦函数的单调性、奇偶性、周期性等基本性质2.2 教学内容余弦函数的定义及表达式余弦函数的图像特点余弦函数的单调性、奇偶性、周期性等基本性质2.3 教学方法通过多媒体展示余弦函数的图像,引导学生观察并总结性质利用数学软件或模型演示余弦函数的单调性和奇偶性举例说明余弦函数在不同区间上的性质变化2.4 教学活动引入余弦函数的定义,引导学生理解余弦函数的概念让学生自主探究余弦函数的图像特点,分组讨论并汇报成果教师讲解余弦函数的单调性、奇偶性、周期性等基本性质学生进行习题训练,巩固所学知识第三章:正弦函数与余弦函数的图像与性质对比3.1 教学目标理解正弦函数与余弦函数的图像与性质的异同能够运用图像与性质解决实际问题3.2 教学内容正弦函数与余弦函数的图像与性质对比运用正弦函数与余弦函数的图像与性质解决实际问题3.3 教学方法通过多媒体展示正弦函数与余弦函数的图像,引导学生观察并总结异同利用数学软件或模型演示正弦函数与余弦函数的单调性和奇偶性举例说明正弦函数与余弦函数在不同区间上的性质变化3.4 教学活动引导学生对比正弦函数与余弦函数的图像与性质,分组讨论并汇报成果教师讲解正弦函数与余弦函数的图像与性质的异同学生进行习题训练,巩固所学知识第四章:正弦函数、余弦函数在实际问题中的应用4.1 教学目标理解正弦函数、余弦函数在实际问题中的应用能够运用正弦函数、余弦函数解决实际问题4.2 教学内容正弦函数、余弦函数在实际问题中的应用运用正弦函数、余弦函数解决实际问题4.3 教学方法通过多媒体展示实际问题,引导学生观察并运用正弦函数、余弦函数解决利用数学软件或模型演示正弦函数、余弦函数的实际应用举例说明正弦函数、余弦函数在不同场景下的应用4.4 教学活动引导学生运用正弦函数、余弦函数解决实际问题,分组讨论并汇报成果教师讲解正弦函数、余弦函数在实际问题中的应用学生进行习题训练,巩固所学知识第五章:总结与拓展5.1 教学目标总结正弦函数、余弦函数的性质及其应用提高学生的思维拓展能力5.2 教学内容对正弦函数、余弦函数的性质及其应用进行总结进行相关拓展知识的介绍5.3 教学方法通过多媒体展示总结性的图表,引导学生总结正弦函数、余弦函数的性质及其应用引导学生进行拓展思考,举例说明正弦函数、余弦函数在其他领域的应用5.4 教学活动第六章:正弦函数、余弦函数的辅助角公式6.1 教学目标理解正弦函数、余弦函数的辅助角公式能够运用辅助角公式进行函数的化简和求解6.2 教学内容正弦函数、余弦函数的辅助角公式介绍辅助角公式的推导过程运用辅助角公式进行函数的化简和求解6.3 教学方法通过多媒体展示辅助角公式的推导过程,引导学生理解并记忆公式利用数学软件或模型演示辅助角公式的应用举例说明如何运用辅助角公式进行函数的化简和求解6.4 教学活动引导学生学习和理解辅助角公式,分组讨论并汇报成果教师讲解辅助角公式的推导过程和应用方法学生进行习题训练,巩固所学知识第七章:正弦函数、余弦函数的积分与微分7.1 教学目标理解正弦函数、余弦函数的积分与微分公式能够运用积分与微分公式进行函数的求解和证明7.2 教学内容正弦函数、余弦函数的积分与微分公式介绍积分与微分的推导过程运用积分与微分公式进行函数的求解和证明7.3 教学方法通过多媒体展示积分与微分的推导过程,引导学生理解并记忆公式利用数学软件或模型演示积分与微分的应用举例说明如何运用积分与微分公式进行函数的求解和证明7.4 教学活动引导学生学习和理解积分与微分公式,分组讨论并汇报成果教师讲解积分与微分公式的推导过程和应用方法学生进行习题训练,巩固所学知识第八章:正弦函数、余弦函数的复合函数理解正弦函数、余弦函数的复合函数概念能够运用复合函数的性质进行函数的求解和分析8.2 教学内容正弦函数、余弦函数的复合函数概念介绍复合函数的性质和规律运用复合函数的性质进行函数的求解和分析8.3 教学方法通过多媒体展示复合函数的图像和性质,引导学生理解并记忆概念利用数学软件或模型演示复合函数的应用举例说明如何运用复合函数的性质进行函数的求解和分析8.4 教学活动引导学生学习和理解复合函数的概念和性质,分组讨论并汇报成果教师讲解复合函数的性质和应用方法学生进行习题训练,巩固所学知识第九章:正弦函数、余弦函数在物理、工程等领域的应用9.1 教学目标了解正弦函数、余弦函数在物理、工程等领域的应用能够运用正弦函数、余弦函数解决实际问题9.2 教学内容正弦函数、余弦函数在物理、工程等领域的应用案例运用正弦函数、余弦函数解决实际问题通过多媒体展示正弦函数、余弦函数在物理、工程等领域的应用案例,引导学生观察并运用所学知识解决实际问题利用数学软件或模型演示正弦函数、余弦函数在实际问题中的应用举例说明正弦函数、余弦函数在不同领域中的具体应用9.4 教学活动引导学生运用正弦函数、余弦函数解决实际问题,分组讨论并汇报成果教师讲解正弦函数、余弦函数在物理、工程等领域的应用学生进行习题训练,巩固所学知识第十章:总结与评价10.1 教学目标总结正弦函数、余弦函数的性质、图像及其应用对学生的学习情况进行评价和反思10.2 教学内容对正弦函数、余弦函数的性质、图像及其应用进行总结学生学习情况的评价和反思10.3 教学方法通过多媒体展示总结性的图表,引导学生总结正弦函数、余弦函数的性质、图像及其应用教师对学生的学习情况进行评价和反馈,引导学生进行自我反思10.4 教学活动引导学生总结本节课所学内容,分组讨论并汇报成果教师对学生的学习情况进行第十一章:正弦函数、余弦函数的进一步探究11.1 教学目标深入理解正弦函数、余弦函数的周期性、对称性等性质能够运用正弦函数、余弦函数的性质解决复杂问题11.2 教学内容正弦函数、余弦函数的周期性、对称性等性质的深入探讨运用正弦函数、余弦函数的性质解决复杂问题11.3 教学方法通过多媒体展示正弦函数、余弦函数的图像,引导学生观察并总结性质利用数学软件或模型演示正弦函数、余弦函数的单调性和奇偶性举例说明正弦函数、余弦函数在不同区间上的性质变化11.4 教学活动引导学生深入理解正弦函数、余弦函数的性质,分组讨论并汇报成果教师讲解正弦函数、余弦函数的周期性、对称性等性质的深入探讨学生进行习题训练,巩固所学知识第十二章:正弦函数、余弦函数在现代科技领域的应用12.1 教学目标了解正弦函数、余弦函数在现代科技领域的应用能够运用正弦函数、余弦函数解决实际问题12.2 教学内容正弦函数、余弦函数在现代科技领域的应用案例运用正弦函数、余弦函数解决实际问题12.3 教学方法通过多媒体展示正弦函数、余弦函数在现代科技领域的应用案例,引导学生观察并运用所学知识解决实际问题利用数学软件或模型演示正弦函数、余弦函数在实际问题中的应用举例说明正弦函数、余弦函数在不同领域中的具体应用12.4 教学活动引导学生运用正弦函数、余弦函数解决实际问题,分组讨论并汇报成果教师讲解正弦函数、余弦函数在现代科技领域的应用学生进行习题训练,巩固所学知识第十三章:正弦函数、余弦函数与日常生活13.1 教学目标了解正弦函数、余弦函数在日常生活中的应用能够运用正弦函数、余弦函数解决生活中的问题13.2 教学内容正弦函数、余弦函数在日常生活中的应用案例运用正弦函数、余弦函数解决生活中的问题13.3 教学方法通过多媒体展示正弦函数、余弦函数在日常生活中的应用案例,引导学生观察并运用所学知识解决生活中的问题利用数学软件或模型演示正弦函数、余弦函数在日常问题中的应用举例说明正弦函数、余弦函数在不同生活场景中的具体应用13.4 教学活动引导学生运用正弦函数、余弦函数解决生活中的问题,分组讨论并汇报成果教师讲解正弦函数、余弦函数在日常生活中的应用学生进行习题训练,巩固所学知识第十四章:正弦函数、余弦函数的综合应用14.1 教学目标掌握正弦函数、余弦函数的综合应用方法能够运用正弦函数、余弦函数解决复杂问题14.2 教学内容正弦函数、余弦函数的综合应用案例运用正弦函数、余弦函数解决复杂问题14.3 教学方法通过多媒体展示正弦函数、余弦函数的综合应用案例,引导学生观察并运用所学知识解决复杂问题利用数学软件或模型演示正弦函数、余弦函数的综合应用举例说明正弦函数、余弦函数在不同场景中的综合应用14.4 教学活动引导学生掌握正弦函数、余弦函数的综合应用方法,分组讨论并汇报成果教师讲解正弦函数、余弦函数的综合应用方法学生进行习题训练,巩固所学知识第十五章:总结与反思15.1 教学目标总结正弦函数、余弦函数的学习过程及收获对学习情况进行反思和总结15.2 教学内容对正弦函数、余弦函数的学习过程及收获进行总结对学习情况进行反思和总结15.3 教学方法通过多媒体展示总结性的图表,引导学生总结正弦函数、余弦函数的学习过程及收获教师对学生的学习情况进行评价和反馈,引导学生进行自我反思15.4 教学活动引导学生重点和难点解析本文主要介绍了正弦函数和余弦函数的性质及其在各个领域的应用,重点包括正弦函数和余弦函数的定义、图像特点、单调性、奇偶性、周期性等基本性质,以及辅助角公式、积分与微分、复合函数等高级性质。

任意角的三角函数导学案

任意角的三角函数导学案

课题:3.2.1 任意角的三角函数(第一课时)1. 掌握任意角的正弦、余弦、正切的定义;2. 理解任意角的三角函数不同的定义方法;3. 已知角α终边上一点,会求角α的各三角函数值.二教学重难点:重点: 任意角的正弦、余弦、正切的定义。

难点: 任意角的三角函数不同的定义方法;已知角α终边上一点,会求角α的各三角函数值.三复习回顾:复习1:(1)坐标轴上;(2)第二、四象限.复习2:锐角的三角函数如何定义在初中,我们如果要求一个锐角的三角函数值,经常把这个角放到一个直角三角形中求其比值,从而得到锐角三角函数的值。

那么,你能用直角坐标系中角的终边上的点的坐标更方便的去求一个锐角的三角函数值吗我们可以采用以下方法:如图,设锐角α的顶点与原点O重合,始边与x轴的非负半轴重合,那么它的终边在第一象限.在α的终边上任取一点(,)P a b,它与原点的距离0r>. 过P作x轴的垂线,垂足为M,则线段OM的长度为a,线段MP的长度为b.可得:xsin MP b OP r α==;cos α= = ,tan MPOMα== .四、新课学习:知识点1:三角函数的定义认真阅读教材P 11-P 12,领会下面的内容:由相似三角形的知识,对于确定的角α,这三个比值不会 随点P 在α的终边上的位置的改变而改变,因此我们 可以将点P 取在使线段OP 的长为r=1的特殊位置上, 这样就可以得到用直角坐标系内的点的坐标 表示的锐角三角函数的值为:sin MP OP α==_____;cos OM OP α==_____;tan MPOMα==___ 问题:上述锐角α的三角函数值可以用终边上一点的坐标表示. 那么,角的概念推广以后,我们应该如何得到任意角的三角函数呢 显然,我们只需在角的终边上找到一个点,使这个点到原点的距离为1,然后就可以类似锐角三角函数求值的方法得到该角的三角函数值.注:单位圆:在直角坐标系中,我们称以原点O 为圆心,以单位长度为半径的圆为单位圆.上述的点P 就是α的终边与单位圆的交点,这样锐角三角函数就可以用单位圆上的点的坐标表示。

正弦、余弦函数的性质(一)

正弦、余弦函数的性质(一)


3
) 的最小正周期为 T,且 T 1,3 ,则正整数 的最大值为
【课堂小结】结合学习目标,总结我的收获!
1、知识方面: 2、方法方面:
【课下作业】
预习正弦、余弦函数的奇偶性、单调性。
【课后反思】 1、思想方面 2、方法方面
4

3
)
2) y cos 2 x
3) y 3 sin
x 2 5
(2)若 0 ,如:① y 3cos( x) ; ② y sin(2 x) ; ③ y 2sin(
x R .则这三个函数的周期又是什么?

1 x ), 2 6


一般结论:函数 y A sin( x ) 及函数 y A cos( x ) , x R 的周期为 探究三:求函数的周期: y sin x

6

2 2 ) sin ,能若函数 f ( x) 的周期为 T ,则 kT , k Z 也是 f ( x) 的周期吗?为什么?
【合作探究】
探究一:求下列三角函数的周期: ①y
思想火花
② y cos 4 x (3) y sin( x
2

3 2


2
0
2

3 2
2
sin x
y – 1
5
2



2
O 1 –

2

2
5
x
规律: 1正弦函数的图象是有规律不断重复出现的; 2规律是:每隔 2重复出现一次(或者说每隔 2k,kZ 重复出现) 3这个规律由诱导公式 sin(2k+x)=sinx 可以说明 结论:象这样一种函数叫做周期函数。 文字语言:正弦函数值按照一定的规律不断重复地取得; 符号语言:当 x 增加 2k ( k Z )时,总有 ___________________________________________________. 3.余弦函数是否也具有同样的性质?请用符号语言叙述。

必修四 1.4.2 正弦函数、余弦函数的性质 导学案

必修四 1.4.2 正弦函数、余弦函数的性质 导学案

1.4.2正弦函数、余弦函数的性质【课标要求】1.了解三角函数的周期性,会求一些三角函数的周期.2.借助图象理解正弦函数、余弦函数的性质,会讨论一些简单三角函数的奇偶性、单调性、最值等问题.【考纲要求】【学习目标叙写】1.通过自主学习,会求一些三角函数的周期2.通过合作交流,会讨论一些简单三角函数的奇偶性、单调性、最值等问题.【使用说明及方法指导】1.限时10—15分钟,独立完成预习案内容,书写规范。

2.找出自己的疑惑和需要讨论的问题准备课上讨论质疑。

【预习案】1.sin(α+2kπ)=______,cos(α+2kπ)=_______.(k∈Z)2.正弦函数y=sin x,x∈[0,2π]的五个关键点为___________________________________.3.余弦函数y=cos x,x∈[0,2π]的五个关键点为【探究案】探究一:正、余弦函数的周期性研究正、余弦函数的周期性,可根据定义f(x+T)=f(x),T一般为最小正周期例一求下列函数的周期:(1)y=sin 2x+3; (2)y=2cos(13x-π4); (3)y=|sin x|.探究二:正、余弦函数的奇偶性正、余弦函数的奇偶性,要根据奇偶函数的定义、性质和三角诱导公式来判定.例二判断下列函数的奇偶性:(1)y=sin x+tan x;(2)f(x)=sin(3x4+3π2);(3)f (x )=1+sin x -cos 2x1+sin x; (4)f (x )=1-cos x +cos x -1.【拓展1】 若本例(4)改为f (x )=1-cos x ,其奇偶性如何?探究三:正、余弦函数的单调性要结合正、余弦函数的图象和周期性,求解单调区间.例三 求函数y =2sin(π4-x )的单调区间.【拓展1】 求函数y =2sin(x +π4)的单调区间.探究四:正、余弦函数的定义域、值域及最值此类问题主要利用它们的有界性:|sin x |≤1,|cos x |≤1(x ∈R).例四 (1)求函数y =2sin(x +π3),x ∈[π6,π2]的值域;(2)求函数y =11+sin x的定义域、值域和最值.【拓展1】 求函数y =cos2x +2sin x -2,x ∈R 的值域.【二次备课】。

《正弦函数、余弦函数的图像》教案与导学案

《正弦函数、余弦函数的图像》教案与导学案

《第五章三角函数》《5.4.1正弦函数、余弦函数的图像》教案【教材分析】由于三角函数是刻画周期变化现象的数学模型,这也是三角函数不同于其他类型函数的最重要的地方,而且对于周期函数,我们只要认识清楚它在一个周期的区间上的性质,那么它的性质也就完全清楚了,因此本节课利用单位圆中的三角函数的定义、三角函数值之间的内在联系性等来作图,从画出的图形中观察得出五个关键点,得到“五点法”画正弦函数、余弦函数的简图.【教学目标与核心素养】课程目标1.掌握“五点法”画正弦曲线和余弦曲线的步骤和方法,能用“五点法”作出简单的正弦、余弦曲线.2.理解正弦曲线与余弦曲线之间的联系.数学学科素养1.数学抽象:正弦曲线与余弦曲线的概念;2.逻辑推理:正弦曲线与余弦曲线的联系;3.直观想象:正弦函数余弦函数的图像;4.数学运算:五点作图;5.数学建模:通过正弦、余弦图象图像,解决不等式问题及零点问题,这正是数形结合思想方法的应用.【教学重难点】重点:正弦函数、余弦函数的图象.难点:正弦函数与余弦函数图象间的关系.【教学方法】:以学生为主体,小组为单位,采用诱思探究式教学,精讲多练。

【教学过程】一、情景导入遇到一个新的函数,非常自然地是画出它的图象,观察图象的形状,看看有什么特殊点,并借助图象研究它的性质,如:值域、单调性、奇偶性、最大值与最小值等.我们也很自然地想知道y=sinx与y=cosx的图象是怎样的呢?回忆我们在必修1中学过的指数函数、对数函数的图象是什么?是如何画出它们图象的(列表描点法:列表、描点、连线)?请学生尝试画出当x∈[0,2π]时,y=sinx 的图象.要求:让学生自由发言,教师不做判断。

而是引导学生进一步观察.研探.二、预习课本,引入新课阅读课本196-199页,思考并完成以下问题1.任意角的正弦函数在单位圆中是怎样定义的?2.怎样作出正弦函数y=sinx的图像?3.怎样作出余弦函数y=cosx的图像?4.正弦曲线与余弦曲线的区别与联系.要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。

正弦函数余弦函数的图象与性质教案

正弦函数余弦函数的图象与性质教案

一、教案基本信息正弦函数与余弦函数的图象与性质课时安排:2课时教学目标:1. 理解正弦函数和余弦函数的定义和基本性质。

2. 学会绘制正弦函数和余弦函数的图象。

3. 能够运用正弦函数和余弦函数的性质解决实际问题。

教学重点:1. 正弦函数和余弦函数的定义和基本性质。

2. 正弦函数和余弦函数的图象绘制方法。

教学难点:1. 正弦函数和余弦函数的图象绘制方法。

2. 运用正弦函数和余弦函数的性质解决实际问题。

教学准备:1. 教学PPT。

2. 教学黑板。

3. 粉笔。

4. 学生用书。

教学过程:第一课时:一、导入(5分钟)教师通过复习正弦函数和余弦函数的定义,引导学生回顾初中阶段学习的三角函数知识,为新课的学习做好铺垫。

二、新课内容(15分钟)1. 讲解正弦函数的定义和性质。

2. 讲解余弦函数的定义和性质。

3. 引导学生通过数学软件或手绘图象,绘制正弦函数和余弦函数的图象。

4. 分析正弦函数和余弦函数图象的特点。

三、课堂练习(10分钟)教师给出一些练习题,让学生独立完成,巩固所学知识。

第二课时:一、复习导入(5分钟)教师通过复习上节课所学内容,检查学生对正弦函数和余弦函数的定义、性质以及图象的掌握情况。

二、深入学习(15分钟)1. 讲解正弦函数和余弦函数的图象绘制方法。

2. 讲解如何运用正弦函数和余弦函数的性质解决实际问题。

3. 引导学生通过实例,运用正弦函数和余弦函数的性质解决问题。

三、课堂练习(10分钟)教师给出一些练习题,让学生独立完成,巩固所学知识。

四、总结与反思(5分钟)教师引导学生总结本节课所学内容,反思自己的学习过程,为课后复习做好规划。

教学评价:通过课堂讲解、练习题以及课后作业,评估学生对正弦函数和余弦函数的定义、性质、图象以及应用的掌握情况。

对学生在学习过程中遇到的问题进行针对性的辅导,提高学生的学习效果。

六、教学案例分析本节课以一道实际问题为例,让学生运用正弦函数和余弦函数的性质解决问题。

案例:某城市一条道路的路灯间隔为5米,路灯的高度为10米。

4-4 正弦、余弦及正切函数的图象与性质 (2015、9、7)教师版

4-4 正弦、余弦及正切函数的图象与性质   (2015、9、7)教师版

.-
2 2
.xx∈R,且x≠kπ+

5π 6 ,k∈Z

三、基础训练 1. 函数 y=sin3x 的周期为 _,函数 y=|cos x |的周期为________. 2.下列等式成立吗? (1)、2cosx=3 (2)、sin2x=0.5 3.函数 y sin x( 4.比较大小:
第4页
共4页

3
x
5 ) 的值域为 sin 25000 ____ sin 26000; 6
sin 25000 ____ sin 26000 , cos
5.求下列函数的定义域 (1) y 2sin x 1 6.函数 y=sin(x+
15 14 13 17 ____cos ____ tan , tan . 8 9 4 5
例 2、求下列函数的值域 (1) y
cos x 2cos x 1
(2) y
1 tan x 1 tan x
(3) y
2sin x cos 2 x 1 sin x
πx π 训练 3.函数 y=2sin 6 -3(0≤x≤9)的最大值与最小值之和为 训练 4.函数 y=sin x-cos x+sin xcos x 的值域为 例 3、求函数 y=cos(
1 的定义域 cos x
π π 1 训练 1.函数 y= 的定义域为_.(1){x|x≠ +kπ,且 x≠ +kπ,k∈Z} 4 2 tan x-1
x2kπ+ ≤x≤2kπ+ 训练 2. 函数 y= sin x-cos x的定义域为__.

π 4
5π 4 ,k∈Z

7 , x , 的值域是 4 4 4

正弦函数、余弦函数的性质课堂导学案教师版

正弦函数、余弦函数的性质课堂导学案教师版

正弦函数、余弦函数的性质(二)导学案(教师版)设计者:韩冬一、教材分析二、导学设计课 程 目 标知识与技能 1.要求学生掌握正弦函数余弦函数的奇偶性、单调性 2.会判断简单三角函数的奇偶性,会求单调区间 过程与方法五步教学法情感态度价值观1培养学生掌握从一般到特殊,从具体到抽象的思维方式.2.渗透数形结合思想和类比的学习方法重难点重点 正弦函数、余弦函数的奇偶性、单调性 难点正弦函数、余弦函数的奇偶性、单调性教师导学学生活动验收评价阅读拓展导言:课前播放小视频,复习相关知识并引出正余弦函数的奇偶性和单调性。

指导学生观察正弦函数图象,得出图象的对称性指导学生从图象中找出一个周期内正弦函数的单调区间,再根据周期性得到整个定义域内的单调区间做相关例题进行巩固联系已学的知识,创设问题情境,激发学生的学习兴趣和求知欲望。

从图象中得出正弦函数图象关于原点对称,再根据定义进而知道其为奇函数。

由正弦函数的图象可知:在闭区间)](22,22[Z k k k ∈++-ππππ上单调递增,在)](22,22[Z k k k ∈+3+ππππ上单调递减。

例1 例2 例3探讨:除了我们学习过的正余弦函数的四条性质,还有什么性质?怎么样来研究函数的性质?对比正弦函数你能得到余弦函数的奇偶性吗?对比正弦函数你能得到余弦函数的单调性吗?总结性质应用的方法研究函数,最重要的是研究其性质,而函数的性质最重要得到的方式就是借助函数图象,图象是精髓。

板书设计:1.4.2正弦函数、余弦函数的性质—奇偶性、单调性1.奇偶性 例2.单调性课堂小结: 在本节课的学习中你有哪些收获?1. 正弦函数、余弦函数的奇偶性。

2. 正弦函数、余弦函数的单调性。

3. 应用性质判断函数奇偶性,求单调区间,求值域。

体会数学结合的思想和类比的研究方法。

课时作业:完成高效作业第九页中第八课时教学反思:。

正弦函数、余弦函数的性质导学案

正弦函数、余弦函数的性质导学案

正弦函数、余弦函数的性质学习目标:掌握正弦函数、余弦函数的周期性,周期,最小正周期;掌握正弦函数,余弦函数的奇偶性、单调性; 会比较三角函数值的大小,会求三角函数的单调区间学习重点:正弦、余弦函数的主要性质(包括定义域、值域、单调性、奇偶性) 学习难点:利用正、余弦函数的单调区间求与弦函数有关的单调区间及函数值域 学习过程: 一 探究新知1.如何作出正弦函数、余弦函数的图象?描点法(几何法、五点法),图象变换法,作出图象需要哪五个关键点 研究一个函数的性质从哪几个方面考虑?定义域、值域、单调性、周期性、对称性等2.正弦函数y=sinx ,x ∈[0,2π]的五个关键点可以为(0,0),(π,0),(2π,0),(π/2,0),(3π/2,0) 余弦函数y=cosx ,x ∈[0,2π]的五个关键点可以为(0,1),(π/2,0),(π,-1),(3π/2,0),(2π,1) 给出正弦、余弦函数的图象,让学生观察,并思考下列问题:①定义域 正弦函数、余弦函数的定义域都是实数集R 或(-∞,+∞) ②值域 (1)值域因为正弦线、余弦线的长度不大于单位圆的半径的长度,所以︱sinx ︱≤1,︱cosx ︱≤1,即-1≤sinx ≤1,-1≤cosx ≤1,也就是说,正弦函数、余弦函数的值域都是〔-1,1〕 (2)最值正弦函数y=sinx ,x ∈R.①当且仅当x= 2k π+2π,k ∈Z 时,取得最大值1.②当且仅当x= 2k π-2π,k ∈Z 时,取得最小值-1,余弦函数y=cosx ,x ∈R.当且仅当x= 2k π,k ∈Z 时,取得最大值1;当且仅当x= 2k π+π,k ∈Z 时,取得最小值-1 3.周期性由sin (x+2k π)=sinx ,cos (x+2k π)=cosx ,k ∈Z ,知正弦函数值、余弦函数值是按照一定规律不断重复地取得的.定义:对于函数f (x ),如果存在一个非零常数T,使得当x 取定义域内的每一个值时,都有f (x+T )= f (x ),那么函数f (x )就叫做周期函数,非零常数T 叫做这个函数的周期.由此可知,2π,4π,…-2π,-4π,…2k π(k ∈Z ,k ≠0)都是这两个函数的周期对于一个周期函数f (x ),如果在它所有的周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的最小正周期.根据上述定义,可知:正弦函数、余弦函数都是周期函数,2k π(k ∈Z ,k ≠0)都是它的周期,最小正周期是2π4.奇偶性由sin (-x )=-sinx ,cos (-x )=cosx ,可知: y=sinx ,(x ∈R )为奇函数,其图象关于原点O 对称,y=cosx ,(x ∈R )为偶函数,其图象关于y 轴对称 5.对称性正弦函数y=sinx (x ∈R )的对称中心是(k π,0)(k ∈Z ),对称轴是直线x= k π+2π(k ∈Z ) 余弦函数y=cosx (x ∈R )的对称中心是(k π+2π,0)(k ∈Z ),对称轴是直线x= k π(k ∈Z ) (正(余)弦型函数的对称轴为过最高点或最低点且垂直于x 轴的直线,对称中心为图象与x 轴(中轴线)的交点). 6.单调性从y=sinx ,x ∈〔-2π,23π〕的图象上可看出:当x ∈〔-2π,2π〕时,曲线逐渐上升,sinx 的值由-1增大到1; 当x ∈〔2π,23π〕时,曲线逐渐下降,sinx 的值由1减小到-1 结合上述周期性可知: 正弦函数在每一个闭区间〔-2π+2k π,2π+2k π〕(k ∈Z )上都是增函数,其值从-1增大到1;在每一个闭区间〔2π+2k π,23π+2k π〕(k ∈Z )上都是减函数,其值从1减小到-1.余弦函数在每一个闭区间〔2k π-π,2k π〕(k ∈Z )上都是增函数,其值从-1增加到1;余弦函数在每一个闭区间〔2k π,2k π+π〕(k ∈Z )上都是减函数,其值从1减小到-17.一般地,函数y=Asin(ωx+φ)及函数y=Acos (ωx+φ), (其中A 、ω、φ为常数,A≠0,ω≠0,x ∈R)的周期为T=ωπ2.可以按照如下的方法求它的周期:y=Asin(ωx+φ+2π)=Asin[ω(x+ωπ2)+φ]=Asin(ωx+φ).于是有f(x+ωπ2)=f(x),所以其周期为ωπ2 8.正、余弦函数的图像及性质9.填表例1、求函数y=sin(2x+3π)的单调增区间.解析:求函数的单调增区间时,应把三角函数符号后面的角看成一个整体,采用换元的方法,化归到正、余弦函数的单调性.解:令z=2x+3π,函数y=sinz 的单调增区间为[2π-2k π+,22k ππ+].由 2π-2k π+≤2x+3π≤22k ππ+得512k ππ-+≤x ≤12k ππ+,故函数y=sinz 的单调增区间为 [512k ππ-+, 12k ππ+ ](k∈Z)点评:“整体思想”解题 变式训练1. 求函数y=sin(-2x+3π)的单调增区间 解:令z=-2x+3π,函数y=sinz 的单调减区间为[2π2k π+,322k ππ+],故函数sin(-2x+3π)的单调增区间为[ 712k ππ--,12k ππ-- ](k∈Z). 例2:判断函数33()sin()42f x x π=+的奇偶性 解析:判断函数的奇偶性,首先要看定义域是否关于原点对称,然后再看()f x 与()f x -的关系,对(1)用诱导公式化简后,更便于判断.解:∵33()sin()42f x x π=+=3cos 4x -, ∴ 33()cos()cos 44x xf x -=--=-,所以函数33()sin()42f x x π=+为偶函数.点评:判断函数的奇偶性时, 判断“定义域是否关于原点对称”是必须的步骤.变式训练2. ()lg(sin f x x =解:函数的定义域为R ,()lg[sin()f x x -=-=lg(sin x - =1lg(sin x -=lg(sin x -=()f x -,所以函数()lg(sin f x x = 例3. 比较sin2500、sin2600的大小解析:通过诱导公式把角度化为同一单调区间,利用正弦函数单调性比较大小 解:∵y=sinx 在[2π2k π+,322k ππ+](k ∈Z ),上是单调减函数, 又2500<2600 ∴ sin2500>sin2600点评:比较同名的三角函数值的大小,找到单 调区间,运用单调性即可,若比较复杂,先化间;比较不同名的三角函数值的大小,应先化为同名的三角函数值,再进行比较. 变式训练3. cos 914cos 815ππ、 解:cos 1514cos89ππ> 二 课内自测 一 选择题①函数2y x =的奇偶数性为( ) A 奇函数 B 偶函数 C 既奇又偶函数 D 非奇非偶函数 ②下列函数在[,]2ππ上是增函数的是( )A. y=sinx B. y=cosx C. y=sin2x D. y=cos2x③下列四个函数中,既是(0,0.5π)上的增函数,又是以π为周期的偶函数的是( ) A. sin y x = B. sin 2y x = C. cos y x = D. cos2y x =④函数2sin ()63y x x ππ=≤≤的值域是( )A .[]1,1- B .1,12⎡⎤⎢⎥⎣⎦ C .1,22⎡⎢⎣⎦ D .2⎤⎢⎥⎣⎦⑤使sin cos x x ≤成立的x 的一个区间是( )A .3,44ππ-⎡⎤⎢⎥⎣⎦ B .,22ππ-⎡⎤⎢⎥⎣⎦C .3,44ππ-⎡⎤⎢⎥⎣⎦ D .[]0,π ⑥函数x 2sin 2y =的奇偶性为( )A.奇函数 B.偶函数 C .既奇又偶函数 D.非奇非偶函数⑦函数f(x)=7sin ⎝ ⎛⎭⎪⎫23x +15π2是( )A .周期为3π的偶函数B .周期为2π的奇函数C .周期为3π的奇函数D .周期为4π/3的偶函数⑧为了得到函数1sin()44y x π=-的图像,只需将函数1sin()34y x π=-的图像上各点( )即可A. 横坐标缩短为原来的4/3倍,纵坐标不变 B. 横坐标缩短为原来的3/4倍,纵坐标不变C. 纵坐标缩短为原来的4/3倍,横坐标不变 D.纵坐标缩短为原来的3/4 倍,横坐标不变⑨下列函数中,图像的一部分如右图所示的是A sin()6y x π=+B sin(2)6y x π=- C cos(4)3y x π=- D cos(2)6y x π=- ⑩函数y=2sin(ωx +φ),|φ|<2π的图象如图所示,则 ( )A ω=1011,φ=6πB ω=1011,φ= -6πC ω=2,φ=6πD ω=2,φ= -6π二 填空题①把下列各等式成立的序号写在后面的横线上.①cos=2;②2sinx=3;③sin 2x-5sinx+6=0;④cos 2x=0.5 _______________________________ ②不等式sin x ≥22-的解集是______________________ ③把sin54π,-cos 45π,sin 532π,cos 125π下列三角函数值从小到大排列起来为:_____________________________④函数y 1=的最大值是_ ___,最小值是__ __,周期是 ⑤函数2cos()3y x π=-+取得最大值时的自变量x 的集合是______ ___________三 解答题1.求下列函数的周期:(1)x y 43sin =,x ∈R (2)x y 4cos =,x ∈R (3)x y cos 21=,x ∈R (4))431sin(π+=x y ,x ∈R ,(5)12sin(3)25y x π=+ ,(6)12cos()26y x π=-2.判断下列函数的奇偶性:(1)()sin cos f x x x =+ (2)()sin )f x x = (3)1cos 2sin ()1sin x x f x x-+=- (4)()1+cos f x x = (5)()2sin 1f x x =+3.利用三角函数的单调性,比较下列各组中两个三角函数值的大小: ①5463sin()sin()78ππ--与 ②1514cos cos 89ππ与4.下列函数的单调区间:(1)sin()4y x π=+ (2)3cos2xy =6.求出数[]1sin ,2,232y x x x πππ⎛⎫=-∈- ⎪⎝⎭的单调递增区间7.如果函数y=sin2x+acos2x 的图象关于直线8x π=-对称,求a 的值三 课堂达标 一 选择题①y=sin(x-π3 )的单调增区间是( )A.[kπ-π6 ,kπ+5π6 ] (k ∈Z)B. [2kπ-π6 ,2kπ+5π6 ](k ∈Z)C. [kπ-7π6 , kπ-π6 ] (k ∈Z)D. [2kπ-7π6 ,2kπ-π6] (k ∈Z)②下列函数中是奇函数的是( )A. y=-|sinx| B. y=sin(-|x|) C. y=sin|x| D. y=xsin|x| ③在 (0,2π) 内,使 sinx>cosx 成立的x 取值范围是( )A .(π4 ,π2 )∪( π, 5π4 ) B. ( π4 ,π) C. ( π4 ,5π4 ) D.( π4 ,π)∪( 5π4 ,3π2)④函数y=sin (x+π/4)图象的一条对称轴是( )A.x 轴 B.y 轴 C.直线x=π/4 D.直线x=-π/4 ⑤在下列区间上函数sin()4y x π=+的单调递增区间是( )A,2ππ⎡⎤⎢⎥⎣⎦ B 0,4π⎡⎤⎢⎥⎣⎦ C [],0π- D ,42ππ⎡⎤⎢⎥⎣⎦⑥设函数f(x)=sin ⎝ ⎛⎭⎪⎫2x -π2,x∈R ,则f(x)是( )A .最小正周期为π的奇函数B .最小正周期为π的偶函数C .最小正周期为π2的奇函数D .最小正周期为π2的偶函数⑦下列函数中,周期为π2的是( )A .y =sin x 2 B .y =sin 2x C .y =cos x4D .y =cos 4x⑧下列函数中,不是周期函数的是( )A .y =|cos x| B .y =cos|x| C .y =|sin x| D .y =sin|x|⑨函数y =sin(x +θ) (0<θ≤π)是R 上的奇函数,则θ的值是( ) A .0 B.π4 C.π2D .π⑩函数y=cosx 的图象向左平移3π个单位,横坐标缩小到原来的12,纵坐标扩大到原来的3倍,所得的函数图象解析式为 ( ) A y=3cos(12x+3π) B y=3cos(2x+3π) C y=3cos(2x+23π) D y=13cos(12x+6π)二 填空题①cos1,cos2,cos3的大小关系是______________________②y=sin(3x-π2 )的周期是__________________③函数y =sin(π4-2x)的单调递增区间是④若f(x)是R 上的偶函数,当x≥0时,f(x)=sin x ,则f(x)的解析式是______________.⑤函数y =sin ⎝⎛⎭⎪⎫ωx+π4的最小正周期是2π3,则ω=________. 三 解答题1. 判断下列函数的奇偶性:(1)33()sin()42f x x π=+ (2)()lg(sin f x x =+(3)1sin cos (),.1sin x x f x x R x +-=∈+ (4)33()sin()42f x x π=+2.比较下列各组中两个三角函数值的大小: (1)sin 250 、sin 260(2)15cos 8π、14cos 9π3.①求函数y=sin(-2x+3π)的单调增区间 ②求函数y=sin(2x+3π)的单调增区间.4.求下列三角函数的周期:(1)x y cos 3= (2)x y 2sin = (3)12sin()26y x π=-,x R ∈(4) y=sin(x+3π) (5) y=cos2x (6) y=3sin(2x +5π)5.求下列函数的周期.(1)()sin3f x x =- (2)()cos(2)3f x x π=+ (3)1()cos()36f x x π=-+(4)2()sin(2)3f x x π=-+ (5)2()sin()3f x x ππ=+ (6)()cos()6f x ex ππ=-+5.求下列函数的值域:(1)sin sin y x x =+ (2)2cos 2sin 2y x x =+-6.求函数y=cos 2x-4cosx+3的最值7.求出下列函数的最大值、最小值,并写出取最大值、最小值时自变量x 的集合 (1)1sin 2y x =+ (2)3cos 2y x =-。

1.4.2正弦函数余弦函数的性质1[教学设计]

1.4.2正弦函数余弦函数的性质1[教学设计]

1.4.2(1)正弦、余弦函数的性质(教学设计)教学目的:知识目标:要求学生能理解周期函数,周期函数的周期和最小正周期的定义; 能力目标:掌握正、余弦函数的周期和最小正周期,并能求出正、余弦函数的最小正周期。

德育目标:让学生自己根据函数图像而导出周期性,领会从特殊推广到一般的数学思想,体会三角函数图像所蕴涵的和谐美,激发学生学数学的兴趣。

教学重点:正、余弦函数的周期性教学难点:正、余弦函数周期性的理解与应用 授课类型:新授课教学模式:启发、诱导发现教学. 教学过程:一、创设情境,导入新课:1.现实生活中的“周而复始”现象:(1)今天是星期二,则过了七天是星期几?过了十四天呢?……(2)现在下午2点30,那么每过24小时候是几点? (3)路口的红绿灯(贯穿法律意识)2.数学中是否存在“周而复始”现象,观察正(余)弦函数的图象总结规律正弦函数()sin f x x =性质如下:(观察图象) 1︒正弦函数的图象是有规律不断重复出现的;–– π 2π 2π- 2π 5π π- 2π- 5π- O x y 1 1-2︒规律是:每隔2π重复出现一次(或者说每隔2k π,k ∈Z 重复出现) 3︒这个规律由诱导公式sin(2k π+x)=sinx 可以说明结论:象这样一种函数叫做周期函数。

文字语言:正弦函数值按照一定的规律不断重复地取得;符号语言:当x 增加2k π(k Z ∈)时,总有(2)sin(2)sin ()f x k x k x f x ππ+=+==. 也即:(1)当自变量x 增加2k π时,正弦函数的值又重复出现; (2)对于定义域内的任意x ,sin(2)sin x k x π+=恒成立。

余弦函数也具有同样的性质,这种性质我们就称之为周期性。

二、师生互动,新课讲解:1.周期函数定义:对于函数f (x ),如果存在一个非零常数T ,使得当x 取定义域内的每一个值时,都有:f (x +T)=f (x )那么函数f (x )就叫做周期函数,非零常数T 叫做这个函数的周期。

142正弦函数、余弦函数的性质导学案1.doc

142正弦函数、余弦函数的性质导学案1.doc

1.4.2正弦函数、余弦函数的性质v第一课时【学习目标】1、通过创设情境,如单摆运动、四季变化等,让学生感知周期现象;2、理解周期函数的概念;3、能熟练地求出简单三角函数的周期。

4、能根据周期函数的定义进行简单的拓展运用.【学习重点】正弦、余弦函数的主要性质(包括周期性、定义域和值域);【学习难点】正弦函数和余弦函数图象间的关系、图象变换,以及周期函数概念的理解,最小正周期的意义及简单的应用.【学习过程】一、复习巩固1、画出正弦函数和余弦函数图象。

2、观察正弦函数和余弦函数图象,填写下表:定义域值域y=sinxy=cosx3、下列各等式是否成立?为什么?(1)2cosx=3, (2) sin2x=0.54、求下列函数的定义域:⑴y=—-—1 + sm x(2)y二Jcosx .二、预习提案(阅读教材第34-35页内容,完成以下问题:)1、什么是周期函数?什么是函数周期?注意:①定义域内的每一个x都有(x+T) = f (x)o②定义中的T为非零常数,即周期不能为0。

〈小试身手〉等式sin(30o+120°)=sin30°是否成立?如果这个等式成立,能否说120。

是正弦函数y=sinx, xGR,的一个周期?为什么?2、什么是最小正周期?3、正弦函数和余弦函数的周期和最小正周期:周期最小正周期y=sinxy=cosx<注>在我们学习的三角函数中,如果不加特别说明,教科书提到的周期,一般都是指最小正周期.三、探究新课例1求下列函数的周期:(l)y=3cosx,xER;(2)y=sin2x,x 右R;例2.求函数y=2sin( — -—),xR.的周期 2 6(2) y = cos4x,xGR(3) (4) y = sin(j x + 5),x G R手0,xGR )的周期为T=c 可以按照如下的方法求它的周期:a )\(1)四、课堂练习:求下列函数的周期:. 3 fy = sin — x , xGR4 五、课堂小结一般地,函数 y=Asin (rox+(p )及函数 y=Acos ((ox+(p ),(其中 A 、①、(p 为常数,A#0,®y=Asin(cox+cp+27i:)=Asin [co(x+——)+(p] =Asin(cox+(p).co于是有f(x+—) =f (x),所以其周期为色.CD CD(4 ) f(.r) = sin(-2.r + —)六、课后作业1.判断对错并说明理由.(1 )对于函数y = sinx有sin(— + —) = sin—,则—是函数y = sinx的周期.6 3 6 3( )(2)函数y = cosx,xe[0,12》]是周期函数( )(3)定义在R上的函数y(x)满足f(x + 7v) =/■(》),则勿是函数/lx)的周期,-2〃也是函数/Xx)的周期.()(4)函数f(x) = 2,xeR是周期函数,但没有最小正周期.()2.求下列函数的周期.77(1) /W = -sin3x (2) f(x) = cos(2x + i)1 71(3)f(x) = cos(-—x + —)3 6(5) f(.r) = sin(^-.r + —) (6)71 /(x) = -7i cos(ex + —)6。

高中数学《正弦函数、余弦函数的性质(二)》导学案

高中数学《正弦函数、余弦函数的性质(二)》导学案
∵0°<150°<170°<180°,且y=cosx在[0°,180°]上是减函数,
∴cos 150°>cos 170°,即cos 870°>sin 980°.
三、课堂练习
1.y=2sin(3x+ )的值域是()
A.[-2,2]B.[0,2]C.[-2,0]D.[-1,1]
解析因为sin(3x+ )∈[-1,1],所以y∈[-2,2].答案A
2.比较三角函数值的大小,先利用诱导公式把问题转化为同一单调区间上的同名三角函数值的大小比较,再利用单调性作出判断.
五、作业布置
课后作业:各班结合自己情况布置
六、教学反思
3.函数f(x)= cos(2x- )的单减区间是________.
解析令2kπ≤2x- ≤π+2kπ,k∈Z,得 +kπ≤x≤ +kπ,k∈Z,
即f(x)的单减区间是[ +kπ, +kπ](k∈Z).
答案[ +kπ, +kπ](k∈Z)
4.函数y=cos(x+ ),x∈[0, ]的值域是________.
即 +kπ≤x≤π+kπ,(k∈Z),
故y=cos 2x的单增区间是[ +kπ,π+kπ](k∈Z),则当k=0时为[ ,π],故选D.答案D
(2)求函数y=1+sin ,x∈[-4π,4π]的单调减区间.
解y=1+sin =-sin +1.
由2kπ- ≤ x- ≤2kπ+ (k∈Z).
解得4kπ- ≤x≤4kπ+ π(k∈Z).又∵x∈[-4π,4π],
∴cos π<cos ,即cos <cos .
【训练2】比较下列各组数的大小:
(1)sin 与sin ;(2)cos 870°与sin 980°.
解(1)siy=sinx在 上是增函数,

正弦函数、余弦函数性质 学案 导学案 课件

正弦函数、余弦函数性质  学案  导学案  课件

正弦函数、余弦函数的性质学习目标1、掌握正弦函数余弦函数的奇偶性;2、掌握正弦函数余弦函数的单调性与值域;3、会求正弦函数,余弦函数的单调区间与最值. 学习重点正、余弦函数的周期性和奇偶性. 学习难点正、余弦函数周期性和奇偶性的理解与应用。

学习方法自主学习,合作探究自主学习(一)阅读教材 (二)预习自测1、观察正弦曲线和余弦曲线,可以看到正弦曲线关于 对称,故正弦函数x y sin =是 函数;余弦曲线关于 对称,故余弦函数x y cos =是 函数。

2、作出函数x y sin =,⎥⎦⎤⎢⎣⎡-∈23,2ππx 的图象,观察曲线的变化情况并讨论单调性。

由图表知:此函数在闭区间 上是增函数,其值从 增大到 ;函数在闭区间 上是减函数,其值从 减小到 。

3、类似地,作出余弦函数cos y x =,[],x ππ∈-的图象,观察其曲线的变化情况并讨论单调性。

由图表知:此函数在闭区间 上是增函数,其值从 增大到 ;函数在闭区间 上是减函数,其值从 减小到 。

4、思考:x y sin =,∈x R 的单调性如何?x y cos =,R x ∈的单调性又如何?求出它们的最大值和最小值。

归纳:①正弦函数在每一个闭区间 上都是增函数,其值从 增大到 ;在每一个闭区间 上都是减函数,其值从 减小到 。

②余弦函数在每一个闭区间 上都是增函数,其值从 增大到 ;在每一个闭区间 上都是减函数,其值从 减小到 。

③正弦函数当且仅当 时取得最大值 ,当且仅当 时取得最小值 ;④余弦函数当且仅当 时取得最大值 ,当且仅当 时取得最小值 。

合作学习例1、下列函数有最大值和最小值吗?如果有,请写出取最大值、最小值时的自变量x 的集合,并说出最大值、最小值分别是什么。

(1) y=cosx +1,x ∈R ; (2)y=-3sin2x ,x ∈R.例2利用三角函数的单调性,比较下列各组数的大小:(3)o250sin 与o 260sin (4)o 760cos 与)770cos(o -分析:利用三角函数的单调性比较两个同名三角函数值的大小,可以先用诱导公式将已知角化为同(1)sin()sin();1810ππ--与2317(2)cos()cos().5ππ--4与一单调区间内的角,然后再比较大小。

正弦函数、余弦函数的图象和性质教案

正弦函数、余弦函数的图象和性质教案

一、教学目标1. 让学生了解正弦函数和余弦函数的图象特征,掌握它们的基本性质。

2. 培养学生运用数形结合的方法分析函数图象和性质的能力。

3. 引导学生运用所学知识解决实际问题,提高学生的数学应用能力。

二、教学内容1. 正弦函数的图象和性质2. 余弦函数的图象和性质3. 正弦函数和余弦函数的图象和性质的综合应用三、教学重点与难点1. 重点:正弦函数和余弦函数的图象特征,基本性质。

2. 难点:正弦函数和余弦函数的图象和性质的综合应用。

四、教学方法1. 采用多媒体课件辅助教学,直观展示函数图象和性质。

2. 运用数形结合的方法,引导学生分析函数图象和性质。

3. 案例分析法,让学生在实际问题中体验函数图象和性质的应用。

4. 小组讨论法,培养学生的合作能力和口头表达能力。

五、教学过程1. 导入新课:回顾正弦函数和余弦函数的定义,引导学生思考它们的图象和性质。

2. 讲解与演示:利用多媒体课件,展示正弦函数和余弦函数的图象,讲解图象特征和基本性质。

3. 案例分析:选取实际问题,让学生运用所学知识分析问题,解决问题。

4. 小组讨论:分组讨论正弦函数和余弦函数图象和性质的综合应用,分享讨论成果。

5. 总结与评价:总结本节课所学内容,对学生的学习情况进行评价,布置课后作业。

六、教学策略1. 运用对比分析法,让学生区分正弦函数和余弦函数的图象和性质。

2. 利用数学软件或教具,动态展示正弦函数和余弦函数的图象变化,增强学生直观感受。

3. 设计具有梯度的练习题,让学生在实践中巩固所学知识。

4. 创设情境,引导学生发现生活中的正弦函数和余弦函数模型,提高学生的数学素养。

七、教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,评价学生的学习态度和兴趣。

2. 练习完成情况:检查学生课后作业和实践任务的完成质量,评价学生的学习效果。

3. 小组讨论:评估学生在小组讨论中的表现,包括合作能力、口头表达能力等。

4. 自我评价:鼓励学生进行自我评价,反思学习过程中的优点和不足。

三角函数的诱导公式,正弦、余弦函数的图象及性质教案

三角函数的诱导公式,正弦、余弦函数的图象及性质教案

三角函数的诱导公式教学目标(1)理解正弦、余弦的诱导公式. (2)培养学生化归、转化的能力.(3)能运用公式一、二、三的推导公式四、五.(4)掌握诱导公式并运用之进行三角函数式的求值、化简以及简单三角恒等式 的证明教学重难点:诱导公式一至五的理解及应用 教学过程: 一.诱导公式复习1.判断三角函数符号的十二字口诀:一全正,二正弦,三正切,四余弦2.诱导公式(一)tan )360tan(cos )360(cos sin )360sin(αααααα=+︒=+︒=+︒k k k3.诱导公式(二)tan )180tan(cos )180cos( sin )180sin(αααααα=+︒-=+︒-=+︒4.诱导公式(三)tan )tan(cos )cos( sin )sin(αααααα-=-=--=-5.诱导公式(四)tan )180tan(cos )180cos( sin )180sin(αααααα-=-︒-=-︒=-︒对于四组诱导公式的理解 : ①可以是任意角;公式中的α ②这四组诱导公式可以概括为:符号。

看成锐角时原函数值的前面加上一个把三角函数值,的同名的三角函数值,等于它ααπαπααπ ,,, ),Z (2-+-∈+k k总结为一句话:函数名不变,符号看象限 1、诱导公式(五) sin )2cos(cos )2sin(ααπααπ=-=-2、诱导公式(六) sin )2cos(cos )2sin(ααπααπ-=+=+总结为一句话:函数正变余,符号看象限二.例题讲解例1.将下列三角函数转化为锐角三角函数:).317sin()4( ,519cos )3( ,3631sin )2( ,53tan)1(πππ-︒ 练习:求下列函数值:).580tan )4( ,670sin )3( ),431sin()2( ,665cos)1(︒︒-ππ 例2.证明:(1)ααπcos )23sin(-=- (2)ααπsin )23cos(-=- 例3.化简:.)29sin()sin()3sin()cos()211cos()2cos()cos()2sin(αππααπαπαπαπαπαπ+-----++-例4 ,3)tan(=+απ已知的值。

高中数学《正弦函数、余弦函数的性质(一)》导学案

高中数学《正弦函数、余弦函数的性质(一)》导学案
解析f(22)=f(22-20)=f(2)= .答案
5.判断下列函数的奇偶性:
(1)f(x)=sin (2)f(x)=x·cosx.
解(1)f(x)的定义域是R,且f(x)=sin =-cos x,
所以f(-x)=f(x),则f(x)是偶函数.
(2)f(x)的定义域是R,又f(-x)=(-x)·cos(-x)=-xcosx=-f(x),
=2sin =2sin ,
∴自变量x只要并且至少要增加到x+4π,
函数y=2sin ,x∈R的值才能重复出现,
∴函数y=2sin ,x∈R的周期是4π.
(2)∵1-2cos[ (x+4)]=1-2cos( x+2π)=1-2cos( x),
∴自变量x只需并且至少要增加到x+4,函数y=1-2cos( x),x∈R的值才能重复出现,
所以f(x)是奇函数.
四、小结
1.求函数的最小正周期的常用方法:
(1)定义法,即观察出周期,再用定义来验证;也可由函数所具有的某些性质推出使f(x+T)=f(x)成立的T.
(2)图象法,即作出y=f(x)的图象,观察图象可求出T,如y=|sinx|.
(3)结论法,一般地,函数y=Asin(ωx+φ)(其中A,ω,φ为常数,A≠0,ω>0,x∈R)的周期T= .
2.函数f(x)=cos( x- )的周期是()
A.3B.3πC.6D.6π
解析T= =6.答案C
3.函数y=sin(ωx+ )的最小正周期为2,则ω的值为________.
解析T= =2,∴|ω|=π,∴ω=±π.答案±π
4.函数f(x)是周期函数,10是f(x)的一个周期,且f(2)= ,则f(22)=________.
2.判断函数的奇偶性,必须坚持“定义域优先”的原则,准确求函数定义域和将式子合理变形是解决此类问题的关键.如果定义域关于原点对称,再看f(-x)与f(x)的关系,从而判断奇偶性.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

正弦函数、余弦函数的
性质导学案
-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN
§1.4.2正弦函数、余弦函数的性质导学案
主编:段小文审核:彭小武班级姓名
【学习目标】
1、掌握正弦函数、余弦函数的周期性,周期,最小正周期。

2、掌握正弦函数,余弦函数的奇偶性、单调性。

3、会比较三角函数值的大小,会求三角函数的单调区间。

【学习过程】
一、自主学习(一)知识链接:作出函数y=sinx与y=cosx,x∈R的图象,图
象的分布有什么特点?
(二)自主探究:(预习教材P34-P40)
1、正弦函数,余弦函数都是周期函数,周期是_________,最小正周期是
________。

2、由诱导公式_________________________可知正弦函数是奇函数;由诱导公
式_________________________可知,余弦函数是偶函数。

3、正弦函数图象关于直线_______ ____轴对称,关于点_______ ___
中心对称;余弦函数图象关于直线________________轴对称,关于点_______ ___中心对称。

4、正弦函数在每一个闭区间_________________上都是增函数,其值从-1增
大到1;在每一个闭区间_________________上都是减函数,其值从1减少到-
1。

5、余弦函数在每一个闭区间_________________上都是增函数,其值从-1增
大到1;在每一个闭区间______________上都是减函数,其值从1减少到-1。

6、正弦函数当且仅当x =___________时,取得最大值1,当且仅当
x=_________________时取得最小值-1。

7、余弦函数当且仅当x =______________时取得最大值1;当且仅当x=______ ____时取得最小值-1。

二、合作探究
1、求下列函数的周期:(1)12sin(3)25y x π=+,(2)12cos()26
y x π=-
一般结论:函数sin()y A x ωϕ=+及函数cos()y A x ωϕ=+,x R ∈的周期2||
T πω= 2、求出下列函数的最大值、最小值,并写出取最大值、最小值时自变量x 的集合。

(1)1sin 2y x =+ (2)3cos 2y x =-
3、利用三角函数的单调性,比较下列各组中两个三角函数值的大小: ①5463sin()sin()78ππ-
-与 ②1514cos cos 89
ππ与
4、求函数)321sin(2π+=x y
的单调区间。

三、交流展示
1、函数y 1=+的最大值是_ ___,最小值是__ __,周期是 。

2、函数2cos()3
y x π=-+取得最大值时的自变量x 的集合是______ ___________。

3、函数x 2sin 2y =的奇偶数性为( )
A.奇函数
B.偶函数 C .既奇又偶函数 D.非奇非偶函数
4、在下列各区间上,函数sin()4y x π=+的单调递增区间是( )
A .,2ππ⎡⎤⎢⎥⎣⎦
B .0,4π⎡⎤⎢⎥⎣⎦
C .[],0π-
D .,42ππ⎡⎤⎢⎥⎣⎦
四、达标检测(A 组必做,B 组选作)
A 组:1、函数)4
sin(π+=x y 图象的一条对称轴是( ) A.x 轴 B.y 轴 C.直线4π=
x D.直线4π-=x 2、函数2sin ()63y x x ππ=≤≤的值域是( )
A .[]1,1-
B .1,12⎡⎤⎢⎥⎣⎦
C .13,22⎡⎢⎣⎦
D .32⎤⎥⎣⎦
3、下列函数在[,]2
π
π上是增函数的是( ) A. y=sinx B. y=cosx C. y=sin2x D. y=cos2x B 组:1、使sin cos x x ≤成立的x 的一个区间是( )
A .3,44ππ-⎡⎤⎢⎥⎣⎦
B .,22ππ-⎡⎤⎢⎥⎣⎦
C .3,44ππ-⎡⎤⎢⎥⎣⎦
D .[]0,π 2、函数y =sin(π4
-2x)的单调递增区间是 。

相关文档
最新文档