初中数学比例线段练习及答案2
线段分线段成比例定理基础练习
线段分线段成比例定理基础练习一、基本概念线段分线段成比例定理,又称为线段的内分和外分定理,是初中数学的重要基础知识之一。
它是指一条直线上的两个点把这条直线划分为三个部分时,两个点与这条直线上其他一点的距离之比等于这两个点所对应的线段之比。
二、成比例定理的表达方式在线段AB上取一点P,使得AP:PB = m:n,其中m,n为正实数。
根据线段分线段成比例定理可得:AP / PB = AP / (AB - AP) = m / n。
三、基础练现在,我们来进行一些线段分线段成比例定理的基础练。
1. 练一已知AB = 12cm,AP:PB = 2:3,求AP和PB的长度。
解答:根据线段分线段成比例定理,我们有AP / PB = 2 / 3。
又知AB = AP + PB,代入已知条件可得:12 = AP + PB。
由此可得到方程组:AP / PB = 2 / 3,AP + PB = 12。
解方程组可得:AP = 4cm,PB = 8cm。
2. 练二已知AB = 15cm,AP:PB = 3:5,求AP和PB的长度。
解答:根据线段分线段成比例定理,我们有AP / PB = 3 / 5。
又知AB = AP + PB,代入已知条件可得:15 = AP + PB。
由此可得到方程组:AP / PB = 3 / 5,AP + PB = 15。
解方程组可得:AP = 5cm,PB = 10cm。
四、总结通过以上练习,我们可以进一步理解线段分线段成比例定理的应用。
在实际问题中,我们可以利用成比例定理快速求解未知长度或比例关系的线段问题。
熟练掌握线段分线段成比例定理的运用,有助于解决更复杂的几何问题。
初中数学线段考试卷
一、选择题(每题4分,共40分)1. 在线段AB上,点C将AB分为AC和CB,若AC:CB=2:3,则AC占AB的比例为()。
A. 1:2B. 2:3C. 1:3D. 2:52. 已知线段AB=8cm,点C在线段AB上,且AC:CB=3:5,则线段AC的长度为()。
A. 3cmB. 4cmC. 5cmD. 6cm3. 在等腰三角形ABC中,若AB=AC,且AD是底边BC上的高,则∠ADB的度数为()。
A. 45°B. 60°C. 90°D. 120°4. 已知线段AB=10cm,点C在线段AB上,且AC:CB=1:2,则线段AC与CB的长度之和为()。
A. 10cmB. 12cmC. 15cmD. 20cm5. 在三角形ABC中,若∠A=60°,∠B=45°,则∠C的度数为()。
A. 45°B. 60°C. 75°D. 90°6. 已知线段AB=6cm,点C在线段AB上,且AC:CB=2:3,则线段AC与CB的长度之差为()。
A. 2cmB. 3cmC. 4cmD. 5cm7. 在等腰三角形ABC中,若AB=AC,且AD是底边BC上的高,则∠ADC的度数为()。
A. 45°B. 60°C. 90°D. 120°8. 已知线段AB=8cm,点C在线段AB上,且AC:CB=3:2,则线段AC与CB的长度之比为()。
A. 3:2B. 2:3C. 1:2D. 1:39. 在三角形ABC中,若∠A=90°,∠B=30°,则∠C的度数为()。
A. 45°B. 60°C. 75°D. 90°10. 已知线段AB=10cm,点C在线段AB上,且AC:CB=4:6,则线段AC与CB的长度之差为()。
A. 2cmB. 3cmC. 4cmD. 5cm二、填空题(每题4分,共20分)11. 线段AB=8cm,点C在线段AB上,若AC:CB=2:3,则AC的长度为______cm。
九年级数学中考典型及竞赛训练专题14 平行线分线段成比例(附答案解析)
九年级数学中考典型及竞赛训练专题14 平行线分线段成比例阅读与思考平行线分线段成比例定理是证明比例线段的常用依据之一,是研究比例线段及相似形的最基本、最重要的理论.运用平行线分线段成比例定理解题的关键是寻找题中的平行线.若无平行线,需作平行线,而作平行线要考虑好过哪一个点作平行线,一般是由成比例的两条线段启发而得.此外,还要熟悉并善于从复杂的图形中分解出如下的基本图形:例题与求解【例1】如图,在梯形ABCD 中,AD ∥BC ,AD =a ,BC =b ,E ,F 分别是AD ,BC 的中点,且AF 交BE 于P ,CE 交DF 于Q ,则PQ 的长为____.(上海市竞赛试题)解题思路:建立含PQ 的比例式,为此,应首先判断PQ 与AD (或BC )的位置关系,关键是从复杂的图形中分解出基本图形,并能在多个成比例线段中建立联系.【例2】如图,在△ABC 中,D ,E 是BC 的三等分点,M 是AC 的中点,BM 交AD ,AE 于G ,H ,则BG ︰GH :HM 等于( )A .3︰2︰1B .4︰2︰1C .5︰4︰3D .5︰3︰2(“祖冲之杯”邀请赛试题)解题思路:因题设条件没有平行线,故须过M 作BC 的平行线,构造基本图形.ABCDEGH MQA BCDEFP【例3】如图,□ABCD中,P为对角线BD上一点,过点P作一直线分别交BA,BC的延长线于Q,R,交CD,AD于S,T.求证:PQ•PT=P R•PS.(吉林省中考试题)解题思路:要证PQ•PT=P R•PS,需证PQPS=PRPT,由于PQ,PT,P R,PS在同一直线上,故不能直接应用定理,需观察分解图形.【例4】梯形ABCD中,AD//BC,AB=DC.(1)如图1,如果P,E,F分别是BC,AC,BD的中点,求证:AB=PE+PF;(2)如图2,如果P是BC上的任意一点(中点除外),PE∥AB,PF∥DC,那么AB=PE+PF这个结论还成立吗?如果成立,请证明;如果不成立,说明理由.(上海市闵行区中考试题)解题思路:(1)不难证明;对于(2),先假设结论成立,从平行线出发证明AB=PE+PF,即要证明PEAB+PFAB=1,将线段和差问题的证明转化为与成比例线段相关问题的证明.AB CDEFP图2AB CDEFP图1QARBCDSP【例5】如图,已知AB ∥CD ,AD ∥CE ,F ,G 分别是AC 和FD 的中点,过G 的直线依次交AB ,AD ,CD ,CE 于点M ,N ,P ,Q .求证:MN +PQ =2PN .解题思路:考虑延长BA ,EC 构造平行四边形,再利用平行线设法构造有关的比例式.(浙江省竞赛试题)【例6】已知:△ABC 是任意三角形.(1)如图1,点M ,P ,N 分别是边AB ,BC ,CA 的中点,求证:∠MPN =∠A ; (2)如图2,点M ,N 分别在边AB ,AC 上,且AM AB =13,AN AC =13,点P 1,P 2是 边BC 的三等分点,你认为∠MP 1N +∠MP 2N =∠A 是否正确?请说明你的理由;(3)如图3,点M ,N 分别在边AB ,AC 上,且P 1,P 2,…,P 2009是边BC 的2010等分点,则∠MP 1N +∠MP 2N +…+∠MP 2009N =____.(济南市中考试题)解题思路:本题涉及的考点有三角形中位线定理、平行四边形的判定、相似三角形的判定与性质.ABCM NP图1ABC MN1P 2P 图2AMNBC1P 2P 2009P 图3QA BCDEFGM NP能力训练A 级1.设K =a b c c +-=a b c b -+=a b ca-++,则K =____. (镇江市中考试题)2.如图,AD ∥EF ∥BC ,AD =15,BC =21,2AE =EB ,则EF =____.3.如图,在△ABC 中,AM 与BN 相交于D ,BM =3MC ,AD =DM ,则BD ︰DN =____.(杭州市中考试题)4.如图,ABCD 是正方形,E ,F 是AB ,BC 的中点,连结EC 交DB ,交DF 于G ,H ,则EG ︰GH ︰HC =____.(重庆市中考试题)5.如图,在正△ABC 的边BC ,CA 上分别有点E ,F ,且满足BE =CF =a ,EC =F A =b (a >b ),当BF 平分AE 时,则ab 的值为( ) ABCD6.如图,△ABC 中,AD 是BC 边上的中线,F 是AD 上的一点,且AF ︰FD =1︰5,连结CF 并延长交AB 于E ,则AE ︰EB 等于( )A .1︰10B .1︰9C .1︰8D .1︰77.如图,PQ ∥AB ,PQ =6,BP =4,AB =8,则PC 等于( ) A .4B .8C .12D .168.如图,EF ∥BC ,FD ∥AB ,BD =35BC ,则BE ︰EA 等于( )A .3︰5B .2︰5C .2︰3D .3︰2A BCD E F 第2题ABCD M N第3题ABCDEFGH第4题A BCEFG第5题ABCDE F第6题QABCP第7题AB CDEF 第8题9.(1)阅读下列材料,补全证明过程.已知,如图,矩形ABCD 中,AC ,BD 相交于点O ,OE ⊥BC 于E ,连结DE 交OC 于点F ,作FG ⊥BC 于G .求证:点G 是线段BC 的一个三等分点.(2)请你依照上面的画法,在原图上画出BC 的一个四等分点.(要求:保留画图痕迹,不写画法及证明过程)(山西中考试题)10.如图,已知在□ABCD 中,E 为AB 边的中点,AF =12FD ,FE 与AC 相交于G . 求证:AG =15AC .11.如图,梯形ABCD 中,AD ∥BC ,EF 经过梯形对角线的交点O ,且EF ∥AD . (1)求证:OE =OF ; (2)求OE AD +OEBC的值; (3)求证:1AD +1BC =2EF. (宿迁市中考试题)ABCDE FGO第9题ABCDEG第10题ABCD EFO第11题12.如图,四边形ABCD 是梯形,点E 是上底边AD 上的一点,CE 的延长线与BC 的延长线交于点F ,过点E 作BA 的平行线交CD 的延长线于点M ,MB 与AD 交于点N .求证:∠AFN =∠DME .(全国初中数学联赛试题)B 级1.如图,工地上竖立着两根电线杆AB ,CD ,它们相距15cm ,分别自两杆上高出地面4m ,6m 的A ,C 处,向两侧地面上的E ,D 和B ,F 点处,用钢丝绳拉紧,以固定电线杆,那么钢丝绳AD 与BC 的交点P 离地面的高度为____m .(全国初中数学联赛试题)2.如图,□ABCD 的对角线交于O 点,过O 任作一直线与CD ,BC 的延长线分别交于F ,E 点.设BC =a ,CD =b ,CF =c ,则CE =____.(黑龙江省中考试题)3.如图,D ,F 分别是△ABC 边AB ,AC 上的点,且AD ︰DB =CF ︰F A =2︰3,连结DF 交BC 边的延长线于点E ,那么EF ︰FD =____.(“祖冲之杯”邀请赛试题)4.如图,设AF =10,FB =12,BD =14,DC =6,CE =9,EA =7,且KL ∥DF ,LM ∥FE ,MN ∥ED ,则EF ︰FD =____.(江苏省竞赛试题)ABCDEF M NP ABCDEF O第2题ABCD EF 第3题QABCD EF 第1题5.如图,AB ∥EF ∥CD ,已知AB =20,CD =80,那么EF 的值是( ) A .10B .12C .16D .18(全国初中数学联赛试题)6.如图,CE ,CF 分别平分∠ACB ,∠ACD ,AE ∥CF ,AF ∥CE ,直线EF 分别交AB ,AC 于点M ,N .若BC =a ,AC =b ,AB =c ,且c >a >b ,则EM 的长为( )A .2c a- B .2a b- C .2c b- D .2a b c+- (山东省竞赛试题)7.如图,在□ABCD 的边AD 延长线上取一点F ,BF 分别交AC 与CD 于E ,G .若EF =32,GF =24,则BE 等于( )A .4B .8C .10D .12E .16(美国初中数学联赛试题)8.如图,在梯形ABCD 中,AB ∥CD ,AB =3CD ,E 是对角线AC 的中点,直线BE 交AD 于点F ,则AF ︰FD 的值是( )A .2B .53C .32D .1(黄冈市竞赛试题)9.如图,P 是梯形ABCD 的中位线MN 所在直线上的任意一点,直线AP ,BP 分别交直线CD 于E ,F .求证:MN NP =1()2AE BFEP FP+. (宁波市竞赛试题)ABCD EFG第7题ABCDE F第8题ABCD E F MNP第9题A BCDE F第5题ABCD EF L KM N第4题AB CDEFM第6题10.如图,在四边形ABCD 中,AC 与BD 相交于O ,直线l 平行于BD 且与AB ,DC ,BC ,AD 及AC 的延长线分别交于点M ,N ,R ,S 和P .求证:PM ·PN =P R ·PS .(山东省竞赛试题)11.如图,AB ⊥BC ,CD ⊥BC ,B ,D 是垂足,AD 和BC 交于E ,EF ⊥BD 于F .我们可以证明:11AB CD +=1EF 成立(不要求证出).以下请回答:若将图中垂直改为AB ∥CD ∥EF ,那么, (1)11AB CD+=1EF 还成立吗?如果成立,请给出证明;如果不成立,请说明理由. (2)请找出S △ABD ,S △BED 和S △BDC 的关系式,并给出证明.(黄冈市竞赛试题)ABCDEF第11题SA R BC DMN OPl第10题12.在Rt△ABC中,∠BAC=90°,AD平分∠BAC,过D点的直线PQ交边AC于点P,交边AB 的延长线于点Q.(1)如图1,当PQ⊥AC时,求证:11AQ AP+;(2)如图2,当PQ不与AD垂直时,(1)的结论还成立吗?证明你的结论;(3)如图3,若∠BAC=60°,其它条件不变,且11AQ AP+=nAD,则n=____(直接写出结果)AQ B CDP图1AQB CDP图2AQB CDP图3专题14 平行线分线段成比例例1aba b+ 提示:由AP DQ a PF QF b ==,推得PQ ∥AD 。
(完整版)平行线分线段成比例经典例题与变式练习(含标准答案..
1 / 14平行线分线段成比例知识梳理1. 1. 平行线分线段成比例定理平行线分线段成比例定理如下图,如果1l ∥2l ∥3l ,则BC EF AC DF =,AB DE AC DF =,AB ACDE DF=. l 3l 2l 1FE D CB A2.平行线分线段成比例定理的推论:如图,在三角形中,如果DE BC ∥,则AD AE DEAB AC BC==ABCD E EDC B A3. 平行的判定定理:如上图,如果有BCDEAC AE AB AD ==,那么DE ∥BC 。
专题讲解专题一、平行线分线段成比例定理及其推论基本应用【例1】 如图,DE BC ∥,且DB AE =,若510AB AC ==,,求AE 的长。
EDCBA【例2】 如图,已知////AB EF CD ,若AB a =,CD b =,EF c =,求证:111cab=+.FEDCBA【巩固】如图,AB BD ⊥,CD BD ⊥,垂足分别为B 、D ,AC 和BD 相交于点E ,EF BD ⊥,垂足为F .证明:111ABCDEF+=.FEDCBA【巩固】如图,找出ABD S ∆、BED S ∆、BCD S ∆之间的关系,并证明你的结论F EDCBA【例3】 如图,在梯形ABCD 中,AB CD ∥, 129AB CD ==,,过对角线交点O 作 EF CD ∥交AD BC ,于E F ,,求EF 的长。
OFED CBA【巩固】(上海市数学竞赛题)如图,在梯形ABCD 中,AD BC ∥,AD a BC b E F ==,,,分别是AD BC ,的中点,AF 交BE 于P ,CE 交DF 于Q ,求PQ 的长。
QPFED CBA专题二、定理及推论与中点有关的问题【例4】 (2007年北师大附中期末试卷)(1)如图(1),在ABC ∆中,M 是AC 的中点,E 是AB 上一点,且14AE AB =,连接EM 并延长,交BC 的延长线于D ,则BCCD=_______. (2)如图(2),已知ABC ∆中,:1:3AE EB =,:2:1BD DC =,AD 与CE 相交于F ,则EFAFFC FD + 的值为( )A.52 B.1 C.32D.2(1)MEDCBA(2)F ED CBA【例5】 (2001年河北省中考试卷)如图,在ABC ∆中,D 为BC 边的中点,E 为 AC 边上的任意一点,BE 交AD 于点O .(1)当1A 2AE C =时,求AOAD 的值; E AO(2)当11A 34AE C=、时,求AO AD 的值; (3)试猜想1A 1AE C n =+时AO AD 的值,并证明你的猜想.【例6】 (2003年湖北恩施中考题)如图,AD 是ABC ∆的中线,点E 在AD 上,F 是BE 延长线与AC 的交点.(1)如果E 是AD 的中点,求证:12AF FC =;(2)由(1)知,当E 是AD 中点时,12AF AEFC ED=⋅成立,若E 是AD 上任意一点(E 与A 、D 不重合),上述结论是否仍然成立,若成立请写出证明,若不成立,请说明理由.F E DCBA【巩固】(天津市竞赛题)如图,已知ABC ∆中,AD 是BC 边上的中线,E 是AD 上的一点,且BE AC =,延长BE 交AC 于F 。
初中数学-九年级《线段的比和比例线段》
。
(3) x x 1 (4) x 1 x 2
3
2
x
x 1
思考:
1.已知 a b ,求下列算式的值. 34
(1) 2a b b
(2) 3a 4b a 5b
2.已知 : x y z ,求 x y 3z 的值. 2 3 4 3x 2y
bd b、c、d叫做成比例线段,简称比例线段。
其中,a与d叫做比例外项,b与c叫做比例内项。
(注意:成比例的四条线段是有顺序)
二、比例线段
2、如果作为比例内项的两条线段是两条相同的线段,即 a b (或a︰b=c︰d),那么线段b叫做线段a和c的比例中项。 bd
练习: (1)四条线段3cm,7cm,Xcm,4cm成比例。求X。 (2)求2、8的比例中项。
D. a b dc
对比例式变形检验:是否满足” 外项这 积等于内项之积”
2、判断下列四个数能否成比例,若成比例,请写出比例式。 (1)2,3,4,6 ;(2) 3,2,3,2 3
3、根据下列条件,求a:b的值。 (1) 2a=3b ; (2) a b
54
4、求下列比例式中的x值
(1)4:3=5:x,那么x=
或 AB m CD n
其中:AB是比的前项,CD是比的后项。
练习:
(1)若线段a=4cm,b=8cm。求a︰b 它们的比值有 (2)若线段c=3cm,d=60mm。求c︰d 什么关系?
二、比例线段
1、在四条线段a、b、c、d中,如果a与b的比等于c与d 的比,即 a c(或a︰b=c︰d),那么这四条线段a、
三、比例线段的基本性质
(1)如果a︰b=c︰d,那么ad=bc 即,两外项积等于两内项积
初中数学相似三角形题型归类——成比例线段专项练习2(附答案详解)
初中数学相似三角形题型归类——成比例线段专项练习 2(附答案详解)
1.已知线段 a 2cm , b 8cm ,它们的比例中项 c 是( )
A. 4cm
B. 4cm
C.16cm
D. 16cm
2.下列各组线段(单位:cm)中,成比例线段的是( )
A.1、2、2、3
B.1、2、3、4
C.1、2、2、4 D.3、5、9、13
金分割点( AP2 P1P2 ),点 P3 是线段 AP2 的黄金分割点( AP3 P2P3 ),..,依此类推,则线段
AP2020 的长度是(
)
A. (3 5 )2020 2
B. ( 5 1)2020 2
C. ( 1)2020 2
D. ( 5 2)1010
11.爱好骑行的小明想知道从淮北到首都北京的距离大约是多少,因此他从一张比例尺
AB AC AB 被点 C 黄金分割,点 C 叫做线段 AB 的黄金分割点,AC 与 AB 的比叫做黄金比.请
计算黄金比.
22.已知 x y z ,且 2x+3y﹣z=18,求 4x+y﹣3z 的值. 234
23.阅读理解:
如图①,点 C 将线段 AB 分成两部分,若 AC = BC ,则点 C 为线段 AB 的黄金分割点. AB AC
线段比的练习题
线段比的练习题题目一:已知线段AB与线段CD的比为2:3,线段DE与线段EF的比为4:5,求线段AB与线段EF的比。
解答:首先,我们需要先计算出线段AB与线段CD的实际长度,以及线段DE与线段EF的实际长度。
假设线段AB的长度为2x,线段CD的长度为3x,线段DE的长度为4y,线段EF的长度为5y。
由已知条件可得:2x/3x = 2/34y/5y = 4/5根据比例的性质,我们可以得出以下等式:2x/3x = 4y/5y通过交叉相乘法则,我们可以得出:2x * 5y = 3x * 4y化简后得到:10xy = 12xy由此可知,线段AB与线段EF的比为10:12,即5:6。
题目二:已知线段AB与线段CD的比为3:4,线段EF与线段GH的比为2:5,求线段AB与线段GH的比。
解答:与题目一类似,我们先计算线段AB与线段CD的实际长度,以及线段EF与线段GH的实际长度。
假设线段AB的长度为3x,线段CD的长度为4x,线段EF的长度为2y,线段GH的长度为5y。
由已知条件可得:3x/4x = 3/42y/5y = 2/5根据比例的性质,我们可以得出以下等式:3x/4x = 2y/5y通过交叉相乘法则,我们可以得出:3x * 5y = 4x * 2y化简后得到:15xy = 8xy由此可知,线段AB与线段GH的比为15:8。
题目三:线段AB与线段CD的比为2:7,线段EF与线段GH的比为1:5,求线段AB与线段GH的比。
解答:与前两题类似,我们先计算线段AB与线段CD的实际长度,以及线段EF与线段GH的实际长度。
假设线段AB的长度为2x,线段CD的长度为7x,线段EF的长度为y,线段GH的长度为5y。
由已知条件可得:2x/7x = 2/7y/5y = 1/5根据比例的性质,我们可以得出以下等式:2x/7x = y/5y通过交叉相乘法则,我们可以得出:2x * 5y = 7x * y化简后得到:10xy = 7xy由此可知,线段AB与线段GH的比为10:7。
七年级数学上成比例线段练习题
七年级数学上成比例线段练习题
题目1
已知线段AB = 3cm,CD = 4cm,且AB与CD成比例,求线段AB的比例系数。
解题思路1
由题可知,线段AB与CD成比例,设比例系数为k,则有AB = k * CD,代入AB和CD的长度,得到3 = k * 4,解得k = 0.75,所以线段AB的比例系数为0.75。
题目2
在平面直角坐标系中,已知A(-3,4)、B(x,2),若线段AB与x 轴正半轴成比例,求x的值。
解题思路2
由题可知,线段AB与x轴正半轴成比例,所以线段AB的比例系数等于x轴正半轴上的点到点B的距离与点A到点B的距离之比。
设线段AB的比例系数为k,则有AB = kx,AE = kx,DE = 2 - kx,由勾股定理可得:$AB^2$ = $AE^2$ + $DE^2$,即
($kx$)$^2$ = ($kx$)$^2$ + (2 - $kx$)$^2$,简化得到3$kx^2$ - 4kx + 4 = 0,解得x = 2/3或2,由于点B在第二象限,所以x = 2/3。
题目3
已知线段AB = 6cm,DE = 15cm,且线段AB与DE成比例,求线段DE的长度。
解题思路3
由题可知,线段AB与DE成比例,设比例系数为k,则有AB = k * DE,代入AB和DE的长度,得到6 = k * 15,解得k = 0.4,所以线段DE的长度为15 * 0.4 = 6cm。
七年级数学尖子生培优竞赛专题辅导第十六讲 比例线段(含答案)
②
由①、②得:
∵x3+y3+z3-3xyz=(x+y+z)(x2+y2+z2-xy-yz-zx),
∴ .
∵p+q+r=9,∴ ,故选A.
二、构造比例线段解题
例2(江苏省初中竟赛题)如图,过△ABC顶点B的两条直线分三角形BC边上的中线AD所成的比AE:EF:FD=4:3:1,则这两直线分AC所成的比AG:GH:HC为()
5.(2000年湖北省初中竞赛题)如图16-21,已知 、 为 的边 上的两点,且满足 ,一条平行于 的直线分别交 和 的延长线于点 和 .求证: .
6.(1998年山东省初中竞赛题)如图16-22,在四边形 中, 与 相交于 ,直线 平行于 且与 及 的延长线分别交于点 和 ,求证: .
∴△BAD∽△CAB.∴
∴CD=BD=AB∴
∴AB2=AC2-AB·AC即
∴ 或 (舍去)
∴命题成立.
点评顶角为36°的等腰三角形的底与腰之比等于黄金分割比,顶角为108°的等腰三角形的腰与底之比等于黄金分剖比,因此,常把这两种三角形称之为黄金三角形.
例6如图,在△ABC中,已知∠A:∠CBA:∠BCA=1:2:4,求证: .
例5求证:顶角为36°等腰三角形的底与腰之比等于黄金数.
已知如图,在△ABC中,AC=BC,∠C=36°.
求证: .
解析若将三角形分成两个相似三角形,可找到AB、AC间的关系式.
证明作∠CBA的平分线DB交AC于D.
∵∠C=36°,AC=BC,∴∠CBA=72°
∴∠DBA=∠DBC=∠C.∵∠A=∠A,
解析延长AB至D,使BD=BC,连接CD,在AB上取一点E,使ED=CD,设∠A=a,则∠CBA=2a,
专题23.1成比例线段【十大题型】-2024-2025学年九年级数学上册举一反三系[含答案]
专题23.1 成比例线段【十大题型】【华东师大版】【题型1 由成比例线段直接求值】 【题型2 比例尺】【题型3 由比例的性质判断结论正误】【题型4 由比例的性质求参数的值】【题型5 由比例的性质求代数的值】【题型6 由比例的性质进行证明】 【题型7 由比例的性质比较大小】【题型8 比例的应用】【题型9 由黄金分割求值】【题型10 黄金分割的应用】知识点1:成比例线段1.比例的项:在比例式::a b c d =(即a cb d=)中,a ,d 称为比例外项,b ,c 称为比例内项.特别地,在比例式::a b b c =(即a bb c=)中,b 称为a ,c 的比例中项,满足2b ac =.2.成比例线段:四条线段a ,b ,c ,d 中,如果a 和b 的比等于c 和d 的比,即a cb d=,那么这四条线段a ,b ,c ,d 叫做成比例线段,简称比例线段.【题型1 由成比例线段直接求值】【例1】(23-24九年级·上海宝山·期中)1.下列各组中的四条线段成比例的是( )A .2cm 3cm 4cm 6cm ,,,B .2cm 3cm 4cm 5cm ,,,C .1cm 2cm 3cm 4cm ,,,D .3cm 4cm 6cm 9cm ,,,【变式1-1】(23-24九年级·广东梅州·期中)2.根据45a b =,可以组成的比例有( )A .:5:4a b =B .:4:5a b =C .:4:5a b =D .:54:a b=【变式1-2】(23-24九年级·浙江嘉兴·期中)3.已知:1:2a b =,且210a b +=.(1)求a 、b 的值;(2)若c 是a 、b 的比例中项,,求c 的值.【变式1-3】(23-24九年级·全国·课后作业)4.如图,在Rt ABC △中,CD 是斜边AB 上的高线,试猜想线段AC ,AB ,CD ,BC 是否成比例.如果成比例,请写出这个比例式,并进行验证;如果不成比例,请说明理由.【题型2 比例尺】【例2】(2024·江苏泰州·三模)5.为了将优质教育资源更好的惠及广大人民群众,某校设有凤凰路校区与春晖路校区,杨老师欲从凤凰路校区骑行去春晖路校区,用手机上的地图软件搜索时,显示两个校区间骑行的实际路程为2.2km ,当地图上比例尺由11000∶变为1500∶时,则地图上两个校区的路程增加了cm .【变式2-1】(23-24九年级·江苏无锡·期末)6.在某市建设规划图上,城区南北长为120cm ,该市城区南北实际长为36km ,则该规划图的比例尺是 .【变式2-2】(23-24九年级·上海奉贤·期中)7.如果一幅地图的比例尺为1:50000,那么实际距离是3千米的两地在地图上的图距是( )A .6厘米B .15厘米C .60厘米D .150厘米【变式2-3】(23-24九年级·陕西西安·期末)8.西安市大雁塔广场占地面积约为667000m 2,若按比例尺1∶2000缩小后,其面积大约相当于( )A .一个篮球场的面积B .一张乒乓球台台面的面积C .《华商报》的一个版面的面积D .《数学》课本封面的面积知识点2:比例的性质比例的性质示例剖析(1)基本性质:()a cad bc bd bd=Û=¹0x yx y =Û3=223(2)反比性质:()a c b dabcd b d a c=Û=¹0x y x y23=Û=23(0)xy ¹(3)更比性质:a c ab b dc d=Û=或d c b a =()abcd ¹0x y x y 2=Û=233或32y x =(0)xy ¹(4)合比性质:a c a b c db d b d ++=Û=()bd ¹0x x y y y 2+2+3=Û=33(0)y ¹(5)分比性质:a c a b c dbd b d --=Û=()bd ¹0y y x x x 3-3-2=Û=22(0)x ¹(6)合分比性质:ac a b c db d a bc d++=Û=--(,,)bd a b c d ¹0¹¹x x y y x y 2+2+3=Û=3-2-3(,)y x y ¹0¹(7)等比性质:()a c mb d n b d n ==⋅⋅⋅=++⋅⋅⋅+¹0ac m ab d n b++⋅⋅⋅+⇒=++⋅⋅⋅+(0)b d n +++¹L 已知x y z234==,则当0x y z ++¹时,x y z x y z2342+3+4===++.【题型3 由比例的性质判断结论正误】【例3】(23-24九年级·江苏淮安·阶段练习)9.若34x y =,则下列各式中不正确的是( )A .74x y y +=B .14x y y -=C .43x y=D .2113x y x +=【变式3-1】(23-24九年级·河南平顶山·期中)10.下列结论中,错误的是( )A .若45a c =,则45a c =B .若16a b b -=,则76a b =C .若23a cb d ==(b ﹣d ≠0),则23a c b d -=-D .若34a b =,则a =3,b =4【变式3-2】(23-24九年级·山东泰安·期中)11.若a cb d=(a 、b 、c 、d 、m 均为正数),则下列结论错误的是( )A .ad bc=B .2222a cb d =C .22ad c b ad=D .a m cb m d+=+【变式3-3】(2024·甘肃陇南·一模)12.某校每位学生上、下学期各选择一个社团,下表为该校学生上、下学期各社团的人数比例.若该校上、下学期的学生人数不变,相较于上学期,下学期各社团的学生人数变化,下列叙述何者正确?( ) 舞蹈社溜冰社魔术社上学期345下学期432A .舞蹈社不变,溜冰社减少B .舞蹈社不变,溜冰社不变C .舞蹈社增加,溜冰社减少D .舞蹈社增加,溜冰社不变【题型4 由比例的性质求参数的值】【例4】(23-24九年级·河南郑州·期末)13.已知222a b ck b c a c a b===+++,则k =( )A .1B .1±C .1或2-D .2【变式4-1】(23-24九年级·安徽亳州·阶段练习)14.已知a ,b ,c 满足438324a b c +++==且12a b c ++=,试求a ,b ,c 的值.【变式4-2】(2024春·安徽蚌埠·九年级校考期末)15.已知a ,b ,c 为ABC V 的三边长,且36a b c ++=,345a b c ==.(1)求线段a ,b ,c 的长;(2)若线段x 是线段a ,b 的比例中顶(即a xx b=),求线段x 的长.【变式4-3】(23-24九年级·山东烟台·期中)16.如果()0a c ek b d f b d f===++¹,且()3a c e b d f ++=++,那么k 的值是( )A .2B .3C .13D .12【题型5 由比例的性质求代数的值】【例5】(23-24九年级·四川眉山·阶段练习)17.如果312234x y z +--==,且18x y z ++=,则2x y z --的值为 .【变式5-1】(23-24九年级·山东青岛·期末)18.已知()2520b a c b d d +=¹=,则22a c b d++的值为 .【变式5-2】(23-24九年级·陕西西安·期中)19.已知532a b c==.(1)求a bc+的值;(2)若29a b c +-=,求2a b c -+的值.【变式5-3】(23-24九年级·四川乐山·期末)20.已知a b c 、、满足112234a b c -+-==,试求222a b c +-的最大值 .【题型6 由比例的性质进行证明】【例6】(23-24九年级·山东淄博·期末)21.已知a ,b ,c ,d 为四个不为0的数.(1)如果3a b=,求a bb +与a b a b -+的值;(2)如果(),a ca b c d b d =¹¹,求证a c b a d c=--;(3)如果a c ab d b +=+,求证ac b d=.【变式6-1】(2024九年级·全国·专题练习)22.已知==ax by cz ,且1111x y z ++=.求证:()3323232a x b y c z a b c ++=++.【变式6-2】(23-24九年级·全国·单元测试)23.已知::a b c d =,且b nd ¹,求证:a a ncb b nd-=-.【变式6-3】(23-24九年级·重庆大渡口·期末)24.材料:思考的同学小斌在解决连比等式问题:“已知正数x ,y ,z 满足y z z x x yk x y z +++===,求2x y z --的值”时,采用了引入参数法k ,将连比等式转化为了三个等式,再利用等式的基本性质求出参数的值.进而得出x ,y ,z 之间的关系,从而解决问题.过程如下:解;设y z z x x yk x y z+++===,则有:y z kx +=,z x ky +=,x y kz +=,将以上三个等式相加,得()()2x k z k x y z ++=++.Q x ,y ,z 都为正数,\2k =,即2y zx+=,.\20x y z --=.仔细阅读上述材料,解决下面的问题:(1)若正数x ,y ,z 满足222x y zk y z z x x y===+++,求k 的值;(2)已知()()23a b b c c aa b b c c a +++==---,a ,b ,c 互不相等,求证:8950a b c ++=.【题型7 由比例的性质比较大小】【例7】(23-24九年级·河北保定·期末)25.若275x y z ==,设y A x y z =++,x z B y +=,x y zC x +-=,则A 、B 、C 的大小顺序为( )A .A B C>>B .A B C<<C .C A B>>D .A C B<<【变式7-1】(23-24九年级·浙江杭州·期中)26.如果a ,b ,c 满足b c a b ==,则a ,b ,c 之间的关系是( )A .a b c=+B .a b c >+C .a b c <+D .222a b c =+【变式7-2】(2024九年级·北京西城·专题练习)27.已知0257a b c ==¹,设1x a b c =++, a cy b +=, a b c z a +-=,试判断x ,y ,z 的大小关系.【变式7-3】(23-24九年级·广东珠海·期末)28.已知a ,b ,c ,d 都是互不相等的正数.(1)若2a b =,2cd =,则b a d c,a c b d (用“>”,“<”或“=”填空);(2)若,a c b d=请判断b a b +和dc d+的大小关系,并证明;(3)令,a b t cd==若分式232a c b da cb d ++-+--的值为3,求t 的值.【题型8 比例的应用】【例8】(2024·陕西西安·模拟预测)29.如图,以O 为支点,木棍OA 所受的重力为G .根据杠杆原理,在A 处需一竖直向上的拉力F 才能保持木棍不动,若向上的拉力F 与重力G 大小之比为3:7,6cm OD =,则CD 的长为 .【变式8-1】(2024春·四川成都·九年级校考期中)30.在同一时刻物高与影长成比例,小莉量得综合楼的影长为 6 米,同一时刻她量得身高 1.6米的同学的影长为 0.6 米,则综合楼高为米.【变式8-2】(2024春·广东茂名·九年级统考期中)31.装修一间客厅,用边长5分米的方砖铺地,需要80块,如果改用边长4分米的方砖铺地,需要多少块?【变式8-3】(2024春·四川成都·九年级成都七中校考期中)32.国家会展中心(上海)坐落于虹桥商务区核心区西部,与虹桥机场的直线距离仅有2.5公里,总建筑面积147万平方米,地上建筑面积127万平方米,是目前世界上面积第二大的建筑单体和会展综合体.小明在地图上量得国家会展中心(上海)距离虹桥机场的直线距离为0.5厘米,而量得国家会展中心(上海)与浦东机场的直线距离为9.7厘米,那么国家会展中心(上海)与浦东机场的实际直线距离有多少公里?(运用比例解答)知识点3:黄金分割若线段AB 上一点C ,把线段AB 分成两条线段AC 和BC (AC BC >),且使AC 是AB 和BC 的比例中项(即2AC AB BC =⋅)C 黄金分割,点C 叫线段AB 的黄金分割点,其中0.618AC AB AB »,BC AB =.AB »0382,AC 与AB 的比叫做黄金比.(注意:对于线段AB 而言,黄金分割点有两个.)【题型9 由黄金分割求值】【例9】(2024·内蒙古包头·三模)33.正五角星是一个非常优美的几何图形,在如图所示的正五角星中,以A 、B 、C 、D 、E 4个结论:①36A Ð=°,②PB =,③PA AD =,④PT PA =.请填写你认为正确的结论序号: .【变式9-1】(23-24九年级·河北保定·期末)34.如图,已知点C ,D 都是线段AB 的黄金分割点,如果4CD =,那么AB 的长度是( )A .2B .6-C .8+D .2【变式9-2】(23-24九年级·山东青岛·期末)35.射影中有一种拍摄手法叫黄金分割构图法,其原理是:如图,将正方形ABCD 的边BC 取中点O ,以O 为圆心,线段OD 为半径作圆,其与边BC 的延长线交于点E ,这样就把正方形ABCD 延伸为黄金矩形ABEF ,若4CE =,则AB = .【变式9-3】(23-24九年级·河南许昌·期末)36.如图,已知线段2AB =,经过点B 作BD AB ^,使12BD AB =,连接AD ,在AD 上截取DE BD =;在AB 上截取AC AE =,则:=AC AB .【题型10 黄金分割的应用】【例10】(2024九年级·黑龙江大庆·学业考试)37.古希腊时期,0.618»,称为黄金分割比例),如图,著名的“断臂维纳斯”便是如此.此外,最美若某人满足上述两个黄金分割比例,且腿长为105cm,头顶至脖子下端的长度为26cm,则其身高可能是()A.165cm B.175cm C.185cm D.190cm【变式10-1】(2024·广东·二模)38.如图,美术素描课堂上有很多关于黄金分割比的元素,比如脸部素描就需要考虑黄金分割比的问题,按照如下要求作出的人脸图像比较美观:(1)眉头、眼头、鼻翼在一条竖直直线上;(2)眉头和眉峰的水平距离(图中直线①和直线②的距离)和眼长大致相等(设此长度为a),眉头和眉尾的水平距离(图中直线①和直线③的距离)设为b,a与b的比例(3)眉尾、眼梢、鼻翼在同一直线上.某同学按照以上要求进行素描,已知他的素描作品中眼梢到眉尾的距离为2cm,则眼梢到鼻翼的距离为cm. 2.236»,结果保留两位小数)【变式10-2】(23-24九年级·山东德州·阶段练习)39.如图1在线段AC 上找一个点B ,B 把AC 分成AB 和BC 两段,其中AB 是较小的一段,满足AB BC BC AC =::,则B 为线段AC 的黄金分割点.黄金分割广泛存在于艺术、自然、建筑等领域,例如,枫叶的叶脉蕴含着黄金分割.如图2,B 为AC 的黄金分割点(AB BC >),AC 长度为15cm ,则AB 的长度cm ;(结果用根号表示)【变式10-3】(23-24九年级·陕西西安·阶段练习)40.鹦鹉螺是一类古老的软体动物.鹦鹉螺曲线的每个半径和后一个半径的比都是黄金比例,是自然界最美的鬼斧神工.如图,P 是AB 的黄金分割点(AP BP >),若线段AB 的长为10cm ,则BP 的长为 cm .(结果保留根号)1.A【分析】根据比例线段的概念逐项判断即可解答【详解】解:A .∵2634´=´,∴四条线段成比例,符合题意;B .∵2534´¹´,∴四条线段不成比例,不符合题意;C .∵1423´¹´,∴四条线段不成比例,不符合题意;D .∵3946´¹´,∴四条线段成比例,不符合题意.故选:A .【点睛】本题主要考查了比例线段,理解成比例线段的概念,注意在线段两两相乘的时候,要让最小的和最大的相乘,另外两条相乘,看它们的积是否相等进行判断.2.A【分析】本题考查了比例的性质,熟练掌握比例的性质是解题的关键.根据比例的性质,进行计算即可解答.【详解】解:Q 45a b =,\:5:4a b =,故选:A .3.(1)2a =,4b =;(2)c =±.【分析】本题考查了比例及比例中项,解题的关键是正确理解其概念.(1)利用:1:2a b =,可设a k =,2b k =,则410k k +=,然后解出k 的值即可得到a 、b 的值;(2)根据比例中项的定义得到2c ab =,即28c =,然后根据平方根的定义求解;【详解】(1)解:∵:1:2a b =,∴设a k =,2b k =,∵210a b +=,∴410k k +=,∴2k =,∴2a =,4b =;(2)∵c 是a 、b 的比例中项,∴28c ab ==,∴c =±4.线段AC ,AB ,CD ,BC 成比例,且AB BC AC CD=,理由见解析【分析】根据直角三角形的面积公式,得1122AB CD AC BC ⋅=⋅,整理变形即得答案.【详解】解:线段AC ,AB ,CD ,BC 成比例,且AB BC AC CD =(或AB AC BC CD =).验证如下:根据三角形的面积公式,得1122AB CD AC BC ⋅=⋅,所以AB CD AC BC ⋅=⋅,即AB BC AC CD =.【点睛】本题以直角三角形为依托,主要考查成比例线段的性质,即若a cb d =,则ad=bc ,反之也成立,即若ad=bc ,则a c b d=.解题的关键是由直角三角形的面积得出AB CD AC BC ⋅=⋅.5.220【分析】本题考查了比例尺的运用,掌握比例尺的计算方法是解题的关键.根据=图上距离比例尺实际距离进行计算即可求解,计算时注意单位的换算,单位要统一.【详解】解:实际路程为2.2220000km cm =,当比例尺为1:1000时,图示距离为2200002201000cm =,当比例尺为1:500时,图上距离为220000440500cm =,∴440220220cm -=,故答案为:220 .6.1:30000【分析】本题主要考查了比例尺.根据比例尺=图上距离:实际距离,列比例式求得这两地的实际距离.【详解】解:根据题意得:该规划图的比例尺是120cm :36km 120:36000001:30000==.故答案为:1:30000.7.A【分析】根据比例尺的定义:图上距离与实际距离的比直接计算即可得到答案;【详解】解:∵比例尺为1:50000,实际距离是3千米,∴图上距离300000(1:50000)6cm =´=,故选:A .8.C【分析】利用相似多边形的面积比等于相似比的平方,列比例式进行求解,再根据现实生活中的物体的面积,即可得出答案.【详解】设其缩小后的面积为xm 2 ,则x:667000=(1:2000) 2,x=0.16675m 2,其面积相当于报纸的一个版面的面积.故选C.【点睛】此题考查相似多边形的性质,正确估计图形的面积,和生活中的物体联系起来是本题的关键.9.B【分析】设3x k =,4y k =.代入选项计算结果,即可得到答案.【详解】解:设3x k =,4y k =,A .34744x y k k y k ++==,正确,故A 选项不符合题意;B .34144x y k k y k --==-,原式错误,故B 选项符合题意;C .44312343x k k k y =⋅==⋅=,正确,故C 选项不符合题意;D .23241133x y k k x k ++⋅==,正确,故D 选项不符合题意;故选:B .【点睛】本题考查比例的基本性质,解题的关键是利用换元法进行约分消元求值.10.D【分析】根据比例性质,化为乘积变形可判断A 正确,利用先化积,再化比例可判定B ,利用换元计算可判断C ,设比值,取k =1与k ≠1,可判断D .【详解】解:A 、若45a c =,则54a c =,而45a c =,54a c =正确,不合题意;B 、若16a b b -=,则6(a ﹣b )=b ,故6a =7b ,则76a b =,正确,不合题意;C 、若23a c b d ==(b ﹣d ≠0)2233a b c d ==,,则()22223333b d b d ac bd b d b d ---===---,正确,不合题意;D、若34ab=,设34a kb k==,,当k=1时,有a=3,b=4,当k≠1,a,b的值不是3与4,故此选项错误,符合题意.故选:D.【点睛】本题考查比例性质,等积化比例,比例化等积,合分比性质,掌握比例性质是解题关键.11.D【分析】把各个选项依据比例的基本性质和合比性质,即可判断求解.【详解】A、∵a cb d=,两边同乘以bd得:ad bc=,故A正确,不合题意;B、∵a cb d=,两边平方得:2222a cb d=,故B正确,不合题意;C、∵a cb d=,两边平方得:2222a cb d=,两边同乘以da得:22ad cb ad=,故C正确,不合题意;D根据a cb d=不能得出a m cb m d+=+,故D不正确,符合题意;故答案为:D.【点睛】本题主要考查了判断两个比例式是否能够互化的方法,即转化为等积式,及比例的合比性质判断是否相同即可.12.D【分析】若甲:乙:丙=a:b:c,则甲占全部的aa b c++,乙占全部的ba b c++,丙占全部的ca b c++.【详解】由表得知上、下学期各社团人数占全部人数的比例如下:∴舞蹈社增加,溜冰社不变.故选D.【点睛】本题考查了比例的性质.找出各社团人数占全部人数的比例是解题的关键.13.C【分析】本题考查了比例的性质,熟悉等比性质是解题的关键.分两种情况进行讨论:①当0a b c ++¹时,根据等比性质计算得出结果;②当0a b c ++=时,则a b c +=-,代入2c k a b=+计算得出结果.【详解】解:分两种情况:①当0a b c ++¹时,得2221a b c k b c a c a b++==+++++;②当0a b c ++=时,则a b c +=-,22c k a b ==-+;综上所述,k 的值为1或2-.故选:C .14.5a =,3b =,4c =【分析】本题主要考查了比例的性质,设438324a b c k +++===,得出34a k =-,23b k =-,48c k =-,根据91512a b c k ++=-=,求出3k =,即可得到答案,利用比例的性质设未知数是解题关键.【详解】解:设438324a b c k +++===,则34a k =-,23b k =-,48c k =-,∴91512a b c k ++=-=,解得:3k =,∴5a =,3b =,4c =.15.(1)91215a b c ===,,(2)x =【分析】(1)设345a b c k ===,则345a k b k c k ===,,,再结合题意可列出关于k 的等式,解出k 的值,即可求出线段a ,b ,c 的长;(2)由题意可直接得出912x x =,解出x 的值(舍去负值)即可.【详解】(1)由题意可设345a b c k ===,则345a k b k c k ===,,,∵36a b c ++=,∴34536k k k ++=,解得:3k =,∴91215a b c ===,,;(2)∵a x xb =,∴912x x =,整理,得:2108x =,解得:x =.【点睛】本题考查比例的性质,比例中项的概念.利用“设k 法”是解题关键.16.B【分析】本题考查了比例的性质,掌握比例的性质是解题的关键.根据比例的性质求得,,a bk c dk e fk ===,代入()3a c e b d f ++=++,即可求解.【详解】解:Q a c e k b d f===,,,a bk c dk e fk \===,Q ()3a c e b d f ++=++.()3bk dk fk b d f \++=++,3k \=,故选:B .17.15-【分析】此题考查了比例的性质,设312234x y z k +--===,得出23x k =-,31y k =+,42z k =+,再根据18x y z ++=,求出k 的值,从而得出x ,y ,z 的值,最后代入要求的式子进行计算即可得出答案.【详解】解:设312234x y z k +--===,则23x k =-,31y k =+,42z k =+,18x y z ++=Q ,23314218k k k \-++++=,2k \=,1x \=,7y =,10z =,2271015x y z \--=--=-;故答案为15-.18.25##0.4【分析】先求出2225d a c b ==,再根据比例的性质即可得.【详解】解:()2520a d d c b b +==¹Q ,2252a c d b =\=,2225a cb d +\=+,故答案为:25.【点睛】本题考查了比例的性质,熟练掌握比例的性质是解题关键.19.(1)4(2)814【分析】本题主要考查了比例的性质,通过532a b c ==,设出()5320a k b k c k k ===¹,,是解题的关键.(1)设()5320a k b k c k k ===¹,,,则532a b k k c k++=,据此可得答案;(2)设()5320a k b k c k k ===¹,,,由29a b c +-=得到5349k k k +-=,解方程求出94k =,则812103294a b c k k k k -+=-+==.【详解】(1)解:∵532a b c==,∴可设()5320a k b k c k k ===¹,,∴5342a b k k c k++==;(2)∵532a b c==,∴可设()5320a k b k c k k ===¹,,,∵29a b c +-=∴5349k k k +-=.∴94k =,∴812103294a b c k k k k -+=-+==.20.25【分析】设112234a b c k -+-===,得到关于k 的等式,利用配方法和非负数的性质即可求解.【详解】解:设112234a b c k -+-===,∴a -1=2k ,b +1=3k ,c -2=4k ,即a =2k +1,b =3k -1,c =4k +2,∴a 2+b 2−c 2= (2k +1)2+(3k -1)2−(4k +2)2=4k 2+4k +1+9k 2-6k +1-(16k 2+16k +4)=4k 2+4k +1+9k 2-6k +1-16k 2-16k -4=-3k 2-18k -2=-3(k 2+6k +9-9)-2=-3(k +3) 2+25∵(k +3) 2≥0,则-3(k +3) 2≤0,∴a 2+b 2−c 2的最大值为25,故答案为:25.【点睛】本题考查了比例的性质,完全平方公式,掌握配方法和非负数的性质是解题的关键.21.(1)4a b b+=,12a b a b -=+(2)见解析(3)见解析【分析】本题主要考查了分式的求值,比例的性质:(1)先根据已知条件得到14a b a b b +=+=,3a b =,再把3a b =代入a b a b -+中进行求解即可;(2)设a c k b d==,则a kb =,c kd =,再分别计算出a b a -和c d c -的值即可证明结论;(3)求出bc ad =,进而可得a cb d =。
线段的比例与相似综合练习题
线段的比例与相似综合练习题1. 建校100年的ABC中学每年都会举行一次校庆活动。
今年的校庆活动中,为了庆祝学校的百年华诞,学校特别准备了一条长20米的彩带。
校庆活动当天,教师和学生们手拉手,沿校园大道将彩带围成一个长方形闭合区域,行进了一段距离。
已知这段距离是整个校园大道的1/4,问这段距离是多少米?答案:20米的1/4 = 5米。
2. 在一个地图比例1:5000的城市规划图上,两条道路相交形成了一个三角地带。
已知地图上两条道路的实际长度分别是80米和120米,这两条道路在地图上的长度比是多少?答案:80米/120米 = 2/3。
3. 某建筑公司为了了解一座建筑物的规模,需要将它的实际尺寸缩小到模型中。
已知这座建筑物的实际高度是50米,而模型的高度是10厘米,那么这两者之间的比例是多少?答案:50米/10厘米 = 500:1。
4. 一条直线上两点A、B之间的距离是6米,另外一点C在A点一侧,且C到A点的距离是2米,求C到B点的距离。
解法:根据线段的比例可知:AC/AB = 2/6 = 1/3,设CB的长度为x,则有AC/AB = CB/AB,即1/3 = x/6,解得x = 2米。
所以C到B点的距离是2米。
5. 一条绳子上有两个挂钩,离绳子一端的挂钩为甲点,离绳子另一端的挂钩为乙点。
已知甲点距离绳子一端的距离是3米,乙点距离绳子一端的距离是9米,并且乙点是甲点的3倍。
如果甲点与绳子的另一端的距离是x米,求x的值。
解法:根据线段的比例可知:甲乙点的距离关系为3:9 = 1:3,设甲点到绳子另一端的距离为x,则有甲点到绳子一端的距离/x = 1/3,解得x = 9米。
所以甲点与绳子的另一端的距离是9米。
通过以上练习题,我们了解了线段比例与相似的概念,并学会了如何计算线段的比例关系。
掌握了这些知识,我们在实际问题中就能准确地计算出线段之间的比例关系,从而解决各种与线段相关的问题。
成比例线段练习题及答案
成比例线段练习题及答案成比例线段是初中数学中的一个重要知识点,它在几何图形的相似性质、比例关系以及实际问题的解决中起着重要的作用。
掌握成比例线段的求解方法,对于提高学生的数学能力和解决实际问题具有重要意义。
本文将介绍一些成比例线段的练习题及其解答,帮助读者更好地理解和掌握这一知识点。
1. 题目:已知线段AB与线段CD成比例,AB = 5,CD = 15,求线段EF的长度。
解答:根据成比例线段的定义,我们知道AB/CD = EF/15。
将已知条件代入,得到5/15 = EF/15。
通过交叉相乘法,我们可以得到EF = 5/15 * 15 = 5。
所以线段EF的长度为5。
2. 题目:已知线段AB与线段CD成比例,AB = 3/4,CD = 9/10,求线段EF的长度。
解答:根据成比例线段的定义,我们知道AB/CD = EF/(9/10)。
将已知条件代入,得到(3/4)/(9/10) = EF/(9/10)。
通过分数的除法,我们可以得到EF = (3/4)/(9/10) * (9/10) = 3/4 * 10/9 = 30/36 = 5/6。
所以线段EF的长度为5/6。
3. 题目:已知线段AB与线段CD成比例,AB = 2x,CD = 3x + 4,求线段EF的长度。
解答:根据成比例线段的定义,我们知道AB/CD = EF/(3x + 4)。
将已知条件代入,得到(2x)/(3x + 4) = EF/(3x + 4)。
通过交叉相乘法,我们可以得到EF =(2x)/(3x + 4) * (3x + 4) = 2x。
所以线段EF的长度为2x。
4. 题目:已知线段AB与线段CD成比例,AB = 3a + 2,CD = 5a - 1,求线段EF的长度。
解答:根据成比例线段的定义,我们知道AB/CD = EF/(5a - 1)。
将已知条件代入,得到(3a + 2)/(5a - 1) = EF/(5a - 1)。
通过交叉相乘法,我们可以得到EF = (3a + 2)/(5a - 1) * (5a - 1) = 3a + 2。
湘教版-数学-九年级上册-3.1《比例线段》同步练习及答案
比例线段1.与14∶16能组成比例的是( ) A.16∶14 B.13∶12 C.12∶13 D.18∶1102.在比例尺是1∶38 000的南京交通游览图上,玄武湖公园与雨花台烈士陵园之间的距离约为20厘米,则它们之间的实际距离约为( )A.19 000厘米B.0.76千米C.1.9千米D.7.6千米3.下列各线段的长度成比例的是( )A.2 cm ,,,3 cm ,2 cm ,C.4 cm ,6 cm ,5 cm ,10 cmD.12 cm ,8 cm ,15 cm ,11 cm4.已知32x y =,那么下列式子成立的是( ) A.3x=2y B.x y=6 C.x y =23 D.y x =235.已知a a b +=13,则ba = _______.6.已知实数x 、y 满足3x-5y=0,则xy =________-.7.如图,乐器上的一根弦AB=80 cm ,两个端点A.B 固定在乐器板面上,支撑点C 是靠近点B 的黄金分割点(即AC 是AB 与BC 的比例中项),支撑点D 是靠近点A 的黄金分割点,则AC= __________-cm.8.已知:3x-5y=0.求下列式子的值: (1)x y ; (2)x y y -; (3)x yx +.9.已知:线段A.B.c ,且2a =3b =4c.(1)求a bb+的值;(2)若线段A.B.c满足a+b+c=27,求A.B.c的值.10.如图,有矩形ABCD和矩形A′B′C′D′,AB=8 cm,BC=12 cm,A′B′=4 cm,B′C′=6 cm.(1)求AABB''和BBCC'';(2)线段A′B′、AB.B′C′、BC是成比例线段吗?参考答案C 2.D 3.A 4.D 5.2 6.5358. (1)∵3x-5y=0,∴3x=5y,∴xy=53.(2)533x yy--==23.(3)∵xy=53,∴35yx=,∴53855x yx++==.9.(1)∵2a =3b ,∴a b =23,∴a b b +=53.(2)设2a =3b =4c=k ,则a=2k ,b=3k ,c=4k ,∵a+b+c=27,∴2k+3k+4k=27,∴k=3,∴a=6,b=9,c=12. 10.(1)4182c B A m A m B c ''==,61122c C C B m B cm ''==. (2)∵A A B B ''=B B C C '',故A′B′、AB.B′C′、BC 是成比例线段.。
九年级数学中考典型及竞赛训练专题22 与圆相关的比例线段(附答案解析)
九年级数学中考典型及竞赛训练专题22 与圆相关的比例线段阅读与思考比例线段是初中数学的一个核心问题.我们开始是用平行线截线段成比例进行研究的,随着学习的深入、知识的增加,在平行线法的基础上,我们可以利用相似三角形研究证明比例线段,在这两种最基本的研究与证明比例线段方法的基础上,在不同的图形中又发展为新的形式.在直角三角形中,以积的形式更明快地表示直角三角形内线段间的比例关系.在圆中,又有相交弦定理、切割线定理及其推论,这些定理用乘积的形式反映了圆内的线段的比例关系. 相交弦定理、切割线定理及其推论,它们之间有着密切的联系: 1.从定理的形式上看,都涉及两条相交直线与圆的位置关系;2.从定理的证明方法上看,都是先证明一对三角形相似,再由对应边成比例而得到等积式. 熟悉以下基本图形和以上基本结论.TPBDCBAPP ADCBA例题与求解【例1】如图,已知AB 是⊙O 的直径,弦CD 与AB 交于点E ,过点A 作圆的切线与CD 的延长线交于点F .若DE =34CE ,AC =85,点D 为EF 的中点,则AB = . (全国初中数学联赛试题)解题思路:设法求出AE 、BE 的长,可考虑用相交弦定理,勾股定理等.例1题图 例2题图【例2】如图,在Rt △ABC 中,∠C =90°,AC =4,BC =3,以BC 上一点O 为圆心作⊙O 与AC 、AB 都相切,又⊙O 与BC 的另一个交点为D ,则线段BD 的长为( )A .1B .12C .13D .14(武汉市中考试题)解题思路:由切割线定理知BE 2=BD ·BC ,欲求BD ,应先求BE . 须加强对图形的认识,充分挖掘隐含条件.【例3】如图,AB 是半圆的直径,O 是圆心,C 是AB 延长线上一点,CD 切半圆于D ,DE ⊥AB 于E .已知AE ∶ EB =4∶ 1,CD =2,求BC 的长.(成都市中考试题)解题思路:由题设条件“直径、切线”等关键词联想到相应的知识,寻找解题的突破口.【例4】如图,AC 为⊙O 的直径且PA ⊥AC ,BC 是⊙O 的一条弦,直线PB 交直线AC 于点D ,DB DP =DC DO =23. (1)求证:直线PB 是⊙O 的切线; (2)求cos ∠BCA 的值.(呼和浩特市中考试题)解题思路:对于(1),恰当连线,为已知条件的运用创设条件;对于(2),将问题转化为求线段的比值.P【例5】如图,已知AB 为⊙O 的直径,C 为⊙O 上一点.延长BC 至D ,使CD =BC ,CE ⊥AD 于E ,BF 交⊙O 于F ,AF 交CE 于P .求证:PE =PC .(太原市竞赛试题)解题思路:易证PC 为⊙O 切线,则PC 2=PF ·PA ,只需证明PE 2= PF ·PA . 证△PEF ∽△PAE ,作出常用辅助线,突破相关角.B【例6】如图,已知点P 是⊙O 外一点,PS 、PT 是⊙O 的两条切线. 过点P 作⊙O 的割线PAB ,交⊙O 于A 、B 两点,与ST 交于点C .求证:1PC =12(1PA +1PB ).(国家理科实验班招生试题)解题思路:利用切割线定理,再由三角形相似即可证.能力训练A 级1.如图,PA 切⊙O 于A 点,PC 交⊙O 于B 、C 两点,M 是BC 上一点,且PA =6,PB =BM =3,OM =2,则⊙O 的半径为 .(青岛市中考试题) 2.如图,已知△ABC 内接于⊙O ,且AB =AC ,直径AD 交BC 于点E ,F 是OE 的中点.如果BD ∥CF ,BC =25,则CD = .(四川省竞赛试题)PD(第1题图) (第2题图) (第3题图) (第4题图)3.如图,AB 切⊙O 于点B ,AD 交⊙O 于点C 、D ,OP ⊥CD 于点P . 若AB =4cm ,AD =8cm ,⊙O 的半径为5cm ,则OP = .(天津市中考试题)4.如图,已知⊙O 的弦AB 、CD 相交于点P ,PA =4,PB =3,PC =6,EA 切⊙O 于点A ,AE 与CD 的延长线交于点E ,AE =25,那么PE 的长为 .(成都市中考试题)5.如图,在⊙O 中,弦AB 与半径OC 相交于点M ,且OM =MC ,若AM =1.5,BM =4,则OC 的长为( ) A .2 6 B . 6 C .2 3 D .2 2(辽宁省中考试题)MD CBAC(第5题图) (第6题图) (第7题图)6.如图,两个同心圆,大圆的弦AB 与小圆相切于点P ,大圆的弦CD 经过点P ,且CD =13,PD =4,则两圆组成的圆环的面积为( )A .16πB .36πC .52πD .81π(南京市中考试题)7.如图,两圆相交于C 、D ,AB 为公切线,若AB =12,CD =9,则MD =( )A .3B .3 3C .6D .6 38.如图,⊙O 的直径AB =10,E 是OB 上一点,弦CD 过点E ,且BE =2,DE =22,则弦心距OF 为( ) A .1 B . 2C .7D . 3(包头市中考试题)B(第8题图) (第9题图) (第10题图)9.如图,已知在△ABC 中,∠C =90°,BE 是角平分线,DE ⊥BE 交AB 于D ,⊙O 是△BDE 的外接圆. (1)求证:AC 是⊙O 的切线; (2)若AD =6,AE =62,求DE 的长.(南京市中考试题)10.如图,PA 切⊙O 于A ,割线PBC 交⊙O 于B 、C 两点,D 为PC 的中点,连结AD 并延长交⊙O 于E ,已知:BE 2=DE ·EA .求证:(1)PA =PD ;(2)2BP 2=AD ·DE .(天津市中考试题)11.如图,△ABC 是直角三角形,点D 在斜边BC 上,BD =4DC .已知⊙O 过点C 且与AC 相交于F ,与AB 相切于AB 的中点G .求证:AD ⊥BF .(全国初中数学联赛试题)(第11题图) (第12题图)12.如图,已知AB 是⊙O 的直径,AC 切⊙O 于点A . 连结CO 并延长交⊙O 于点D 、E ,连结BD 并延长交边AC 于点F.(1)求证:AD ·AC =DC ·EA ;(2)若AC =nAB (n 为正整数),求tan ∠CDF 的值.(太原市竞赛试题)B 级1.如图,两个同心圆,点A 在大圆上,AXY 为小圆的割线,若AX ·AY =8,则圆环的面积为( ) A .4π B .8π C .12π D .16π(咸阳市中考试题)2.如图,P 为圆外一点,PA 切圆于A ,PA =8,直线PCB 交圆于C 、B ,且PC =4,AD ⊥BC 于D ,∠ABC =α,∠ACB =β. 连结AB 、AC ,则sin αsin β的值等于( ) A .14 B .12 C .2 D .4(黑龙江省中考试题)βαPAD CB(第1题图) (第2题图) (第3题图)3.如图,正方形ABCD 内接于⊙O ,E 为DC 的中点,直线BE 交⊙O 于点F ,若⊙O 的半径为2,则BF 的长为( )A .23 B .22 C .556 D .5544.如图,已知⊙O的半径为12,锐角△ABC内接于⊙O,BD⊥AC于点D,OM⊥AB于点M,则sin∠CBD的值等于()A.OM的长B.2OM的长C.CD的长D.2 CD的长(武汉市中考试题)(第4题图)(第5题图)(第6题图)5.如图,PC为⊙O的切线,C为切点,PAB是过O点的割线,CD⊥AB于D.若tan∠B=12,PC=10cm,求△BCD 的面积.(北京市海淀区中考试题)6.如图,已知CF为⊙O的直径,CB为⊙O的弦,CB的延长线与过F的⊙O的切线交于点P.(1)若∠P=45°,PF=10,求⊙O半径的长;(2)若E为BC上一点,且满足PE2=PB·PC,连结FE并延长交⊙O于点A.求证:点A是⌒BC的中点.(济南市中考试题)7.已知AC、AB是⊙O的弦,AB>AC.(1)如图1,能否在AB上确定一点E,使AC2=AE·AB?为什么?(2)如图2,在条件(1)的结论下延长EC到P,连结PB,如果PB=PE,试判断PB与⊙O的位置关系并说明理由;(3)在条件(2)的情况下,如果E是PD的中点,那么C是PE的中点吗?为什么?(重庆市中考试题)PA DCEACB(第7题图) (第8题图)8.如图,P 为⊙O 外一点,PA 与⊙O 切于A ,PBC 是⊙O 的割线,AD ⊥PO 于D ,求证:PB BD =PCCD .(四川省竞赛试题)9.如图,正方形OABC 的顶点O 在坐标原点,且OA 边和AB 边所在的直线的解析式分别为:y =43x 和y =32534+-x .D 、E 分别为边OC 和AB 的中点,P 为OA 边上一动点(点P 与点O 不重合),连接DE 和CP ,其交点为Q .(1)求证:点Q 为△COP 的外心; (2)求正方形OABC 的边长;(3)当⊙Q 与AB 相切时,求点P 的坐标.(河北省中考试题)(第9题图) (第10题图) (第11题图)10.如图,已知BC 是半圆O 的直径,D 是 ⌒AC 的中点,四边形ABCD 的对角线AC 、BD 交于点E . (1)求证:AC ·BC =2BD ·CD ;(2)若AE =3,CD =25,求弦AB 和直径BC 的长.(天津市竞赛试题)11.如图,PA是⊙O的切线,切点为A,PBC是⊙O的割线,AD⊥OP,垂足为D.证明:AD2=BD·CD.(全国初中数学联合竞赛试题)专题22 与圆相关的比例线段例 1 设CE=4k,则DA=DF=3k,AF=AC=,由,即=3k10k,得,而AE==8,又BE===16,故AB=AE+BE=24. 例2 C例3 1 提示:设EB=x,则AE=4x.设CB=y,则由,,,得4=y(y+5x),. 例4(1)联结OB,OP,可证明△BDC∽△P AE,有.又∵OC为△ABD的中位线,∴OC∥AD,则CE⊥OC,知CE为☉O的切线,故,有,即PE=PC.例 6 解法一:如图1,过P作PH⊥ST于H,则H是ST的中点,由勾股定理得.又由切割线∴,即.解法二:如图2,联结PO 交ST 于D ,则PO ⊥ST .联结SO ,作OE ⊥PB 于E ,则E为AB 的中点,于是.∵C ,E ,O ,D 四点共圆,∴.∵Rt △SPD ∽Rt △OPS ,∴,∴,即.A 级 1. 2. 提示:△BDE ≌△CFE ,DE =EF ,OF =FE =ED ,设OF =x ,则OA =OD =3x ,AE =5x ,由,得,∴. 3. 4cm 4.4 5.D 6.B 7.A 8.C 9.(1)略 (2),△AED ∽△ABE ,=.设DE =,BE =2x ,而,解得x =.∴DE =. 10.(1)略 (2).可得PB =BD =PD ,∴PB =PD =DC ,∴又∵BD CD =AD DE ,∴. 11.作DE ⊥AC 于E ,则AC =AE ,AG =DE .由切割线定理得,故,即.∵AB =5DE ,∴,于是.又∠BAF =∠AED =90°,∴△BAF ∽△AED ,于是又∠ABF =∠EAD . ∵∠EAD+∠DAB=90°,∴∠ABF+∠DAB=90°,故AD ⊥BE. 12. ⑴如图,连接AD ,AE. ∵∠DAC=∠DAE ,∴△ADC ∽△EAC AD EAAD AC DC EA DC AC⇒=⇒•=•. ⑵∵∠CDF=∠1=∠2=∠DEA ,∴tan ∠CDF=tan ∠DEA=AD AE .由⑴知=AD DC AE AC ,故tan ∠CDF= DCAC.由圆的切割线定理知2AC DC EC =•,而EC=ED+DC ,则()2AC DC DC ED =+.又AC=nAB ,ED=AB ,代入上式得()22n AB DC DC AB =+,即222n 0DC AB DC AB +•-=,故2114n =2DC -+.显然,上式只能取加号,于是214n 1n DC DC tan CDF AC AB +-∠==.B 级1. B2. B3. C4. A5. 提示:1=2AD CD AC tanB CDDB BC===.设AD=x ,则CD=2x ,DB=4x ,AB=5x ,由△PAC ∽△PCB 得,1=2PA AC PC CB =,∴PA=5,又2PC PA PB =•,即()210=555x +,解得:x=3,∴AD=3,CD=6,DB=12,∴1362BCDSCD DB =•=. 6. ⑴略. ⑵连接FB ,证明PF=PE ,∠BFA=∠AFC.7. ⑴能.连接BC ,作∠ACE=∠B ,CE 交AB 于E. ⑵ PB 与⊙O 相切. ⑶C 是PE 的中点.8. 连接OA 、OB 、OC ,则2PA PD PO PB PC =•=•,于是,B 、C 、O 、D 四点共圆,有△PCD ∽△POB ,则=PC PO POCD OB OC= ①,又由POC ∽△PBD 得PO PB OC BD = ②,由①②得PB PCBD CD=. 9. ⑴略 ⑵ A (4,3),OA=5. ⑶P (3,94). 10. ⑴延长BA ,CD 交于点G ,由Rt △CAG ∽Rt △BDC ,得AC CG BD BC =,即AC BC BD CG •=•,又12DG CD CG ==,故2AC BC BD CG •=•. ⑵由Rt △CDE ∽Rt △CAG ,得CE CDCG AC =,即2545=,解得CE=5,从而AG= ()()222245354CG AC +=--=,GA GB GD GC •=•,即()442545AB +=⨯,解得AB=6,()222261035BC AB AC =+==++.11. 延长AD 交⊙O 于E ,连接PE 、BE 、CE ,∵PA 为⊙O 的切线,PO ⊥AE ,∴PE=PA ,12AD DE AE ==,易证△PAB ∽△PCA ,△PEB ∽△PCE ,∴,AB PA EB PE AC PC EC PC ==,则AB EB AC EC=,即AB EC AC EB •=•,由托勒密定理得=AB EC AC EB AE BC •+••. ∴=AB EC AC EB AD BC •+••,即AB BC AC BC AD EC AD EB==,,有∵∠BAE=∠BCE ,∠CAD=∠CBE , ∴△ABD ∽△CBE ,△CAD ∽△CBE ,则△ABD ∽△CAD ,∴AD CD BD AD =,故2AD BD CD =•.。
初中数学-直角三角形中的比例线段
直角三角形中的比例线段阅读与思考借助相似三角形法研究直角三角形,我们会得到许多在解题中应用极为广泛的结论. 如图,在Rt △ABC 中,∠A =900,AD ⊥BC 于D ,则 1.图中角的关系:∠B =∠DAC ,∠C =∠DAB ;2.同一三角形中三边平方关系:AB 2=AD 2+BD 2,AC 2=AD 2+CD 2;BC 2=AB 2+AC 2.3.三角形之间的关系: △ABD ∽△CAD ∽△CBA ,由此得出的线段之间的关系:AD 2=BD •DC ,AB 2=BD •BC ,AC 2=CD •BC .直角三角形被斜边上的高分成的两个直角三角形与原三角形相似,由此得出的等积式在计算与证明中应用极为广泛,其特点是:①一线段是两个三角形的公共边;②另两条线段在同一直线上.例题与求解【例1】如图,Rt △ABC 中,CD 为斜边AB 上的高,DE ⊥CB 于E .若BE =6,CE =4,则AD =________.解题思想:图中有两个基本图形,恰当选取相应关系式求出AD .例1题图 例2题图【例2】如图,在Rt △ABC 中,∠C =900,CD ⊥AB ,下列结论:①CD •AB =AC •BC ; ②22AC AD BC BD=; ③222111AC BC CD +=; ④AC +BC >CD +AB . 其中正确的个数是 ( ) A .4个 B .3个C .2个D .1个解题思路:综合运用直角三角形性质逐一验证,从而作出判断.C A B CAB D EA B C D【例3】如图,在等腰Rt △ABC 中,AB =1,∠A =900,点E 为腰AC 的中点,点F 在底边BC 上,且EF ⊥BE ,求△CEF 的面积.解题思想:欲求△EFC 的面积,由于EC =12,只需求出△EFC 中EC 边上的高,或求出EC 边上的高与EC 的关系.本例解法甚多,同学们的解题思路,自由探索与思考,寻求更多更好的解法.【例4】如图,直线OB 是一次函数x y 2 的图象,点A 的坐标为(0,2),在直线OB 上找一点C ,使△ACO 为等腰三角形,求点C 的坐标.解题思想:注意分类讨论.ABC EF。
初中成比例线段练习题
初中成比例线段练习题一、选择题1. 在几何图形中,如果线段AB和线段CD的长度比为2:3,那么线段AB的长度是线段CD长度的多少?A. 2/3B. 3/2C. 2/5D. 5/32. 已知线段EF和线段GH成比例,比例系数为k,若EF=10cm,GH=15cm,求k的值。
A. 2/3B. 2C. 3/2D. 5/23. 在三角形ABC中,D是BC上的一点,使得AD:DB=2:3,若AB=6cm,求BD的长度。
A. 2cmB. 3cmC. 4cmD. 6cm二、填空题4. 若线段MN的长度是线段PQ长度的1.5倍,用数学表达式表示为________。
5. 在平行四边形中,若对角线AC和BD相交于点O,且OA:OC=OB:OD,根据平行四边形的性质,可以得出OA:OB=________。
6. 已知线段XY=8cm,线段WZ=12cm,若XY:WZ=a:b,求a+b的值。
三、计算题7. 在三角形DEF中,EF=10cm,DE=8cm,DF=6cm,求DE:DF的比例。
8. 已知线段AB=12cm,线段CD=18cm,且AB:CD=2:3,求线段AC的长度,假设A、B、C、D在一条直线上,且点C在AB和AD之间。
9. 在矩形PQRS中,PS=10cm,QR=20cm,点M在PS上,使得PM:MS=3:2,求PM的长度。
四、解答题10. 已知线段AB和线段CD的长度比为黄金分割比,即AB:CD=(√5-1)/2,若AB=8cm,求CD的长度。
11. 在梯形LMNO中,MN平行于LO,且LO:MN=3:4,若LO=9cm,求MN的长度。
12. 已知三角形ABC中,AB=5cm,AC=7cm,BC=6cm,点D在AB上,使得AD:DB=2:3,求AD的长度。
五、证明题13. 证明:若三角形ABC中,AB:AC=BD:DC,那么三角形ABC与三角形BDC是相似的。
14. 已知线段AB=6cm,线段CD=9cm,线段EF=12cm,若AB:CD=EF:GH,求线段GH的长度。
【中考冲刺】初三数学培优专题 14 平行线分线段成比例(含答案)(难)
平行线分线段成比例阅读与思考平行线分线段成比例定理是证明比例线段的常用依据之一,是研究比例线段及相似形的最基本、最重要的理论.运用平行线分线段成比例定理解题的关键是寻找题中的平行线.若无平行线,需作平行线,而作平行线要考虑好过哪一个点作平行线,一般是由成比例的两条线段启发而得.此外,还要熟悉并善于从复杂的图形中分解出如下的基本图形:例题与求解【例1】如图,在梯形ABCD 中,AD ∥BC ,AD =a ,BC =b ,E ,F 分别是AD ,BC 的中点,且AF 交BE 于P ,CE 交DF 于Q ,则PQ 的长为____.(上海市竞赛试题)解题思路:建立含PQ 的比例式,为此,应首先判断PQ 与AD (或BC )的位置关系,关键是从复杂的图形中分解出基本图形,并能在多个成比例线段中建立联系.【例2】如图,在△ABC 中,D ,E 是BC 的三等分点,M 是AC 的中点,BM 交AD ,AE 于G ,H ,则BG ︰GH :HM 等于( )A .3︰2︰1B .4︰2︰1C .5︰4︰3D .5︰3︰2(“祖冲之杯”邀请赛试题)解题思路:因题设条件没有平行线,故须过M 作BC 的平行线,构造基本图形.A BCDEGH MQA BCDEFP【例3】如图,□ABCD中,P为对角线BD上一点,过点P作一直线分别交BA,BC的延长线于Q,R,交CD,AD于S,T.求证:PQ•PT=P R•PS.(吉林省中考试题)解题思路:要证PQ•PT=P R•PS,需证PQPS=PRPT,由于PQ,PT,P R,PS在同一直线上,故不能直接应用定理,需观察分解图形.【例4】梯形ABCD中,AD//BC,AB=DC.(1)如图1,如果P,E,F分别是BC,AC,BD的中点,求证:AB=PE+PF;(2)如图2,如果P是BC上的任意一点(中点除外),PE∥AB,PF∥DC,那么AB=PE+PF这个结论还成立吗?如果成立,请证明;如果不成立,说明理由.(上海市闵行区中考试题)解题思路:(1)不难证明;对于(2),先假设结论成立,从平行线出发证明AB=PE+PF,即要证明PEAB+PFAB=1,将线段和差问题的证明转化为与成比例线段相关问题的证明.AB CDEFP图2AB CDEFP图1QARBCDSP【例5】如图,已知AB ∥CD ,AD ∥CE ,F ,G 分别是AC 和FD 的中点,过G 的直线依次交AB ,AD ,CD ,CE 于点M ,N ,P ,Q .求证:MN +PQ =2PN .解题思路:考虑延长BA ,EC 构造平行四边形,再利用平行线设法构造有关的比例式.(浙江省竞赛试题)【例6】已知:△ABC 是任意三角形.(1)如图1,点M ,P ,N 分别是边AB ,BC ,CA 的中点,求证:∠MPN =∠A ; (2)如图2,点M ,N 分别在边AB ,AC 上,且AM AB =13,AN AC =13,点P 1,P 2是 边BC 的三等分点,你认为∠MP 1N +∠MP 2N =∠A 是否正确?请说明你的理由;(3)如图3,点M ,N 分别在边AB ,AC 上,且P 1,P 2,…,P 2009是边BC 的2010等分点,则∠MP 1N +∠MP 2N +…+∠MP 2009N =____.(济南市中考试题)解题思路:本题涉及的考点有三角形中位线定理、平行四边形的判定、相似三角形的判定与性质.ABCM NP图1A BC MN1P 2P 图2A MNBC1P 2P 2009P 图3QABCDEFGMNP能力训练A 级1.设K =a b c c +-=a b c b -+=a b ca-++,则K =____. (镇江市中考试题)2.如图,AD ∥EF ∥BC ,AD =15,BC =21,2AE =EB ,则EF =____.3.如图,在△ABC 中,AM 与BN 相交于D ,BM =3MC ,AD =DM ,则BD ︰DN =____.(杭州市中考试题)4.如图,ABCD 是正方形,E ,F 是AB ,BC 的中点,连结EC 交DB ,交DF 于G ,H ,则EG ︰GH ︰HC =____.(重庆市中考试题)5.如图,在正△ABC 的边BC ,CA 上分别有点E ,F ,且满足BE =CF =a ,EC =F A =b (a >b ),当BF 平分AE 时,则ab 的值为( ) ABCD6.如图,△ABC 中,AD 是BC 边上的中线,F 是AD 上的一点,且AF ︰FD =1︰5,连结CF 并延长交AB 于E ,则AE ︰EB 等于( )A .1︰10B .1︰9C .1︰8D .1︰77.如图,PQ ∥AB ,PQ =6,BP =4,AB =8,则PC 等于( ) A .4B .8C .12D .168.如图,EF ∥BC ,FD ∥AB ,BD =35BC ,则BE ︰EA 等于( )A .3︰5B .2︰5C .2︰3D .3︰2A BCD E F 第2题ABCD M N第3题ABCDEFGH 第4题A BCEFG第5题ABCDE F第6题QABCP第7题AB CDEF 第8题9.(1)阅读下列材料,补全证明过程.已知,如图,矩形ABCD 中,AC ,BD 相交于点O ,OE ⊥BC 于E ,连结DE 交OC 于点F ,作FG ⊥BC 于G .求证:点G 是线段BC 的一个三等分点.(2)请你依照上面的画法,在原图上画出BC 的一个四等分点.(要求:保留画图痕迹,不写画法及证明过程)(山西中考试题)10.如图,已知在□ABCD 中,E 为AB 边的中点,AF =12FD ,FE 与AC 相交于G . 求证:AG =15AC .11.如图,梯形ABCD 中,AD ∥BC ,EF 经过梯形对角线的交点O ,且EF ∥AD . (1)求证:OE =OF ; (2)求OE AD +OEBC的值; (3)求证:1AD +1BC =2EF. (宿迁市中考试题)ABCDE FGO第9题ABCDEG第10题ABCD EFO第11题12.如图,四边形ABCD 是梯形,点E 是上底边AD 上的一点,CE 的延长线与BC 的延长线交于点F ,过点E 作BA 的平行线交CD 的延长线于点M ,MB 与AD 交于点N .求证:∠AFN =∠DME .(全国初中数学联赛试题)B 级1.如图,工地上竖立着两根电线杆AB ,CD ,它们相距15cm ,分别自两杆上高出地面4m ,6m 的A ,C 处,向两侧地面上的E ,D 和B ,F 点处,用钢丝绳拉紧,以固定电线杆,那么钢丝绳AD 与BC 的交点P 离地面的高度为____m .(全国初中数学联赛试题)2.如图,□ABCD 的对角线交于O 点,过O 任作一直线与CD ,BC 的延长线分别交于F ,E 点.设BC =a ,CD =b ,CF =c ,则CE =____.(黑龙江省中考试题)3.如图,D ,F 分别是△ABC 边AB ,AC 上的点,且AD ︰DB =CF ︰F A =2︰3,连结DF 交BC 边的延长线于点E ,那么EF ︰FD =____.(“祖冲之杯”邀请赛试题)4.如图,设AF =10,FB =12,BD =14,DC =6,CE =9,EA =7,且KL ∥DF ,LM ∥FE ,MN ∥ED ,则EF ︰FD =____.(江苏省竞赛试题)ABCDEF M NP ABCDEF O第2题ABCD EF 第3题QABCD EF 第1题5.如图,AB ∥EF ∥CD ,已知AB =20,CD =80,那么EF 的值是( ) A .10B .12C .16D .18(全国初中数学联赛试题)6.如图,CE ,CF 分别平分∠ACB ,∠ACD ,AE ∥CF ,AF ∥CE ,直线EF 分别交AB ,AC 于点M ,N .若BC =a ,AC =b ,AB =c ,且c >a >b ,则EM 的长为( )A .2c a- B .2a b- C .2c b- D .2a b c+- (山东省竞赛试题)7.如图,在□ABCD 的边AD 延长线上取一点F ,BF 分别交AC 与CD 于E ,G .若EF =32,GF =24,则BE 等于( )A .4B .8C .10D .12E .16(美国初中数学联赛试题)8.如图,在梯形ABCD 中,AB ∥CD ,AB =3CD ,E 是对角线AC 的中点,直线BE 交AD 于点F ,则AF ︰FD 的值是( )A .2B .53C .32D .1(黄冈市竞赛试题)9.如图,P 是梯形ABCD 的中位线MN 所在直线上的任意一点,直线AP ,BP 分别交直线CD 于E ,F .求证:MN NP =1()2AE BFEP FP+. (宁波市竞赛试题)ABCD EFG第7题ABCDE F第8题A BCD E F MNP第9题A BCDE F第5题AB CD E F LKMN第4题AB CDEFM第6题10.如图,在四边形ABCD 中,AC 与BD 相交于O ,直线l 平行于BD 且与AB ,DC ,BC ,AD 及AC 的延长线分别交于点M ,N ,R ,S 和P .求证:PM ·PN =P R ·PS .(山东省竞赛试题)11.如图,AB ⊥BC ,CD ⊥BC ,B ,D 是垂足,AD 和BC 交于E ,EF ⊥BD 于F .我们可以证明:11AB CD +=1EF 成立(不要求证出).以下请回答:若将图中垂直改为AB ∥CD ∥EF ,那么, (1)11AB CD+=1EF 还成立吗?如果成立,请给出证明;如果不成立,请说明理由. (2)请找出S △ABD ,S △BED 和S △BDC 的关系式,并给出证明.(黄冈市竞赛试题)ABCDEF第11题SA R BC DMN OPl第10题12.在Rt△ABC中,∠BAC=90°,AD平分∠BAC,过D点的直线PQ交边AC于点P,交边AB 的延长线于点Q.(1)如图1,当PQ⊥AC时,求证:11AQ AP+;(2)如图2,当PQ不与AD垂直时,(1)的结论还成立吗?证明你的结论;(3)如图3,若∠BAC=60°,其它条件不变,且11AQ AP+=nAD,则n=____(直接写出结果)AQ B CDP图1AQB CDP图2AQB CDP图3专题14 平行线分线段成比例例1aba b+ 提示:由AP DQ a PF QF b ==,推得PQ ∥AD 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
xx学校xx学年xx学期xx试卷
姓名:_____________ 年级:____________ 学号:______________
题型选择题填空题简答题xx 题xx题xx题总分
得分
一、xx题
评卷人得分
(每空xx 分,共xx分)
试题1:
如果成立,那么下列各式一定成立的是()
A.= B.= C.= D.=
试题2:
若a:b:c=3:5:7,且3a+2b-4c=9,则a+b+c的值等于()
A.-3 B.-5 C.-7 D.-15
试题3:
某班同学要测量学校升国旗的旗杆高度,在同一时刻,量得某同学的身高是1.5米,影长是1米,且旗杆的影长为8米,则旗杆的高度是()
A.12米 B.11米 C.10米 D.9米
试题4:
一支铅笔长16 cm,把它按黄金分割后,较长部分涂上橘红色,较短部分涂上浅蓝色,那么橘红色部分的长是 _____ cm,浅蓝色部分的长是 ____ cm. (结果保留一位小数)
试题5:
已知,则=.
试题6:
在△ABC中,AB=12,点E在AC上,点D在AB上,若AE=6,EC=4,且.
(1)求AD的长;
(2)试问能成立吗?请说明理由.
试题1答案:
D
试题2答案:
D
试题3答案:
A
试题4答案:
9.9 6.1
试题5答案:
试题6答案:
(1)AD=;(2)能,由AB=12,AD=,故DB=.于是,又,故.。