材料力学课件
合集下载
材料力学PPT课件
假设在固体所占有的空间内毫无空隙的充满了物质
假设材料的力学性能在各处都是相同的。 假设变形固体各个方向的力学性能都相同
均匀性假设
各向同性假设
材料力学的基本知识
材料的力学性能
-----指变形固体在力的作用下所表现的力学性能。
构件的承载能力:
强度---构件抵抗破坏的能力 刚度---构件抵抗变形的能力 稳定性---构件保持原有平衡状态的能力
FQ=FQ(x) Mc=M(x)
典型例题-2
简支梁受力偶作用
1.
求支座反力FAY,FBY得: FAY=- FBY =M/l
AC段X截面处剪力FQ=Fay, 3. 同理可求得BC段剪力与AC 段相同,剪力图如左
2.
4.
AC段弯矩方程M1
M1=FAY·=M · /L x x BC段弯矩方程M2
5.
弯曲梁的内力
弯曲梁的概念及其简化 杆件在过杆轴线的纵向平面内,受到力偶或受到 垂直于轴线的横向力作用时,杆的轴线将由直线 变为曲线,杆件的这种以轴线变弯为主要特征的 变形称为弯曲;以弯曲为主要变形的杆简称为梁。 常见梁的力学模型 简支梁
一端为活动铰链支座,另一端为固定铰 链支座 一端或两端伸出支座支外的简支梁
A点:x1 0 M1A 0; C点:x1 a M1C 5 q a 2 6
C点:x 2 a , M 2C 5 q.a 2 6 D点:x 2 2a , M 2D 7 q.a 2 6
D点:x 3 a , M 3D 7 q a 2 M 2 D 6 B点:x 3 0, M 3B q a 2 M
转动
内力:作用面与横截面重 合的一个力偶,称为扭矩T
材料力学材料的力学性能优质课件
结论与讨 论
卸载
第3章 轴向载荷作用下材料旳力学性能
结论与讨 论
再加载
第3章 轴向载荷作用下材料旳力学性能
结论与讨 论
将卸载再加载曲线与原来旳应力-应变曲线进行比较(图 中曲线OAKDE上旳虚线所示),能够看出:K点旳应力数值远 远高于A点旳应力数值,即百分比极限有所提升;而断裂时旳 塑性变形却有所降低。这种现象称为应变硬化。工程上常利 用应变硬化来提升某些构件在弹性范围内旳承载能力。
延伸率和截面收缩率旳数值越大,表白材料旳韧性越 好。工程上一般以为δ>5%者为韧性材料; δ<5%者为脆 性材料。
第3章 轴向载荷作用下材料旳力学性能
单向压缩时材料旳力学行为
返回总目录
返回
第3章 轴向载荷作用下材料旳力学性能
单向压缩时材料旳力学行为
材料压缩试验,一般采用短试样。低碳钢压 缩时旳应力-应变曲线。与拉伸时旳应力-应变曲 线相比较,拉伸和压缩屈服前旳曲线基本重叠, 即拉伸、压缩时旳弹性模量及屈服应力相同,但 屈服后,因为试样愈压愈扁,应力-应变曲线不断 上升,试样不会发生破坏。
试样旳变形将随之消失。
这表白这一阶段内旳变形都是
弹性变形,因而涉及线性弹性阶段
在内,统称为弹性阶段。弹性阶段 旳应力最高限
第3章 轴向载荷作用下材料旳力学性能
弹性力学性能
百分比极限与弹性极 限
大部分韧性材料百分比极限与弹性 极限极为接近,只有经过精密测量才干 加以区别。
第3章 轴向载荷作用下材料旳力学性能
单向压缩时材料旳力学行为
第3章 轴向载荷作用下材料旳力学性能
结论与讨论
返回总目录
返回
第3章 轴向载荷作用下材料旳力学性能
结论与讨 论
卸载
第3章 轴向载荷作用下材料旳力学性能
结论与讨 论
再加载
第3章 轴向载荷作用下材料旳力学性能
结论与讨 论
将卸载再加载曲线与原来旳应力-应变曲线进行比较(图 中曲线OAKDE上旳虚线所示),能够看出:K点旳应力数值远 远高于A点旳应力数值,即百分比极限有所提升;而断裂时旳 塑性变形却有所降低。这种现象称为应变硬化。工程上常利 用应变硬化来提升某些构件在弹性范围内旳承载能力。
延伸率和截面收缩率旳数值越大,表白材料旳韧性越 好。工程上一般以为δ>5%者为韧性材料; δ<5%者为脆 性材料。
第3章 轴向载荷作用下材料旳力学性能
单向压缩时材料旳力学行为
返回总目录
返回
第3章 轴向载荷作用下材料旳力学性能
单向压缩时材料旳力学行为
材料压缩试验,一般采用短试样。低碳钢压 缩时旳应力-应变曲线。与拉伸时旳应力-应变曲 线相比较,拉伸和压缩屈服前旳曲线基本重叠, 即拉伸、压缩时旳弹性模量及屈服应力相同,但 屈服后,因为试样愈压愈扁,应力-应变曲线不断 上升,试样不会发生破坏。
试样旳变形将随之消失。
这表白这一阶段内旳变形都是
弹性变形,因而涉及线性弹性阶段
在内,统称为弹性阶段。弹性阶段 旳应力最高限
第3章 轴向载荷作用下材料旳力学性能
弹性力学性能
百分比极限与弹性极 限
大部分韧性材料百分比极限与弹性 极限极为接近,只有经过精密测量才干 加以区别。
第3章 轴向载荷作用下材料旳力学性能
单向压缩时材料旳力学行为
第3章 轴向载荷作用下材料旳力学性能
结论与讨论
返回总目录
返回
第3章 轴向载荷作用下材料旳力学性能
结论与讨 论
材料力学 ppt课件
③应力分析:画危险面应力分布图,叠加;
④强度计算:建立危险点的强度条件,进行强度
计算。
PPT课件
20
2、两相互垂直平面内的弯曲
有棱角的截面
max
Mz Wz
My Wy
[ ]
圆截面
max
M
2 z
M
2 y
[ ]
W
3、拉伸(压缩)与弯曲
有棱角的截面
max
FN ,max A
(4)确定最大剪力和最大弯矩
3、弯曲应力与强度条件
(1)弯曲正应力
My
I PPT课件 z
12
M max Wz
yt,max yc,max
Oz y
PPT课件
t,max
Myt,max Iz
c,max
Myc,max Iz
13
(2)梁的正应力强度条件
M max
Wz
M
2 z
M
2 y
T
2
Mr4
M
2 z
M
2 y
0.75T
2
PPT课件
22
5、连接件的强度条件
剪切的强度条件
FS [ ]
AS
挤压强度条件
bs
Fbs Abs
[ bs ]
PPT课件
M z,max Wz
M y,max Wy
[ ]
圆截面
max
FN ,max A PPT课件
M max W
[ ]
21
4、弯曲与扭转
《材料力学第二章》课件
弹性变形与塑性变形的区别
弹性变形是可恢复的,而塑性变形是不可恢复的。
弹性变形能与塑性变形能
弹性变形能
01
物体在弹性变形过程中所吸收的能量,与应力和应变关系呈正
比。
塑性变形能
02
物体在塑性变形过程中所吸收的能量,与应力和应变关系呈非
线性。
弹性变形能与塑性变形能的比较
03
弹性变形能是可逆的,而塑性变形能是不可逆的。
材料力学的重要性
总结词
材料力学是工程设计和科学研究的重要基础,对于保证工程安全、优化产品设 计、降低成本等方面具有重要意义。
详细描述
在工程设计和科学研究中,材料力学提供了对材料行为的深入理解,有助于保 证工程结构的稳定性和安全性,优化产品的设计,降低生产成本,提高经济效 益。
材料力学的基本假设和单位
04
CATALOGUE
变形分析
变形的基本概念
变形
物体在外力作用下,形状 和尺寸发生变化的现象。
弹性变形
当外力去除后,物体能够 恢复原状的变形。
塑性变形
当外力去除后,物体不能 恢复原状的变形。
弹性变形与塑性变形
弹性变形特点
可逆、无残余应变、与外力大小成正比。
塑性变形特点
不可逆、有残余应变、外力达到屈服极限后发生。
建筑结构的优化设计
利用材料力学理论,对建筑结构进行优化设计,降低建筑物的重量 和成本,提高建筑物的性能和寿命。
机械工程中的应用
机械零件的强度和刚度分析
利用材料力学知识,对机械零件的强度和刚度进行分析和计算,确保零件在使用过程中不 会发生断裂或变形。
机械设备的动力学分析
通过材料力学的方法,对机械设备的动力学特性进行分析和计算,确保机械设备在使用过 程中具有良好的稳定性和可靠性。
弹性变形是可恢复的,而塑性变形是不可恢复的。
弹性变形能与塑性变形能
弹性变形能
01
物体在弹性变形过程中所吸收的能量,与应力和应变关系呈正
比。
塑性变形能
02
物体在塑性变形过程中所吸收的能量,与应力和应变关系呈非
线性。
弹性变形能与塑性变形能的比较
03
弹性变形能是可逆的,而塑性变形能是不可逆的。
材料力学的重要性
总结词
材料力学是工程设计和科学研究的重要基础,对于保证工程安全、优化产品设 计、降低成本等方面具有重要意义。
详细描述
在工程设计和科学研究中,材料力学提供了对材料行为的深入理解,有助于保 证工程结构的稳定性和安全性,优化产品的设计,降低生产成本,提高经济效 益。
材料力学的基本假设和单位
04
CATALOGUE
变形分析
变形的基本概念
变形
物体在外力作用下,形状 和尺寸发生变化的现象。
弹性变形
当外力去除后,物体能够 恢复原状的变形。
塑性变形
当外力去除后,物体不能 恢复原状的变形。
弹性变形与塑性变形
弹性变形特点
可逆、无残余应变、与外力大小成正比。
塑性变形特点
不可逆、有残余应变、外力达到屈服极限后发生。
建筑结构的优化设计
利用材料力学理论,对建筑结构进行优化设计,降低建筑物的重量 和成本,提高建筑物的性能和寿命。
机械工程中的应用
机械零件的强度和刚度分析
利用材料力学知识,对机械零件的强度和刚度进行分析和计算,确保零件在使用过程中不 会发生断裂或变形。
机械设备的动力学分析
通过材料力学的方法,对机械设备的动力学特性进行分析和计算,确保机械设备在使用过 程中具有良好的稳定性和可靠性。
材料力学课件PPT
力学性质:在外力作用下材料在变形和破坏方面所 表现出的力学性能
一
试
件
和
实
常
验
温
条
、
件
静
载
材料拉伸时的力学性质
材料拉伸时的力学性质
二 低 碳 钢 的 拉 伸
材料拉伸时的力学性质
二 低碳钢的拉伸(含碳量0.3%以下)
e
b
f 2、屈服阶段bc(失去抵抗变 形的能力)
b
e P
a c s
s — 屈服极限
(二)关于塑性流动的强度理论
1.第三强度理论(最大剪应力理论) 这一理论认为最大剪应力是引起材料塑性流动破坏的主要
因素,即不论材料处于简单还是复杂应力状态,只要构件危险 点处的最大剪应力达到材料在单向拉伸屈服时的极限剪应力就 会发生塑性流动破坏。
这一理论能较好的解释塑性材料出现的塑性流动现象。 在工程中被广泛使用。但此理论忽略了中间生应力 2的影响, 且对三向均匀受拉时,塑性材料也会发生脆性断裂破坏的事 实无法解释。
许吊起的最大荷载P。
CL2TU8
解: N AB
A [ ]
0.0242 4
40 106
18.086 103 N 18.086 kN
P = 30.024 kN
6.5圆轴扭转时的强度计算
圆轴扭转时的强度计算
▪ 最大剪应力:圆截面边缘各点处
max
Tr
Ip
max
Wp T
Wp
Ip r
—
抗扭截面模量
3、强化阶段ce(恢复抵抗变形
的能力)
o
b — 强度极限
4、局部径缩阶段ef
明显的四个阶段
1、弹性阶段ob
材料力学全套ppt课件
___ 不满足上述要求,
不能保证安全工作.
若:不恰当地加大横截面尺寸或
选用优质材料
___ 增加成本,造成浪费
}均 不 可 取
研究构件的强度、刚度和稳定性,还需要了解材料的力学性能。因此在 进行理论分析的基础上,实验研究是完成材料力学的任务所必需的途径和 手段。
目录
10
§1.1 材料力学的任务
四、材料力学的研究对象
m F4
m
F3
F4
F3
目录
17
§1.4 内力、截面法和应力的概念 例如
F
a
a
F
M FS
FS=F M Fa
目录
18
§1.4 内力、截面法和应力的概念
例 1.1 钻床 求:截面m-m上的内力。
解: 用截面m-m将钻床截为两部分,取上半 部分为研究对象,
受力如图:
列平衡方程:
M
Y 0 FN P
灰口铸铁的显微组织 球墨铸铁的显微组织
目录
12
§1.2 变形固体的基本假设
2、均匀性假设: 认为物体内的任何部分,其力学性能相同 普通钢材的显微组织 优质钢材的显微组织
目录
13
§1.2 变形固体的基本假设
3、各向同性假设: 认为在物体内各个不同方向的力学性能相同
(沿不同方向力学性能不同的材料称为各向异性 材料。如木材、胶合板、纤维增强材料等)
材料力学
目录
1
第一章 绪论
§1.1 材料力学的任务 §1.2 变形固体的基本假设 §1.3 外力及其分类 §1.4 内力、截面法及应力的概念 §1.5 变形与应变 §1.6 杆件变形的基本形式
目录
材料力学教学课件ppt作者范钦珊第一章材料力学概述
3. 常见组合变形的类型 : (1) 斜弯曲 (2) 拉伸(压缩)与弯曲组合 (3) 偏心拉伸(压缩) (4) 弯扭组合
计算方法 : 组合变形若忽略变形过程中各基本变形间的互相影
响,则可依据叠加原理计算。
1. 叠加原理 :弹性范围小变形情况下,各荷载分别单独 作用所产生的应力、变形等互不影响,可叠加计算。
1.7.2、剪切
(1)受力特点:杆件受到一对大小相等、 方向相反、作用线互相平行且相距很近的横 向力的作用; (2)变形特点:受剪杆件的两部分沿外 力作用方向发生相对错动;
1.7.3、扭转
(1)受力特点:杆件受到一对大小相等、方 向相反、作用面垂直于杆轴的力偶作用;
(2)变形特点:杆件的任意两个横截面发生绕轴线的相对转动。
围绕某点作一个各边分别为 、 、 的正六面体。 正六面体的x方向在力的作用下, 产生了变形 ,线 段ab 沿x方向单位长度的平均变形量为 。
平均变形量的极限:
称为点a沿x方向的的线应变 或简称应变。
由于切应力的作用,正六面体的各棱边还会发生角度的改变,当 和 趋近于零时,ab和ad所夹直角的改变量的极限
3、广义虎克定律 只有 作用时
1.7 杆件受力与变形的基本形式
材料力学的主要研究对象
杆件:长度远大于横截面尺寸的构件。 等直杆:轴线为直线且沿轴线横截面不发生变化的杆件。
杆件变形的基本形式
1.7.1、拉伸或压缩
(1)受力特点:杆件受到一对大小相等、方向相 反、作用线与杆件轴线重合的力的作用。 (2)变形特点:杆件长度方向发生伸长或缩短。
上分布内力 的合力为 ,
上分布内力的平均集度为
;
当 趋近于零时
的极限
称为点K的全应力。
材料力学优秀课件
最大应力通常与截面形状,内力图形状有关。 a 脆性材料的最大应力与截面形状有关
由于脆性材料抗压不抗拉, 通常将梁做成T形、倒T形等 关于中性轴不对称的截面。
梁内最大拉应力与最大压应力分别发生在 离中性轴最远的最上边缘与最下边缘。
b 脆性材料的最大应力与内力图有关
① 脆性材料梁的危险截面与危险点
上压下拉
4KNm 52 zc
88
应用公式 My
Iz
t,max
4103 52103 7.64 106
27.2MPa
c,max
4103 88103 7.64 106
46.1MPa
9KN
A
CB
4KN C截面应力计算 C截面应力分布
FA 1m 1m
F1Bm
2.5KNm
M
应用公式
My
Iz
4KNm
t,max
FBY
3、C 截面上K点正应力
弯矩 M C 901 601 0.5 60kN m
公式
K
MC IZ
yK
60 103 60 103 5.832 105
61.7MPa (压应力)
4、C 截面上最大正应力
Cmax
M C ymax IZ
60 103 90 103 5.832 105
92.55MPa
3、静力学关系
横截面上没有切应力 只有正应力。
弯曲正应力的 分布规律和计算公式
变形与应变 观察在竖直平面内发生纯弯曲的梁,研究其表面变形情况
<1>. 弯曲前画在梁的侧面上相邻横向线mm和nn间的 纵向直线段aa和bb,在梁弯曲后成为弧线,靠近梁的顶面 的线段aa缩短,而靠近梁的底面的线段bb则伸长;
由于脆性材料抗压不抗拉, 通常将梁做成T形、倒T形等 关于中性轴不对称的截面。
梁内最大拉应力与最大压应力分别发生在 离中性轴最远的最上边缘与最下边缘。
b 脆性材料的最大应力与内力图有关
① 脆性材料梁的危险截面与危险点
上压下拉
4KNm 52 zc
88
应用公式 My
Iz
t,max
4103 52103 7.64 106
27.2MPa
c,max
4103 88103 7.64 106
46.1MPa
9KN
A
CB
4KN C截面应力计算 C截面应力分布
FA 1m 1m
F1Bm
2.5KNm
M
应用公式
My
Iz
4KNm
t,max
FBY
3、C 截面上K点正应力
弯矩 M C 901 601 0.5 60kN m
公式
K
MC IZ
yK
60 103 60 103 5.832 105
61.7MPa (压应力)
4、C 截面上最大正应力
Cmax
M C ymax IZ
60 103 90 103 5.832 105
92.55MPa
3、静力学关系
横截面上没有切应力 只有正应力。
弯曲正应力的 分布规律和计算公式
变形与应变 观察在竖直平面内发生纯弯曲的梁,研究其表面变形情况
<1>. 弯曲前画在梁的侧面上相邻横向线mm和nn间的 纵向直线段aa和bb,在梁弯曲后成为弧线,靠近梁的顶面 的线段aa缩短,而靠近梁的底面的线段bb则伸长;
材料力学(II)材料力学孙训方课件
材料力学的基本原理
弹性力学的基本原理
弹性力学定义
弹性力学是研究弹性物体在外力作用下变形和内力的规律 的科学。
胡克定律
胡克定律是弹性力学的基本定律之一,它指出在弹性限度 内,物体的应力和应变之间成正比关系。
弹性模量
弹性模量是描述材料弹性性能的重要参数,它表示材料抵 抗变形的能力。
圣维南原理
圣维南原理是弹性力学中的一个基本原理,它指出当一个 物体受到局部外力作用时,物体内部的应力分布只受该局 部外力作用的影响。
轻质高强材料
随着航空航天、汽车等行业的快速发展,对 轻质高强材料的力学性能需求越来越高,这 涉及到对新型复合材料、金属基复合材料等 材料的强度、韧性、疲劳性能等方面的深入 研究。
智能材料
智能材料是一种能够感知外部刺激并作出相 应响应的材料,其力学性能具有非线性、时 变等特点,需要深入研究其本构关系、破坏 准则等方面的内容。
数值模拟与真
利用人工智能技术对复杂的材料行为进行数 值模拟和仿真,提高模拟的精度和效率,缩
短研发周期。
THANKS
[ 感谢观看 ]
多场耦合下的材料力学研究
热-力耦合
在高温环境下,材料的力学性能会受到温度的影响,需要研究温度场与应力场之间的相 互作用关系。
流体-力耦合
在流体环境中,如航空航天器、船舶等,需要考虑流体对结构的作用力以及流体的流动 对结构的影响。
人工智能在材料力学中的应用
机器学习在材料力学中的 应用
利用机器学习算法对大量的实验数据进行处 理和分析,预测材料的力学性能,优化材料 的设计。
CHAPTER 03
材料力学的基本分析方法
有限元分析方法
有限元分析是一种数值分析方法,它将复杂的物理系 统分解为较小的、易于处理的单元,通过求解这些单
弹性力学的基本原理
弹性力学定义
弹性力学是研究弹性物体在外力作用下变形和内力的规律 的科学。
胡克定律
胡克定律是弹性力学的基本定律之一,它指出在弹性限度 内,物体的应力和应变之间成正比关系。
弹性模量
弹性模量是描述材料弹性性能的重要参数,它表示材料抵 抗变形的能力。
圣维南原理
圣维南原理是弹性力学中的一个基本原理,它指出当一个 物体受到局部外力作用时,物体内部的应力分布只受该局 部外力作用的影响。
轻质高强材料
随着航空航天、汽车等行业的快速发展,对 轻质高强材料的力学性能需求越来越高,这 涉及到对新型复合材料、金属基复合材料等 材料的强度、韧性、疲劳性能等方面的深入 研究。
智能材料
智能材料是一种能够感知外部刺激并作出相 应响应的材料,其力学性能具有非线性、时 变等特点,需要深入研究其本构关系、破坏 准则等方面的内容。
数值模拟与真
利用人工智能技术对复杂的材料行为进行数 值模拟和仿真,提高模拟的精度和效率,缩
短研发周期。
THANKS
[ 感谢观看 ]
多场耦合下的材料力学研究
热-力耦合
在高温环境下,材料的力学性能会受到温度的影响,需要研究温度场与应力场之间的相 互作用关系。
流体-力耦合
在流体环境中,如航空航天器、船舶等,需要考虑流体对结构的作用力以及流体的流动 对结构的影响。
人工智能在材料力学中的应用
机器学习在材料力学中的 应用
利用机器学习算法对大量的实验数据进行处 理和分析,预测材料的力学性能,优化材料 的设计。
CHAPTER 03
材料力学的基本分析方法
有限元分析方法
有限元分析是一种数值分析方法,它将复杂的物理系 统分解为较小的、易于处理的单元,通过求解这些单
材料力学PPT课件
通常用
MPa=N/mm2 = 10 6 Pa
有些材料常数 GPa= kN/mm2 = 10 9 Pa
工程上用 kg/cm2 = 0.1 MPa
正应力s
剪应力
二、轴向拉压时横截面上应力
dA
dN dA •s
N
s dN
N dN s dA
A
A
求应力,先要找到应力在横截面上的分布情况。
应力是内力的集度,而内力与变形有关,所以
绘轴力图
(2)求应力 AB段:A1=240240mm=57600mm2
BC段:A2=370370mm=136900mm2
s1
N1 A1
50 103 57600
0.87 N
/ mm 2
0.87MPa
s2
N2 A2
150 103 136900
1.1N
/ mm 2
1.1MPa
应力为负号表示柱受压。正应力的正负号与轴力N相同。
Nl
A
l
————虎克定律(Hooke)
EA
l Pl
EA
计算中用得多
lE——N——弹性s横量(Mpa,
Gpa)
s
E
l EA E
实验中用得多
计算变形的两个实例:
1.一阶梯轴钢杆如图,AB段A1=200mm2,BC和CD段截面积相同A2=A3= 500mm2;l1= l2= l3=100mm。弹性模量E=200GPa,荷载P1=20kN,P2 =40kN 。试求:(1)各段的轴向变形;(2)全杆AD的总变形;
N1=-20kN(压) N2=-10kN(压) N3=+30kN(拉)
§3 应力
一、应力:
内力在杆件截面上某一点的密集程度
材料力学全ppt课件
x
切应变(角应变)
M点处沿x方向的应变: M点在xy平面内的切应变为:
x
lim
x0
s x
g lim ( LM N)
MN0 2
ML0
类似地,可以定义 y , z ,g 均为无量纲的量。
目录
§1.5 变形与应变
例 1.2
c
已知:薄板的两条边
4、稳定性:
在载荷 作用下,构 件保持原有 平衡状态的 能力。
强度、刚度、稳定性是衡量构件承载能力 的三个方面,材料力学就是研究构件承载能力 的一门科学。
目录
§1.1 材料力学的任务
三、材料力学的任务
材料力学的任务就是在满足强度、刚度 和稳定性的要求下,为设计既经济又安全的构 件,提供必要的理论基础和计算方法。
目录
§1.3 外力及其分类
按外力与时间的关系分类
静载: 载荷缓慢地由零增加到某一定值后,就保持不变或变动很不显著, 称为静载。
动载: 载荷随时间而变化。
如交变载荷和冲击载荷
交变载荷
冲击载荷
目录
§1.4 内力、截面法和应力的概念
内力:外力作用引起构件内部的附加相互作用力。 求内力的方法 — 截面法
传统具有柱、梁、檩、椽的木 制房屋结构
建于隋代(605年)的河北赵州桥桥 长64.4米,跨径37.02米,用石2800 吨
目录
§1.1 材料力学的任务
古代建筑结构
建于辽代(1056年)的山西应县佛宫寺释迦塔 塔高9层共67.31米,用木材7400吨 900多年来历经数次地震不倒,现存唯一木塔
目录
§1.1 材料力学的任务
架的变形略去不计。计算得到很大的简
化。
C
δ1
切应变(角应变)
M点处沿x方向的应变: M点在xy平面内的切应变为:
x
lim
x0
s x
g lim ( LM N)
MN0 2
ML0
类似地,可以定义 y , z ,g 均为无量纲的量。
目录
§1.5 变形与应变
例 1.2
c
已知:薄板的两条边
4、稳定性:
在载荷 作用下,构 件保持原有 平衡状态的 能力。
强度、刚度、稳定性是衡量构件承载能力 的三个方面,材料力学就是研究构件承载能力 的一门科学。
目录
§1.1 材料力学的任务
三、材料力学的任务
材料力学的任务就是在满足强度、刚度 和稳定性的要求下,为设计既经济又安全的构 件,提供必要的理论基础和计算方法。
目录
§1.3 外力及其分类
按外力与时间的关系分类
静载: 载荷缓慢地由零增加到某一定值后,就保持不变或变动很不显著, 称为静载。
动载: 载荷随时间而变化。
如交变载荷和冲击载荷
交变载荷
冲击载荷
目录
§1.4 内力、截面法和应力的概念
内力:外力作用引起构件内部的附加相互作用力。 求内力的方法 — 截面法
传统具有柱、梁、檩、椽的木 制房屋结构
建于隋代(605年)的河北赵州桥桥 长64.4米,跨径37.02米,用石2800 吨
目录
§1.1 材料力学的任务
古代建筑结构
建于辽代(1056年)的山西应县佛宫寺释迦塔 塔高9层共67.31米,用木材7400吨 900多年来历经数次地震不倒,现存唯一木塔
目录
§1.1 材料力学的任务
架的变形略去不计。计算得到很大的简
化。
C
δ1
材料力学专题教育课件
A 解: d 2v k 2v M b x
v
x A l
B
Bx
dx2
EIl y
通解为 v Asin kx B cos kx M b x Pl
利用两端挠度为零旳边界条件求得
A Mb P sin kl
B0
于是 v M b (sin kx x ) P sin kl l
A
dv dx
x0
Mb P
Pkshkl
Pl
Ql 3 3(u thu)
vmax
v
x1 2
ห้องสมุดไป่ตู้
[ 48EI
u3
]
la xl
Ql thu
M max M
x1 2
[ 4
u
]
在梁柱问题中以- P替代P,以ki替代k,以ui替代u,并利用下列 关系:
sin ki ishk, cos ki chk, tgki ithk
就能够得到相应旳系杆问题旳微分方程或者解。
第14章 梁旳纵横弯曲与弹性基础梁简介
§14.1 梁旳纵横弯曲
在实际工程中,经常会遇到同步承受纵向载荷与横 向载荷旳杆件,假如杆件旳抗弯刚度很大,或者纵 向力很小,那么在小变形情况下,能够忽视纵向力 在杆件横截面内产生旳弯矩旳影响,而按照拉压和 弯曲组合变形问题进行分析。
假如杆件旳抗弯刚度不是很大,而纵向力又不是太 小,则纵向力产生旳附加弯矩旳影响一般是不能忽视 旳,而且梁旳变形、弯矩与纵向力旳关系也不再是线 性旳,此类问题称为纵横弯曲。
dx 2
EIl
0 xla
d 2v dx 2
k
2v
Q(l
a)(l EIl
x)
la xl
通解分别为
材料力学培训资料课件
高性能材料与结构的优化设计
总结词
高性能材料和结构的优化设计是现代工程领域的重要研 究方向,通过合理的材料和结构设计,可以显著提高各 种工程结构的性能和可靠性。
详细描述
高性能材料和结构的优化设计是现代工程领域的重要研 究方向。通过合理的材料和结构设计,可以显著提高各 种工程结构的性能和可靠性。例如,航空航天领域中的 飞机和火箭结构、土木工程中的桥梁和建筑结构、汽车 工业中的车辆底盘和发动机部件等,都需要通过材料和 结构的优化设计来提高其性能、减轻重量、降低成本并 提高市场竞争力。
材料力学性能的实验研究与数据分析
总结词
对材料力学性能的实验研究与数据分析是深入了解材 料力学行为的关键手段,有助于揭示材料的各种力学 性质和机理。
详细描述
通过对材料力学性能进行实验研究和数据分析,可以 深入了解材料的各种力学性质和机理。实验研究可以 采用各种先进的测试技术,如X射线衍射、电子显微 镜、纳米压痕等,以揭示材料的微观结构和性能之间 的关系。同时,通过对实验数据进行深入的数据分析, 可以进一步揭示材料的各种力学性质和机理,为材料 的优化设计和新材料的开发提供理论支持。
复杂变形分析
定义 当材料受到多种基本变形同时作用时 的变形情况。
分析方法
采用叠加原理,将各基本变形的应力、 应变分量进行叠加。
应变分析
复杂变形时的总应变是各基本变形应 变分量的线性组合。
应用
材料在生产和使用过程中经常受到多 种基本变形同时作用,需要进行复杂 变形分析。
CHAPTER
强度理论的基本概念
CHAPTER
材料力学的数值模拟与计算机辅助设计
总结词
材料力学领域近年来发展迅速,数值模拟和计算机辅助设计技术已成为研究材料力学性能的重要手段, 有助于优化材料设计和结构性能。
材料力学(全套精)单辉祖ppt课件
稳 定 问 题
.
工程构件的强度、刚度和稳定问题
稳 定 问 题
.
工程构件的强度、刚度和稳定问题
强 稳刚 度 定度
问 题
.
工程构件的强度、刚度和稳定问题
强度—不因发生断裂或塑性变形而失效; 刚度—不因发生过大的弹性变形而失效; 稳定性—不因发生因平衡形式的突然转 变而失效。
.
折断 轴 齿轮
齿轮 轴
内力)及变形。
F
FN
F
.
如何简化出火车车 轮轴的计算模型?
如何设计车轮轴 的横截面?
.
2)材料力学的特点:逻辑性强、概念丰富 3)学习方法:吃透概念、加强练习 4)本门课程的地位
是土木、机械和力学等专业的技术基础课; 是了解和学习相关专业知识和技术的第一门 重要课程。
.
§1-2 材料力学的基本假设
正确答案为[B]。负重爬坡时,链条在强大的拉力的作用下产生很大的变形, 并且超出齿轮和链条能够正常啮合的范围,导致链条打滑;打滑发生后自行 车又能正常骑行,说明打滑后链条完全恢复原状,所发生的变形为弹性变形。
2. 自行车负重爬坡出现“链条脱落”现象,并且无法安 装和继续前行,从力学的角度分析,此现象表明链条的
p
裂纹
虽然不折断,但变形过大, 影响正常传动。
P
失去原来的直线平衡状态
P
材料力学就是在满足强度、刚度 和稳定性要求的前提下,为设计既经 济又安全的构件,提供必要的理论基 础和计算方法。
本门课程的特点与地位 1)与理论力学的关系 理论力学研究刚体的外部效应(构件受到的外力)
A
B
FA
FB
F
F
材料力学研究变形固体的内部效应(构件受到的
.
工程构件的强度、刚度和稳定问题
稳 定 问 题
.
工程构件的强度、刚度和稳定问题
强 稳刚 度 定度
问 题
.
工程构件的强度、刚度和稳定问题
强度—不因发生断裂或塑性变形而失效; 刚度—不因发生过大的弹性变形而失效; 稳定性—不因发生因平衡形式的突然转 变而失效。
.
折断 轴 齿轮
齿轮 轴
内力)及变形。
F
FN
F
.
如何简化出火车车 轮轴的计算模型?
如何设计车轮轴 的横截面?
.
2)材料力学的特点:逻辑性强、概念丰富 3)学习方法:吃透概念、加强练习 4)本门课程的地位
是土木、机械和力学等专业的技术基础课; 是了解和学习相关专业知识和技术的第一门 重要课程。
.
§1-2 材料力学的基本假设
正确答案为[B]。负重爬坡时,链条在强大的拉力的作用下产生很大的变形, 并且超出齿轮和链条能够正常啮合的范围,导致链条打滑;打滑发生后自行 车又能正常骑行,说明打滑后链条完全恢复原状,所发生的变形为弹性变形。
2. 自行车负重爬坡出现“链条脱落”现象,并且无法安 装和继续前行,从力学的角度分析,此现象表明链条的
p
裂纹
虽然不折断,但变形过大, 影响正常传动。
P
失去原来的直线平衡状态
P
材料力学就是在满足强度、刚度 和稳定性要求的前提下,为设计既经 济又安全的构件,提供必要的理论基 础和计算方法。
本门课程的特点与地位 1)与理论力学的关系 理论力学研究刚体的外部效应(构件受到的外力)
A
B
FA
FB
F
F
材料力学研究变形固体的内部效应(构件受到的
材料力学ppt课件
A
B
C
D
F
F F A
(a) y
B
A
B
C
D
F
C ( b) n (c)
n
主要内容结构
应力集中
拉(压)杆的强度 拉(压)杆的变形和位移
拉(压)杆的应力
材料在拉压时的力学性能 拉(压)杆的内力
§2-2 拉(压)杆的内力
〖问题提出〗
1.用手拉伸弹簧时,手臂肌肉会感觉到紧张,弹 簧则有反弹的趋势,为什么? 2.图示等直杆,轴向外力按给定比例同步增加, 哪一段首先发生破坏?
〖工程技术〗
受拉
AB
立柱受拉
〖文学艺术〗白居易:《琵琶行(节选)》 千呼万唤始出来,犹抱琵琶半遮面。 转轴拨弦三两声,未成曲调先有情。 弦弦掩抑声声思,似诉平生不得志。 低眉信手续续弹,说尽心中无限事。 轻拢慢捻抹复挑,初为《霓裳》后《六幺》。 大弦嘈嘈如急雨,小弦切切如私语。 嘈嘈切切错杂谈,大珠小珠落玉盘。 间关莺语花底滑,幽咽泉流水下滩。 水泉冷涩弦凝绝,凝绝不通声渐歇。 别有幽愁暗恨生,此时无声胜有声。 银瓶乍破水浆迸,铁骑突出刀枪鸣。 曲终收拨当心画,四弦一声如裂帛。
注意:在用截面取分离体前,作用于物体上的 外力(荷载)不能任意移动或用静力等效的相 当力系替代。
(a)
(b)
F F
F F
n C n B
m m A
F
C
n n B
Fm
m A
(a)
FN=F m
m A
(d)
F FN=0 (e) F
A m m A
(b) FN=F n
n BFN=FFra bibliotekn n B
F
A
(c)
材料力学公开课获奖课件
代入上式,得:
p
P A
Pcos
A
0
cos
斜截面上全应力: p 0cos
35
斜截面上全应力: p 0cos P
k
分解:
p cos 0cos2
k
k
p
P
p
sin
0
cos
sin
0
2
sin2
k
反应:经过构件上一点不同截面上应力变化情况。
P
P
当 = 0°时,( )max 0 (横截面上存在最大正应力)
大拉力,角值应为多大?(要求: 在0~60度之间)。
m P
P
解:
Pcos A
2
[
](1)
P
n
Psin
A
cos[
](2)
联立(1)、(2)得: B
B 26.6,PB 50kN
40
30
60
(1)、(2)式旳曲线如图(2),显然,B点左 侧由剪应力控制杆旳强
度,B点右侧由正应力控制杆旳强度,当=60°时,由(2)式得
X 0 N1 PA PB PC PD 0
N1 5P 8P 4P P 0 N1 2P 16
同理,求得AB、
N2
BC、CD段内力分
别为:
N2= –3P
N3= 5P
N4= P
轴力图如右图 N
2P + –
3P
BC
PB
PC
N3
C
PC N4
5P
+
P
D PD D PD D PD
x
17
轴力图旳特点:突变值 = 集中载荷 轴力(图)旳简便求法: 自左向右:
材料力学基础知识PPT课件
等)。使用性能决定了材料的应用范围,使用安全可靠性 和使用寿命。 材料力学的建立主要解决材料的力学性能,研究对象有 (1)强度 (2)刚度 (3)稳定性 研究的参数包括
3
材料力学的建立
强度。(屈服强度,抗拉强度,抗弯强度, 抗剪强度),如钢材Q235,屈服强度为 235MPa
塑性。一般用伸长率或断面收缩率表示。 如Q235伸长率为δ5=21-26
表示轴力沿杆轴变化情况的图线,称为轴力图。 例如上图中的坐标图即为杆的轴力图。
31
4.2轴力与轴力图
例1 图中所示为右端固定梯形杆,承受轴向载荷F1与F2作 用,已知F1=20KN(千牛顿),F2=50KN,试画杆的轴力 图,并求出最大轴力值。
解:(1)计算支反
力
A F1
B F2
设杆右端的支反力为
12
3.3外力与内力
内力与截面法
内力:物体内部的相互作用力。由于载荷作用引起的内力称为附加内 力。简称内力。内力特点:引起变形,传递外力,与外力平衡。 截面法:将杆件假想地切成两部分,以显示内力,称为截面法。
13
3.3外力与内力
应用力系简化理论,将上述分布内力向横截面的形心简化,得
轴力 :Fx沿杆件轴线方向内力分量,产生轴向(伸长,缩短)
C FR
FR,则由整个杆的平 F1
FN1 FN2
FR
衡方程
FN
20kN
ΣFx=0,F2-FR=0 得
+ 0
30kN
FR=F2-F1=50KN-20KN
=30KN
32
4.2轴力与轴力图
(2)分段计算轴力
设AB与BC段的轴力
A
均为拉力,并分别用FN1 F1
与FN2表示,则可知
3
材料力学的建立
强度。(屈服强度,抗拉强度,抗弯强度, 抗剪强度),如钢材Q235,屈服强度为 235MPa
塑性。一般用伸长率或断面收缩率表示。 如Q235伸长率为δ5=21-26
表示轴力沿杆轴变化情况的图线,称为轴力图。 例如上图中的坐标图即为杆的轴力图。
31
4.2轴力与轴力图
例1 图中所示为右端固定梯形杆,承受轴向载荷F1与F2作 用,已知F1=20KN(千牛顿),F2=50KN,试画杆的轴力 图,并求出最大轴力值。
解:(1)计算支反
力
A F1
B F2
设杆右端的支反力为
12
3.3外力与内力
内力与截面法
内力:物体内部的相互作用力。由于载荷作用引起的内力称为附加内 力。简称内力。内力特点:引起变形,传递外力,与外力平衡。 截面法:将杆件假想地切成两部分,以显示内力,称为截面法。
13
3.3外力与内力
应用力系简化理论,将上述分布内力向横截面的形心简化,得
轴力 :Fx沿杆件轴线方向内力分量,产生轴向(伸长,缩短)
C FR
FR,则由整个杆的平 F1
FN1 FN2
FR
衡方程
FN
20kN
ΣFx=0,F2-FR=0 得
+ 0
30kN
FR=F2-F1=50KN-20KN
=30KN
32
4.2轴力与轴力图
(2)分段计算轴力
设AB与BC段的轴力
A
均为拉力,并分别用FN1 F1
与FN2表示,则可知
材料力学(全套483页PPT课件)-精选全文
三、构件应有足够的稳定性
稳定性(stability)—构件承受外力时, 保持原有平衡状态的能力
4
材料力学的任务: 在满足强度、刚度和稳定性的要
求下,为设计既经济又安全的构件提 供必要的理论基础和计算方法。
5
1.2 变形固体的基本假设
1.连续性假设
假设在变形体所占有的空间内毫无空隙地充满了物质。即认 为材料是密实的。这样,构件内的一些力学量(如各点的位 移)可用坐标的连续函数表示,并可采用无限小的数学分析 方法。
2、横向变形、泊松比
横向线应变: b b1 b
bb
称为泊松比
32
是谁首先提出弹性定律? 弹性定律是材料力学中一个非常重要的基础定
律。一般认为它是由英国科学家胡克(1635一1703) 首先提出来的,所以通常叫做胡克定律。其实,在 胡克之前1500年,我国早就有了关于力和变形成正 比关系的记载。
1-1截面
A
X 0 N1 40 30 20 0 N1 N1 50kN(拉)
2-2截面
X 0 N 2 30 20 0
1 B 2C 3D 40 kN 30 kN 20 kN
N2
30 kN 20 kN
N2 10kN(拉)
3-3截面
N 50 kN
N3
20 kN
X 0
N 3 20 0 N 3 20 kN(压)
10 103 100 103 500 106
10 103 100 103 200 106
mm
0.015mm
计算结果为负,说明整根杆发生了缩短
35
静定汇交杆的位移计算,以例题说明。 例3 图示结构由两杆组成,两杆长度均为 l,B 点受垂直荷 载 P 作用。(1) 杆①为刚性杆,杆②刚度为 EA ,求节点 B 的位移;(2) 杆①、杆②刚度均为 EA,求节点 B 的位 移。
稳定性(stability)—构件承受外力时, 保持原有平衡状态的能力
4
材料力学的任务: 在满足强度、刚度和稳定性的要
求下,为设计既经济又安全的构件提 供必要的理论基础和计算方法。
5
1.2 变形固体的基本假设
1.连续性假设
假设在变形体所占有的空间内毫无空隙地充满了物质。即认 为材料是密实的。这样,构件内的一些力学量(如各点的位 移)可用坐标的连续函数表示,并可采用无限小的数学分析 方法。
2、横向变形、泊松比
横向线应变: b b1 b
bb
称为泊松比
32
是谁首先提出弹性定律? 弹性定律是材料力学中一个非常重要的基础定
律。一般认为它是由英国科学家胡克(1635一1703) 首先提出来的,所以通常叫做胡克定律。其实,在 胡克之前1500年,我国早就有了关于力和变形成正 比关系的记载。
1-1截面
A
X 0 N1 40 30 20 0 N1 N1 50kN(拉)
2-2截面
X 0 N 2 30 20 0
1 B 2C 3D 40 kN 30 kN 20 kN
N2
30 kN 20 kN
N2 10kN(拉)
3-3截面
N 50 kN
N3
20 kN
X 0
N 3 20 0 N 3 20 kN(压)
10 103 100 103 500 106
10 103 100 103 200 106
mm
0.015mm
计算结果为负,说明整根杆发生了缩短
35
静定汇交杆的位移计算,以例题说明。 例3 图示结构由两杆组成,两杆长度均为 l,B 点受垂直荷 载 P 作用。(1) 杆①为刚性杆,杆②刚度为 EA ,求节点 B 的位移;(2) 杆①、杆②刚度均为 EA,求节点 B 的位 移。