开关电源高频变压器的设计(1)

合集下载

正激反激式双端开关电源高频变压器设计详解

正激反激式双端开关电源高频变压器设计详解

正激反激式双端开关电源高频变压器设计详解高频变压器作为电源电子设备中的重要组成部分,起到了将输入电压进行变换的作用。

根据不同的使用环境和要求,电源电路中的电感元件可分为正激式、反激式和双端开关电源。

下面就分别对这三种电源的高频变压器设计进行详解。

1.正激式电源变压器设计正激式电源变压器是将输入电压通过矩形波进行激励的一种变压器。

其基本结构包括主磁线圈和副磁线圈两部分,主磁线圈用来耦合能量,副磁线圈用来提供输出电压。

正激式电源变压器的设计主要有以下几个步骤:(1)确定主磁线圈的匝数和磁芯的截面积:根据输入电压和电流来确定主磁线圈的匝数,根据输出电压和电流来确定磁芯的截面积。

(2)计算主磁线圈的电感:根据主磁线圈的截面积和匝数来计算电感值。

(3)选择磁芯材料:磁芯材料的选择要考虑其导磁性能和能量损耗等因素。

(4)确定副磁线圈的匝数:根据主磁线圈的输入电压和输出电压的变换比例来计算副磁线圈的匝数。

(5)计算副磁线圈的电感:根据副磁线圈的截面积和匝数来计算电感值。

(6)确定绕线方式和结构:根据磁芯的形状和结构来确定绕线方式和结构。

2.反激式电源变压器设计反激式电源变压器是通过反馈控制来实现变压的一种变压器。

其基本结构包括主磁线圈、副磁线圈和反馈元件等。

反激式电源变压器的设计主要有以下几个步骤:(1)确定主磁线圈的匝数和磁芯的截面积:根据输入电压和电流来确定主磁线圈的匝数,根据输出电压和电流来确定磁芯的截面积。

(2)计算主磁线圈的电感:根据主磁线圈的截面积和匝数来计算电感值。

(3)选择磁芯材料:磁芯材料的选择要考虑其导磁性能和能量损耗等因素。

(4)确定副磁线圈的匝数:根据主磁线圈的输入电压和输出电压的变换比例来计算副磁线圈的匝数。

(5)计算副磁线圈的电感:根据副磁线圈的截面积和匝数来计算电感值。

(6)确定绕线方式和结构:根据磁芯的形状和结构来确定绕线方式和结构。

(7)选择合适的反馈元件:根据反馈控制的需要来选择合适的反馈元件,并设计合适的反馈回路。

高频开关电源变压器设计

高频开关电源变压器设计

开关电源功率变压器的设计方法1开关电源功率变压器的特性功率变压器是开关电源中非常重要的部件,它和普通电源变压器一样也是通过磁耦合来传输能量的。

不过在这种功率变压器中实现磁耦合的磁路不是普通变压器中的硅钢片,而是在高频情况下工作的磁导率较高的铁氧体磁心或铍莫合金等磁性材料,其目的是为了获得较大的励磁电感、减小磁路中的功率损耗,使之能以最小的损耗和相位失真传输具有宽频带的脉冲能量。

图1(a)为加在脉冲变压器输入端的矩形脉冲波,图1(b)为输出端得到的输出波形,可以看出脉冲变压器带来的波形失真主要有以下几个方面:图1脉冲变压器输入、输出波形(a)输入波形(b)输出波形(1)上升沿和下降沿变得倾斜,即存在上升时间和下降时间;(2)上升过程的末了时刻,有上冲,甚至出现振荡现象;(3)下降过程的末了时刻,有下冲,也可能出现振荡波形;(4)平顶部分是逐渐降落的。

这些失真反映了实际脉冲变压器和理想变压器的差别,考虑到各种因素对波形的影响,可以得到如图2所示的脉冲变压器等效电路。

图中:Rsi——信号源Ui的内阻Rp——一次绕组的电阻Rm——磁心损耗(对铁氧体磁心,可以忽略)T——理想变压器Rso——二次绕组的电阻RL——负载电阻C1、C2——一次和二次绕组的等效分布电容Lin、Lis——一次和二次绕组的漏感Lm1——一次绕组电感,也叫励磁电感n——理想变压器的匝数比,n=N1/N2图2脉冲变压器的等效电路将图2所示电路的二次回路折合到一次,做近似处理,合并某些参数,可得图3所示电路,漏感Li包括Lin和Lis,总分布电容C包括C1和C2;总电阻RS包括Rsi、RP和Rso;Lm1是励磁电感,和前述的Lm1相同;RL′是RL等效到一次侧的阻值,RL′=RL/n2,折合后的输出电压U′o=Uo/n。

经过这样处理后,等效电路中只有5个元件,但在脉冲作用的各段时间内,每个元件并不都是同时起主要作用,我们知道任何一个脉冲波形可以分解成基波与许多谐波的叠加。

开关电源之高频变压器设计

开关电源之高频变压器设计

开关电源之高频变压器设计发表时间:2019-06-18T17:24:32.980Z 来源:《科技研究》2019年4期作者:张升[导读] 本文主要介绍高频变压器具体参数的确定、及其在设计过程应当注意的问题及并提出相应的解决办法。

(中山市木林森光电有限公司 528415)摘要:开关电源设计中的难点之一就是高频变压器的设计,由于高频变压器是开关电源中进行能量储存和能量传输的重要部件,其合理性与参数计算的正确性将直接影响到开关电源的整体性能。

而衡量高频变压器的好坏,除了要考虑一般变压器中涉及的效率、运行特性等方面,还要考虑到其交直流损耗、漏感、线圈本身分布参数等诸多方面影响。

本文主要介绍高频变压器具体参数的确定、及其在设计过程应当注意的问题及并提出相应的解决办法。

关键词:开关电源;高频变压器;设计要点1 开关电源之高频变压器的主要构成及分类从广义上来说,凡以半导体功率的开关器件为开关管,经对开关管进行高频开通以及关断控制,会将电能形态转化为其他电能形态装置,这就是所谓的开关转换器。

用开关转换器作为主要的组成部件,以闭环自动控制来稳定它的输出电压,并且在电路中增加保护环节电源,此为开关电源。

若用高频DC/DC 转换器作为开关电源工作时的开关转换器则就成为高频开关电源。

高频开关电源基本的路线是由开关型的功率变换器,整流滤波电路,交流直线转换电路以及控制电路组成。

高频开关电源变压器分类方式:(1)按照驱动方式的不同可以分为他激式和自激式;(2)按照电路的拓扑结构可以分为隔离式和非隔离式;前者包括正激式,反激式与半桥式,全桥式,推挽式;后者包括降压型与升压型等;(3)按照输出输入间是否有着电器隔离,可将其分为隔离式与非隔离式;(4)按照DC 转换器/DC 开关条件,可将其分为硬开关以及软开关。

2 开关电源之高频变压器的设计要点2.1 整体设计对于实用的可调开关电源,需能控制输出电压在合适的范围内调节,并且保证电流不超过所设计的最大值。

开关电源设计(精通型)

开关电源设计(精通型)

开关电源设计(精通型)一、开关电源基本原理及分类1. 基本原理开关电源的工作原理是通过控制开关器件的导通与关断,实现电能的高效转换。

它主要由输入整流滤波电路、开关变压器、输出整流滤波电路和控制电路组成。

在开关电源中,开关器件将输入的交流电压转换为高频脉冲电压,通过开关变压器实现电压的升降,经过输出整流滤波电路,得到稳定的直流电压。

2. 分类(1)PWM(脉冲宽度调制)型开关电源:通过调节脉冲宽度来控制输出电压,具有高效、高精度等特点。

(2)PFM(脉冲频率调制)型开关电源:通过调节脉冲频率来控制输出电压,适用于负载变化较大的场合。

二、开关电源关键技术与设计要点1. 高频变压器设计(1)选用合适的磁芯材料,保证变压器在高频工作时的磁通密度不超过饱和磁通密度。

(2)合理设计变压器的绕组匝数比,以满足输出电压和电流的要求。

(3)考虑变压器损耗,包括铜损、铁损和杂散损耗,确保变压器具有较高的效率。

2. 开关器件的选择与应用(1)开关频率:根据开关电源的设计要求,选择合适的开关频率。

(2)电压和电流等级:确保开关器件能承受最大电压和电流。

(3)功率损耗:选择低损耗的开关器件,提高开关电源的效率。

(4)驱动方式:根据开关器件的特点,选择合适的驱动电路。

3. 控制电路设计(1)稳定性:确保控制电路在各种工况下都能稳定工作。

(2)精度:提高控制电路的采样精度,降低输出电压的波动。

(3)保护功能:设置过压、过流、短路等保护功能,提高开关电源的可靠性。

三、开关电源设计实例分析1. 确定设计指标输入电压:AC 85265V输出电压:DC 24V输出电流:4.17A效率:≥90%2. 高频变压器设计选用EE型磁芯,计算磁芯尺寸、绕组匝数和线径。

3. 开关器件选择根据设计指标,选择一款适合的MOSFET作为开关器件。

4. 控制电路设计采用UC3842作为控制芯片,设计控制电路,实现开关电源的稳压输出。

5. 实验验证搭建实验平台,对设计的开关电源进行测试,验证其性能指标是否符合要求。

(整理)正激式开关电源高频变压器

(整理)正激式开关电源高频变压器

待求参数项详细公式1副边电压VsVs = Vp*Ns/Np2最大占空比θonmaxθonmax = Vo/(Vs-0.5)1、θonmax的概念是指:根据磁通复位原则,其在闭环控制下所能达到的最大占空比。

2、0.5是考虑输出整流二极管压降的调整值,以下同。

3临界输出电感LsoLso = (Vs-0.5)*(Vs-0.5-Vo)*θonmax2/(2*f*Po)1、由能量守恒:(1/T)*∫0ton{Vs*[(Vs-Vo)*t/Lso]}dt = Po2、Ton=θon/f4实际工作占空比θon如果输出电感Ls≥Lso:θon=θonmax否则:θon=√{2*f*Ls*Po /[(Vs-0.5)*(Vs-0.5-Vo)]}1、由能量守恒:(1/T)*∫0ton{Vs*[(Vs-Vo)*t/Ls]}dt = Po2、Ton=θon/f5导通时间TonTon =θon /f6最小副边电流IsminIsmin = [Po-(Vs-0.5)*(Vs-0.5-Vo)*θon2/(2*f*Ls)]/[(Vs-0.5)*θon]1、由能量守恒:(1/T)*∫0ton{Vs*[(Vs-Vo)*t/Ls+Ismin]}dt = Po2、Ton=θon/f7副边电流增量ΔIsΔIs = (Vs-0.5-Vo)* Ton/ Ls8副边电流峰值IsmaxIsmax = Ismin+ΔIs9副边有效电流IsIs = √[(Ismin2+ Ismin*ΔIs+ΔIs2/3)*θon]1、Is=√[(1/T)*∫0ton(Ismin+ΔIs*t/Ton)2dt]2、θon= Ton/T10副边电流直流分量IsdcIsdc = (Ismin+ΔIs/2) *θon11副边电流交流分量IsacIsac = √(Is2- Isdc2)12副边绕组需用线径DsDs = 0.5*√Is电流密度取5A/mm213原边励磁电流IcIc = Vp*Ton / Lp14最小原边电流IpminIpmin = Ismin*Ns/Np15原边电流增量ΔIpΔIp = (ΔIs* Ns/Np+Ic)/η16原边电流峰值IpmaxIpmax = Ipmin+ΔIp17原边有效电流IpIp = √[(Ipmin2+ Ipmin*ΔIp+ΔIp2/3)*θon]1、Ip=√[(1/T)*∫0ton(Ipmin+ΔIp*t/Ton)2dt]2、θon= Ton/T18原边电流直流分量IpdcIpdc = (Ipmin+ΔIp/2) *θon19原边电流交流分量IpacIpac = √(Ip2- Ipdc2)20原边绕组需用线径DpDp = 0.55*√Ip电流密度取4.2A/mm221最大励磁释放圈数Np′Np′=η*Np*(1-θon) /θon22磁感应强度增量ΔBΔB = Vp*θon / (Np*f*Sc)23剩磁BrBr = 0.1T24最大磁感应强度BmBm = ΔB+Br25标称磁芯材质损耗PFe (100KHz 100℃ KW/m3)磁芯材质PC30:PFe = 600磁芯材质PC40:PFe = 45026选用磁芯的损耗系数ωω= 1.08* PFe / (0.22.4*1001.2)1.08为调节系数27磁芯损耗PcPc = ω*Vc*(ΔB/2)2.4*f1.228气隙导磁截面积Sg方形中心柱:Sg= [(a+δ′/2)*( b+δ′/2)/(a*b)]*Sc圆形中心柱:Sg= {π*(d/2+δ′/2)2/[π*(d/2)2]} *Sc29有效磁芯气隙δ′δ′=μo*(Np2*Sc/Lp-Sc/AL)1、根据磁路欧姆定律:H*l = I*Np 有空气隙时:Hc*lc + Ho*lo = Ip*Np又有:H = B/μ Ip = Vp*Ton/Lp 代入上式得:ΔB*lc/μc +ΔB*δ/μo = Vp*Ton*Np /Lp式中:lc为磁路长度,δ为空气隙长度,Np为初级圈数,Lp为初级电感量,ΔB为工作磁感应强度增量;μo为空气中的磁导率,其值为4π×10-7H/m;2、ΔB=Vp*Ton/Np*Sc3、μc为磁芯的磁导率,μc=μe*μo4、μe为闭合磁路(无气隙)的有效磁导率,μe的推导过程如下:由:Hc*lc=Ip*Np Hc=Bc/μc=Bc/μe*μo Ip=Vp*Ton/Lpo 得到:Bc*lc/(μe*μo)=Np*Vp*Ton/Lpo又根据:Bc=Vp*Ton/Np*Sc 代入上式化简得:μe = Lpo*lc/μo*Np2*Sc5、Lpo为对应Np下闭合磁芯的电感量,其值为:Lpo = AL*Np26、将式步骤5代入4,4代入3,3、2 代入1得:Lp =Np2*Sc/(Sc/AL +δ/μo)30实际磁芯气隙δ如果δ′/lc≤0.005:δ=δ′如果δ′/lc>0.03:δ=μo*Np2*Sc/Lp否则δ=δ′*Sg/Sc31穿透直径ΔDΔD = 132.2/√f32开关管反压UceoUceo = √2 *Vinmax+√2 *Vinmax*Np/ Np′33输出整流管反压UdUd = Vo+√2 *Vinmax*Ns/Np′34副边续流二极管反压Ud′Ud′=√2 *Vinmax*Ns/Np二、双端开关电源高频变压器:No待求参数项详细公式1副边电压Vs如果为半桥:Vs = Vp*Ns/(2*Np)否则: Vs = Vp*Ns/Np2最大占空比θonmaxθonmax = Vo/(Vs-0.5)1、θonmax的概念是指:根据磁通复位原则,其在闭环控制下所能达到的最大占空比。

高频变压器设计

高频变压器设计

高频变压器设计单端反激式开关电源中,高频变压器的设计是设计的核心。

高频变压器的磁芯一般用锰锌铁氧体,EE 型和EI 型,近年来,我国引进仿制了汤姆逊和TDK 公司技术开发出PC30,PC40高磁导率,高密度几个品种。

一、 计算公式单端反激式开关电源是以电感储能方式工作,反激式公式推导: 首先要计算出整流后的输入电压的最大值和最小值,如交流输入电压AC V (160~242V ),窄限范围;AC V (85~265V ),宽限范围。

整流后直流电压DC V =1.4*AC V (224~338V )窄限范围;DC V =1.4AC V (119~371V ),宽限范围。

整流后直流纹波电压和整流桥压降一般取20V ,和滤波电容有关。

(1)初级峰值电流p I集电极电压上升率p in p cI V L t = (c t 电流从0上升到集电极电流峰值作用时间)取max1c ft D =min max**p p in L I f V D =公式中,min in V : 是最低直流输入电压,V ; p L :变压器初级电感量,H ;f :开关频率,Hz ;输出功率等于存储在每个周期内的能量乘以工作频率。

21***2out p p P L I f =经进一步简化,就可以得到变压器初级电流峰值为min max2**outp c in P I I V D ==(2)初级电感量p L因为电感量*V S H I =(max D S f= ;1V*1S1mH=1A ) min max p L *in p V D I f=(3)关于最小占空比min D 和最大占空比max D最小占空比和最大占空比的设计可根据输入电压变化范围和负载情况合理决定,在输入电压比较高的情况下,如400VDC ,max D 可选0.25以下;在输入电压比较低的情况下,如110VDC , max D 可选0.45以下;max minin in V K V =;maxmin max max (1)*D D D K D =-+(4)磁芯的选择磁芯输出功率和磁芯截面积的经验关系式为(0.1~e A ≈对于磁芯EI16~EI40,系数一般按0.1~0.15计算。

开关电源高频变压器的设计ppt课件(共29张PPT)

开关电源高频变压器的设计ppt课件(共29张PPT)
上,但是变压器的实际工作温度不应高于80℃,这是因为在100℃以上时,其饱 和磁通密度Bs已跌至常温时的70%。因此过高的工作温度会使磁心的饱和磁通 密度跌落的更严重。再者,当高于100℃时,其功耗已经呈正温度系数,会导致 恶性循环。对于R2KB2材料,其允许功耗对应的温度已经达到110℃,居里温度 高达240℃,满足高温使用要求。
2. 考虑成本因数在此选择PC40材质,查PC40资料得
3. Bs=0.39T Br=0.06T B m a x B s B r 0 .3 9 T 0 .0 6 T 0 .3 3 T
为了防止磁芯的瞬间出现饱和,预留一定裕量,取
变压器视在功率PT:对于反激拓扑来说,
P T P in P o u t P o u t P o u t ( 2 1 0 .1 8 )* 3 ( 2 1 1 )* 3 1 4 8 .5 W
2. 计算AP (用Excel表格来计算AP值)
式中:
A P
P T*104
0.783cm 4
B m*fs*1000*J*K u
J电流密度,通常395A/cm2;
2、变压器的构成以及作用:
1〕电气隔离
2〕储能
3〕变压
4〕变流
可能要用气隙磁通边缘效应校正匝数
若Φ值引起的温升小于25度,设计通过。
2〕如果要增加原副绕组之间的耦合,可以采用一半原绕组靠近磁芯,接着绕反馈绕组和副绕组,最外层再绕一半原绕组的排列形式,这样有
选择铁氧体材料时,要求功率损耗随温度的变化呈负温度系数关系。这是因为,
假如磁心损耗为发热主体,使变压器温度上升,而温度上升又导致磁心损耗进 一步增大,从而形成恶性循环,最终将使功率管和变压器及其他一些元件烧毁。 因此国内外在研制功率铁氧体时,必须解决磁性材料本身功率损耗负温度系数 问题,这也是电源用磁性材料的一个显著特点,日本TDK公司的PC40及国产的 R2KB等材料均能满足这一要求。

开关电源高频变压器设计

开关电源高频变压器设计

开关电源中的磁性元件
单层线圈的MMF图
E-E Core E-E磁芯
H = NI/le 0
H从外部的0上升至内部的NI/le ,再降回外部的0。
AcBel Confidential
开关电源中的磁性元件
带有4层绕组的MMF图
4I 3I 2I I
0
H在每层中增加,在线圈内部保持4I,然后逐层递减,在外部回到0。
AcBel Confidential
开关电源中的磁性元件
面积乘积(Aw • Ae)
磁芯尺寸取决于处理的功率,这是有道理的,因为: –窗口面积与电流成正比。 –磁芯面积与电压成正比。 –因此可以推出Aw · Ae = V ·I = 功率 为简便起见,我们没有提及频率。 –磁芯面积与磁通成正比:Φ = B ·S = V ·t = V/f –因此, AP = (V ·I)/f。在较高的频率下,给定的 磁芯尺寸能够处理更大的功率。 但并非这么简单。 –磁芯面积与磁通成正比:Φ = B ·S = V ·t = V/f –在给定的温升下,电流密度与尺寸有关。 –邻近效应和趋肤效应在较高频率引起较大的导线损耗。
注意: 功率损耗与H2成正比!
AcBel Confidential
开关电源中的磁性元件
主变压器的设计
最重要的是:确定输入电压的范围。
在APFC输入电源中,APFC输出电压最大值通常为400V。
变压器的最小输入电压通常取决于需要多大的保持时间 ——即断开输入电源后电源能够持续工作的时间。
对于交流输入电源,无论有或没有PFC,在变换器的输入 端都有一个储能电容器。 对于保持特性的设计需要选择电容值以及变换器的工作 电压范围。 变换器的工作电压范围决定了变压器的设计。

关于大功率高频变压器的设计

关于大功率高频变压器的设计

关于大功率高频变压器的设计设计高频变压器首先应该从磁芯开始。

开关电源变压器磁芯多是在低磁场下使用的软磁材料,它有较高磁导率,低的矫顽力,高的电阻率。

磁导率高,在一定线圈匝数时,通过不大的激磁电流就能承受较高的外加电压,因此,在输出一定功率要求下,可减轻磁芯体积。

磁芯矫顽力低,磁滞面积小,则铁耗也少。

高的电阻率,则涡流小,铁耗小。

新晨阳电容电感铁氧体材料是复合氧化物烧结体,电阻率很高,适合高频下使用,但Bs值比较小,常使用在开关电源中。

高频变压器的设计通常采用两种方法[3]:第一种是先求出磁芯窗口面积AW 与磁芯有效截面积Ae的乘积AP(AP=AW×Ae,称磁芯面积乘积),根据AP值,查表找出所需磁性材料之编号;第二种是先求出几何参数,查表找出磁芯编号,再进行设计。

注意:1)设计中,在最大输出功率时,磁芯中的磁感应强度不应达到饱和,以免在大信号时产生失真。

2)在瞬变过程中,高频链漏感和分布电容会引起浪涌电流和尖峰电压及脉冲顶部振荡,使损耗增加,严重时会造成开关管损坏。

同时,输出绕组匝数多,层数多时,应考虑分布电容的影响,降低分布电容有利于抑制高频信号对负载的干扰。

对同一变压器同时减少分布电容和漏感是困难的,应根据不同的工作要求,保证合适的电容和电感。

单片开关电源高频变压器的设计要点高频变压器是单片开关电源的核心部件,鉴于这种高频变压器在设计上有其特殊性,为此专门阐述降低其损耗及抑制音频噪声的方法,可供高频变压器设计人员参考。

单片开关电源集成电路具有高集成度、高性价比、最简外围电路、最佳性能指标等优点,能构成高效率无工频变压器的隔离式开关电源。

在1994~2001年,国际上陆续推出了TOtch、TOtch-Ⅱ、TOtch-FX、TOtch-GX、Tintch、Tintch-Ⅱ等多种系列的单片开关电源产品,现已成为开发中、小功率开关电源、精密开关电源及开关电源模块的优选集成电路。

高频变压器是开关电源中进行能量储存与传输的重要部件,新晨阳电容电感单片开关电源中高频变压器性能的优劣,不仅对电源效率有较大的影响,而且直接关系到电源的其它技术指标和电磁兼容性(EMC)。

开关电源中变压器的设计

开关电源中变压器的设计
图1.3 骨架俯视图及绕组相位图
Fig.1.3 Skeleton top view and winding phase diagram
1.3
反激式电源的磁芯需要进行中柱磨气隙,否则磁芯会很容易饱和,如图1.4所示。在开气隙时采用边磨气隙边测初级电感的方法,当初级电感量达到0.58mH时就证明气隙磨好了。由于气隙会使空气介入,相当于串入一个大磁阻介质,故气隙越大,电感量越小,变压器能储存的能量越多。为了保证变压器的稳定工作,气隙不能开太大,因为能量主要是存储在气隙里,气隙过大会使漏感增加,对EMC和效率都有影响;气隙也不能开太小,气隙过小会导致变压器能够储存的能量变少,当气隙无法容纳正常工作电感所产生的能量时,磁芯就会饱和从而损坏变压器。
开关电源中变压器的设计
开关电源为电子设备提供稳定的功率输出,它的性能好坏直接决定了电子产品的质量,而这种电源性能又与变压器设计优劣密切相关。可以说变压器在开关电源中占据着关键作用,决定着电路的关键技术参数指标及工作状态,因此对于大多数电源而言,电源的设计归根结底就是变压器的设计。开关电源属于一种高频供电系统,频率高必然使变压器体积降低,传递的能量密度升高,温升变大;同时在高频环境下,变压器绕线中的寄生电容很容易与电路中的电感发生谐振,产生噪音,恶化电源的电磁兼容性能。但是在磁性元件没有重大的技术突破之前,这些问题始终会存在,因此我们只能通过其它的方式来对变压器进行优化,从而提高开关电源的整体性能。
④方案一和方案二中变压器的同级线圈少绕一层,这样会使分布电容变小,增强变压器的电磁兼容性能。
综上所述,三明治绕法的变压器漏感小、损耗低、温升少、效率高,但绕制较麻烦;普通绕法的变压器EMC性能更好,且绕制较简单。所以为了提高电源的稳定性与效率,则应该采用方案三。如果电源对电磁兼容性有严格要求,就应该采用方案一。

开关电源变压器参数设计步骤详解(精)

开关电源变压器参数设计步骤详解(精)
u(V P O (W比例系数(μF/W C IN (μF
V Imin (V
固定输
入:100/115
已知
2~3
(2~3×P O

90通用输入:85~265已知
2~3 (2~3×P O ≥
90固定输入:230±35已知
1
P O

240
步骤5根据Vimin和V OR来确定最大占空比
Dmax
V OR
D m a x = ×100% V OR +V I m i n -V D S (O N
0.6
1
步骤7确定初级波形的参数

输入电流的平均值I A VG P O
I A VG=
ηV Imin

初级峰值电流I P I A VG
I P =
(1-0.5K RP ×Dmax

初级脉动电流I R ④
初级有效值流I RMS u(V
初级感应电压V OR (V
钳位二极管反向击穿电压V B (V
固定输入:100/115 60 90通用输入:85~265 135 200固定输入:230±35

设定MOSFET的导通电压V DS(ON ②
应在u=umin时确定Dmax值,Dmax随u升高而减小步骤6确定初级纹波电流I R与初级峰值电流I P的比值K RP ,K RP =I R /I P
u(V
K RP
最小值(连续模式最大值(不连续模式
固定输入:100/115 0.4 1通用输入:85~265 0.44 1固定输入:230±35
步骤2根据输出要求,选择反馈电路的类型以及反馈电压V FB
步骤3根据u ,P O值确定输入滤波电容C IN、直流输入电压最小值V Imin

单端反激式开关电源高频变压器设计

单端反激式开关电源高频变压器设计

单端反激式开关电源高频变压器设计
设计单端反激式开关电源高频变压器需要考虑以下几个方面:
1.功率需求:根据要供电设备的功率需求确定变压器的功率等级。


率等级的选择可以根据所需的输出电压和电流来确定。

2.材料选择:变压器的高频特性对材料的选择提出了更高的要求。


般来说,变压器的磁芯可以选择铁氧体材料,而线圈通常采用绝缘导线或
绝缘线圈。

3.匝数计算:根据所需的变比和功率计算变压器的匝数。

变压器的变
比决定了输入电压与输出电压之间的关系。

4.磁芯设计:根据功率需求和工作频率选择合适的磁芯。

对于高性能
的单端反激式开关电源变压器,常用的磁芯材料是高磁导率的铁氧体。


芯的选择应该考虑到磁芯的饱和磁通密度和磁滞损耗。

5.线圈设计:线圈的设计需要考虑到功率损耗和电流密度。

线圈的匝
数和截面积应该经过适当的计算,以确保所需的功率传输和高频特性。

6.耦合系数:在单端反激式开关电源高频变压器设计中,耦合系数是
一个非常重要的参数。

耦合系数的选择影响变压器传递功率的能力和工作
效率。

7.绝缘层设计:绝缘层是为了保护线圈和磁芯,防止绝缘电流的泄漏。

绝缘层的设计需要考虑到工作频率、工作温度和绝缘强度。

8.浪涌保护:在设计变压器时,还需要考虑到浪涌保护的问题。

使用
合适的浪涌抑制器可以有效地保护变压器免受浪涌电流的破坏。

以上是单端反激式开关电源高频变压器设计的一些关键方面。

在实际设计中,还需要进行详细的计算和仿真,以确保设计符合要求并能够实现高效率和高性能的电源变压器。

开关电源高频变压器的设计要点

开关电源高频变压器的设计要点

开关电源高频变压器的设计要点这里将电源变压器的串并联使用作浅薄介绍。

电源变压器与一般的器件一样,应急工作时可以将其多个变压器在一定条件下进行串并联使用,如市售的电源变压器是完全可以满足要求。

变压器功率满足要求时,而没有合适的电压,可以将两个或多个变压器串联使用;在电压满足的条件下,而变压器功率不够时,又可以将两个或多个变压器并联使用,以满足电路供电要求。

电源变压器是由电感线圈构成的,所以完全遵循电感器的运算规则,即可把电源变压器初级串联,也可在输出的次级串联……现将四种情况分别介绍如下。

1.电源变压器的初级串联。

在变压器计算式中有一个常数N称为匝数比,它是初级匝数与次级匝数之比,初次级电压比关系为N,而初次级电流比关系为1/N。

例如:两个初级为220V,次级为18V的变压器,N为13,如果将两个变压器的初级串联,则在单个次级上输出电压将降到9V以下。

而这种情况是在单个变压器的次级电压高于成倍用电器电源使用情况下,可以将两个或多个变压器初级串联使用。

而如再将两个次级串联就没有多大使用价值了。

在此情况下,只要保证单个变压器的功率要求,则次级输出电压不一定相同,它的输出电压计算为:V单=(V1次+V2次+……Vn次)/Vn。

2.电源变压器的次级串联。

电源变压器的次级串联是在单个功率满足情况下,而次级输出电压不满足时将两个或多个变压器的组合。

如两个变压器的初级输入为220V,次级输出为18V时,如要给负载供33V电压,则可以将两个变压器的次级串联起来应用。

电源变压器的次级串联也是很容易的,不同的次级输出只要保证单个变压器功率的条件下也是可以将其次级串联应用的。

在理想状况下多个变压器的初级输入电压相同时,总输出计算式为:V总=V初单/(V1次+V2次+……Vn次)。

3.变压器的初级并联。

这种情况是我们生活中常见的实例,多个不同供电的老式彩电中的遥控变压器和主变压器(电源开关变压器)均属于变压器初级的并联。

开关电源变压器参数设计步骤详解

开关电源变压器参数设计步骤详解

开关电源高频变压器设计步骤步骤1确定开关电源的基本参数1交流输入电压最小值u min2交流输入电压最大值u max3电网频率F l开关频率f4输出电压V O(V):已知5输出功率P O(W):已知6电源效率η:一般取80%7损耗分配系数Z:Z表示次级损耗与总损耗的比值,Z=0表示全部损耗发生在初级,Z=1表示发生在次级。

一般取Z=0.5步骤2根据输出要求,选择反馈电路的类型以及反馈电压V FB步骤3根据u,P O值确定输入滤波电容C IN、直流输入电压最小值V Imin1令整流桥的响应时间tc=3ms2根据u,查处C IN值3得到V imin确定C IN,V Imin值u(V)P O(W)比例系数(μF/W)C IN(μF)V Imin(V)固定输已知2~3(2~3)×P O≥90入:100/115步骤4根据u,确通用输入:85~265已知2~3(2~3)×P O≥90定V OR、V B 固定输入:230±35已知1P O≥2401根据u由表查出V OR、V B值2由V B 值来选择TVS步骤5根据Vimin 和V OR 来确定最大占空比DmaxV ORDmax= ×100% V OR +V Imin -V DS(ON)1设定MOSFET 的导通电压V DS(ON)2应在u=umin 时确定Dmax 值,Dmax 随u 升高而减小步骤6确定初级纹波电流I R 与初级峰值电流I P 的比值K RP ,K RP =I R /I Pu(V)K RP最小值(连续模式)最大值(不连续模式)固定输入:100/1150.41通用输入:85~2650.441固定输入:230±350.61步骤7确定初级波形的参数①输入电流的平均值I AVGP OI A VG=ηV Imin②初级峰值电流I PI A VG I P =(1-0.5K RP )×Dmax③初级脉动电流I Ru(V)初级感应电压V OR (V)钳位二极管反向击穿电压V B (V)固定输入:100/1156090通用输入:85~265135200固定输入:230±35135200④初级有效值电流I RMSI RMS=I P√D max×(K RP2/3-K RP+1)步骤8根据电子数据表和所需I P值选择TOPSwitch芯片①考虑电流热效应会使25℃下定义的极限电流降低10%,所选芯片的极限电流最小值I LIMIT(min)应满足:0.9I LIMIT(min)≥I P步骤9和10计算芯片结温Tj①按下式结算:Tj=[I2RMS×R DS(ON)+1/2×C XT×(V Imax+V OR)2f]×Rθ+25℃式中C XT是漏极电路结点的等效电容,即高频变压器初级绕组分布电容②如果Tj>100℃,应选功率较大的芯片步骤11验算I P IP=0.9I LIMIT(min)1输入新的K RP且从最小值开始迭代,直到K RP=12检查I P值是否符合要求3迭代K RP=1或I P=0.9I LIMIT(min)步骤12计算高频变压器初级电感量L P,L P单位为μH106P O Z(1-η)+ ηL P= ×I2P×K RP(1-K RP/2)f η步骤13选择变压器所使用的磁芯和骨架,查出以下参数:1磁芯有效横截面积Sj(cm2),即有效磁通面积。

开关电源变压器设计(pdf)

开关电源变压器设计(pdf)

开关变压器是将DC 电压﹐通过自激励震荡或者IC 它激励间歇震荡形成高频方波﹐通过变压器耦合到次级,整流后达到各种所需DC 电压﹒变压器在电路中电磁感应的耦合作用﹐达到初﹒次级绝缘隔离﹐输出实现各种高频电压﹒ 目的﹕减小变压器体积﹐降低成本﹐使设备小形化﹐节约能源﹐提高稳压精度﹒ N工频变压器与高频变压器的比较﹕工频 高频 E =4.4f N Ae Bm f=50HZ E =4.0f N Ae Bm f=50KHZ N Ae Bm 效率﹕η=60-80 % (P2/P2+Pm+ P C ) η>90% ((P2/P2+Pm )功率因素﹕ Cos ψ=0.6-0.7 (系统100W 供电142W) Cos ψ>0.90 (系统100W 供电111W) 稳压精度﹕ ΔU%=1% (U20-U2/U20*100) ΔU<0.2% 适配.控制性能﹕ 差 好 体积.重量 大 小坛开关变压器主要工作方式一.隔离方式: 有隔离; 非隔离 (TV&TVM11) 二.激励方式: 自激励; 它激励 (F + & IC) 三.反馈方式: 自反馈; 它反馈 (F- & IC) 四.控制方式: PWM: PFM (T & T ON ) 五.常用电路形式: FLYBACK & FORWARD一.隔离方式:二.比t开关变压器主要设计参数静态测试参数:R DC. L. L K. L DC. TR. IR. HI-POT. IV O-P.Cp. Z. Q.………动态测试参数:Vi. Io. V o. Ta. U. F D max………….材料选择参数CORE: P. Pc. u i. A L. Ae. Bs…….WIRE: Φ℃ . ΦI max. HI-POT……..BOBBIN: UL94 V--O.( PBT. PHENOLIC. NYLON)……….TAPE: ℃. δh. HI-POT……..制程设置要求P N…(SOL.SPC).PN//PN.PN-PN. S N(SOL.SPC).Φn. M tape:δ&w TAPE:δ&w. V℃……..大比特电子变压器论坛h t t p://bb s.bi g-bi t.co m三.反馈方式:四.控制方式: PWM: PFM脉冲宽度调制 脉冲频率调制变i g -b五.常用电路形式:单端正激励 FORWARD开关变压器主要设计参数静态测试参数:R DC. L. L K. L DC. TR. IR. HI-POT. IV O-P.Cp. Z. Q.………动态测试参数:Vi. Io. V o. Ta. U. F D max………….材料选择参数CORE: P. Pc. u i. A L. Ae. Bs…….WIRE: Φ℃ . ΦI max. HI-POT……..BOBBIN: UL94 V--O.( PBT. PHENOLIC. NYLON)……….TAPE: ℃. δh. HI-POT……..制程设置要求..大比特电子变压器论坛h tt p://bb s.bi g-bi t.co m单端反激励FLYBACK 调节TON 使能量守恒定1/2*L P *I PK 2=1/2*L S *I SK 2加GAP 曲線Br 下降﹐ΔB 傳遞能力增大﹒傳遞磁能區間增加单端反激励(Flyback)波形分为:临界状态,非连续状态, 连续状态(常用状态).Po=1/2LI pk 2*f (η) Vi min =I pk *Lp /TonPo /Vi min I pk=2Po /D max Vi min (Po=VoIo) Vi min *Ton=I pk *Lp Lp=Vi min *D max /I pk *fNp=Lp*I pk /Ae*ΔB Np= Δ B*Ig / 0.4π*I pkIg=0.4πL p I pk 2/Ae*ΔB 2Vo+VD=Vimin*(Dmax /1-Dmax)*Ns/NpNs=(V O +V D )*(1-Dmax)*Np /Vi min * D maxDmin=Dmax /(1-Dmax)K+Dmax K=Vi max/Vimin大比特电子变ht t p ://b b s .b i g -b单端反激励(Flyback)设计例题一条件﹕V i =170V -270V ﹐f= 30K HZ V o= 5V , Io=20A, D max =0.45(设计取值)设计﹕ 1) Vi min=170*1.4--20=218V , Vi max=270*1.4-20=358VVi min=170*√2-(V D.ΔU) Vi max=270*√2-(V D .ΔU)Vi min= (V iACMIN )2- 2Po(1/2fL -tc)2) I pk =2*5*20/218*0.45=2.04A ηCIN Ipk=2Po /DmaxVimin ( Po=V oIo) Po=1/2LI pk 2*f (η) 3) Lp=218*0.45/2.04*30000=1.6mH Lp=Vimin*Dmax /Ipk*f 4) K=358/218=1.64 K=Vimax/Vimin5) Dmin=0.45/(1-0.45)*1.64+0.45=0.332 Dmin=Dmax /(1-Dmax)K+Dmax6) CORE 查表100W 选择 EER42/15 Ae=183mm 2(1.83cm 2) Bs=390mT(3900Gs)Core=g/w(f=20k Hz REF)7) WIRE 查表 或S Φ=√I/3=√20/3=2.58mm 选"铜箔"为佳.P Φ=√2.04/3=0.82, 选0.60X2 r 2*π (2.58/2)2*3.14=5.225 选择19#,Φ=0.98*7 (0.98/2)2*3.14*7=5.277(4Pin 并绕)8) Ig=(0.4*3.14*1.6*10-3*2.042/1.83*19502 )*108=0.12cm Ig=0.4πLpIpk 2/Ae* ΔB 29) Np=1950*0.12/0.4*3.14*2.04=91.32T . Np=(0.0016*2.04/1.83*1950)*108=91.46T Np=ΔB*Ig / 0.4π*Ipk Np=Lp*Ipk /Ae*ΔB 10) Ns=(5+1)*(1-0.45)*91/218*0.45=3.06T 11)P=1/2*1.6*2.042*30=96W Ns=(V O +V D )*(1-Dmax)*Np /Vimin* Dmax P=1/2LI 2*f大比特电子变压器论坛 p ://b b s .b i g -b i t .c o m单端正激励(FORWARD )设计例题一已知条件﹕输入电压 ﹒Vi= 48V (36~60V), 额定输出电压﹒电流﹒V o=5.0V ﹒Io=11A额定输出功率55W. 最大输出功率65W f=470kHz (450~500 kHz) δmax=0.42 η=82 设计步骤: 选择PC50. 3F3. N49等材质选PC50. EPC25. Ae: 46.4mm 2. Le: 59.2mm. B S : 3800G S 1): Ipk= Ic= 2POUT / Vinmin= 2*65 / 36= 3.6A2): Np= Vinmax*108 / (4FBmax*Ae) 取Bmax=2000G = 60*108 / (4*450K*2000G*0.464)= 4TS, 调整为6TS 3): Ns= Np *(Vo+V D ) / (Vi*δmax)= 4* (5.5+1)/(36*0.42)= 1.7TS 调整为2TS4): 反馈绕组. N= Np*(15+1) / (36*0.42)= 6*16/(36*0.42)= 6TS 5): 选择绕组线径 Np: Φ0.1*120C Ns: Φ0.1*200CN: Φ0.256): 由于为安全电压.故不须包MARGIN TAPE.单端正激励(FORWARD )设计例题二 已知条件﹕输入电压 ﹒Vi= 100V (85V~135V),额定输出电压﹒电流﹒V o=5.0V(4.5-5.5)﹒Io=20A f=200kHz δmax=0.42 设计步骤: 选择PC40..TP4等材质选TP4. EE28C. Ae: 87.4mm 2. B S : 3800G S 取Bmax=2000G 1): T=1/fo=1/200K=5us2): Tonmax=T*Dmax=5*0.42=2.1us3): V2min=(Vo+VL+VF)*T/Tonmax=(5.5+0.2+0.5)*5/2.1=14.8V 4): n =V2min/V1min=14.8/100=0.1485): N2=(V2min*Tonmax/Bs*Ae)*104 =(14.8*2.1/2000*87.4)* 104=1.83T ︽2T 6): N1 =N2/ n=2/0.148=13.5T ︽14TTonmax=(Vo+VL+VF)*T/ V2min=2.09 Dmax= Tonmax/T=2.09/5=0.418︽0.42大比特电子变压器论坛 ht t p ://b b s .b i g -b i t .c o m优化设计举例1)绕线空间设计: 变压器绕线空间设计得好﹐使其耦合传递最佳﹐发挥功率更佳﹐干扰更小﹐例一﹐ETD44 A V音响主功率变压器5T 例二﹐16T例三﹐3--417--15 Φ0.40X2 4T 4--2 Φ 0.40 25T 14--13----------------------2--1 Φ 0.40 25T4--2 Φ 0.40 25T14--13----------------------2--1 Φ 0.40 25Tc om加大耦合﹐减小漏感﹐提高负载能力﹒17--15 Φ0.40X2 4T随着变压器的小形化﹐可以根据爬电距离来实现安全性能要求﹐设计产品的 目的﹐主要满足用户要求﹐符合安全性能规定﹒1﹒干燥空气爬电耐压距离﹕ 经验距离为1mm /1000V ﹒2﹒TAPE (0﹒025/0﹒065)P -S 三层规定﹕ 1层>4000V 延伸变形后>1500V ﹒ 3﹒S 线圈-S 线圈之间爬电耐压距离﹕ >1500V >1.5mm ﹒4﹒边缘胶带MARGINTAPE 爬电耐压距离﹕ 边缘安胶W=3mm 可根据Vi 电压W1.5-2.mm ﹒ 5﹒采用TEX -E 线解决耐压距离﹕ 三重绝缘线 层>6000V 延伸变形后耐压下降﹒6﹒胶带绝缘层解决耐压距离﹕胶带村垫SOL 一层SPC 二层﹐反贴胶带等﹒ 7﹒规格耐压条件(3.0KV/60’ 2mA) 制程条件UL3.0KV *1.2倍/2’ 2mA ﹒ 8﹒层间耐压要求﹕有关﹒子c o m3)开关变压器的参数分析1.关于集肤效应可选用多股线(满足b>a a=r2πb= r2π*x x= x股线)满足高频负载电流﹐降低变压器温升﹒2. 关于L k与Cp是一对矛盾﹐一般要求变压器平衡L k与Cp参数﹐L k不要追求愈小愈好﹐Cp 的增加会引起噪声的增加﹒开关变压器GAP&L K1﹒气隙GAP设计大小与所需要的传递能量有关﹐GAP大气隙长度增加也就是气隙体积增加﹐电感下降﹒GAP小容易引起电感饱和﹒2﹒气隙GAP传递能量大小与使用的工作频率有关﹐高频时(>60KHZ)磁芯损耗加大﹒3﹒LEAKAGE漏感﹕初级绕组P&S次级主绕组相邻紧密﹐耦合面积大﹐(P﹒S夹绕)漏感量小﹒S次级主绕组如果匝数少﹐疏绕或者增加匝数﹐也可减小漏感量﹒。

讨教:交流380V输入的单端反激开关电源

讨教:交流380V输入的单端反激开关电源

讨教:交流380V输入的单端反激开关电源三相输入的单端反激开关电源高频变压器设计1、已知参数交流380V(线电压)输入。

主输出15V/1A,供电输出20V/0。

15A。

fs=100kHz。

η=0.9。

变压器工作在断续模式。

2、设计过程(1)由已知可得Po=15*1+20*0.15=18w。

输入电压变化范围取±10%。

则 Udcmin=sqrt(6)*U相=2.449*(220*(1-0。

1))=485VUdcmax=sqrt(6)*U相=2。

449*(220*(1+0.1))=593V,取600VMOS管用IRFBG30, Vmos=1000V.。

Vf=Vmos-Udcmax—200=1000—600—200=200V所以Udcmin*Dmax=Vf*(1—Dmax)Dmax=0.29。

取Dmax=0。

3实取Vf=Udcmin*Dmax/(1-Dmax)=208V. n1=Vf/(Vo+Vd)=13。

4 n2= Vf/(Vb+Vd)=10(2)磁芯选择及匝数计算选用TDK磁芯,取Bm=0.23TPo=1/2*Lp*Ip^2*fs*η -- (1) Lp*Ip=Udcmin*Dmax/fs --(2)由(1)、(2)得 Ip=2*Po/Udcmin*Dmax*η=2*18/485*0。

3*0。

9=0.28ALp=Udcmin*Dmax/fs*Ip=(485*0。

3/100k*0.28)*10^3=5.2mHIp=0。

28A Io1=1A Io2=0。

15A其有效值分别为Irms=Ip*sqrt(Dmax/3)=0。

089AIo1rms=Io1*0。

707=0。

71AIo2rms=Io2*0.707=0.11A选J=4A/mm^2.初、副级绕组J相同。

窗口利用系数Ku取0。

3则Ae*Aw=(Udcmin*Dmax/Bm*Np*fs)*[(Np*Irms+Ns*Io1rms+Nb*Io2rms)/Ku*J]= (Udcmin*Dmax/Bm *fs)*[( Irms+ Io1rms/n1+ Io2rms/n2)/Ku*J]=0。

开关电源高频变压器的设计

开关电源高频变压器的设计

入 (3) 式得 N 1 · I S = 116. 7 安匝。 因此 N 1 =
(N 1·I S) I S= 116. 7 1. 3= 89. 7 匝, 实取 N 1=
90 匝。 采用 <0. 31 mm 高强度漆包线绕制。
315 确定自馈线圈匝数 N 2、次级匝数 N 3
确定 N 1 之后, 利用下式可计算出N 2、N 3:
318 自馈线圈与次级线圈中的整流管选择 自馈线圈回路中可选 FR 309 型快恢复二
极管, 其耐压值为 1 000 V , 额定整流电流为 3 A。次级线圈回路宜选用肖特基二极管, 它属 于高频、大电流、低功耗器件, 其正向导通压降 还不到快恢复二极管V F 值的一半。D 80- 004 型肖特基二极管的主要参数如下: 平均整流电 流 I 0= 15 A , 最大正向压降V F = 0. 4 V , 反向恢 复时间 trr< 10 n s, 反向峰值电压 V R = 40 V 。
Key words Sw itch ing DC supp ly; p u lse w idth m odu lato r; h igh2frequency tran sfo rm er
开关式集成稳压电源被誉为“新型高效节 能电源”, 它代表着稳压电源的发展方向。 选用 带高频变压器的单端输出式脉宽调制器, 电源 效率可达 70%~ 80% 左右, 并可省掉工频变压 器, 制成功率为几十瓦的开关电源。高频变压器 是其核心部件之一, 而高频变压器的设计也是 研制开关电源的关键技术。
收稿日期: 1999204205; 责任编辑: 王士忠 3 工作单位: 河北科技大学信息科学与工程系 33 工作单位: 秦皇岛市无线电管理处 第一作者简介: 男, 1960 年出生, 工程师

高频变压器设计

高频变压器设计

1.磁芯材质的选取:高频变压器磁芯多是低磁场下使用的软磁材料,有着较高磁导率、低的矫磁顽力和高的电阻率。

一般来说,磁芯材料磁导率高,在一定的线圈匝数时,通过不大的励磁电流就能有较高的磁感应强度,线圈就能承受较高的外加电压,因此输出一定功率要求下,可减小磁芯体积。

磁芯矫磁顽力低,磁滞回环面积小,则铁损也小。

高的电阻率则使得涡流小,铁损小。

(/manage/shownews.asp?ArticleID=1109)目前,高频开关电源变压器所用的磁芯材料一般有铁氧体、坡莫合金材料、非晶合金和超微晶材料。

根据使用情况铁氧体不适合高温工作,暂时选用非晶态合金的磁芯。

●通过下面表格可以发现硅钢的饱和磁感应强度最大,可以达到2T,但由于最大导磁率太小且矫顽力太大不能满足要求一般都不选用它做高频变压器。

●通过下面表格可以发现铁基非晶铁芯饱和磁感应强度也很大,可以达到1.5T以上。

但由于我们选用的开关频率为20KHZ,现在一般铁基非晶铁芯无法达到这个工作频率,故不采用。

●通过下面表格可以发现铁基纳米晶和坡莫合金饱和磁感应强度也较大,可以达到1.2T以上。

但由于坡莫合金磁芯矫磁顽力高,故一般厂家选用铁基纳米晶作为高频变压器磁芯。

本设计中同样采用铁基纳米晶作为高频变压器磁芯。

以下是安泰公司用于做磁芯的纳米基铁芯的具体参数:2.变压器设计:高频变压器的设计通常采用两种方法:第一种是先求出磁芯窗口面积A m与磁芯有效截面积Ac 的乘积AP(AP=Ac×Am,称磁芯面积乘积),根据AP值,查表找出所需磁性材料之编号;第二种是先求出几何参数,查表找出磁芯编号,再进行设计。

注意:1)设计中,在最大输出功率时,磁芯中的磁感应强度不应达到饱和,以免在大信号时产生失真。

2)在瞬变过程中,高频链漏感和分布电容会引起浪涌电流和尖峰电压及脉冲顶部振荡,使损耗增加,严重时会造成开关管损坏。

同时,输出绕组匝数多,层数多时,应考虑分布电容的影响,降低分布电容有利于抑制高频信号对负载的干扰。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

21.01.2021
a
3
2.磁芯结构 选择磁芯结构时考虑的因数有:降低漏磁和漏感,
增加线圈散热面积,有利于屏蔽,线圈绕线容易,装配 接线方便等。
漏磁和漏感与磁芯结构有直接关系。如果磁芯不需 要气隙,则尽可能采用封闭的环形和方框型结构磁芯。
21.01.2021
a
4
21.01.2021
a
5
3.磁芯参数: 磁芯参数设计中,要特别注意工作磁通密度不只是 受磁化曲线限制,还要受损耗的限制,同时还与功率传送的工 作方式有关。 磁通单方向变化时:ΔB=Bs-Br,既受饱和磁通 密度限制,又更主要是受损耗限制,(损耗引起温升,温升又 会影响磁通密度)。工作磁通密度Bm=0.6~0.7ΔB 开气隙可以降低Br,以增大磁通密度变化值ΔB,开气隙后,励 磁电流有所增加,但是可以减小磁芯体积。对于磁通双向工作 而言: 最大的工作磁通密度Bm,ΔB=2Bm。在双方向变化工作 模式时,还要注意由于各种原因造成励磁的正负变化的伏秒面 积不相等,而出现直流偏磁问题。可以在磁芯中加一个小气隙, 或者在电路设计时加隔直流电容。
2、变压器的构成以及作用: 1)电气隔离 2)储能 3)变压 4)变流
21.01.2021
a
1
●高频变压器设计程序: 1.磁芯材料 2.磁芯结构 3.磁芯参数 4.线圈参数 5.组装结构 6.温升校核
21.01.2021
a
2
1.磁芯材料 软磁铁氧体由于自身的特点在开关电源中应用很广泛。
其优点是电阻率高、交流涡流损耗小,价格便宜,易加 工成各种形状的磁芯。缺点是工作磁通密度低,磁导率 不高,磁致伸缩大,对温度变化比较敏感。选择哪一类 软磁铁氧体材料更能全面满足高频变压器的设计要求, 进行认真考虑,才可以使设计出来的变压器达到比较理 想的性能价格比。
增加磁芯的散热面积。
21.01.2021
a
10
功率变压器根据拓扑结构分为三大类: (1)反激式变压器; (2)正激式变压器; (3)推挽式变压器(全桥/半桥变换器中的变压器) 磁芯结构适合的拓扑结构形式如下页表所示:
21.01.2021
a
11
磁芯结构
变换器电路类型
反激式 正激式
推挽式
E cores
变压器基础知识 1、变压器组成: 原边(初级primary side ) 绕组 副边绕组(次级secondary side ) 原边电感(励磁电感)--magnetizing
inductance 漏感---leakage inductance 副边开路或者短路测量原边 电感分别得励磁电感和漏感 匝数比:K=Np/Ns=V1/V2
1、软磁铁氧体,由于具有价格低、适应性能和高频性能好等特点, 而被广泛应用于开关电源中。 2、软磁铁氧体,常用的分为锰锌铁氧体和镍锌铁氧体两大系列, 锰锌铁氧体的组成部分是Fe2O3,MnCO3,ZnO,它主要应用在1MHz 以下的各类滤波器、电感器、变压器等,用途广泛。而镍锌铁氧体 的组成部分是Fe2O3,NiO,ZnO等,主要用于1MHz以上的各种调感 绕组、抗干扰磁珠、共用天线匹配器等。 3、在开关电源中应用最为广泛的是锰锌铁氧体磁心,而且视其用 途不同,材料选择也不相同。用于电源输入滤波器部分的磁心多为 高导磁率磁心,其材料牌号多为R4K~R10K,即相对磁导率为 4000~10000左右的铁氧体磁心,而用于主变压器、输出滤波器等 多为高饱和磁通密度的磁性材料,其Bs为0.5T(即5000GS)左右。
+
+
0
Planar E Cores
-
+
0
EFD Cores
-
+
+
ETD Cores
0
+
+
ER Cores
0
+
+
U Cores
+
0
0
RM Cores
0
+
0
EP Cores
-
+
0
P Cores
-
+
0
Ring Cores
-
+
+
‘+’=适合; ‘0’=一般;‘-’=不
21.01.2021
a
12
磁芯材料的选择应注意的问题:
21.01.2021
a
6
21.01.2021
a
7
4.线圈参数: 线圈参数包括:匝数,导线截面(直径),导线形式, 绕组排列和绝缘安排。 导线截面(直径)决定于绕组的电流密度。通常取J为
2.5~4A/mm2。导线直径的选择还要考虑趋肤效应。如 必要,还要经过变压器温升校核后进行必要的调整。
21.01.2021
a
8
4.线圈参数: 一般用的绕组排列方式:原绕组靠近磁芯,副绕组反 馈绕组逐渐向外排列。下面推荐两种绕组排列形式:
1)如果原绕组电压高(例如220V),副绕组电压低,可 以采用副绕组靠近磁芯,接着绕反馈绕组,原绕组在 最外层的绕组排列形式,这样有利于原绕组对磁芯的 绝缘安排;
2)如果要增加原副绕组之间的耦合,可以采用一半原绕 组靠近磁芯,接着绕反馈绕组和副绕组,最外层再绕 一半原绕组的排列形式,这样有利于减小漏感。
21.01.2021
a
13
开关电源用铁氧体磁性材应满足以下要求: (1)具有较高的饱和磁通密度Bs和较低的剩余磁通密度Br 磁通密度Bs的高低,对于变压器和绕制结果有一定影响。从 理论上讲,Bs高,变压器绕组匝数可以减小,铜损也随之减小 在实际应用中,开关电源高频变换器的电路形式很多,对于变 压器而言,其工作形式可分为两大类:
பைடு நூலகம்
21.01.2021
a
9
5.组装结构:
高频电源变压器组装结构分为卧式和立式两种。如果
选用平面磁芯、片式磁芯和薄膜磁芯,都采用卧式组
装结构。
6.温升校核:
温升校核可以通过计算和样品测试进行。实验温升低
于允许温升15度以上,适当增加电流密度和减小导线
截面,如果超过允许温升,适当减小电流密度和增加
导线截面,如增加直径,窗口绕不下,要加大磁芯,
1)双极性:电路为半桥、全桥、推挽等。变压器一次绕组里正负 半周励磁电流大小相等,方向相反,因此对于变压器磁心里的磁通 变化,也是对称的上下移动,B的最大变化范围为△B=2Bm,磁心中 的直流分量基本抵消。
2)单极性:电路为单端正激、单端反激等,变压器一次绕组在1个 周期内加上1个单向的方波脉冲电压(单端反激式如此)。变压器 磁心单向励磁,磁通密度在最大值Bm到剩余磁通密度Br之间变化, 这时的△B=Bm-Br,若减小Br,增大饱和磁通密度Bs,可以提高 △B,降低匝数,减小铜耗。
相关文档
最新文档