导数的运算第2课时
导数的运算(二)
例2 设 y xsinx ( x 0), 求y.
解 等式两边取对数得 ln y sin x ln x
上式两边对x求导得
1 y cos x ln x sin x 1
y
x
y y(cos x ln x sin x 1 ) x
x sin x (cos x ln x sin x ) x
解 方程两边对x求导,
y cos(x y) (1 y)
y cos(x y) ycos(x y)
解得 y cos(x y) 1 cos(x y)
例5 设曲线 C 的方程为 x3 y 3 3 xy , 求过 C上
点
3 (
2
,
3 2
)
的切线方程和法线方程
3
33
例4
设参数方程
x y
a b
cos t,(椭圆方程)确 sint
定了函数 y = y(x),求 dy .
dx
解 dx a sin t dy b cost
dt
dt
所以 dy b cost b cott. dx a sin t a
例 5 求摆线
x
dx 1 cos t dx tπ
点 P 处的切线方程为
3
y1a 2
3
x
3
a
3 2
a
§2-2 导数的运算(二)
高阶导数的定义
我们把函数 yf(x) 的导数 yf (x) 的导数(如果 可导)叫做函数 yf(x) 的二阶导数 记作
y、f
(x)或
d2y dx2
导数的运算法则
2.如何求y=ln(x+2)的导数?
提示:由y=ln(x+2)的结构特征,可考虑由外向内求
导数.令u=x+2,则y=ln u,因此y′x=y′u·u′x=
(ln u)′·(x+2)′=
.
1 1 1 u x2
一般地,对于两个函数y=f(u)和
复合函数 的概念
u=g(x),如果通过变量u,y可以表 示成__x_的_函_数___,那么称这个函数为函 数y=f(u)和u=g(x)的复合函数,记作
(2)方法:先求出复合函数的导数,若已知切点则求出切线斜率、切线方程;若切点未 知,则先设出切点,用切点表示切线斜率,再根据条件求切点坐标.总之,在解决此 类问题时切点起着至关重要的作用.
【跟踪训练】已知曲线f(x)=x3-3x,过点A(0,16)作曲线f(x)的切线,求曲线的切 线方程.
x x0
x0
(2) y 5=x5,x 5x
x =5.故y=5xx的导数为5.
y lim y lim 5?
x x0
x0
(3)
y x
5 x x
x
5 x
x2
5 x
x
故yy=
l的im导数y为 x0 x
.lim
x0
x2
5 x
x
5 x2
5 x
5 x2
结论:导数的运算法则 1.函数和差的导数,[f(x)±g(x)]′
gx
推论:常数与函数的积的导数,[cf(x)]′=________.
cf′(x)
【对点训练】
1.下列求导运算正确的是 ( )
A.( )′=1+
C.(3x)′x =3x1log3e x
B.(log2x)′=
【成才之路】2014-2015学年高中数学 3.2 第2课时 导数的运算法则课件 新人教A版选修1-1
[ 解析 ]
(1) 解法一: y′ = [(x + 1)2]′(x - 1) + (x + 1)2(x -
1)′=2(x+1)(x-1)+(x+1)2=3x2+2x-1. 解法二:y=(x2+2x+1)(x-1)=x3+x2-x-1, y′=(x3+x2-x-1)′=3x2+2x-1. (2)y′ = (x2sinx)′ = (x2)′sinx + x2(sinx)′ = 2xsinx + x2cosx.
[方法规律总结] 求切线方程的步骤: (1)用导数公式和运算法则求导数. (2)求切线的斜率; (3)写出切线方程.
曲线y=2x-lnx-1在点(1,1)处的切线方程为( A.x-y=0 C.x+4y-5=0 [答案] A B.x+y-2=0 D.x-4y-5=0
)
1 [解析] ∵y=2x-lnx-1,∴y′=2-x , ∴切线的斜率 k=2-1=1, 故切线方程为 y-1=x-1,即 x-y=0.
∴ lim →
Δx 0
Fx+Δx-Fx = lim Δx Δx→0
fx+Δx-fx + lim Δx Δx→0
gx+Δx-gx =f ′(x)+g′(x), Δx Gx+Δx-Gx fx+Δxgx+Δx-fxgx = Δx Δx fx+Δxgx+Δx-fx· gx+Δx+fxgx+Δx-fxgx = Δx gx+Δx[fx+Δx-fx] fx· [gx+Δx-gx] = + , Δx Δx Gx+Δx-Gx ∴ lim =g(x)· f ′(x)+f(x)· g′(x). Δx Δx→0
)
B. 2 D.0
又∵f′(1)=2a,∴2a=2,∴a=1.
2.函数 y=x· lnx 的导数是( A.x C.lnx+1
[答案] C
人教版高中数学选修2-2学案:第一章1.2第二课时导数的运算法则
第二课时导数的运算法例预习课本P15~ 18,思虑并达成以下问题(1)导数的四则运算法例是什么?在使用运算法例时的前提条件是什么?(2)复合函数的定义是什么,它的求导法例又是什么?[新知初探 ]1.导数的四则运算法例(1)条件: f(x), g(x)是可导的.(2)结论:① [f(x) ±g(x)] =′f′(x)±g′(x).② [f (x)g(x)] =′ f′(x)g(x)+ f(x)g′(x).③f x′=f xg x - f x g x(g(x) ≠ 0).g x2[g x[点睛 ]应用导数公式的注意事项(1)两个导数的和差运算只可推行到有限个函数的和差的导数运算.(2)两个函数可导,则它们的和、差、积、商(商的分母不为零 )必可导.(3)若两个函数不行导,则它们的和、差、积、商不必定不行导.(4)对于较复杂的函数式,应先进行适合的化简变形,化为较简单的函数式后再求导,可简化求导过程.2.复合函数的求导公式(1)复合函数的定义:①一般形式是 y= f(g( x)).②可分解为 y= f(u)与 u= g(x),此中 u 称为中间变量.(2)求导法例:复合函数y= f (g(x))的导数和函数y= f(u), u= g(x)的导数间的关系为:y x′= y u′·u x′.[小试身手 ]1.判断 (正确的打“√”,错误的打“×”)(1) f′(x)=2x,则 f(x)= x2 .()(2)函数 f(x)= xe x的导数是 f′(x)=e x(x+ 1). ()(3)函数 f(x)= sin(- x)的导数为 f′(x)= cos x. ()答案: (1) × (2) √ (3) ×2.函数 y = sin x ·cos xA . y ′= cos 2x + sin 2xC . y ′= 2cos x ·sin x答案: B的导数是()B . y ′= cos 2xD . y ′= cos x ·sin x3.函数 y = xcos x - sin x 的导数为 ________.答案: - xsin x4.若 f(x)= (2x + a)2,且 f ′(2)= 20,则 a = ________.答案: 1利用导数四则运算法例求导[典例 ] 求以下函数的导数:2+ log 3x ; (2)y = x 3 x(3)y = cos x(1) y = x ·e ;x .解 ′= 2+ log =′ 2 ) ′+ (log′ [ ] (1) y (x 3x)(x 3x) = 2x + 1.xln 33 x 3x3 x′′= · ) ′= ( x) ′·e+x· )(2) y(x e(e= 3x 2·e x +x 3 ·e x = e x (x 3+ 3x 2). (3) y ′= cos x ′= xx - cos x x2xx - x ·sin x - cos x xsin x + cos x= 2 =- 2. xx求函数的导数的策略(1)先划分函数的运算特色,即函数的和、差、积、商,再依据导数的运算法例求导数.(2) 对于三个以上函数的积、商的导数,挨次转变为“两个 ”函数的积、商的导数计算.[活学活用 ]求以下函数的导数:x(1) y = sin x - 2x 2; (2)y =cos x ·ln x ; (3) y = sin ex .解: (1)y ′= (sin x - 2x 2) ′= (sin x) ′- (2x 2) ′= cos x - 4x. (2) y ′= (cos x ·ln x) ′= (cos x) ′·x +ln cos x ·(ln x) ′=- sin x ·ln x + cos xx.e xxx - e x x(3) y ′= sin x ′=sin 2x = e x ·sin x - e x ·cos x e x x - cosx2 =2sin xsin x复合函数的导数运算[典例 ] 求以下函数的导数:(1) y = 1 2; (2)y = e sin(ax +b);1- 2x(3) y = sin 2 2x +π3 ; (4)y = 5log 2(2x + 1).[解 ] (1)设 y =u - 1, u = 1- 2x 2,2则 y ′= (u -12) ′ -(12x2) ′= -21u - 32 ·(- 4x)=-1 23 23.(1- 2x )-2(- 4x)= 2x(1- 2x )- 22(2) 设 y = e u , u = sin v , v = ax + b ,则 y x ′= y u ′·u v ′·v x ′= e u ·cos v ·asin(ax +b) .= acos(ax + b) ·e(3) 设 y = uπ2, u = sin v , v =2x + ,3则 y x ′= y u ′·u v ′·v x ′= 2u ·cos v ·22π= 4sin vcos v = 2sin 2v = 2sin 4x + 3 .(4) 设 y = 5log 2 u , u = 2x + 1,则 y ′= 5(log 2u) ′·x +(21) ′= 10 = 10 .uln 2 x +1. 求复合函数的导数的步骤2. 求复合函数的导数的注意点(1) 内、外层函数往常为基本初等函数.(2)求每层函数的导数时注意分清是对哪个变量求导, 这是求复合函数导数时的易错点.[活学活用 ]求以下函数的导数:(1) y = (3x - 2)2 ; (2) y = ln(6x + 4);(3) y = e 2x +1;(4)y = 2x - 1;π; (6)y = cos 2x.解: (1)y ′= 2(3x - 2) ·(3x -2) ′= 18x - 12;13;(2) y ′= 6x + 4·(6x + 4) =′3x + 2(3) y ′= e 2x + 1·(2x + 1) ′=2e 2x +1;(4) y ′= 1 ′=1. ·(2x - 1) 2x - 1 2 2x - 1π ππ(5) y ′= cos 3x - 4 ·3x - 4 ′=3cos 3x - 4 .(6) y ′= 2cos x ·(cos x) ′=- 2cos x ·sin x =- sin 2x.与切线相关的综合问题2π[典例 ]处的切线斜率为 ________.(1) 函数 y = 2cos x 在 x =12(2) 已知函数 f(x)= ax 2+ ln x 的导数为 f ′(x),①求 f(1)+ f ′(1).②若曲线 y = f (x)存在垂直于 y 轴的切线,务实数a 的取值范围.[分析 ] (1) 由函数 y = 2cos 2x = 1+ cos 2x ,得 y ′= (1+ cos 2x) ′=- 2sin 2x ,所以函数在π 2sinπ=处的切线斜率为-2 × =-1.x1212答案:-1(2) 解: ①由题意,函数的定义域为(0,+ ∞),由 f( x)= ax 2+ ln x ,得 f ′(x)= 2ax + 1,x 所以 f(1)+ f ′(1)= 3a + 1.② 因为曲线 y = f(x)存在垂直于y 轴的切线, 故此时切线斜率为0,问题转变为在 x ∈ (0,+∞)内导函数f ′(x)= 2ax + 1存在零点,x即 f ′(x)= 0?2ax + 1x = 0 有正实数解,(5) y = sin 3x - 4即 2ax 2=- 1 有正实数解,故有 a<0 ,所以实数 a 的取值范围是 (-∞, 0).对于函数导数的应用及其解决方法(1) 应用:导数应用主要有:求在某点处的切线方程,已知切线的方程或斜率求切点,以及波及切线问题的综合应用.(2) 方法:先求出函数的导数,若已知切点则求出切线斜率、切线方程﹔若切点未知,则先设出切点,用切点表示切线斜率,再依据条件求切点坐标.总之,切点在解决此类问题时起着至关重要的作用.[活学活用 ]若存在过点 (1,0) 的直线与曲线y = x 3 和 y = ax 2+15都相切,则 a 的值为 ()4 x - 92521A .- 1 或- 64B .- 1 或 4C .- 7或- 25D .-7或 74 644分析:选A 设过点 (1,0)的直线与曲线 y = x 3 相切于点 (x 0, x 03),则切线方程为y - x 03= 3x 02(x - x 0),即 y = 3x 02x - 2x 03.又点 (1,0)在切线上,代入以上方程得 3x 0= 0 或 x 0= .2当 x 0= 0 时,直线方程为 y = 0.21525由 y = 0 与 y = ax +4 x - 9 相切可得 a =- 64.当 x 0= 3时,直线方程为 y = 27x - 27.24 42727215由 y = 4 x - 4 与 y = ax + 4 x - 9 相切可得 a =- 1.层级一学业水平达标1.已知函数 f (x)= ax 2 +c ,且 f ′(1)= 2,则 a 的值为 ()A . 1B. 2C .- 1D . 0分析: 选A∵ f(x)= ax 2+ c ,∴ f ′(x)= 2ax ,又∵ f ′(1)= 2a ,∴ 2a = 2,∴ a = 1.2.函数2y = (x + 1) (x - 1)在x = 1 处的导数等于()A . 1B . 2C . 3D . 4分析:选 D y ′= [(x + 1) 2] ′(x - 1)+ (x + 1) 22= 3x 2+ 2x(x - 1) ′= 2(x + 1) ·(x - 1) + (x + 1) - 1,∴ y ′|== 4.x 13.曲线 f(x)= xln x 在点 x = 1 处的切线方程为 ( )A . y = 2x + 2B . y = 2x - 2C . y = x - 1D . y = x + 1分析:选C∵ f ′(x)= ln x + 1,∴ f ′(1)= 1,又 f(1) =0,∴在点 x = 1 处曲线 f(x)的切线方程为 y = x - 1.4. 已知物体的运动方程为s = t 2+ 3(t 是时间, s 是位移 ),则物体在时辰 t = 2 时的速度t为 ()19 17 A. 4B. 415 13C. 4D. 4分析:选D33 13∵ s ′= 2t -t ,∴ s ′|t2= 4-4=4=5.设曲线 y = ax - ln(x + 1)在点 (0,0) 处的切线方程为 y = 2x ,则 a = ()A . 0B . 1C . 2D . 3分析:选Dy ′= a - 1,由题意得 y ′|x =0= 2,即 a - 1= 2,所以 a =3.x + 13- x + 3 在点 (1,3)处的切线方程为 ________.6.曲线 y = x22分析:∵ y ′= 3x - 1,∴ y ′x1= 3×1 - 1= 2.=∴切线方程为 y - 3= 2(x -1) ,即 2x - y + 1= 0.答案: 2x - y + 1= 07.已知曲线y 1= 2- 1与 y 2= x 3- x 2+ 2x 在 x =x 0 处切线的斜率的乘积为3,则 x 0=x ________.分析: 由题知 y ′=12处切线的斜率分别为12= 3x - 2x + 2,所以两曲线在 x = x2,1x , y ′2x 02-2x 0+ 2,所以3x 02- 2x 0+ 23x 02= 3,所以 x 0= 1.x 0答案: 1ππ8.已知函数 f (x)= f ′4 cos x + sin x ,则 f 4 的值为 ________.π分析: ∵ f ′(x)=- f ′4 sin x + cos x ,ππ 2 2∴ f ′4 =- f ′4 ×2 + 2 ,π得 f ′4 = 2- 1.∴ f( x)= ( 2- 1)cos x + sin x.π∴ f 4 = 1. 答案: 19.求以下函数的导数:2e x + 1x;(1) y = xsin x ; (2)y = e - 1x + cos x(3) y = x + sin x ; (4)y = cos x ·sin 3x.22解: (1)y ′= (x) ′sinx + x(sin x) ′= sin 2 x + x ·2sin x ·(sin x) ′=sin 2x + xsin 2x.(2) y ′= e x + 1 ′ e x - 1- e x + 1e x - 1 ′x 1 2e -- 2e x .=x- 12ex + cos x ′ x + sin x - x + cos xx + sin x ′(3) y ′=x + sin x2=1- sin xx + sin x -x + cos x1+ cos xx + sin x 2- xcos x -xsin x + sin x - cos x - 1 = x + sin x 2.(4) y ′= (cos x ·sin 3x) ′= (cos x) ′sinx3+ cos x(sin 3x) ′=- sin xsin 3x + 3cos xcos 3x= 3cos xcos 3x - sin xsin 3x.10.偶函数 f(x)= ax 4+ bx 3+ cx 2+ dx + e 的图象过点 P(0,1),且在 x = 1 处的切线方程为y =x - 2,求 f(x)的分析式.解: ∵ f(x)的图象过点 P(0,1),∴ e = 1.又∵ f( x)为偶函数,∴ f(- x)= f(x).故 ax 4+ bx 3+ cx 2+ dx + e = ax 4- bx 3+ cx 2- dx + e.∴ b = 0, d = 0.∴ f(x)= ax 4+ cx 2+ 1. ∵函数 f(x)在 x = 1 处的切线方程为y = x - 2,∴切点为 (1,- 1).∴ a + c + 1=- 1.∵f′(x)|x=1= 4a+ 2c,∴ 4a+ 2c= 1.∴a=5, c=-9.225492∴函数 f(x)的分析式为 f (x)=x- x + 1.22层级二应试能力达标1.若函数 f(x)= ax4+ bx2+ c 知足 f′(1)= 2,则 f′(-1)等于 ()A.- 1B.- 2C. 2D. 0分析:选B∵ f′(x)= 4ax3+ 2bx 为奇函数,∴ f′(-1)=- f′(1)=- 2. 2.曲线 y= xe x-1在点 (1,1)处切线的斜率等于 ()A. 2e B. eC. 2D. 1分析:选C函数的导数为 f′(x)= e x-1+ xe x-1= (1+ x)e x-1,当 x= 1 时, f′(1)= 2,即曲线x-1在点 (1,1)处切线的斜率k= f′(1)= 2,应选 C. y= xe3.已知函数 f (x)的导函数为 f′(x),且知足 f(x)= 2xf ′ (e)+ ln x,则 f′ (e)= ()- 1B.- 1A. e- 1D.- eC.- e分析:选C∵ f(x)= 2xf′(e)+ ln x,∴f′(x)= 2f′(e)+1 x,∴f′(e)= 2f′(e)+1,解得 f′(e)=-1,应选 C.e e4.若 f(x)= x2- 2x- 4ln x,则 f′(x)> 0的解集为 ()A. (0,+∞ )B. (- 1,0)∪ (2,+∞) C. (2,+∞ )D. (- 1,0)分析:选C∵ f(x)= x2- 2x- 4ln x,∴f′(x)= 2x- 2-4x> 0,x+x-或 x> 2,整理得> 0,解得- 1< x< 0x又因为 f(x)的定义域为 (0,+∞),所以 x> 2.5.已知直线y= 2x- 1 与曲线 y= ln(x+ a)相切,则a 的值为 ________________.1分析:∵ y= ln(x+ a),∴ y′=,设切点为(x0,y0),1则 y0= 2x0- 1, y0= ln(x0+ a),且x0+a= 2,解之得 a=1ln 2. 2答案:1ln 22x在点 (1,1)的切 l, l 上的点到x2+ y2+ 4x+ 3= 0 上的点的6.曲 y=2x-1近来距离是 ____________.分析: y′=-1|y- 1=- (x- 1),即 x+ y- 2 2, y′x=1=- 1,∴切方程= 0,心 (- 2,0)到直的距离d= 2 2,的半径 r= 1,∴所求近来距离 2 2- 1.答案: 2 2-17.已知曲 f (x)= x3+ ax+ b 在点P(2,- 6)的切方程是13x- y- 32= 0.(1) 求a, b 的;1(2)假如曲 y= f(x)的某全部与直 l:y=-4x+ 3 垂直,求切点坐与切的方程.解: (1)∵ f(x)= x3+ ax+ b 的数 f′(x)= 3x2+ a,由意可得f′(2)= 12+ a=13, f(2)= 8+ 2a+ b=- 6,解得 a= 1, b=- 16.1(2)∵切与直 y=-4x+ 3 垂直,∴切的斜率k= 4.切点的坐(x0, y0),2f′(x0)= 3x0+ 1= 4,∴ x0=±1.由 f( x)= x3+x- 16,可得 y0= 1+ 1- 16=- 14,或 y0=- 1- 1- 16=- 18.切方程y= 4(x- 1)- 14 或 y= 4(x+ 1)- 18.即 y= 4x- 18 或 y= 4x- 14.8. f n(x)= x+ x2+⋯+ x n- 1, x≥0, n∈ N, n≥2.(1) 求 f n′ (2);明:在 0,2内有且有一个零点(a,且<12n(2)f n(x)n)a n-<n+13023.解: (1)由 f n′(x)= 1+ 2x+⋯+ nx n-1.所以 f n′ (2)= 1+ 2×2+⋯+ (n- 1)2n-2+n·2n-1,①2f n′ (2)= 2+ 2×22+⋯+ (n- 1)2n-1+ n·2n,②①-②得,- f n′ (2)= 1+ 2+ 22+⋯+ 2n-1- n·2n=1- 2n n n- n·2= (1- n) ·2- 1,1- 2所以 f n′ (2)= (n-1)n ·2+1.(2)因 f(0)=- 1< 0,22nn 231-3- 1=1-2×2n2×22> 0,f3=23≥ -3 1-13因 x≥0, n≥2.所以 f n(x)= x+ x2+⋯+ x n- 1 增函数,所以 f n(x)在 0,2内增,3所以 f n在 0,2内有且有一个零点 a n(x)3.n+ 1x- x因为 f n(x)=-1,n+1所以 0= f n(a n) =a n- a n- 1,1- a n由此可得11n+ 11,故12 a n=+a n>2< a n< .22231 1 n+112 n+1n所以 0< a n-22=2a n<2×3=3n+ 1.。
2020版高中数学第三章导数及其应用3.2.3导数的四则运算法则(第2课时)课件新人教B版
题目类型二、求导法则的灵活运用
求下列函数的导数: (1)y=(2x2+3)(3x-2); (2)y=x-sin2x·cos2x.
解:由函数的和(或差)与积的求导法则,可得 (1)解法一:y′=(2x2+3)′(3x-2)+(2x2+3)(3x-2)′= 4x(3x-2)+(2x2+3)·3 =18x2-8x+9. 解法二:∵y=(2x2+3)(3x-2)=6x3-4x2+9x-6, ∴y′=18x2-8x+9. (2)∵y=x-sin2x·cos2x=x-12sinx, ∴y′=1-12cosx.
(2)∵y=
x·1x-
x+
1x-1=-
1
x2
+
1
x2
,
∴y′=-12
1
x2
-12
3
x2
=- 1 2
x(1+1x).
题目类型三、求导法则的综合应用
求曲线 y=x+ x在点(1,2)处的切线在 x 轴上的
截距.
1
解:∵y=f(x)=x+ x=x+ x 2 ,
∴f′(x)=1+12
x
1 2
=1+21 x,∴f′(1)=32,
[点评] 熟练掌握导数运算法则,再结合给定函数本 身的特点,才能准确有效地进行求导运算,在解决问 题时才能做到举一反三,触类旁通.
求下列函数的导数: (1)y=x22+x33; (2)y=x3·10x; (3)y=cosx·lnx; (4)y=sixn2x.
解:(1)y=x22+x33=2x-2+3x-3, y′=-4x-3-9x-4. (2)y′=(x3)′·10x+x3·(10x)′ =3x2·10x+x3·10x·ln10. (3)y′=(cosx)′·lnx+cosx·(lnx)′ =-sinx·lnx+coxsx. (4)y′=x2′·sinsxi-n2xx2·sinx′ =2x·sinsxi-n2xx2cosx.
3-2-2 导数的运算法则1
)
B.y′=2cos2x D.y′=-sin2x
C.y′=2(sin x-cos x)
[答案] B
[解析]
y′=(sin2x)′=(2sinxcosx)′
=2(sinx)′· cosx+2sinx(cosx)′ =2cos2x-2sin2x=2cos2x.
2.已知函数 f(x)=ax +c,且 f′(1)=2, 则 a 的值为( A.1 C.-1
1 2 3 (3)y′= x+x2+x3′=(x-1+2· x-2+3· x-3)′=-x-2-4x-
3
1 4 9 -9x =-x2-x3-x4.
-4
xsinx-2 xsinx 2 (4)y′= cosx -cosx′= ′ cos x
xsinx-2′cosx+xsinx-2sinx = cos2x sinx+xcosxcosx+xsin2x-2sinx = cos2x sinxcosx+x-2sinx x 2tanx = =tanx+cos2x- cosx . cos2x
2 ∴-3-x0 =2x0(1-x0),
解得 x=-1 或 x0=3. ∴过点(1,-3)的该抛物线切线方程为 y-1=-2(x+1)或 y-9=6(x-3), 即 2x+y+1=0 或 6x-y-9=0.
y=2x-lnx-1 在点(1,1)处的切线方程为( A.x-y=0 C.x+4y-5=0
fx g(x)≠0, ′= gx
f ′x· gx-fx· g′x g2x
.
3.求下列函数的导数 (1)y=2x2-3x+1,y′=________. (2)y=(x+2)2,y′=________. (3)y=sinx+cosx,y′=________. (4)y=tanx,y′=________. (5)y=(x+2)(3x-1), y′=________.
(二十一) 3.2 导数的计算 第2课时 导数的运算法则 探究导学课型 Word版含答案
温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。
关闭Word文档返回原板块。
课时提升作业(二十一)导数的运算法则(25分钟60分)一、选择题(每小题5分,共25分)1.函数y=xsinx+的导数是( )A.y=sinx+xcosx+B.y=sinx-xcosx+C.y=sinx+xcosx-D.y=sinx-xcosx-【解析】选A.因为y=xsinx+,所以y′=′=′+′=x′sinx+x·(sinx)′+=sinx+xcosx+.2.(2015·泉州高二检测)下列求导运算正确的是( )A.′=1+B.′=C.′=3x·log3eD.′=-2sinx【解析】选B.因为′=x′+′=1-,所以A选项错误;又′=,所以选项B正确;又′=3x ln3,所以选项C错误;又′=(x2)′cosx+x2(cosx)′=2xcosx-x2sinx,所以选项D错误.3.(2015·太原高二检测)已知函数f(x)的导函数为f′(x),且满足f(x)=2xf′(e)+lnx,则f′(e)=( )A.e-1B.-1C.-e-1D.-e【解析】选C.因为f(x)=2xf′(e)+lnx,所以f′(x)=2f′(e)+,所以f′(e)=2f′(e)+,解得f′(e)=-=-e-1.4.已知f(x)=ax3+3x2+2,若f′(-1)= 4,则a的值是( )A. B. C. D.【解析】选D.f′(x)=3ax2+6x,因为f′(-1)=3a-6,所以3a-6=4,所以a=.5.(2015·贵阳高二检测)曲线y=xe x+1在点(0,1)处的切线方程是( )A.x-y+1=0B.2x-y+1=0C.x-y-1=0D.x-2y+2=0【解析】选A.y′=e x+xe x,且点(0,1)在曲线上,当x=0时,导数值为1,故所求的切线方程是y-1=x,即x-y+1=0.【补偿训练】曲线C:f(x)=sinx+e x+2在x=0处的切线方程为________.【解析】由f(x)=sinx+e x+2得f′(x)=cosx+e x,从而f′(0)=2,又f(0)=3,所以切线方程为y-3=2(x-0),即y=2x+3.答案:y=2x+3二、填空题(每小题5分,共15分)6.某物体做直线运动,其运动规律是s=t2+(t的单位:s,s的单位:m),则它在第4s末的瞬时速度应该为________m/s.【解析】因为s′=2t-,所以当t=4时,v=8-=(m/s).答案:7.(2015·鸡西高二检测)若函数f(x)=,则f′(π)=________.【解析】因为f′(x)==,所以f′(π)==.答案:8.设a∈R,函数f(x)=x3+ax2+(a-3)x的导函数是f′(x),若f′(x)是偶函数,则曲线y=f(x)在原点处的切线方程为______________.【解析】f′(x)=3x2+2ax+(a-3),又f′(-x)=f′(x),即3x2-2ax+(a-3)=3x2+2ax+(a-3)对任意x∈R都成立,所以a=0,f′(x)=3x2-3,f′(0)=-3,曲线y=f(x)在原点处的切线方程为y=-3x.答案:y=-3x三、解答题(每小题10分,共20分)9.(2015·哈尔滨高二检测)求下列函数的导数.(1)y=.(2)y=2x cosx-3xlog2015x.(3)y=x·tanx.【解析】(1)y′===.(2)y′=(2x)′cosx+(cosx)′2x-3=2x ln2·cosx-sinx·2x-3=2x ln2·cosx-2x sinx-3log2015x-3log2015e=2x ln2·cosx-2x sinx-3log2015(ex).(3)y′=(xtanx)′=′=====.10.求过点(1,-1)与曲线y=x3-2x相切的直线方程.【解题指南】由于(1,- 1)不一定是切点,所以先设切点坐标,求出切线方程,利用切点在切线上,求出切点坐标进而求出切线方程.【解析】设P(x0,y0)为切点,y′=3x2-2,则切线斜率为k=3-2.故切线方程为y-y0=(3-2)(x-x0). ①因为(x0,y0)在曲线上,所以y0=-2x0. ②又因为(1,-1)在切线上,所以将②式和(1,-1)代入①式得-1-(-2x0)=(3-2)(1-x0).解得x0=1或x0=-.当x0=1时,k=1,当x0=-时,k=-.故所求的切线方程为y+1=x-1或y+1=-(x-1).即x-y-2=0或5x+4y-1=0.(20分钟40分)一、选择题(每小题5分,共10分)1.(2015·西安高二检测)设a∈R,函数f(x)=e x+a·e-x的导函数是f′(x),且f′(x)是奇函数.若曲线y=f(x)的一条切线的斜率是,则切点的横坐标为( ) A.ln2 B.-ln2 C. D.-【解析】选A.因为f′(x)=e x-ae-x为奇函数,所以a=1,设切点横坐标为x0,则f′(x0)=-=,因为>0,所以=2,所以x0=ln2.【补偿训练】若函数f(x)=e x sinx,则此函数图象在点(4,f(4))处的切线的倾斜角为( ) A. B.0 C.钝角 D.锐角【解析】选C.y′=e x sinx+e x cosx,当x=4时,y′=e4(sin4+cos4)=e4sin<0,故倾斜角为钝角.2.(2015·聊城高二检测)设f0(x)=sinx,f1(x)=f′0(x),f2(x)=f′1(x),…,f n+1(x)=f′n(x),n∈N,则f2015(x)= ( )A.sinxB.-sinxC.cosxD.-cosx【解析】选 D.f1(x)=(sinx)′=cosx,f2(x)=(cosx)′=-sinx,f3(x)=(-sinx)′=-cosx,f4(x)=(-cosx)′=sinx,f5(x)=(sinx)′=f1(x),f6(x)=f2(x),…,f n+4(x)=f n(x),可知周期为4.2015=4×503+3,所以f2015(x)=f3(x)= -cosx.【延伸探究】若将“f0(x)=sinx”改为“f0(x)=sinx+cosx,其他条件不变,则f2015(x)=________. 【解析】f1(x)=f0′(x)=cosx-sinx,f2(x)=(cosx-sinx)′=-sinx-cosx,f3(x)=-cosx+sinx,f4(x)=sinx+cosx,以此类推,可得出f n(x)=f n+4(x).2015=4×503+3,所以f2015(x)=f3(x)=-cosx+sinx.答案:-cosx+sinx二、填空题(每小题5分,共10分)3.(2015·天津高考)已知函数f=axlnx,x∈,其中a为实数,f′为f的导函数,若f′=3,则a的值为______.【解析】因为f′=a,所以f′=a=3.答案:34.(2015·衡阳高二检测)若函数f(x)=x2-ax+lnx存在垂直于y轴的切线,则实数a的取值范围是________.【解析】垂直于y轴的切线,其切线的斜率为0,因为f(x)=x2-ax+lnx,所以f′(x)=x-a+.设切点横坐标为x0(x0>0),则有x0-a+=0,a=x0+≥2.答案:a≥2【补偿训练】(2015·沈阳高二检测)已知函数f(x)=x2·f′(2)+5x,则f′(2)=________.【解析】因为f′(x)=f′(2)·2x+5,所以f′(2)=f′(2)×2×2+5,所以3f′(2)=-5,所以f′(2)=-.答案:-三、解答题(每小题10分,共20分)5.函数f(x)=x3-x2-x+1的图象上有两点A(0,1)和B(1,0),在区间(0,1)内求实数a,使得函数f(x)的图象在x=a处的切线平行于直线AB.【解题指南】可先由A,B两点的坐标求AB的斜率,再求f(x)=x3-x2-x+1在x=a处切线的斜率,令其相等,即可求出a的值.【解析】直线AB的斜率k AB=-1,f′(x)=3x2-2x-1,令f′(a)=-1(0<a<1),即3a2-2a-1=-1,解得a=.6.(2015·天水高二检测)已知曲线C:f(x)=x3-x.(1)试求曲线C在点(1,f(1))处的切线方程.(2)试求与直线y=5x+3平行的曲线C的切线方程.【解析】(1)因为f(x)=x3-x,所以f(1)=13-1=0,即切点坐标为(1,0),又f′(x)=3x2-1.所以,切线的斜率k=f′(1)=3×12-1=2.故切线方程为y-0=2(x-1),即2x-y-2=0.(2)设切点坐标为(x0,-x0),又f′(x)=3x2-1,所以切线的斜率k=3-1.又切线与直线y=5x+3平行,所以3-1=5,解得=2,切点为或,故切线方程为:y-=5(x-)或y+=5(x+),即:5x-y-4=0或5x-y+4=0.关闭Word文档返回原板块。
导数的四则运算法则(第2课时)-课件
3.常数与函数乘积的导数,等于常数与函数的导数 之积.
练习题
1.函数y=sin2x的导数为( B )
(A)y’=cos2x
(B)y’=2cos2x (C)y’=2(sin2x-cos2x)
(D)y’=-sin2x
2.设 f (x )=ax 3+3x 2+2,若 f ′(-1)=4,则 a 的值等于 ( A. 19 3 16 B. 3 D. 10 3 ) )
数,且f(x),g(x)满足f ’(x)=g’(x),则f(x)与 g(x)满足(
B
)
(A)f(x)=g(x) (B)f(x)-g(x)为常数函数
(C)f(x)=g(x)=0
(D)f(x)+g(x)为常数函数
6.已知抛物线y=x2+bx+c在点(1,2)处与
直线y=x+1相切,求b,c的值.
b 1 c2
13 B. C. 3
3.设 f (x )=x ln x ,若 f ′(x 0)=2,则 x 0=( A.e
2
B.e
ln 2 C. 2
D.ln 2
4.下列曲线在点x=0处没有切线的是
(DΒιβλιοθήκη )(A)y=x3+sinx
(B)y=x2-cosx (C)y=x x +1 (D)y= x cos x
3
5.若f(x)与g(x)是定义在R上的两个可导函
7.若直线y=kx与曲线y=x3-3x2+2x相 切,试求k的值. 解: ∵ y=x3-3x2+2x,
∴ y’=3x2-6x+2,y’|x=0=2,
又∵直线与曲线均过原点, ∴ 当直线y=kx与曲线y=x3-3x2+2x相切
于原点时,k=2.
若直线与曲线切于点(x0,y0)(x0≠0).
【课件】人教版2-2 1.2《导数的计算》 课件
巩固练习
求函数y f ( x) x3的导数。
解:y ' f '( x) lim f ( x x) f ( x)
x0
x
lim ( x x)3 x3 lim 3x2 x 3x(x)2 3(x)3
x0
x
x0
x
lim (3x2 3x x 3(x)2 ) 3x2 x0
1; x2
且随x的变化,斜率在变化; 当x 0时,x ,y 1 减小得越来越快;
x 当x 0时,x ,y x2减小得越来越慢。
② y ' |x1
1 x2
|x1
1, 斜率k
1所求方程为:x
y
2
0
例5:求函数y f ( x) x的导数。
解:y' lim f ( x x) f ( x)
c'(x)
( 5284 )' 100 x
5 2 8 4 '(1 0 0
x) 5284 (1 0 0 x ) 2
(1 0 0
x)'
0 (100 x ) 5284 (1) (100 x ) 2
5284 (100 x)2
(1)因 为 c ' (90)
O
x
从几何的角度理解:
y ' 2x表示y x2图象上各点处的切线的斜率都为2x;
且随x的变化,斜率在变化;
当x 0时,x ,y x2减小得越来越慢;
当x 0时,x ,y x2增加得越来越快。
从物理的角度理解:
3.2 导数的计算 第2课时 导数的运算法则
基本初等函数的导数公式 (1)若f(x)=c(常数),则f′(x)=
0
.
(2)若f(x)=xα(α∈Q﹡),则f′(x)= αxα-1 .
(3)若f(x)=sin x,则f′(x)= cos x .
(4)若f(x)=cos x,则f′(x)=-sin x .
(5)若f(x)=ax,则f′(x)=
求下列函数的导数:
1 2 (1) y 2 . x x
x ( 2) y . 2 1 x
1 x2 (2) y . 2 2 (1 x )
1 4 答案: (1) y 2 3 . x x
例2
日常生中的饮用水通常是经过净化的,
随着水纯净度的提高,所需净化费用不断增加. 已知1吨水净化到纯净度为x%时所需费用(单 位:元)为: 5 284 c(x)= (80 x 100). 100 x 求净化到下列纯净度时,所需净化费用的瞬时 变化率. (1)90%. (2)98%.
1.若f(x)与g(x)是定义在R上的两个可导函数,且 f(x),g(x)满足f(x)=g(x),则f(x)与g(x)满足 ( B ) A.f(x)=g(x)
B.f(x)-g(x)为常数函数
C.f(x)=g(x)=0
D.f(x)+g(x)为常数函数
2.函数y=sinx(cosx+1)的导数为 y′=cos2x+cosx .
平行, 求切点坐标与切线方程.
解: 因为切线与直线 y=4x+3 平行, 所以切线的斜率为 4. 又切线在 x0 处的斜率为 y |
x=x0
=(x3+x-10) |
所以3x02+1=4,所以x0=1. 当 x0=1 时, y0=-8; 当 x0=-1 时, y0=-12. 所以切点坐标为 (1, -8) 或 (-1, -12).
新高考A版 导数:第2节 导数的运算
第2节导数的运算要点一:基本初等函数的导数知识点一几个常用函数的导数知识点二基本初等函数的导数公式一、利用导数公式求函数的导数 例1 求下列函数的导数: (1)y =x 0; (2)y =⎝⎛⎭⎫13x; (3)y =lg x ; (4)y =x 2x ;(5)y =2cos 2x2-1.解 (1)y ′=0.(2)y ′=⎝⎛⎭⎫13x ln 13=-⎝⎛⎭⎫13x ln 3. (3)y ′=1x ln 10.(4)∵y =x 2x=32,x∴31223322y'x 'x x ⎛⎫===. ⎪⎝⎭(5)∵y =2cos 2x2-1=cos x ,∴y ′=(cos x )′=-sin x .反思感悟 (1)若所求函数符合导数公式,则直接利用公式求导.(2)若给出的函数解析式不符合基本初等函数的导数公式,则通过恒等变换对解析式进行化简或变形后求导,如根式要化成指数幂的形式求导.如y =1x 4可以写成y =x -4,y =5x 3可以写成y =35x 等,这样就可以直接使用幂函数的求导公式求导,避免在求导过程中出现指数或系数的运算失误.(3)要特别注意“1x 与ln x ”,“a x 与log a x ”,“sin x 与cos x ”的导数区别.跟踪训练1 求下列函数的导数: (1)y =2 020; (2)y =13x 2;(3)y =4x ; (4)y =log 3x .解 (1)因为y =2 020,所以y ′=(2 020)′=0.(2)因为y =13x 2=23x -,所以y ′=251332233.x x ---=--(3)因为y =4x ,所以y ′=4x ln 4. (4)因为y =log 3x ,所以y ′=1x ln 3. 二、利用导数研究曲线的切线方程例2 已知曲线y =ln x ,点P (e,1)是曲线上一点,求曲线在点P 处的切线方程. 解 ∵y ′=1x ,∴k =y ′|x =e =1e ,∴切线方程为y -1=1e (x -e),即x -e y =0.延伸探究求曲线y =ln x 的过点O (0,0)的切线方程.解 ∵O (0,0)不在曲线y =ln x 上.∴设切点Q (x 0,y 0),则切线的斜率k =1x 0.又切线的斜率k =y 0-0x 0-0=ln x 0x 0,∴ln x 0x 0=1x 0,即x 0=e ,∴Q (e,1),∴k =1e ,∴切线方程为y -1=1e(x -e),即x -e y =0.反思感悟 (1)利用导数的几何意义解决切线问题的两种情况 ①若已知点是切点,则在该点处的切线斜率就是该点处的导数;②若已知点不是切点,则应先设出切点,再借助两点连线的斜率公式进行求解. (2)求过点P 与曲线相切的直线方程的三个步骤跟踪训练2 (1)函数y =x 3在点(2,8)处的切线方程为( ) A .y =12x -16 B .y =12x +16 C .y =-12x -16 D .y =-12x +16答案 A解析 因为y ′=3x 2,当x =2时,y ′=12,故切线的斜率为12,切线方程为y =12x -16. (2)已知曲线y =ln x 的一条切线方程为x -y +c =0,求c 的值. 解 设切点为(x 0,ln x 0),由y =ln x 得y ′=1x.因为曲线y =ln x 在x =x 0处的切线方程为x -y +c =0,其斜率为1.所以0=|x x y'=1x 0=1,即x 0=1,所以切点为(1,0).所以1-0+c =0,所以c =-1.利用导数公式求切点坐标问题典例 已知直线l: 2x -y +4=0与抛物线y =x 2相交于A ,B 两点,O 是坐标原点,试求与直线l 平行的抛物线的切线方程,并在弧AOB 上求一点P ,使△ABP 的面积最大. 解 由于直线l: 2x -y +4=0与抛物线y =x 2相交于A ,B 两点, ∴|AB |为定值,要使△ABP 的面积最大,只要点P 到AB 的距离最大,设P (x 0,y 0)为切点,过点P 与AB 平行的切线斜率为k =y ′=2x 0,∴k =2x 0=2,∴x 0=1,y 0 =1.故可得P (1,1),∴与直线l 平行的抛物线的切线方程为2x -y -1=0. 故P (1,1)点即为所求弧AOB 上的点,使△ABP 的面积最大.[素养提升] (1)利用基本初等函数的求导公式,可求其图象在某一点P (x 0,y 0)处的切线方程,可以解决一些与距离、面积相关的几何的最值问题,一般都与函数图象的切线有关.解题时可先利用图象分析取最值时的位置情况,再利用导数的几何意义准确计算. (2)结合图象,利用公式计算求解,体现了直观想象与数学运算的数学核心素养.要点二: 导数的运算法则已知f (x ),g (x )为可导函数,且g (x )≠0. (1)[f (x )±g (x )]′=f ′(x )±g ′(x ).(2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ),特别地,[cf (x )]′=cf ′(x ). (3)⎣⎡⎦⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2.一、利用运算法则求函数的导数 例1 求下列函数的导数: (1)y =15x 5+43x 3;(2)y =3x 2+x cos x ; (3)y =x 1+x ;(4)y =lg x -e x ; (5)y =(x +1)⎝⎛⎭⎫1x -1. 解 (1)y ′=⎝⎛⎭⎫15x 5+43x 3′=⎝⎛⎭⎫15x 5′+⎝⎛⎭⎫43x 3′=x 4+4x 2.(2)y ′=(3x 2+x cos x )′=(3x 2)′+(x cos x )′=6x +x ′cos x +x (cos x )′=6x +cos x -x sin x . (3)y ′=⎝⎛⎭⎫x 1+x ′=x ′(1+x )-x (1+x )′(1+x )2=1+x -x (1+x )2=1(1+x )2.(4)y ′=(lg x -e x )′=(lg x )′-(e x )′=1x ln 10-e x .(5)y ′=⎣⎡⎦⎤(x +1)⎝⎛⎭⎫1x -1′=⎝⎛⎭⎫1x -x ′1122=x x '-⎛⎫- ⎪⎝⎭1131222211=22x 'x 'x x ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭---=---=-12x ⎝⎛⎭⎫1+1x . 反思感悟 利用导数运算法则的策略(1)分析待求导式子符合哪种求导法则,每一部分式子是由哪种基本初等函数组合成的,确定所需的求导法则和基本公式.(2)如果求导式比较复杂,则需要对式子先变形再求导,常用的变形有乘积式展开变为和式求导,商式变乘积式求导,三角函数恒等变换后求导等.(3)利用导数运算法则求导的原则是尽可能化为和、差,能利用和差的求导法则求导的,尽量少用积、商的求导法则求导. 跟踪训练1 求下列函数的导数: (1)y =x 2+x ln x ; (2)y =ln xx 2;(3)y =e xx;(4)y =(2x 2-1)(3x +1).解 (1)y ′=(x 2+x ln x )′=(x 2)′+(x ln x )′=2x +(x )′ln x +x (ln x )′ =2x +ln x +x ·1x =2x +ln x +1.(2)y ′=⎝⎛⎭⎫ln x x 2′=(ln x )′·x 2-ln x (x 2)′x 4=1x ·x 2-2x ln x x 4=1-2ln x x 3.(3)y ′=⎝⎛⎭⎫e xx ′=(e x)′x -e x(x )′x 2=e x·x -exx 2. (4)方法一 y ′=[(2x 2-1)(3x +1)]′=(2x 2-1)′(3x +1)+(2x 2-1)(3x +1)′ =4x (3x +1)+(2x 2-1)×3=12x 2+4x +6x 2-3=18x 2+4x -3. 方法二 ∵y =(2x 2-1)(3x +1)=6x 3+2x 2-3x -1,∴y ′=(6x 3+2x 2-3x -1)′=(6x 3)′+(2x 2)′-(3x )′-(1)′=18x 2+4x -3. 二、利用运算法则求曲线的切线例2 (1)曲线y =sin x sin x +cos x -12在点M ⎝⎛⎭⎫π4,0处的切线的斜率为( ) A .-12 B.12 C .-22 D.22答案 B解析 y ′=cos x (sin x +cos x )-sin x (cos x -sin x )(sin x +cos x )2=1(sin x +cos x )2,故π=4|x y'=12, ∴曲线在点M ⎝⎛⎭⎫π4,0处的切线的斜率为12. (2)已知曲线f (x )=x 3+ax +b 在点P (2,-6)处的切线方程是13x -y -32=0. ①求a ,b 的值;②如果曲线y =f (x )的切线与直线y =-14x +3垂直,求切线的方程.解 ①f (x )=x 3+ax +b 的导数f ′(x )=3x 2+a ,由题意可得f ′(2)=12+a =13, f (2)=8+2a +b =-6,解得a =1,b =-16.②∵切线与直线y =-x4+3垂直,∴切线的斜率k =4.设切点的坐标为(x 0,y 0),则f ′(x 0)=3x 20+1=4,∴x 0=±1. 由f (x )=x 3+x -16,可得y 0=1+1-16=-14或y 0=-1-1-16=-18, 则切线方程为y =4(x -1)-14或y =4(x +1)-18,即y =4x -18或y =4x -14.反思感悟 (1)此类问题往往涉及切点、切点处的导数、切线方程三个主要元素,其他的条件可以进行转化,从而转化为这三个要素间的关系.(2)准确利用求导法则求出导函数是解决此类问题的第一步,也是解题的关键,务必做到准确. (3)分清已知点是否在曲线上,若不在曲线上,则要设出切点,这是解题时的易错点. 跟踪训练2 (1)曲线y =x 3-4x 2+4在点(1,1)处的切线方程为( ) A .y =-x +2 B .y =5x -4 C .y =-5x +6 D .y =x -1答案 C解析 由y =x 3-4x 2+4,得y ′=3x 2-8x ,y ′|x =1=3-8=-5,所以曲线y =x 3-4x 2+4在点(1,1)处的切线方程为y -1=-5(x -1),即y =-5x +6. (2)已知函数f (x )=a ln x x +1+b x ,曲线y =f (x )在点A (1,f (1))处的切线方程为x +2y -3=0,则a ,b 的值分别为________. 答案 1,1解析 f ′(x )=a ⎝⎛⎭⎫x +1x -ln x (x +1)2-b x 2.由于直线x +2y -3=0的斜率为-12,且过点(1,1),故⎩⎪⎨⎪⎧ f (1)=1,f ′(1)=-12,即⎩⎪⎨⎪⎧b =1,a 2-b =-12,解得⎩⎪⎨⎪⎧a =1,b =1. 三、与切线有关的综合问题例3 (1)曲线y =x ln x 上的点到直线x -y -2=0的最短距离是( ) A. 2 B.22C .1D .2 答案 B解析 设曲线y =x ln x 在点(x 0,y 0)处的切线与直线x -y -2=0平行.∵y ′=ln x +1,∴0=|x x y'=ln x 0+1=1,解得x 0=1,∴y 0=0,即切点坐标为(1,0). ∴切点(1,0)到直线x -y -2=0的距离为d =|1-0-2|1+1=22,即曲线y =x ln x 上的点到直线x -y -2=0的最短距离是22. (2)设曲线 y =a (x -1)e x 在点(1,0)处的切线与直线 x +2y +1=0垂直,则实数a =________. 答案 2e解析 令y =f (x ),则曲线y =a (x -1)e x 在点(1,0)处的切线的斜率为f ′(1), 又切线与直线x +2y +1=0垂直,所以f ′(1)=2.因为f (x )=a (x -1)e x ,所以f ′(x )=a e x +a (x -1)e x =ax e x ,所以f ′(1)=a e ,故a =2e .反思感悟 本题正确的求出函数的导数是前提,审题时注意所给点是否是切点,挖掘题目隐含条件,求出参数,解决已知经过一定点的切线问题,寻求切点是解决问题的关键. 跟踪训练3 求曲线y =2e(x -1)e x 在点(1,0)处的切线与坐标轴围成的面积.解 由题意可知,y ′=2e x ·e x,y ′|x =1=2,∴切线方程为y =2(x -1),即2x -y -2=0.令x =0得y =-2;令y =0得x =1.∴曲线y =2e (x -1)e x 在点(1,0)处的切线与坐标轴围成的面积为S =12×2×1=1.要点三:简单复合函数的导数知识点 复合函数的导数 1.复合函数的概念一般地,对于两个函数y =f (u )和u =g (x ),如果通过中间变量u ,y 可以表示成x 的函数,那么称这个函数为函数y=f(u)和u=g(x)的复合函数,记作y=f(g(x)).思考函数y=log2(x+1)是由哪些函数复合而成的?答案函数y=log2(x+1)是由y=log2u及u=x+1两个函数复合而成的.2.复合函数的求导法则一般地,对于由函数y=f(u)和u=g(x)复合而成的函数y=f(g(x)),它的导数与函数y=f(u),u=g(x)的导数间的关系为y′x=y′u·u′x,即y对x的导数等于y对u的导数与u对x的导数的乘积.1.y=cos 3x由函数y=cos u,u=3x复合而成.(√)2.函数f(x)=sin(2x)的导数为f′(x)=cos 2x.(×)3.函数f(x)=e2x-1的导数为f′(x)=2e2x-1.(√)一、求复合函数的导数例1求下列函数的导数:(1)y=1(1-3x)4;(2)y=cos(x2);(3)y=log2(2x+1);(4)y=e3x+2.解(1)令u=1-3x,则y=1u4=u-4,所以y′u=-4u-5,u′x=-3.所以y′x=y′u·u′x=12u-5=12 (1-3x)5.(2)令u=x2,则y=cos u,所以y′x=y′u·u′x=-sin u·2x=-2x sin(x2).(3)设y=log2u,u=2x+1,则y x′=y u′u x′=2u ln 2=2(2x+1)ln 2.(4)设y=e u,u=3x+2,则y x′=(e u)′·(3x+2)′=3e u=3e3x+2. 反思感悟(1)求复合函数的导数的步骤(2)求复合函数的导数的注意点:①分解的函数通常为基本初等函数;②求导时分清是对哪个变量求导;③计算结果尽量简洁. 跟踪训练1 求下列函数的导数: (1)y =11-2x; (2)y =5log 2(1-x ); (3)y =sin ⎝⎛⎭⎫2x +π3. 解 (1)()12=12,y x --设y =12u -,u =1-2x ,则y ′x =()1212u 'x '⎛⎫- ⎪⎝⎭-()32212u -⎛⎫-⋅ ⎪⎝⎭=-()32=12x .--(2)函数y =5log 2(1-x )可看作函数y =5log 2u 和u =1-x 的复合函数, 所以y ′x =y ′u ·u ′x =5(log 2u )′·(1-x )′=-5u ln 2=5(x -1)ln 2.(3) 设y =sin u ,u =2x +π3,则y x ′=(sin u )′⎝⎛⎭⎫2x +π3′=cos u ·2=2cos ⎝⎛⎭⎫2x +π3. 二、复合函数与导数的运算法则的综合应用 例2 求下列函数的导数: (1)y =ln 3xe x ;(2)y =x 1+x 2;(3)y =x cos ⎝⎛⎭⎫2x +π2sin ⎝⎛⎭⎫2x +π2. 解 (1)∵(ln 3x )′=13x ×(3x )′=1x ,∴y ′=(ln 3x )′e x-(ln 3x )(e x)′(e x )2=1x -ln 3xe x=1-x ln 3x x e x . (2)y ′=(x 1+x 2)′=x ′1+x 2+x (1+x 2)′=1+x 2+x 21+x 2=(1+2x 2)1+x 21+x 2.(3)∵y =x cos ⎝⎛⎭⎫2x +π2sin ⎝⎛⎭⎫2x +π2=x (-sin 2x )cos 2x =-12x sin 4x ,∴y ′=⎝⎛⎭⎫-12x sin 4x ′=-12sin 4x -x 2cos 4x ·4=-12sin 4x -2x cos 4x . 反思感悟 (1)在对函数求导时,应仔细观察及分析函数的结构特征,紧扣求导法则,联系学过的求导公式,对不易用求导法则求导的函数,可适当地进行等价变形,以达到化异求同、化繁为简的目的.(2)复合函数的求导熟练后,中间步骤可以省略,即不必再写出函数的复合过程,直接运用公式,从外层开始由外及内逐层求导. 跟踪训练2 求下列函数的导数: (1)y =sin 2x3;(2)y =sin 3x +sin x 3; (3)y =x ln(1+x ).解 (1)方法一 ∵y =1-cos 23x 2,∴y ′=⎝ ⎛⎭⎪⎫12-cos 23x 2′=13sin 23x . 方法二 y ′=2sin x 3cos x 3·13=23sin x 3cos x 3=13sin 23x .(2)y ′=(sin 3x +sin x 3)′=(sin 3x )′+(sin x 3)′=3sin 2x cos x +cos x 3·3x 2 =3sin 2x cos x +3x 2cos x 3.(3)y ′=x ′ln(1+x )+x [ln(1+x )]′=ln(1+x )+x1+x. 三、与切线有关的综合问题例3 (1)曲线y =ln(2x -1)上的点到直线2x -y +3=0的最短距离是( ) A. 5 B .2 5 C .3 5 D .0 答案 A解析 设曲线y =ln(2x -1)在点(x 0,y 0)处的切线与直线2x -y +3=0平行.∵y ′=22x -1,∴0=|x x y'=22x 0-1=2,解得x 0=1,∴y 0=ln(2-1)=0,即切点坐标为(1,0).∴切点(1,0)到直线2x -y +3=0的距离为d =|2-0+3|4+1=5,即曲线y =ln(2x -1)上的点到直线2x -y +3=0的最短距离是 5.(2)设f (x )=ln(x +1)+x +1+ax +b (a ,b ∈R ,a ,b 为常数),曲线y =f (x )与直线y =32x 在(0,0)点相切.求a ,b 的值.解 由曲线y =f (x )过(0,0)点,可得ln 1+1+b =0,故b =-1. 由f (x )=ln(x +1)+x +1+ax +b ,得f ′(x )=1x +1+12x +1+a ,则f ′(0)=1+12+a =32+a , 即为曲线y =f (x )在点(0,0)处的切线的斜率.由题意,得32+a =32,故a =0. 反思感悟 (1)求切线的关键要素为切点,若切点已知便直接使用,切点未知则需先设再求.两直线平行与垂直关系与直线的斜率密切相关,进而成为解出切点横坐标的关键条件.(2)在考虑函数问题时首先要找到函数的定义域.在解出自变量的值或范围时也要验证其是否在定义域内.跟踪训练3 (1)已知函数f (x )=k +ln x e x(k 为常数,e =2.718 28…是自然对数的底数),曲线y =f (x )在点(1,f (1))处的切线与x 轴平行,则k 的值为 .答案 1解析 由f (x )=ln x +k e x ,得f ′(x )=1-kx -x ln x x e x,x ∈(0,+∞).由于曲线y =f (x )在点(1,f (1))处的切线与x 轴平行,所以f ′(1)=0,因此k =1.(2)设曲线y =e ax 在点(0,1)处的切线与直线x +2y +1=0垂直,则a = .该切线与坐标轴围成的面积为 .答案 2 14解析 令y =f (x ),则曲线y =e ax 在点(0,1)处的切线的斜率为f ′(0),又切线与直线x +2y +1=0垂直,所以f ′(0)=2.因为f (x )=e ax ,所以f ′(x )=(e ax )′=e ax ·(ax )′=a e ax ,所以f ′(0)=a e 0=a ,故a =2. 由题意可知,切线方程为y -1=2x ,即2x -y +1=0.令x =0得y =1;令y =0得x =-12.∴S =12×12×1=14.初等函数求导1.下列求导运算正确的是( )A .(cos x )′=-sin xB .(x 3)′=x 3ln xC .(e x )′=x e x -1D .(ln x )′=1x ln 10 答案 A2.下列各式中正确的个数是( )①(x 7)′=7x 6;②(x -1)′=x -2;③(5x 2)′352;5x -= ④(cos 2)′=-sin 2. A .2 B .3 C .4 D .5答案 A解析 ∵②(x -1)′=-x -2;④(cos 2)′=0.∴②④错误,故选A.3.已知函数f (x )=x α(α∈Q ,且α≠0),若f ′(-1)=-4,则α的值等于( )A .4B .-4C .5D .-5答案 A解析 ∵f ′(x )=αx α-1,f ′(-1)=α(-1)α-1=-4,∴a =4.4.若函数f (x )=cos x ,则f ′⎝⎛⎭⎫π4+f ⎝⎛⎭⎫π4的值为( ) A .0 B .-1 C .1 D .2答案 A解析 f ′(x )=-sin x ,所以f ′⎝⎛⎭⎫π4+f ⎝⎛⎭⎫π4=-sin π4+cos π4=0. 5.(多选)已知曲线y =x 3在点P 处的切线斜率为k ,则当k =3时的P 点坐标为( )A .(-1,1)B .(-1,-1)C .(1,1)D .(1,-1) 答案 BC解析 y ′=3x 2,因为k =3,所以3x 2=3,所以x =±1,则P 点坐标为(-1,-1)或(1,1).6.已知[cf (x )]′=cf ′(x ),其中c 为常数.若f (x )=ln 5log 5x ,则曲线f (x )在点A (1,0)处的切线方程为 .答案 x -y -1=0解析 由已知得f ′(x )=ln 5 1x ln 5=1x , 所以f ′(1)=1,在A 点处的切线方程为x -y -1=0.7.若曲线y =x 在点P (a ,a )处的切线与两坐标轴围成的三角形的面积为2,则实数a 的值是 .答案 4解析 因为y ′=12x, 所以切线方程为y -a =12a(x -a ), 令x =0,得y =a 2,令y =0,得x =-a , 由题意知12·a 2·a =2,所以a =4. 8.设曲线y =e x 在点(0,1)处的切线与曲线y =1x(x >0)上点P 处的切线垂直,则点P 的坐标为 .答案 (1,1)解析 设f (x )=e x ,则f ′(x )=e x ,所以f ′(0)=1.设g (x )=1x(x >0), 则g ′(x )=-1x2. 由题意可得g ′(x P )=-1,解得x P =1.所以P (1,1).9.点P 是曲线y =e x 上任意一点,求点P 到直线y =x 的最小距离.解 如图,当曲线y =e x 在点P (x 0,y 0)处的切线与直线y =x 平行时,点P 到直线y =x 的距离最近.则曲线y =e x 在点P (x 0,y 0)处的切线斜率为1,又y ′=(e x )′=e x ,所以0e x=1,得x 0=0,代入y =e x ,得y 0=1,即P (0,1).利用点到直线的距离公式得最小距离为22. 10.已知抛物线y =x 2,求过点⎝⎛⎭⎫-12,-2且与抛物线相切的直线方程.解 设直线的斜率为k ,直线与抛物线相切的切点坐标为(x 0,y 0),则直线方程为y +2=k ⎝⎛⎭⎫x +12, 因为y ′=2x ,所以k =2x 0,又点(x 0,x 20)在切线上,所以x 20+2=2x 0⎝⎛⎭⎫x 0+12, 所以x 0=1或x 0=-2,则k =2或k =-4,所以直线方程为y +2=2⎝⎛⎭⎫x +12或 y +2=-4⎝⎛⎭⎫x +12, 即2x -y -1=0或4x +y +4=0.11.已知函数f (x )=x 3在某点处的切线的斜率等于1,则这样的切线有( )A .1条B .2条C .多于2条D .不能确定答案 B解析 y ′=f ′(x )=3x 2,设切点为(x 0,x 30), 由3x 20=1,得x 0=±33, 即在点⎝⎛⎭⎫33,39和点⎝⎛⎭⎫-33,-39处均有斜率为1的切线,故有2条. 12.若曲线y =x α+1(α∈Q 且α≠0)在点(1,2)处的切线经过原点,则α= .答案 2解析 y ′=αx α-1,所以y ′|x =1=α,所以切线方程为y -2=α(x -1),即y =αx -α+2,该直线过点(0,0),所以α=2.13.已知f (x )=cos x ,g (x )=x ,则关于x 的不等式f ′(x )+g ′(x )≤0的解集为 .答案 ⎩⎨⎧⎭⎬⎫x ⎪⎪ x =π2+2k π,k ∈Z 解析 ∵f ′(x )=-sin x ,g ′(x )=1,∴由f ′(x )+g ′(x )≤0,得-sin x +1≤0,即sin x ≥1,则sin x =1,解得x =π2+2k π,k ∈Z ,∴其解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x =π2+2k π,k ∈Z . 14.设f 0(x )=sin x ,f 1(x )=f ′0(x ),f 2(x )=f ′1(x ),…,f n +1(x )=f ′n (x ),n ∈N ,则f 2 020(x )= . 答案 sin x解析 由已知得,f 1(x )=cos x ,f 2(x )=-sin x ,f 3(x )=-cos x ,f 4(x )=sin x ,f 5(x )=cos x ,…,依次类推可得,函数呈周期变化,且周期为4,则f 2 020(x )=f 4(x )=sin x .15.函数y =x 2(x >0)的图象在点(a k ,a 2k )处的切线与x 轴的交点的横坐标为a k +1,其中k ∈N *,若a 1=16,则a 1+a 3+a 5的值是 .答案 21解析 ∵y ′=2x ,∴y =x 2(x >0)的图象在点(a k ,a 2k )处的切线方程为y -a 2k =2a k (x -a k ).又该切线与x 轴的交点坐标为(a k +1,0),∴a k +1=12a k ,即数列{a k }是首项为a 1=16,公比为q =12的等比数列, ∴a 3=4,a 5=1,∴a 1+a 3+a 5=21.16.设曲线y =x n +1(n ∈N *)在点(1,1)处的切线与x 轴的交点的横坐标为x n ,令a n =lg x n ,求a 1+a 2+…+a 99的值.解 导函数y ′=(n +1)x n ,切线斜率k =y ′|x =1=n +1,所以切线方程为y =(n +1)x -n ,可求得切线与x 轴的交点为⎝⎛⎭⎫n n +1,0,则a n =lg n n +1=lg n -lg(n +1),所以a 1+a 2+…+a 99=(lg 1-lg 2)+(lg 2-lg 3)+…+(lg 99-lg 100)=lg 1-lg 100=-2.函数求导运算法则1.(多选)下列运算中正确的是( )A .(ax 2+bx +c )′=a (x 2)′+b (x )′B .(sin x -2x 2)′=(sin x )′-2′(x 2)′C.⎝⎛⎭⎫sin x x 2′=(sin x )′-(x 2)′x 2D .(cos x ·sin x )′=(cos x )′sin x +cos x (sin x )′答案 AD解析 A 项中,(ax 2+bx +c )′=a (x 2)′+b (x )′,故正确;B 项中,(sin x -2x 2)′=(sin x )′-2(x 2)′,故错误;C 项中,⎝⎛⎭⎫sin x x 2′=(sin x )′x 2-sin x (x 2)′(x 2)2,故错误; D 项中,(cos x ·sin x )′=(cos x )′sin x +cos x (sin x )′,故正确.2.函数f (x )=e x cos x 的图象在点(0,f (0))处的切线的倾斜角为( )A .0 B.π4 C .1 D.π2答案 B解析 对函数求导得f ′(x )=e x (cos x -sin x ),∴f ′(0)=1,∴函数f (x )=e x cos x 的图象在点(0,f (0))处的切线的倾斜角为π4. 3.设f (x )=x ln x ,若f ′(x 0)=2,则x 0等于( )A .e 2B .e C.ln 22D .ln 2 答案 B解析 ∵f (x )=x ln x ,∴f ′(x )=ln x +1(x >0),由f ′(x 0)=2,得ln x 0+1=2,即ln x 0=1,解得x 0=e.4.若函数f (x )=ax 4+bx 2+c 满足f ′(1)=2,则f ′(-1)等于( )A .-1B .-2C .2D .0答案 B解析 ∵f ′(x )=4ax 3+2bx ,f ′(x )为奇函数,∴f ′(-1)=-f ′(1)=-2.5.(多选)当函数y =x 2+a 2x(a >0)在x =x 0处的导数为0时,那么x 0可以是( ) A .a B .0 C .-a D .a 2答案 AC解析 y ′=⎝⎛⎭⎫x 2+a 2x ′=2x ·x -(x 2+a 2)x 2=x 2-a 2x 2, 由x 20-a 2=0得x 0=±a .6.已知f (x )=sin x 1+cos x,则f ′⎝⎛⎭⎫π3=________. 答案 23解析 因为f ′(x )=(sin x )′(1+cos x )-sin x (1+cos x )′(1+cos x )2 =cos x (1+cos x )-sin x (-sin x )(1+cos x )2=cos x +cos 2x +sin 2x (1+cos x )2=cos x +1(1+cos x )2 =11+cos x. 所以f ′⎝⎛⎭⎫π3=11+cos π3=23. 7.已知f (x )=e x x,则f ′(1) =________,若f ′(x 0)+f (x 0)=0,则x 0=________. 答案 0 12解析 因为f ′(x )=(e x )′x -e x (x )′x 2=e x (x -1)x 2(x ≠0). 所以f ′(1)=0.由f ′(x 0)+f (x 0)=0,得()00020e 1e 0.x x x x x 0-+= 解得x 0=12. 8.已知函数f (x )=e x ·sin x ,则曲线y =f (x )在点(0,f (0))处的切线方程是____________. 答案 y =x解析 ∵f (x )=e x ·sin x ,f ′(x )=e x (sin x +cos x ),f ′(0)=1,f (0)=0,∴曲线y =f (x )在点(0,0)处的切线方程为y -0=1×(x -0),即y =x .9.若曲线y =x 2-ax +ln x 存在垂直于y 轴的切线,求实数a 的取值范围.解 ∵y =x 2-ax +ln x ,∴y ′=2x -a +1x, 由题意可知,存在实数x >0使得2x -a +1x=0, 即a =2x +1x成立,∴a =2x +1x ≥22(当且仅当2x =1x ,即x =22时等号成立).∴a 的取值范围是[22,+∞).10.已知函数f (x )=ax 2+bx +3(a ≠0),其导函数f ′(x )=2x -8.(1)求a ,b 的值;(2)设函数g (x )=e x sin x +f (x ),求曲线g (x )在x =0处的切线方程.解 (1)因为f (x )=ax 2+bx +3(a ≠0),所以f ′(x )=2ax +b ,又f ′(x )=2x -8,所以a =1,b =-8.(2)由(1)可知g (x )=e x sin x +x 2-8x +3,所以g ′(x )=e x sin x +e x cos x +2x -8,所以g ′(0)=e 0sin 0+e 0cos 0+2×0-8=-7,又g (0)=3,所以曲线g (x )在x =0处的切线方程为y -3=-7(x -0),即7x +y -3=0.11.已知曲线f (x )=x 2+a x +1在点(1,f (1))处切线的倾斜角为3π4,则实数a 等于( )A .1B .-1C .7D .-7答案 C解析 ∵f ′(x )=2x (x +1)-(x 2+a )(x +1)2=x 2+2x -a(x +1)2,又f ′(1)=tan 3π4=-1,∴a =7.12.已知曲线f (x )=(x +a )·ln x 在点(1,f (1))处的切线与直线2x -y =0垂直,则a 等于() A.12 B .1 C .-32 D .-1答案 C解析 因为f (x )=(x +a )·ln x ,x >0,所以f ′(x )=ln x +(x +a )·1x ,所以f ′(1)=1+a .又因为f (x )在点(1,f (1))处的切线与直线2x -y =0垂直,所以f ′(1)=-12,所以a =-32,故选C.13.已知函数f (x )=f ′(-1)x 22-2x +3,则f (-1)的值为________.答案 92解析 ∵f ′(x )=f ′(-1)·x -2,∴f ′(-1)=-f ′(-1)-2,解得f ′(-1)=-1.∴f (x )=-x 22-2x +3, ∴f (-1)=92. 14.已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为______________.答案 x -y -1=0解析 ∵点(0,-1)不在曲线f (x )=x ln x 上,∴设切点坐标为(x 0,y 0).又∵f ′(x )=1+ln x (x >0),∴⎩⎪⎨⎪⎧y 0=x 0ln x 0,y 0+1=(1+ln x 0)x 0, 解得x 0=1,y 0=0.∴切点坐标为(1,0),∴f ′(1)=1+ln 1=1.∴直线l 的方程为y =x -1,即x -y -1=0.15.等比数列{a n }中,a 1=2,a 8=4,函数f (x )=x (x -a 1)(x -a 2)·…·(x -a 8),则f ′(0)=________. 答案 212解析 因为f ′(x )=(x )′·[(x -a 1)(x -a 2)·…·(x -a 8)]+[(x -a 1)·(x -a 2)·…·(x -a 8)]′·x =(x -a 1)(x -a 2)·…·(x -a 8)+[(x -a 1)·(x -a 2)·…·(x -a 8)]′·x ,所以f ′(0)=(0-a 1)(0-a 2)·…·(0-a 8)+0=a 1a 2·…·a 8.因为数列{a n }为等比数列,所以a 1a 8=a 2a 7=a 3a 6=a 4a 5=8,所以f ′(0)=84=212.16.偶函数f (x )=ax 4+bx 3+cx 2+dx +e 的图象过点P (0,1),且在x =1处的切线方程为y =x -2,求f (x )的解析式.解 ∵f (x )的图象过点P (0,1),∴e =1.又∵f (x )为偶函数,∴f (x )=f (-x ).故ax 4+bx 3+cx 2+dx +e =ax 4-bx 3+cx 2-dx +e .∴b =0,d =0.∴f (x )=ax 4+cx 2+1.∵函数f (x )在x =1处的切线方程为y =x -2,∴切点坐标为(1,-1).∴a +c +1=-1.∵f ′(1)=4a +2c ,∴4a +2c =1.∴a =52,c =-92. ∴函数f (x )的解析式为f (x )=52x 4-92x 2+1.复合函数求导1.(多选)下列函数是复合函数的是( )A .y =-x 3-1x+1 B .y =cos ⎝⎛⎭⎫x +π4 C .y =1ln xD .y =(2x +3)4答案 BCD解析 A 不是复合函数,B ,C ,D 均是复合函数,其中B 由y =cos u ,u =x +π4复合而成; C 由y =1u,u =ln x 复合而成; D 由y =u 4,u =2x +3复合而成.2.函数y =x ln(2x +5)的导数为( )A .ln(2x +5)-x 2x +5B .ln(2x +5)+2x 2x +5C .2x ln(2x +5)D.x 2x +5 答案 B解析 ∵y =x ln(2x +5),∴y ′=ln(2x +5)+2x 2x +5. 3.函数y =x 3e cos x 的导数为( )A .y ′=3x 2e cos x +x 3e cos xB .y ′=3x 2e cos x -x 3e cos x sin xC .y ′=3x 2e cos x -x 3e sin xD .y ′=3x 2e cos x +x 3e cos x sin x答案 B解析 y ′=(x 3)′e cos x +x 3(e cos x )′=3x 2e cos x +x 3e cos x ·(cos x )′=3x 2e cos x -x 3e cos x sin x .4.曲线y =x e x -1在点(1,1)处切线的斜率等于( )A .2eB .eC .2D .1答案 C解析 ∵y =x e x -1,∴y ′=e x -1+x e x -1,∴k =y ′|x =1=e 0+e 0=2,故选C.5.已知直线y =x +1与曲线y =ln(x +a )相切,则a 的值为( )A .1B .2C .-1D .-2答案 B解析 设切点坐标是(x 0,x 0+1),依题意有⎩⎪⎨⎪⎧1x 0+a =1,x 0+1=ln (x 0+a ),由此得x 0+1=0,x 0=-1,a =2.6.函数y =sin 2x cos 3x 的导数是 .答案 y ′=2cos 2x cos 3x -3sin 2x sin 3x解析 ∵y =sin 2x cos 3x ,∴y ′=(sin 2x )′cos 3x +sin 2x (cos 3x )′=2cos 2x cos 3x -3sin 2x sin 3x .7.已知函数f (x )的导函数为f ′(x ),若f (x )=f ′⎝⎛⎭⎫π9sin 3x +cos 3x ,则f ′⎝⎛⎭⎫π9= . 答案 3 3解析 ∵f (x )=f ′⎝⎛⎭⎫π9sin 3x +cos 3x ,∴f ′(x )=f ′⎝⎛⎭⎫π9·3cos 3x -3sin 3x , 令x =π9可得f ′⎝⎛⎭⎫π9=f ′⎝⎛⎭⎫π9×3cos π3-3sin π3=32 f ′⎝⎛⎭⎫π9-3×32, 解得f ′⎝⎛⎭⎫π9=3 3.8.点P 是f (x )=(x +1)2上任意一点,则点P 到直线y =x -1的最短距离是 ,此时点P 的坐标为 .答案 728 ⎝⎛⎭⎫-12,14 解析 与直线y =x -1平行的f (x )=(x +1)2的切线的切点到直线y =x -1的距离最短.设切点为(x 0,y 0),则f ′(x 0)=2(x 0+1)=1,∴x 0=-12,y 0=14. 即P ⎝⎛⎭⎫-12,14到直线y =x -1的距离最短. ∴d =⎪⎪⎪⎪-12-14-1(-1)2+12=728.9.求下列函数的导数:(1)y =ln(e x +x 2);(2)y =102x +3;(3)y =sin 4x +cos 4x .解 (1)令u =e x +x 2,则y =ln u .∴y ′x =y ′u ·u ′x =1u ·(e x +x 2)′=1e x +x 2·(e x +2x )=e x +2x e x +x2. (2)令u =2x +3,则y =10u ,∴y ′x =y ′u ·u ′x =10u ·ln 10·(2x +3)′=2×102x +3ln 10.(3)∵y =sin 4x +cos 4x =(sin 2x +cos 2x )2-2sin 2 x ·cos 2 x =1-12sin 2 2x =1-14(1-cos 4x ) =34+14cos 4x . ∴y ′=-sin 4x .10.曲线y =e sin x 在点(0,1)处的切线与直线l 平行,且与l 的距离为2,求直线l 的方程. 解 ∵y =e sin x ,∴y ′=e sin x cos x ,∴y ′|x =0=1.∴曲线y =e sin x 在点(0,1)处的切线方程为y -1=x ,即x -y +1=0.又直线l 与x -y +1=0平行,故直线l 可设为x -y +m =0.由|m -1|1+(-1)2=2得m =-1或3. ∴直线l 的方程为x -y -1=0或x -y +3=0.11.曲线y =e -2x +1在点(0,2)处的切线与直线y =0和y =x 围成的三角形的面积为( ) A.13 B.12 C.23D .1答案 A解析 依题意得y ′=e-2x ·(-2)=-2e -2x , y ′|x =0=-2e -2×0=-2. 所以曲线y =e -2x +1在点(0,2)处的切线方程是y -2=-2x ,即y =-2x +2.在坐标系中作出直线y =-2x +2,y =0与y =x 的图象,如图所示.因为直线y =-2x +2与y =x 的交点坐标是⎝⎛⎭⎫23,23,直线y =-2x +2与x 轴的交点坐标是(1,0),所以结合图象可得,这三条直线所围成的三角形的面积为12×1×23=13. 12.(多选)已知点P 在曲线y =4e x+1上,α为曲线在点P 处的切线的倾斜角,则α的取值可以是( )A.π4B.π2C.3π4D. 7π8答案 CD解析 因为y =4e x +1, 所以y ′=-4e x (e x +1)2=-4e x e 2x +2e x +1=-4e x +1e x +2. 因为e x >0,所以e x +1e x ≥2(当且仅当x =0时取等号), 所以y ′∈[-1,0),所以tan α∈[-1,0).又因为α∈[0,π),所以α∈⎣⎡⎭⎫3π4,π.13.设函数f (x )=cos(3x +φ)(0<φ<π),若f (x )+f ′(x )是奇函数,则φ= .答案 π6解析 ∵f ′(x )=-3sin(3x +φ),∴f (x )+f ′(x )=cos(3x +φ)-3sin(3x +φ),令g (x )=cos(3x +φ)-3sin(3x +φ), ∵其为奇函数,∴g (0)=0,即cos φ-3sin φ=0, ∴tan φ=33, 又0<φ<π,∴φ=π6. 14.已知f (x )为偶函数,当x <0时,f (x )=ln(-x )+3x ,则曲线y =f (x )在点(1,-3)处的切线方程是 .答案 y =-2x -1解析 设x >0,则-x <0,f (-x )=ln x -3x ,又f (x )为偶函数,所以f (x )=ln x -3x ,f ′(x )=1x-3,f ′(1)=-2, 所以切线方程为y =-2x -1.15.已知f ⎝⎛⎭⎫1x =x 1+x ,则f ′(x )等于( )A.11+xB .-11+x C.1(1+x )2D .-1(1+x )2答案 D解析 由f ⎝⎛⎭⎫1x =x 1+x =11x+1,得f (x )=1x +1, 从而f ′(x )=-1(1+x )2,故选D. 16.(1)已知f (x )=e πx sin πx ,求f ′(x )及f ′⎝⎛⎭⎫12;(2)在曲线y =11+x 2上求一点,使过该点的切线平行于x 轴,并求切线方程. 解 (1)∵f (x )=e πx sin πx ,∴f ′(x )=πe πx sin πx +πe πx cos πx=πe πx (sin πx +cos πx ).∴f ′⎝⎛⎭⎫12=2e sin +cos 22πππ⎛⎫π ⎪⎝⎭ 2e .π=π(2)设切点坐标为P (x 0,y 0),由题意可知0=|0.x x y'=又y ′=-2x (1+x 2)2, ∴0=|x x y'=-2x 0(1+x 20)2=0. 解得x 0=0,此时y 0=1.即该点的坐标为P (0,1),切线方程为y -1=0.。
第二节 导数运算(知识梳理)
第二节 导数运算复习目标学法指导能利用基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,并了解复合函数求导法则,能求简单复合函数(仅限于形如y=f(ax+b)的复合函数)的导数.1.熟记基本初等函数的导数公式及导数的运算法则,是解决复杂导数问题的基础.2.注意导数的运算法则的符号.3.复合函数求导,要分清复合函数的结构,恰当引入中间变量,将复合函数分解成较为简单的函数,然后求导.一、导数的运算法则1.[f(x)±g(x)]′=f ′(x)±g ′(x).2.[f(x)g(x)]′=f ′(x)g(x)+f(x)g ′(x).3.[()()f xg x ]′=()()()()()2f xg x f x g x g x ''-⎡⎤⎣⎦(g(x)≠0).二、复合函数的导数复合函数y=f(ax+b)的导数和函数y=f(u),u=ax+b的导数间的关系为y x′=[f(ax+b)]′=af′(u).与导数运算有关的结论(1)若c为常数,则[cf(x)]′=cf′(x);(2)[f1(x)+f2(x)+…+f n(x)]′=f′1(x)+f′2(x)+…+f′n(x);(3)[f1(x)·f2(x)·f3(x)·…·f n(x)]′=[f′1(x)·f2(x)·f3(x)·…·f n(x)]+[f1(x)·f′2(x)·f3(x)·…·f n(x)]+[f1(x)·f2(x)·f′3(x)·…·f n(x)]+…+[f1(x)·f2(x)·f3(x)·…·f′n(x)];(4)设y=f(u),u=g(x),则复合函数y=f(g(x))的导数为y′x=y′u·u′x.1.曲线y=13x3-2在点(-1,-73)处的切线的倾斜角为( B )(A)30°(B)45°(C)135° (D)-45°2.曲线y=xe x-1在点(1,1)处切线的斜率等于( C )(A)2e (B)e (C)2 (D)1解析:对y=xe x-1求导,得y′=e x-1+xe x-1,由导数的几何意义,得所求切线的斜率k=y′|x=1=2,故选C.3.若函数f(x)的导函数的图象关于原点对称,则函数f(x)的解析式可能是( A )(A)f(x)=3cos x (B)f(x)=x3+x2(C)f(x)=1+2sin x (D)f(x)=e x +x解析:A 中f ′(x)=-3sin x 为奇函数,B 中 f ′(x)=3x 2+2x 非奇非偶函数,C 中f ′(x)=2cos x 为偶函数,D 中f ′(x)=e x +1非奇非偶函数. 故选A.4.已知函数f(x)=x 3-3x,函数f(x)的图象在x=0处的切线方程是 ;函数f(x)在区间[0,2]内的值域是 . 解析:函数f(x)=x 3-3x,切点坐标(0,0),导数为y ′=3x 2-3,切线的斜率为-3,所以切线方程为y=-3x; 3x 2-3=0,可得x=±1,x ∈(-1,1),y ′<0,函数f(x)是减函数,x ∈(1,+∞),y ′>0,函数f(x)是增函数,f(0)=0,f(1)=-2,f(2)=8-6=2, 函数f(x)在区间[0,2]内的值域是[-2,2]. 答案:y=-3x [-2,2]5.已知函数f(x)=(ax+1)ln x,f ′(x)为f(x)的导函数,若f ′(1)=3,则实数a 的值为 .解析:根据题意,f ′(x)=1 ax x +aln x,所以f ′(1)=a+1=3,故a=2. 答案:2考点一 导数的四则运算 [例1] 求下列各函数的导数. (1)y=4x+1x ; (2)y=e x sin x;(3)y=ln xx;(4)y=cos(2x+5).解:(1)y=4x+1x ,则y′=4-21x.(2)y=e x sin x,则y′=e x sin x+e x cos x.(3)y=ln xx ,则y′=21ln xx-.(4)y=cos(2x+5),则y′=-sin(2x+5)·(2x+5)′=-2sin(2x+5).导数的计算方法(1)连乘积形式:先展开化为多项式的形式,再求导.(2)分式形式:观察函数的结构特征,先化为整式函数或较为简单的分式函数,再求导.(3)对数形式:先化为和、差的形式,再求导.(4)根式形式:先化为分数指数幂的形式,再求导.(5)三角形式:先利用三角函数公式转化为和或差的形式,再求导. 求满足下列条件的函数f(x).(1)f(x)是三次函数,且f(0)=3,f′(0)=0,f′(1)=-3,f′(2)=0;(2)f(x)是二次函数,且x2f′(x)-(2x-1)f(x)=1.解:(1)由题意设f(x)=ax3+bx2+cx+d(a≠0),则f′(x)=3ax2+2bx+c,由已知得()()()()03,00,1323,21240.⎧==⎪'==⎪⎨'=++=-⎪⎪'=++=⎩f df cf a b cf a b c解得a=1,b=-3,c=0,d=3,故f(x)=x 3-3x 2+3.(2)由题意设f(x)=ax 2+bx+c(a ≠0), 则f ′(x)=2ax+b.所以x 2(2ax+b)-(2x-1)(ax 2+bx+c)=1, 化简得(a-b)x 2+(b-2c)x+c=1, 因为此式对任意x都成立,所以,2,1,=⎧⎪=⎨⎪=⎩a b b c c解得a=2,b=2,c=1, 故f(x)=2x 2+2x+1.考点二 导数运算的综合问题[例2] (1)设曲线y=11x x +-在点(3,2)处的切线与直线ax+y+1=0垂直,则a 等于( )(A)2 (B)1 (C)-1 (D)-2(2)设函数f(x)在R 上可导,f(x)=x 2f ′(1)-2x+1,则f(a 2-a+2)与f(1)的大小关系是( )(A)f(a 2-a+2)>f(1) (B)f(a 2-a+2)=f(1) (C)f(a 2-a+2)<f(1) (D)不确定解析:(1)因为y=11x x +-, 所以y ′=-()221x -.因为x=3,所以y ′=-12即切线斜率为-12, 因为切线与直线ax+y+1=0垂直, 直线ax+y+1=0的斜率为-a.所以-12·(-a)=-1得a=-2.故选D.(2)由题意,f ′(x)=2f ′(1)x-2,则f ′(1)=2f ′(1)-2,可得f ′(1)=2,则f(x)=2x 2-2x+1,由二次函数性质可知,函数f(x)在(12,+∞)上单调递增,因为a 2-a+2=(a-12)2+74>1>12,所以f(a 2-a+2)>f(1),故选A.[例3] (1)设函数f(x)=g(x)+x 2,曲线y=g(x)在点(1,g(1))处的切线方程为y=2x+1,则曲线y=f(x)在点(1,f(1))处切线的斜率是( )(A)4 (B)-14 (C)2 (D)-12(2)已知曲线y=x+ln x 在点(1,1)处的切线与曲线y=ax 2+(a+2)x+1相切,则a= .解析:(1)由导数的几何意义,得g ′(1)=2,求导函数得 f ′(x)=g ′(x)+2x,k=f ′(1)=g ′(1)+2=4,故选A. (2)法一 因为y ′=1+1x , 所以y ′|x=1=2,所以y=x+ln x 在点(1,1)处的切线方程为 y-1=2(x-1), 所以y=2x-1.又切线与曲线y=ax 2+(a+2)x+1相切, 当a=0时,y=2x+1与y=2x-1平行,故a ≠0,由()221,21,y ax a x y x ⎧=+++⎪⎨=-⎪⎩得ax2+ax+2=0,因为Δ=a2-8a=0,所以a=8.法二因为y′=1+1x,所以y′|x=1=2,所以y=x+ln x在点(1,1)处的切线方程为y-1=2(x-1), 所以y=2x-1,又切线与曲线y=ax2+(a+2)x+1相切,当a=0时,y=2x+1与y=2x-1平行,故a≠0.因为y′=2ax+(a+2),所以令2ax+a+2=2,得x=-12,代入y=2x-1,得y=-2,所以点(-12,-2)在y=ax2+(a+2)x+1的图象上,故-2=a×(-12)2+(a+2)×(-12)+1,所以a=8.答案:(1)A (2)8[例4] 设函数y=x2-2x+2的图象为C1,函数y=-x2+ax+b的图象为C2,已知过C1与C2的一个交点的两切线互相垂直.(1)求a,b之间的关系;(2)求ab的最大值.解:(1)对于C1:y=x2-2x+2,有y′=2x-2,对于C2:y=-x2+ax+b,有y′=-2x+a,设C1与C2的一个交点为(x0,y0),由题意知过交点(x0,y0)的两条切线互相垂直.所以(2x 0-2)·(-2x 0+a)=-1, 即420x -2(a+2)x 0+2a-1=0,①又点(x 0,y 0)为C 1与C 2的交点,故有200020022,,y x x y x ax b ⎧=-+⎪⎨=-++⎪⎩ ⇒220x -(a+2)x 0+2-b=0.②由①②消去x 0,可得a+b=52.(2)由(1)知,b=52-a, 所以ab=a(52-a)=-(a-54)2+2516. 所以当a=54时,(ab)max =2516. 曲线f(x)在点(x 0,f(x 0))处的切线方程为Ax+By+C=0有三层含义:一是点在曲线上,二是点在切线上,三是函数f(x)在点x=x 0处的导数等于切线的斜率,即f ′(x 0)=- A B .1.若函数f(x)满足f(x)=13x 3-f ′(1)·x 2-x,则f ′(2)的值为( A ) (A)3 (B)1 (C)0 (D)-1 解析:f ′(x)=x 2-2f ′(1)x-1,令x=1,得f ′(1)=-2f ′(1) ,解得f ′(1)=0, 所以f ′(x)=x 2-1. 所以f ′(2)=3. 故选A.2.设函数f(x)=ax 3+3x,其图象在点(1,f(1))处的切线l 与直线x-6y-7=0垂直,则直线l 与坐标轴围成的三角形的面积为( B )(A)1 (B)3 (C)9 (D)12解析:f′(x)=3ax2+3,由题设得f′(1)=-6,所以3a+3=-6,a=-3,所以f(x)=-3x3+3x,f(1)=0,切线l的方程为y-0=-6(x-1),即y=-6x+6.所以直线l与坐标轴围成的三角形的面积为S=12×1×6=3.故选B.3.直线y=kx+1与曲线y=x3+ax+b相切于点A(1,3),则2a+b的值为( C )(A)2 (B)-1 (C)1 (D)-2解析:因为y=x3+ax+b,所以y′=3x2+a;由题意得13,3,13,ka ka b+=⎧⎪+=⎨⎪++=⎩解得2,1,3,kab=⎧⎪=-⎨⎪=⎩则2a+b=-2+3=1.故选C.4.设点P是曲线y=x3-3x+23上的任意一点,则P点处切线倾斜角α的取值范围为( C )(A)[0,π2)∪[5π6,π) (B)[2π3,π)(C)[0,π2)∪[2π3,π) (D)(π2,5π6]解析:因为y′=3x2-3≥-3,故切线斜率k≥-3,所以切线倾斜角α的取值范围是[0,π2)∪[2π3,π).故答案为C.类型一导数的计算1.设f0(x)=sin x,f1(x)=f′0(x),f2(x)=f′1(x),……,f n+1(x)=f′n(x),x∈N,则f2 020(x)等于( C )(A)cos B·cos C=14(B)-cos x(C)sin x (D)-sin x解析:根据题意,f0(x)=sin x,f1(x)=f′0(x)=cos x,f2(x)=f′1(x)=-sin x,f3(x)=f′2(x)=-cos x,f4(x)=f′3(x)=sin x,则有f0(x)=f4(x),f1(x)=f5(x),……则f2 020(x)=f4(x)=sin x.故选C.2.已知函数f(x)的导函数为f′(x),满足f(x)=2xf′(2)+x3,则f′(2)等于( B )(A)-8 (B)-12 (C)8 (D)12解析:因为f(x)=2xf′(2)+x3,所以f′(x)=2f′(2)+3x2;令x=2,则f′(2)=2f′(2)+12,得f′(2)=-12.故选B.类型二导数运算的综合问题3.直线y=12x+b与曲线y=-12x+ln x相切,则b的值为( A )(A)-1 (B)-2 (C)-12(D)1解析:设切点为(x0,-12x0+ln x0),则斜率为k=-12+1x,由题意知-12+1x=12,所以x0=1.所以切点为(1,-12),又因为切点在切线y=12x+b上,所以-12=12+b.所以b=-1.故选A.4.已知f′(x)是函数f(x)的导函数,如果f′(x)是二次函数,f′(x)的图象开口向上,顶点坐标为那么曲线y=f(x)上任意一点处的切线的倾斜角α的取值范围是( B )(A)(0,π3] (B)[π3,π2)(C)[π2,2π3] (D)[π3,π)解析:由题意知f′(x)=a(x-1)2所以f′(x)=a(x-1)2即tan所以α∈[π3,π2).故选B.5.(2019·全国Ⅰ卷)曲线y=3(x2+x)e x在点(0,0)处的切线方程为.解析:y′=3(x2+3x+1)e x,故切线斜率k=y′|x=0=3,故切线方程为y=3x. 答案:y=3x6.已知函数y=f(x)及其导函数y=f′(x)的图象如图所示,则曲线y=f(x)在点P处的切线方程是.解析:根据导数的几何意义及图象可知,曲线y=f(x)在点P 处的切线的斜率k=f ′(2)=1,又过点P(2,0),所以切线方程为x-y-2=0. 答案:x-y-2=07.已知f(x)=ln x,g(x)=12x 2+mx+72(m<0),直线l 与函数f(x),g(x)的图象都相切,且与f(x)图象的切点为(1,f(1)),则m 等于 . 解析:因为f ′(x)=1x, 所以直线l 的斜率为k=f ′(1)=1,又f(1)=0,所以切线l 的方程为y=x-1.g ′(x)=x+m,设直线l 与g(x)的图象的切点为(x 0,y 0), 则有00020001,1,17,22x m y x y x mx ⎧⎪+=⎪=-⎨⎪⎪=++⎩又m<0,于是解得m=-2.答案:-28.已知函数f(x)=12x 2-aln x,(a ∈R). (1)若y=f(x)在x=2处的切线方程为y=x+b,求a,b 的值;(2)若f(x)在(1,+∞)上为增函数,求a 的取值范围.解:(1)因为f ′(x)=x-a x(x>0), 又f(x)在x=2处的切线方程为y=x+b,所以2ln 22,21,2a b a -=+⎧⎪⎨-=⎪⎩所以2,2ln 2.a b =⎧⎨=-⎩(2)因为f(x)在(1,+∞)上为增函数,所以f ′(x)=x-a x≥0在(1,+∞)上恒成立. 即a ≤x 2在(1,+∞)上恒成立,所以有a ≤1.。
高中数学选修1-1 第三章 导数 第2节 导数的运算
第2节 导数的运算1.基本初等函数的导数公式表y =f (x )y ′=f ′(x ) y =c y ′=0y =x n (n ∈N +)y ′=nx n -1,n 为正整数y =x μ(x >0,μ≠0且μ∈Q) y ′=μx μ-1,μ为有理数 y =a x (a >0,a ≠1,x >0) y ′=a x ln a y =log a x (a >0,a ≠1,x >0)y ′=1x ln ay =sin x y ′=cos_x y =cos xy =-sin_x例1:求下列函数的导数:(1)y =x 12 (2)y =5x 3 (3)y =log 2x (4)y =2sin x 2cos x2 (5)y=2018sin60°[精解详析] (1)y ′=(x 12)′=12x 11;(2)y ′=(5x 3)′=(x 35)′=35x 25-=355x 2;(3)y ′=(log 2x )′=1x ln 2; (4)y ′=⎝ ⎛⎭⎪⎫2sin x 2cos x 2′=(sin x )′=cos x .(5)0练习:下列导数运算正确的是( ) A .(sinx )'=﹣cosx B .C .(3x )'=3xD .解:(sinx )′=cosx ;(log2x )′=;(3x )′=3x ln3;()′=﹣,故选:B . 例2:函数y=2x 在x=0处的导数是( )A.0 B.1 C.ln2 D.解:∵y′=2x ln2,∴y′|x=0=ln2,故选:C.练习:函数y=在x=1处的导数值为()A.﹣B.2 C.1 D.解:∵,∴f′(1)=.故选:D.例3:若函数f(x)=sinx,则=()A.B.C.1 D.0 解:根据题意,f(x)=sinx,则f′(x)=cosx,则f(x)+f′(x)=sinx+cosx,则=sin+cos=+=;故选:B.练习:已知函数f(x)=,则f′()=()A.﹣B.﹣C.﹣8 D.﹣16 解:函数的导数f′(x)=﹣2x﹣3=﹣,则f′()=﹣=﹣16,故选:D.例4:若f(x)=x5,f′(x0)=20,则x0的值为()A.B.±C.﹣2 D.±2 解:函数的导数f′(x)=5x4,∵f′(x0)=20,∴5x04=20,得x04=4,则x0=±,故选:B.练习:设f(x)=lnx,若f′(x0)=2,则x0=()A .2B .C .D .ln2解:f (x )=lnx ,则f′(x )=, f′(x 0)=2, 可得x 0=. 故选:B .2.导数的四则运算法则 (1)设f (x ),g (x )是可导的,则法则语言叙述[]f (x )±g (x )′=f ′(x )±g ′(x )两个函数的和(或差)的导数,等于这两个函数的导数和(或差)[f (x )g (x )]′=f ′(x )g (x )+f (x )g ′(x ) 两个函数的积的导数,等于第一个函数的导数乘上第二个函数,加上第一个函数乘上第二个函数的导数⎣⎢⎡⎦⎥⎤f (x )g (x )′=g (x )f ′(x )-f (x )g ′(x )g 2(x )(g (x )≠0)两个函数的商的导数,等于分子的导数乘以分母减去分母的导数乘以分子的差除以分母的平方(2)特别地,[cf (x )]′=cf ′(x ), ⎣⎢⎡⎦⎥⎤1g (x )′=-g ′(x )g 2(x )(g (x )≠0). 例5:已知函数,且f'(x 0)=4,则x 0= . 解:函数的导数f′(x )=2x ﹣8,∵f'(x 0)=4, ∴2x 0﹣8=4,即2x 0=12得x 0=3.故答案为:3.练习:已知函数y=ax 2+b 在点(1,3)处的导数为2,则= . 解:函数y=ax 2+b 的导数为y′=2ax ,由函数在点(1,3)处的切线斜率为2,可得f (1)=a +b=3,f′(1)=2a=2,解得a=1,b=2.则=2.故答案为2例6:已知函数f(x)的导数为f′(x),若有f(x)=3x2+2xf′(2),则f′(2)=()A.﹣12 B.12 C.6 D.﹣6解:根据题意,f(x)=3x2+2xf′(2),则导数f′(x)=6x+2f′(2),令x=2可得:f′(2)=12+2f′(2),解可得f′(2)=﹣12,故选:A.练习:(1)设f(x)=sinx+2xf'(),f'(x)是f(x)的导函数,则f'()=.解:∵f(x)=sinx+2xf'(),∴f'(x)=cosx+2f'(),令x=,可得:f'()=cos+2f'(),解得f'()=﹣,则f'()=+2×=﹣1.故答案为:﹣1.(2)已知函数f(x)=f′()sinx+cosx,则f()的值为()A.1 B.2 C.﹣2 D.﹣1解:∵f(x)=f′()sinx+cosx,∴f′(x)=f′()cosx﹣sinx,令x=,则f′()=f′()cos﹣sin=f′()﹣,则f′()==﹣(),则f(x)=﹣()sinx+cosx,则f()=﹣()sin+cos=﹣()×+=﹣1,故选:D.例7:设y=﹣2e x sinx,则y′等于()A.﹣2e x cosx B.﹣2e x sinxC.2e x sinx D.﹣2e x(sinx+cosx)解:∵y=﹣2e x sinx,∴y′=(﹣2e x)′sinx+(﹣2e x)•(sinx)′=﹣2e x sinx﹣2e x cosx=﹣2e x(sinx+cosx).故选:D.练习:已知函数f(x)=axlnx,x∈(0,+∞),其中a为实数,f′(x)为f(x)的导函数,若f′(1)=3,则a的值为.解:因为f(x)=axlnx,所以f′(x)=alnx+ax=alnx+a,又f′(1)=3,所以a=3;故答案为:3.例8:函数的导数是()A.B.﹣sinxC.D.解:根据导数的运算法则可得,y′====﹣故选:C.练习:设f′(x)是函数的导函数,则f'(0)的值为()A.1 B.0 C.﹣1 D.解:根据题意,,其导数f′(x)==﹣,则f'(0)=﹣1;故选:C.例9:已知函数f(x)=e x lnx,f′(x)为f(x)的导函数,则f′(1)的值为.解:函数f(x)=e x lnx,则f′(x )=e x lnx +•e x ; ∴f′(1)=e•ln1+1•e=e . 故答案为:e . 练习:已知函数f (θ)=,则 f′(0)= .解:函数f (θ)=,则 f′(θ)==所以f′(0)= 故答案为例10:设函数f (x )=ax -bx ,曲线y =f (x )在点(2,f (2))处的切线方程为7x -4y -12=0.(1)求f (x )的解析式;(2)证明:曲线y =f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形面积为定值,并求此定值.[精解详析] (1)由7x -4y -12=0得y =74x -3.当x =2时,y =12,∴f (2)=2a -b 2=12.①又f ′(x )=a +b x 2,∴f ′(2)=a +b 4=74.②(2分)由①②得⎩⎨⎧ 4a -b =1,4a +b =7,解得⎩⎨⎧a =1,b =3.故f (x )=x -3x .(6分)(2)证明:设P (x 0,y 0)为曲线上任一点,由y ′=1+3x 2知,曲线在点P (x 0,y 0)处的切线方程为 y -y 0=⎝ ⎛⎭⎪⎫1+3x 20(x -x 0),即y -⎝ ⎛⎭⎪⎫x 0-3x 0=⎝ ⎛⎭⎪⎫1+3x 20(x -x 0).(8分)令x=0得y=-6x0,从而得切线与直线x=0的交点坐标为(0,-6x0).(9分)令y=x得y=x=2x0,从而得切线与直线y=x的交点坐标为(2x0,2x0).(10分)所以点P(x0,y0)处的切线与直线x=0,y=x所围成的三角形面积为12⎪⎪⎪⎪⎪⎪-6x0|2x0|=6.故曲线y=f(x)上任一点处的切线与直线x=0,y=x所围成的三角形的面积为定值,此定值为6.(12分)练习:设函数f(x)=ax+(a,b∈Z),曲线y=f(x)在点(2,f(2))处的切线方程为y=3(1)求f(x)的解析式(2)求f(x)在点(3,f(3))处的切线与两个坐标轴围成的三角形的面积.解:(1)函数f(x)=ax+(a,b∈Z),导数f′(x)=a﹣,曲线y=f(x)在点(2,f(2))处的切线方程为y=3,可得f(2)=2a+=3,f′(2)=a﹣=0,解方程可得a=1,b=﹣1,(分数舍去),则f(x)=x+;(2)由f(x)的导数为f′(x)=1﹣,可得在点(3,f(3))处的切线斜率为1﹣=,切点为(3,),则在点(3,f(3))处的切线方程为y﹣=(x﹣3),令x=0,可得y=﹣=;令y=0,可得x=3﹣=﹣,则切线与两个坐标轴围成的三角形的面积为××=.。
人教B版高中数学选择性必修第三册精品课件 第六章 导数及其应用 第2课时 简单复合函数的求导法则
π
π
1
1
(4)∵y=xsin 2 + 2 cos 2 + 2 = 2xsin(4x+π)=-2xsin 4x,
1
1
1
∴y'=- sin 4x- x·4cos 4x=- sin 4x-2xcos 4x.
2
2
2
反思感悟
求复合函数的导数的步骤:
【变式训练1】 求下列函数的导数.
(1)y=(2x+3)2;
(2)y=e-0.05x+1;
(3)y=sin(πx+φ).
解:(1)令u=2x+3,函数y=(2x+3)2可以看成函数y=u2,u=2x+3的复合函数,
故yx'=yu'·ux'=(u2)'·(2x+3)'=2u·2=4(2x+3)=8x+12.
(2)令u=-0.05x+1,函数y=e-0.05x+1可以看成函数y=eu,u=-0.05x+1的复合函数,
(2)函数y=ln(2x)不是复合函数.( × )
π
π
(3)复合函数 y=cos 3- 4 的导数是 y'=-sin 3- 4 .(
× )
合作探究 释疑解惑
探究一
求复合函数的导数
【例1】 求列复合函数的导数.
(1)y=ln(2x-5);(2)y=(3x-1)2;
1 5
(3)y= 3- ;
第六章
第2课时 简单复合函数的求导法则
内
容
索
引
01
自主预习 新知导学
02
高中数学1.2导数的运算第2课时函数的和、差、积、商的导数教案苏教版选修2_2
函数的和、差、积、商的导数一、教学目标(一)知识与技能目标1.理解两个函数的和(或差)的导数法则,学会用法则求一些函数的导数.2.理解两个函数的积的导数法则,学会用法则求乘积形式的函数的导数3.能够综合运用各种法则求函数的导数(二)过程与方法目标 在观察和思考中注意学生思维严密性的培养(三)情感态度与价值观经历探索研究的自主学习过程,使学生掌握导数的计算公式不再困难,从而激发学生学习数学的兴趣。
使学生拥有豁达的科学态度,互相合作的风格,勇于探究,积极思考的学习精神。
二、教学重点 用定义推导函数的和、差、积、商的求导法则三、教学难点函数的积、商的求导法则的推导.四、教学方法 多媒体辅助,讲授、讨论五、教学过程情境创设(1)常见函数的导数公式(2)求2y x x =+的导数1.函数2y x x =+是两个函数2x y x y ==和的和,它的导数可以用导数的定义直接求得;2.函数2y x x =+的导数12'+=x y ,恰好是函数2x y x y ==和导数的和.那么,任意两个函数的和的导数是否都是这两个函数导数的和呢?建构数学法则 1 两个函数的和(或差)的导数,等于这两个函数的导数的和(或差),即 []()()''()'()f x g x f x g x ±=±法则2常数与函数的积的导数,等于常数与函数的积的导数.[]()'()'cf x cf x =例1、求下列函数的导数(1)y =x 2+sin x (2)2623)(23+--=x x x x g 练:2(23)(32)y x x =+- 法则3两个函数的积的导数,等于第一个函数的导数乘以第二个函数,加上第一个函数乘以第二个函数的导数,即 []()()''()()()'()f x g x f x g x f x g x =+例2、求2(23)(32)y x x =+-的导数.法则 4 两个函数的商的导数,等于分子的导数与分母的积,减去分母的导数与分子的积,再除以分母的平方,即'2()'()()()'()(()0)()()f x f x g x f x g x g x g x g x ⎛⎫-=≠ ⎪⎝⎭例3、求下列函数的导数(1)21()t s t t+= (2)x y tan = 例3求满足下列条件的函数()f x()f x 是三次函数,且(0)3,'(0)0,'(1)3,'(2)0f f f f ===-=变式:已知函数f(x)=x 3+bx 2+cx+d 的图象过点P(0,2),且在点M 处(-1,f(-1))处的切线方程为6x-y+7=0,求函数的解析式例4、y =332++x x 在点x =3处的切线方程. 变式(1)过点A (1,2)求23+-=x x y 的切线方程(2)点P 在曲线x x y ln 22-=上,P 到直线0144=++y x 的最短距离回顾小结1.通过用导数的定义求导数的方法,可直接推导得函数和(或差)、积、商的导数公式:2.切线问题六、课后作业校本练习、同步练习精美句子1、善思则能“从无字句处读书”。
第一章 1.2 第2课时 导数的运算法则及复合函数的导数(优秀经典导学案课时作业及答案详解)
[A 组 学业达标]1.下列求导数运算正确的是( ) A.⎝ ⎛⎭⎪⎫x +1x ′=1+1x 2 B .(log 2x )′=1x ln 2 C .(3x )′=3x log 3eD .(x 2cos x )′=-2x sin x解析:因为⎝ ⎛⎭⎪⎫x +1x ′=x ′+⎝ ⎛⎭⎪⎫1x ′=1-1x 2,A 错误;(log 2x )′=1x ln 2,B 正确;(3x )′=3x ln 3,C 错误;(x 2cos x )′=(x 2)′cos x +x 2(cos x )′=2x cos x -x 2sin x ,D 错误.故选B. 答案:B2.已知点P 在曲线y =4e x +1上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是( ) A.⎣⎢⎡⎭⎪⎫0,π4 B .⎣⎢⎡⎭⎪⎫π4,72C.⎝ ⎛⎦⎥⎤π2,3π4 D.⎣⎢⎡⎭⎪⎫3π4,π 解析:y ′=-4e x(e x +1)2=-4e x +1e x +2≥-1,所以0>tan α≥=-1,所以3π4≤α<π. 答案:D3.曲线y =f (x )=-x 3+2x 在横坐标为-1的点处的切线为l ,则点(3,2)到l 的距离是( ) A.722 B .922 C.1122D.91010解析:由题得y ′=f ′(x )=-3x 2+2,当x =-1时,y =-1,所以切点为(-1,-1),k =f ′(-1)=-3+2=-1,所以切线l 的方程为y +1=-(x +1),所以x +y +2=0,所以点(3,2)到直线l 的距离为|1×3+1×2+2|12+12=722.答案:A4.等比数列{a n }中,a 1=2,a 8=4, 函数f (x )=x (x -a 1)·(x -a 2)…(x -a 8),则f ′(0)等于( ) A .26 B .29 C .215D .212 解析:因为a 1=2,a 8=4,又f ′(x )=(x -a 1)(x -a 2)…(x -a 8)+x [(x -a 1)(x -a 2)…(x -a 8)]′,所以f ′(0)=a 1a 2…a 8=(a 1a 8)4=84=212. 答案:D5.函数f (x )=ax 2-1x 在区间(0,+∞)恒有f ′(x )≥0,则实数a 的取值范围为( ) A .[0,+∞) B .(0,+∞) C .(-∞,0]D .(-∞,0)解析:由f (x )=ax 2-1x ,得f ′(x )=2ax ·x -(ax 2-1)x 2=ax 2+1x 2.因为x ∈(0,+∞),所以x 2>0, 所以f ′(x )≥0等价于ax 2+1≥0, 所以a ≥-1x 2恒成立,所以a ≥0.故选A. 答案:A6.已知曲线y 1=2-1x 与y 2=x 3-x 2+2x 在x =x 0处切线的斜率的乘积为3,则x 0=________.解析:由题知y ′1=1x 2,y ′2=3x 2-2x +2,所以两曲线在x =x 0处切线的斜率分别为1x 20,3x 20-2x 0+2,所以3x 20-2x 0+2x 20=3,所以x 0=1. 答案:17.已知函数f (x )=f ′⎝ ⎛⎭⎪⎫π2sin x +cos x ,则f ′⎝ ⎛⎭⎪⎫π4=________.解析:因为f ′(x )=f ′⎝ ⎛⎭⎪⎫π2cos x -sin x ,所以f ′⎝ ⎛⎭⎪⎫π2=f ′⎝ ⎛⎭⎪⎫π2cos π2-sin π2=-1,所以f ′(x )=-cos x -sin x , 所以f ′⎝ ⎛⎭⎪⎫π4=-cos π4-sin π4=- 2.答案:- 2 8.函数f (x )=ln x +2x 在x =1处的切线方程为________.解析:由f (x )=ln x +2x 可得f ′(x )=1x ·x -(ln x +2)x 2=-ln x -1x 2,所以f ′(1)=-1,又f (1)=2.所以曲线f (x )在x =1处的切线方程为y -2=-(x -1),即x +y -3=0. 答案:x +y -3=0 9.求下列函数的导数:(1)y =x (3ln x +1);(2)y =e xx +ln 2; (3)y =sin x 2+e x 2;(4)y =x cos ⎝ ⎛⎭⎪⎫2x +π2sin ⎝ ⎛⎭⎪⎫2x +π2.解析:(1)因为y =x (3ln x +1)=3x ·ln x +x , 所以y ′=3ln x +3x ·1x +1 =3ln x +4.(2)y ′=e x ·x -e x x 2=e x (x -1)x 2. (3)y ′=cos x 2·(x 2)′+e x 2·(x 2)′ =2x ·cos x 2+2x ·e x 2.(4)因为y =x cos ⎝ ⎛⎭⎪⎫2x +π2sin ⎝ ⎛⎭⎪⎫2x +π2=x (-sin 2x )cos 2x =-12x sin 4x , 所以y ′=⎝ ⎛⎭⎪⎫-12x sin 4x ′=-12sin 4x -x 2cos 4x ×4=-12sin 4x -2x cos 4x .10.设函数f (x )=ax -bx ,曲线y =f (x )在点(2,f (2))处的切线方程为7x -4y -12=0,求实数a ,b 的值.解析:函数f (x )=ax -b x 的导数为f ′(x )=a +bx 2,可得y =f (x )在点(2,f (2))处的切线斜率为a +b 4,切点为⎝ ⎛⎭⎪⎫2,2a -b 2,由切线方程7x -4y -12=0,可得a +b 4=74,2a -b 2=12,解得a =1,b =3.[B 组 能力提升]11.已知y =f (x )是可导函数,如图,直线y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),g ′(x )是g (x )的导函数,则g ′(3)=( ) A .-1 B .0 C .2D .4解析:由题图可知曲线y =f (x )在x =3处切线的斜率等于2-10-3=-13,所以f ′(3)=-13,因为g (x )=xf (x ),所以g ′(x )=f (x )+xf ′(x ),所以g ′(3)=f (3)+3f ′(3),又由题图可知f (3)=1,所以g ′(3)=1+3×⎝ ⎛⎭⎪⎫-13=0.答案:B12.已知f (x )=e x +x ,则曲线y =f (x )在x =0处切线方程为________.解析:因为f (0)=1,又f ′(x )=e x +1即k =f ′(0)=2,所以切线方程为y -1=2(x -0),即为2x -y +1=0. 答案:2x -y +1=013.已知曲线y =12x 2+a 上的点到直线l :y =x +6的最小距离等于曲线(x -2)2+(y -2)2=2上的点到直线l 的最小距离,则实数a =________. 解析:d =|2-2+6|2-2=22,对y =12x 2+a ,求导得y ′=x , 所以切点为⎝ ⎛⎭⎪⎫1,12+a ,所以⎪⎪⎪⎪⎪⎪1-12-a +62=22,所以a =212或52,当a =52时,y =12x 2+52与y =x +6相交,所以a =212. 答案:21214.已知曲线f (x )=x 3+ax +b 在点P (2,-6)处的切线方程是13x -y -32=0. (1)求a ,b 的值;(2)如果曲线y =f (x )的某一切线与直线l :y =-14x +3垂直,求切线的方程. 解析:(1)因为f (x )=x 3+ax +b 的导数f ′(x )=3x 2+a , 由题意可得f ′(2)=12+a =13, f (2)=8+2a +b =-6,解得a=1,b=-16.(2)因为切线与直线y=-14x+3垂直,所以切线的斜率k=4.设切点的坐标为(x0,y0),则f′(x0)=3x20+1=4,所以x0=±1.由f(x)=x3+x-16,可得y0=1+1-16=-14,或y0=-1-1-16=-18.则切线方程为y=4(x-1)-14或y=4(x+1)-18.即y=4x-18或y=4x-14.15.已知函数f(x)=x,g(x)=a ln x,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值及该切线的方程.解析:f′(x)=12x,g′(x)=ax(x>0),由已知得⎩⎨⎧x=a ln x,12x=ax.解得a=12e,x=e2.所以两条曲线交点的坐标为(e2,e),切线的斜率为k=f′(e2)=12e,所以切线的方程为y-e=12e(x-e2),即x-2e y+e2=0.。
高中数学新教材选择性必修第二册《5.2导数的运算》全部课件
思考2 试求y=Q(x),y=H(x)的导数.并观察Q′(x),H′(x)与f′(x),
g′(x)的关系. 答案 ∵Δy=(x+Δx)+x+1Δx-x+1x=Δx+x- x+ΔΔxx, ∴ΔΔyx=1-xx+1 Δx. ∴Q′(x)=Δlixm→0ΔΔyx=Δlixm→01-xx+1 Δx=1-x12. 同理,H′(x)=1+x12. Q(x)的导数等于f(x),g(x)的导数的和.H(x)的导数等于f(x),g(x)的导数的差.
∵y′=(x2)′=2x,∴2x0=1,∴x0=12,
∴切点坐标为12,41,
∴所求的最短距离
d=12-142-2=7
8
2 .
跟踪训练3 已知直线l: 2x-y+4=0与抛物线y=x2相交于A,B两点,O 是坐标原点,试求与直线l平行的抛物线的切线方程,并在弧 AOB上求一 点P,使△ABP的面积最大. 解 由于直线l: 2x-y+4=0与抛物线y=x2相交于A,B两点, ∴|AB|为定值,要使△ABP的面积最大,只要点P到AB的距离最大, 设P(x0,y0)为切点,过点P与AB平行的直线斜率k=y′=2x0, ∴k=2x0=2,∴x0=1,y0 =1. 故可得P(1,1),∴切线方程为2x-y-1=0. 故P(1,1)点即为所求弧 AOB 上的点,使△ABP的面积最大.
x f(x)= x
导函数 f′(x)=_0__ f′(x)=_1__ f′(x)=__2_x_ f′(x)=_-__x1_2 _
1 f′(x)=_2__x__
知识点二 基本初等函数的导数公式
原函数 f(x)=c(c为常数) f(x)=xα(α∈Q*)
f(x)=sin x f(x)=cos x
f(x)=ax
解析 设切点坐标为(x0,y0),