第七章模糊控制应用实例

合集下载

模糊控制应用实例

模糊控制应用实例

模糊控制应用实例模糊控制是一种基于模糊逻辑的控制方法,它能够处理模糊的输入和输出,使得控制系统具有更好的鲁棒性和适应性。

下面将介绍一个模糊控制的应用实例。

某工厂的生产线上有一台机器人,它需要根据生产线上的物品进行分类和分拣。

由于生产线上的物品形状、颜色、大小等特征存在一定的模糊性,传统的控制方法很难实现准确的分类和分拣。

因此,工厂决定采用模糊控制方法来解决这个问题。

首先,需要对机器人的控制系统进行建模。

假设机器人的控制系统包括三个输入变量和一个输出变量。

其中,三个输入变量分别为物品的大小、颜色和形状,输出变量为机器人的动作,包括分类和分拣两种动作。

接下来,需要确定输入变量和输出变量的模糊集合和模糊规则。

假设物品的大小、颜色和形状分别属于三个模糊集合:小、中、大;红、绿、蓝;圆、方、三角。

输出变量也分别属于两个模糊集合:分类、分拣。

根据这些模糊集合,可以确定一些模糊规则,例如:如果物品大小为小且颜色为红且形状为圆,则机器人动作为分类;如果物品大小为中且颜色为绿且形状为方,则机器人动作为分拣;如果物品大小为大且颜色为蓝且形状为三角,则机器人动作为分类。

最后,需要进行模糊推理和模糊控制。

当机器人接收到一个物品时,它会根据物品的大小、颜色和形状,将它们映射到对应的模糊集合中。

然后,根据模糊规则进行模糊推理,得到机器人的动作。

最后,根据机器人的动作,控制机器人进行分类或分拣。

通过模糊控制方法,机器人可以更准确地分类和分拣物品,提高生产效率和质量。

同时,模糊控制方法还具有较好的鲁棒性和适应性,能够应对物品特征的变化和噪声的干扰。

总之,模糊控制是一种有效的控制方法,它能够处理模糊的输入和输出,使得控制系统具有更好的鲁棒性和适应性。

在工业生产、交通运输、医疗健康等领域都有广泛的应用。

模糊控制实例

模糊控制实例

x2 2 x5 A1 ( x ) 3 , 8 x 5 x 8 3
y 5 B1 ( y ) 3 11 y 3 z 1 C1 ( z ) 3 7 z 3 5 y 8 , 8 y 11
计算机控制算法
属函数 C ( z ) 为:
(1)以连续型重心法作为解模糊化机构:首先找出
因此
z 1 1 z 3 3 2 3 z 5 3 7 z C ( z ) 5 z 6 3 1 6 z 8 3 9 z 8 z9 3 3 z 1 52 67 z 81 99 z zdz zdz zdz zdz zdz 1 3 5 6 8 3 3 3 3 3 z 3 z 1 52 67 z 81 99 z dz dz dz dz 1 3 3 3 5 3 6 3 8 3 dz 28 16 49 28 25 18 3 18 6 18 2 4 1 2 1 3 3 2 3 6 4.7
{负大,负中,负小,负零,正零,正小,正中,正大}
{NB,NM,NS,NO,PO,PS,PM,PB}
第3章
计算机控制算法
2.变量的模糊化
基本论域:某个变量变化的实际范围 误差的基本论域为 [ xe , xe ] 误差变化的基本论域为[ xc , xc ] 输出变量的基本论域为[ yu , yu ]
变量的模糊子集论域 {n, n 1,
,0,
, n 1, n}
基本论域到模糊子集论域的转换公式
2n a b y x ba 2
模糊化就是将清晰的某个输入变量按隶属度转换到与 之相对应的模糊量的过程。
第3章
计算机控制算法

模糊控制及其应用

模糊控制及其应用
利用模糊控制算法,智能空调能够根据室内温度和人的舒适度需求,自动调节冷暖风量,实现精准的温度控制。
详细描述
模糊控制算法通过采集室内温度和人的舒适度信息,将这些信息模糊化处理后,根据模糊规则进行推理,输出相 应的温度调节指令,从而实现对空调温度的智能控制。这种控制方式能够避免传统控制方法中存在的过度制冷或 制热的问题,提高室内环境的舒适度。
易于实现
模糊控制器结构简单,易于实 现,能够方便地应用于各种控 制系统。
灵活性高
模糊控制器具有较强的灵活性 ,能够根据不同的需求和场景 进行定制和优化。
02
模糊控制的基本原理
模糊化
模糊化是将输入的精确值转换 为模糊集合中的隶属度函数的 过程。
模糊集合论是模糊控制的理论 基础,它通过引入模糊集合的 概念,将精确的输入值映射到 模糊集合中,从而实现了对精 确值的模糊化处理。
交通控制
智能交通系统
通过模糊控制技术,可以实现智 能交通系统的自适应调节,提高 道路通行效率和交通安全性能。
车辆自动驾驶
在车辆自动驾驶中,模糊控制技 术可以用于实现车辆的自主导航 、避障和路径规划等功能,提高 车辆的行驶安全性和舒适性。
04
模糊控制在现实问题中的应用案例
智能空调的温度控制
总结词
模糊控制器
模糊控制器是实现模糊控制的核心部件,通过将输入的精确量转 换为模糊量,进行模糊推理和模糊决策,最终输出模糊控制量。
模糊控制的发展历程
80%
起源
模糊控制理论起源于20世纪60年 代,由L.A.Zadeh教授提出模糊 集合的概念,为模糊控制奠定了 理论基础。
100%
发展
随着计算机技术的进步,模糊控 制技术逐渐得到应用和发展,特 别是在工业控制领域。

模糊控制的应用实例与分析

模糊控制的应用实例与分析

模糊控制的应用实例与分析本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March模糊控制的应用学院实验学院专业电子信息工程姓名指导教师日期 2011 年 9 月 20 日在自动控制中,包括经典理论和现代控制理论中有一个共同的特点,即控制器的综合设计都要建立在被控对象准确的数学模型(如微分方程等)的基础上,但是在实际工业生产中,很多系统的影响因素很多,十分复杂。

建立精确的数学模型特别困难,甚至是不可能的。

这种情况下,模糊控制的诞生就显得意义重大,模糊控制不用建立数学模型,根据实际系统的输入输出的结果数据,参考现场操作人员的运行经验,就可对系统进行实时控制。

模糊控制实际上是一种非线性控制,从属于智能控制的范畴。

现代控制系统中的的控制能方便地解决工业领域常见的非线性、时变、在滞后、强耦合、变结构、结束条件苛刻等复杂问题。

可编程控制器以其高可靠性、编程方便、耐恶劣环境、功能强大等特性很好地解决了工业控制领域普遍关心的可靠、安全、灵活、方便、经济等问题,这两者的结合,可在实际工程中广泛应用。

所谓模糊控制,其定义是是以模糊数学作为理论基础,以人的控制经验作为控制的知识模型,以模糊集合、模糊语言变量以及模糊逻辑推理作为控制算法的一种控制。

模糊控制具有以下突出特点:(1)模糊控制是一种基于规则的控制,它直接采用语言型控制规则,出发点是现场操作人员的控制经验或相关专家的知识,在设计中不需要建立被控对象的精确的数学模型,因而使得控制机理和策略易于接受与理解,设计简单,便于应用(2)由工业过程的定性认识出发,比较容易建立语言控制规则,因而模糊控制对那些数学模型难以获取,动态特性不易掌握或变化非常显著的对象非常适用。

(3)基于模型的控制算法及系统设计方法,由于出发点和性能指标的不同,容易导致较大差异;但一个系统语言控制规则却具有相对的独立性,利用这些控制规律间的模糊连接,容易找到折中的选择,使控制效果优于常规控制器。

模糊控制应用示例讲解

模糊控制应用示例讲解

0.4
0.2
0
-3
-2
NS
ZR
PS
-1
0
1
PB
2
u3
e de NB NS ZR PS PB
模糊推理规则
NB NS ZR PS PB
PB PB PS PS ZR PB PS PS ZR ZR PS PS ZR ZR NS PS ZR ZR NS NS ZR ZR NS NS NB
模糊控制系统设计
% Example 3.8 % 典型二阶系统的模糊控制 % %被控系统建模 num=20; den=[1.6,4.4,1]; [a1,b,c,d]=tf2ss(num,den); x=[0;0];
第5次课
例1:工业工程控制
例2:典型二阶环节 的模糊控 制
例1: 工业过程
例1: 某一工业过程要根据测量的温度 (t)和压力(p)来确定阀门开启的角
度: f (t, P) 这种关系很难用数
学模型精确描述。实际中由有经验的操 作员完成,因此通常可设计模糊控制器 取而代之。
输入输出变量的论域
0
0
0.5
1
1.5
2
2.5 压力 3
阀门开启角度的模糊隶属度 函数
“负” “零” “正”
1 0.8 0.6 0.4 0.2
0 -10 -8 -6 -4 -2 0 2 4 6 8 10
角度增量
隶属度函数
模糊推理规则库
模糊推理规则有3条:
If 温度“冷” and 压力“高”,则阀门角 度增量为“正”
If 温度“热” and 压力“高”,则阀门角 度增量为“负”
If 压力“正常”,则阀门角度增量为“零 ”

模糊控制器设计实例

模糊控制器设计实例

模糊控制器在智能家居中的应用
总结词
提升家居舒适度
详细描述
智能家居系统中的温度、湿度、光照等环境因素的控制可以通过模糊控制器实 现。通过将传感器采集的环境参数进行模糊化处理,根据模糊逻辑规则进行推 理,实现对家居环境的智能调节,提升家居的舒适度。
模糊控制器在智能家居中的应用
总结词:节能环保
详细描述:在智能家居中,模糊控制器能够根据家庭成员的生活习惯和环境参数,智能调节家电的运 行状态,实现节能环保。例如,根据室内外温度和光照强度,模糊控制器可以智能调节空调和照明设 备的运行状态,减少能源的浪费。
进方向。
模糊控制器性能优化
算法优化
改进模糊控制器的核心算法,提高响 应速度和控制精度。
参数调整
根据实际应用需求,调整模糊控制器 的参数,以优化控制效果。
抗干扰设计
增强模糊控制器的抗干扰能力,提高 系统的稳定性和鲁棒性。
人机交互优化
改进用户界面和操作方式,提高模糊 控制器的易用性。
05
模糊控制器发展趋势与展望
高医疗设备的安全性和可靠性。
模糊控制器在医疗设备中的应用
总结词
辅助医生诊断
VS
详细描述
在医疗影像诊断中,模糊控制器可以对医 学影像数据进行处理和分析,辅助医生进 行疾病诊断。通过对医学影像数据进行模 糊化处理,提取病变特征,并根据模糊逻 辑规则进行推理,帮助医生快速准确地判 断病情。
04
模糊控制器性能评估
02
模糊控制器设计实例
模糊控制器实例选择
实例选择
选择一个适合的模糊控制器实例,例 如温度控制器、速度控制器等,需要 考虑控制对象的特性和控制要求。
实例分析
对所选实例进行详细分析,了解其输 入输出变量、控制规则等,为后续设 计提供基础。

模糊控制应用实例

模糊控制应用实例

模糊控制应用实例1. 引言模糊控制是一种基于模糊逻辑的控制方法,它能够处理不确定性和模糊性问题。

本文将介绍模糊控制的应用实例,包括模糊控制在机器人导航、温度控制和交通信号灯控制等方面的应用。

2. 模糊控制在机器人导航中的应用2.1 模糊控制器设计在机器人导航中,模糊控制可以用于控制机器人的运动路径。

首先,需要设计一个模糊控制器,该控制器包括输入和输出变量以及一组模糊规则。

输入变量可以是机器人与障碍物的距离、机器人当前的角度等。

输出变量通常是机器人的速度和转向角度。

2.2 模糊控制器实现在机器人导航中,可以使用传感器来获取机器人与障碍物的距离和机器人当前的角度。

这些信息可以作为输入变量输入到模糊控制器中。

模糊控制器根据一组模糊规则来计算机器人的速度和转向角度,然后将其作为输出变量输出给机器人的控制系统。

2.3 模糊控制器优势相比于传统的控制方法,模糊控制在机器人导航中具有一定的优势。

首先,模糊控制能够处理不确定性和模糊性问题,使得机器人能够更好地适应复杂的环境。

其次,模糊控制可以通过调整模糊规则和输入变量的权重来优化机器人的导航性能。

最后,模糊控制可以很容易地与其他控制方法结合使用,以实现更高级的导航功能。

3. 模糊控制在温度控制中的应用3.1 温度控制系统在温度控制中,模糊控制可以用于调节加热器或制冷器的功率,以维持目标温度。

温度控制系统通常包括一个温度传感器、一个控制器和一个执行器。

温度传感器用于测量当前的温度,控制器根据温度的变化来调整执行器的功率。

3.2 模糊控制器设计在温度控制中,需要设计一个模糊控制器来根据当前的温度误差和误差变化率来调整执行器的功率。

模糊控制器的输入变量可以是温度误差和误差变化率,输出变量可以是执行器的功率。

通过选择适当的模糊规则和调整输入变量的权重,可以实现温度的稳定控制。

3.3 模糊控制器实现在温度控制中,可以使用一个模糊控制器来计算执行器的功率。

模糊控制器根据一组模糊规则来决定执行器的功率大小,然后将其输出给执行器。

模糊控制及应用

模糊控制及应用
模糊控制
参考书:韩力群.智能控制理论及应用,机械工业出版社, 2008年1月
基于模糊推理的智能控制系统
1 引言 2 模糊集合及其运算 3 模糊关系与模糊关系合成 4 模糊语言变量与模糊语句 5 模糊推理 6 模糊控制器的工作原理 7 模糊控制应用实例
1 引言
1.1 模糊控制理论的产生和发展 1.2 模糊控制的概念和特点
从被控对象检测出状态变量值,并以此 检测值与目标期望值(给定值)进行比较,
以偏差值作为控制器的输入量,由控制器
按某种数学模型进行运算后的结果,作为控 制量。
闭环控制系统


给比信
定 值
较 器
号 e
+ -
反 馈 量
控制器
输 出
是负反馈系统


uห้องสมุดไป่ตู้
控制量
显示打印
被控对象
传统控制方法的局限性
若用计算机实现传统控制方法: A. 首先要设定控制目标值。 B. 根 据 被 控 对 象 的 特 性 变 化 和 环 境变化,通过负反馈原理,不断进行调节,以 跟踪所设定的目标值。 C. 设 计 一 个 满 足 控 制 目 标 的 控 制 器,必须要有数学模型。 实际实现很困难,特别是对复杂的非线 性系统和多因素的时变系统。
用语言变量代替数学变量或两者结合应用; 用模糊条件语句来刻画变量间的函数关系; 用模糊算法来刻画复杂关系,模拟人类学
习和自适应能力。
模糊逻辑控制方法
把模糊数学理论应用于自动控制领域,从而 产生的控制方法称为模糊控制方法。
传统控制依赖于被控系统的
数学模型;
模糊逻辑控制依赖于被控系统的
物理特性。
2.1 经典集合

第七章 模糊控制技术第五节模糊推理

第七章 模糊控制技术第五节模糊推理
2.模糊逻辑和模糊推理
• 对于实际的一个命题(事件),可以用“真”或“假”进行 判断。如果该命题非真即假,我们说这是精确命题(事件), 采用二值逻辑推理。如果命题不是绝对的“真”或“假”,而 是反映其以多大程度隶属于“真”,也就是带有模糊性,则该 命题为模糊命题,必须采用不确定性推理方法进行推理。
如果命题A、B为模糊命题,则需要采用不确定性推理方法。 不确定推理情况下的假言推理具有如下逻辑结构:
Hale Waihona Puke 五、模糊推理1.语言变量
设:H4代表“极”或者“非常非常”,其意义是对描述的 模糊值求4次方;
H2代表“很”或者“非常”,其意义是对描述的模糊值 求2次方;
H1/2代表“较”或者“相当”,其意义是对描述的模糊 值求1/2次方;
H1/4代表“稍”或者“略微”,其意义是对描述的模糊 值求1/4次方。
这样,集中化算子的幂乘运算的幂次大于1,幂次越高,语 气的强化程度越大;松散化算子的幂乘运算的幂次小于1, 幂次越高,语气的弱化程度越大。
关系生成规则:设A是X上的模糊集合,B是Y上的模糊集 合,是X到Y的模糊关系R(x,y)。则存在一种方法,也就是 关系生成规则,由A和B得到:
推理合成规则:即由模糊关系R(x,y)和小前提A′中的得 到Y上的模糊集B′的规则,即:
➢ 其中,算符“o”代表合成运算,通过解模糊关系程序获 得推理结果B′,这就是模糊推理过程。
五、模糊推理
2.模糊逻辑和模糊推理
一个单输入单输出模糊系统的模糊推理的模型如图所示:
更一般的模糊推理模型包含有多个大条件,构成多条规则模 糊推理模型,具有如下的逻辑结构:
其关系生成规则:根据Aij(i≤n,i≤m)和生成模糊关系R,R 就是X=X1×X2×…Xm×Y上的模糊关系。而推论合成规则

第七章 模糊控制技术第三节模糊集合中的基本定义和运算

第七章 模糊控制技术第三节模糊集合中的基本定义和运算

2.模糊集合的基本运算
• 设A和B是U中的模糊子集,隶属函数分别为μA和μB,则模 糊集合中的并、交、补等运算可以定义如下: 并运算:并(A∪B)的隶属函数μA∪B,对所有μ∈U被逐 点定义为取极大值运算即:(式中“∨”为取极大值运算 )
交运算:交பைடு நூலகம்A∩B)的隶属函数μA∩B,对所有μ∈U被逐点 定义为取极小值运算即:(式中“∧”为取极小值运算)
第七章 模糊控制技术
主要内容
一、模糊集合 二、隶属函数及其确定 三、模糊集合中的基本定义和运算 四、模糊关系 五、模糊推理 六、模糊控制器的设计 七、模糊控制器设计实例
三、模糊集合中的基本定义和运算
1.基本定义
• 与经典集合论一样,模糊集合也定义了基本运算如并、交、 补等。以下定义模糊集合的幂集、空集、全集、集合的包含 和相等。 论域U中模糊集合的全体称为U中的模糊幂集,记做F(U):
补运算:模糊集合A的补隶属函数μA ,对所有被逐点定义 为
三、模糊集合中的基本定义和运算
3.模糊集合运算的基本定律
模糊集合的运算满足以下的基本定律:
设U为论域。A、B、C为U中的任意模糊子集,则下列等式成立:
幂等律:
结合律: 交换律:
分配律:
同一律:
零一律:
吸收律:
双重否认律:
德·摩根律:
➢ 可以看出,模糊集与经典集的集合运算的基本性质完全相同,但是 模糊集运算不满足互补律,即:
对于任一u∈U,若μG(x)=0,称A为空集φ;若μG(x)=1,则 称为全集,A=U。
设A和B是U的模糊集,即A、B∈F(U),若对任一u∈U都有 B(U)≤B(U),则称B包含于A,或称B是A的子集,记做 。若对于任一u∈U都有B(U)=A(U),则称B等于A,记做B=A 。

模糊控制详细讲解实例

模糊控制详细讲解实例

一、速度控制算法:首先定义速度偏差-50 km/h ≤e (k )≤50km/h ,-20≤ec (i )= e (k )- e (k-1)≤20,阀值e swith =10km/h设计思想:油门控制采用增量式PID 控制算法,刹车控制采用模糊控制算法,最后通过选择规则进行选择控制量输入。

选择规则:e (k )<0 ① e (k )>- e swith and throttlr_1≠0 选择油门控制② 否则:先将油门控制量置0,再选择刹车控制 0<e (k ) 先选择刹车控制,再选择油门控制e (k )=0 直接跳出选择刹车控制:刹车采用模糊控制算法1.确定模糊语言变量e 基本论域取[-50,50],ec 基本论域取[-20,20],刹车控制量输出u 基本论域取[-30,30],这里我将这三个变量按照下面的公式进行离散化:)]2(2[ba x ab n y +--= 其中,],[b a x ∈,n 为离散度。

E 、ec 和u 均取离散度n=3,离散化后得到三个量的语言值论域分别为:E=EC=U={-3,-2,-1,0,1,2,3}其对应语言值为{ NB,NM,NS,ZO, PS,PM,PB } 2.确定隶属度函数E/EC 和U 取相同的隶属度函数即:E E CU (,5,1)(,3,2,0)(,3,1,1)u (,2,0,2)(,1,1,3)(,0,2,3)(,1,5)g x trig x trig x trig x trig x trig x g x ∧∧--⎧⎪--⎪⎪--⎪=-⎨⎪-⎪⎪⎪⎩说明:边界选择钟形隶属度函数,中间选用三角形隶属度函数,图像略实际EC 和E 输入值若超出论域范围,则取相应的端点值。

3.模糊控制规则由隶属度函数可以得到语言值隶属度(通过图像直接可以看出)如下表: 表1:E/EC 和3.模糊推理由模糊规则表3可以知道输入E 与EC 和输出U 的模糊关系,这里我取两个例子做模糊推理如下:if (E is NB) and (EC is NM) then (U is PB) 那么他的模糊关系子矩阵为:1211U EC E R R R R ⨯⨯=其中,711)0,,0,5.0,1(0⨯== P R E ,即表1中NB 对应行向量,同理可以得到,712)0,,0,5.0,1,0(1⨯== P R EC , 711)0,,0,5.0,1(0⨯== P R U77210000000000005.05.00005.010)0,,0,5.0,1,0()0,,0,5.0,1(⨯⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=⨯=⨯TEC E R R 49121)0,,0,5.0,5.0,0,0,0,0,0,5.0,1,0(⨯= EC E R7491211000000005.05.00005.0100000)0,,0,5.0,1()0,,5.0,1,0(⨯⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=⨯=⨯= TU EC E R R Rif (E is NVB or NB) and (EC is NVB) then (U is PVB)1112U EC E R R R R ⨯⨯= 结果略按此法可得到27个关系子矩阵,对所有子矩阵取并集得到模糊关系矩阵如下:)27,,2,1(21 ==i R R R R i 由R 可以得到模拟量输出为:()U E EC R =⨯4.去模糊化由上面得到的模拟量输出为1×7的模糊向量,每一行的行元素(u (z ij ))对应相应的离散变量z j ,则可通过加权平均法公式解模糊:)21,,2,1()()(21021===∑∑==j i zu z zu u i iji jij从而得到实际刹车控制量的精确值u 。

模糊控制实际应用研究

模糊控制实际应用研究

模糊控制实际应用研究模糊控制是一种基于模糊逻辑的控制方法,它可以在模糊的环境中进行决策和控制,其核心思想就是用人类的经验和语言来描述系统。

在实际应用中,模糊控制被广泛应用于各种领域,比如工业控制、智能交通、机器人控制、医疗、金融等。

本文将从几个方面介绍模糊控制在实际应用中的研究进展和应用案例。

一、工业控制在工业生产中,模糊控制被广泛应用于生产流程控制、机器人控制、自适应控制等方面。

其中,以炼油、化工、冶金等高危行业为代表的控制系统,风险高、控制难度大,传统控制方法难以适应。

而模糊控制正是满足了这种场景下的特殊需要。

例如,对于温度、压力等参数的控制,传统控制方法需要传感器读取实时数据,根据PID算法进行计算和调整,但是这样的调节方法需要不断地“试错”,耗费时间和人力。

相比之下,模糊控制的优势就体现出来了。

它不需要提前确定具体的输入量、输出量以及参数,只需要用文字传达控制要求,系统便可以自动地“学习”调节方法,从而提供最优的控制方案。

二、智能交通随着城市化进程的加速,城市交通越来越拥堵,安全问题也愈发凸显。

智能交通系统就是为了解决城市交通压力和安全问题而出现的。

模糊控制在智能交通系统中也起到了重要的作用。

首先,模糊控制可以对交通信号灯进行控制,提高交通流量,并降低交通拥堵。

其次,模糊控制可以结合路况、气象等不同因素,对车辆行驶速度进行控制,提高整个道路网络的通行效率,从而减轻交通拥堵的程度。

最后,模糊控制还可以根据路段交通的实时情况,对城市路网进行动态优化,从而使整个交通系统更加智能化、高效化。

三、机器人控制机器人技术是当代科技领域的一个热点,而机器人控制是机器人技术中的一个重要分支。

机器人控制的核心是对机器人进行快速、准确的控制,以达到预期的效果。

模糊控制在机器人控制中的应用也非常广泛。

比如在工业机器人的控制中,可以通过模糊控制对机器人的运动和运行参数进行灵活控制,从而实现自适应控制。

同时,模糊控制也可以应用于机器人的智能决策中,使其能够自主化地进行决策和行动。

模糊控制 PPT课件

模糊控制 PPT课件

A (27) %
lim
n
27
青年人*的次数 n
101 129
0.78
上一页 下一页
隶属函数的确定
求取论域中足够多元素的隶属度,根据这些隶属度求出 隶属函数。具体步骤为:
①求取论域中足够多元素的隶属度;
② 求隶属函数曲线。以论域元素为横坐标,隶属度为纵坐 标,画出足够多元素的隶属度(点),将这些点连起来, 得到所求模糊结合的隶属函数曲线;
B×A={(1, a) (1, b) (1, c) (2, a) (2, b) (2, c)}
上一页 下一9页
2.2 模糊集合及其运算规则
在普通集合中,论域中的元素(如a)与集合(如A)之间的关系是属
于(a∈A),或者不属于(a A),它所描述的是非此即彼的清晰概念。
但在现实生活中并不是所有的事物都能用清晰的概念来描述,如:
曲线非常接近。此时取α=1/25,a=24.5,β=2。参数修改后
~ 的降半哥西型函数即为模糊集合“青年人”的隶属函数。即:
1
~ 青年人(x)
1
(
x
1 24.5)2
5
18 x 24 24 x 100
上一页 下一20页
3) 模糊集合的并、交、补运算
设 A、B 为论域U上的两个模糊集合。则 A 与B 的并集(
+
传感器 测量的 当前值
计算机 自动给出
根据当前的状 态,对照控制 经验,给出适 当的控制量
事先总结归
纳出一套完
整的控制规
传感器 模糊推理判决
则,放在计 + 测量的
计算出
控制量
算机中。
当前值
上一页 下一页
5.2 模糊控制发展的三个阶段

自动化控制系统中的模糊控制技术应用案例分析

自动化控制系统中的模糊控制技术应用案例分析

自动化控制系统中的模糊控制技术应用案例分析摘要:自动化控制系统在各个领域中起着至关重要的作用,而模糊控制技术作为一种重要的控制方法,具有适应性强、可靠性高等特点,广泛应用于各种实际问题中。

本文通过分析两个实际案例,探讨了模糊控制技术在自动化控制系统中的应用。

1. 引言自动化控制系统是指利用计算机和现代控制技术对工业过程、机械设备等进行监测、控制和优化的系统。

模糊控制技术作为一种基于模糊逻辑的控制方法,具有适应性强、抗干扰能力好等优点,被广泛应用于自动化控制系统中。

2. 模糊控制技术基本原理模糊控制技术的基本原理是将模糊集合理论引入到控制系统中,通过设计模糊规则集合和模糊推理机制,实现对系统的控制。

模糊控制系统主要由模糊化、模糊推理和解模糊三个部分组成。

3. 应用案例一:自动驾驶汽车的模糊控制自动驾驶汽车的模糊控制是近年来自动化领域的热点研究之一。

在自动驾驶汽车中,模糊控制技术可以用于实现车辆的路径规划和操控。

通过使用激光雷达等传感器获取周围环境信息,将信息输入到模糊控制系统中进行处理,计算出车辆应该采取的行驶方向和速度。

在路径规划方面,模糊控制系统可以根据当前位置和目标位置之间的距离进行判断,并结合交通规则、路况等因素,确定车辆的行驶路径。

在操控方面,模糊控制系统可以根据车辆与前方障碍物的距离、速度等信息,计算出合适的减速或转向指令,实现安全和平稳的行驶。

4. 应用案例二:温度控制系统中的模糊控制温度控制是很多工业生产过程中的常见问题,而模糊控制技术可以在这方面发挥重要的作用。

在温度控制系统中,通过模糊控制技术可以实现对温度的精确控制,提高生产过程的稳定性和效率。

以热处理工业过程为例,对于不同的热处理设备和工件,模糊控制系统可以根据设备和工件的特性,设定合适的温度范围和控制要求。

然后,通过温度传感器获取实时温度信息,将其输入到模糊控制系统中进行处理。

模糊控制系统会根据温度与设定值之间的差异,计算出合适的加热或冷却指令,控制加热或冷却装置的工作状态,使温度保持在设定范围内。

模糊控制ppt

模糊控制ppt
空调器为典型的传质换热系统,结构和内部物理过程复杂,难以建 立精确的数学模型。汽车空调由于工作条件多变,用传统的控制方法 如:PID控制,难以获得较好的控制效果。 对于环境干扰,鲁棒性好,能够抑制非线性因素对控制器的影响
全空调型客车空调原理图
1、外进风;2出风口;3蒸发器风机:4蒸发器芯;5热水器芯: 6温度门:7、出风口:8车内进风
实行模糊控制要进行三个方面的工作: (1) 精确量的模糊化,把语言变量的语言值化 为某适当论域上的模糊子集; (2) 模糊控制算法和设计,通过一组模糊条件 语句构成模糊控制规则,并计算模糊控制 规则决定的模糊关系; (3) 输出信息的模糊判决,并完成由模糊量到 精确量的转化
在ABS中的的应用
车辆工况的多变及轮胎的非线性导致传统PID控制中比例、微分、 积分最佳参数匹配的困难, 模糊控制恰好适应了这种变工况非线性系统的控制,并具有鲁棒性 强的优点
也可以表示成
工作步骤:
输入量模糊化
建立模糊规则 进行模糊推理 输出量反模糊
3、模糊控制的特点
①适用于不易获得精确数学模型的被控 对象, ②是一种语言变量控制器 ③从属于智能控制的范畴。该系统尤其 适于非线性,时变,滞后系统的控制 ④抗干扰能力强,响应速度快,并对系 统参数的变化有较强的鲁棒性。

3、工作原理


把由各种传感器测出的精确量转换成为适于模糊 运算的模糊量,然后将这些量在模糊控制器中加以 运算, 最后再将运算结果中的模糊量转换为精确 量, 以便对各执行器进行具体的操作控制。 在模糊控制中, 存在着一个模糊量和精确量之间 相互转化的问题
模糊控制原理图
s:系统的设定值。 x1, x2:模糊控制的输入(精确量)。 X,1 , X2:模糊量化处理后的模糊量。 U:经过模糊控制规则和近似推理后得出的模糊控制量。 u:经模糊判决后得到的控制量(精确量)。 y:对象的输出。

模糊控制应用实例

模糊控制应用实例
图7.14 输入变量旳隶属函数 (a)负载量;(b)水;(c)质料
• 2)输出变量
图7.15 输出变量旳隶属函数
• (4)解模糊判决成果 • 据此又细提成如下旳洗涤控制: • ①水流9种; • ②洗涤时间16种; • ③清洗时间6种; • ④脱水时间6种。
• 7.2 智能手机充电器
• 7.2.1 智能充电原理
• 根据这些控制规律,就可制定出如下满足 模糊控制要求旳控制规则:
• 规则1:假如NC=+3时R=VG且C=G且 A=VG,那么NC=3;
• 规则2:假如NC=+2时R=VG且C=G且 A=VG,那么NC=2;
• 规则3:假如NC=+1时R=VG且C=G且 A=VG,那么NC=1;
• 规则4:假如NC=0时 R=VG且A=G,那 么

• C:(Comfort of riding)乘坐舒适性 • E:(Energy saving)节省能源 • R:(Running time )行驶时间 • S:(Safety)安全性 • T:(Traceability of speed)速度跟踪

• 用5个符号表达模糊概念旳等级: • VG:(Very Good)非常好 • G:(Good)好 • M :(Medium)中档 • B:(Bad)差 • VB:(Very Bad)非常差 • (1)停车精确度 • (2)乘坐舒适度 • (3)节省能源
• 规则1:假如N =0时,S=G且C=G且E=G, 那么N=0;
• 规则2:假如N =P7时,S=G且C=G且 T=B,那么N=P7;
• 规则3:假如N=B7时,S=B,那么N=(N (t)+Bmax)/2;
• 规则4:假如NC=4时,S=G且C=G且 T=VG,那么NC=4;

模糊控制应用实例

模糊控制应用实例

模糊控制应用实例模糊控制在自动驾驶中的应用实例自动驾驶技术是近年来备受关注的热门话题,它的出现旨在解决驾驶过程中的安全问题,并提高驾驶的便利性和舒适度。

而模糊控制作为自动驾驶技术中的重要一环,有着广泛的应用。

本文将以自动驾驶中的模糊控制为例,探讨其应用实例。

在自动驾驶的过程中,模糊控制被用来处理传感器数据,并作出相应的决策。

以自动驾驶汽车的转向控制为例,模糊控制可以根据车辆的位置、速度、前方障碍物等数据,决定车辆的转向角度,以保证车辆在道路上行驶的安全性和稳定性。

模糊控制通过模糊化处理将传感器数据转化为模糊集合。

例如,车辆的位置可以被模糊化为"靠左"、"靠右"、"居中"等模糊集合,车辆的速度可以被模糊化为"缓慢"、"中等"、"快速"等模糊集合。

然后,利用一系列的模糊规则来推导出车辆转向角度的模糊集合。

例如,如果车辆靠左,并且速度较快,那么转向角度可能是"向右转";如果车辆居中,并且速度较慢,那么转向角度可能是"保持直行"。

最后,通过去模糊化处理将模糊集合转化为具体的转向角度。

在自动驾驶中,模糊控制的应用不仅限于转向控制,还包括加速控制、制动控制等。

例如,在车辆的加速控制中,模糊控制可以根据车辆的加速度和前方障碍物的距离,决定车辆的加速度大小,以保证车辆在道路上的安全跟随。

同样,在车辆的制动控制中,模糊控制可以根据车辆的速度和前方障碍物的距离,决定车辆的制动力大小,以保证车辆在紧急情况下的安全停车。

除了在自动驾驶中的应用,模糊控制还广泛应用于其他领域。

例如,在温控系统中,模糊控制可以根据室内温度和设定温度,决定空调的制冷或制热强度,以保持室内的舒适温度。

在机器人的路径规划中,模糊控制可以根据环境的复杂性和机器人的速度,决定机器人的行走路径,以避免障碍物的碰撞。

模糊控制的应用实例与分析

模糊控制的应用实例与分析

模糊控制的应用实例与分析模糊控制是一种针对模糊系统进行控制的方法,它通过运用模糊逻辑和模糊规则来进行控制决策。

模糊控制广泛应用于各个领域,以下是几个不同领域的模糊控制应用实例和相关分析。

1.模糊控制在温度控制系统中的应用:温度控制系统是模糊控制的一个常见应用领域。

传统的温度控制系统通常使用PID控制器,但是由于环境和外部因素的干扰,PID控制器往往不能很好地应对这些复杂情况。

而模糊控制可以通过建立模糊规则来实现对温度的精准控制。

例如,如果设定的温度为25度,模糊控制系统可以根据当前的温度和温度变化率等信息,通过判断当前温度是偏低、偏高还是处于目标温度范围内,然后根据这些模糊规则来决定是否增加或减少加热器的功率,从而实现温度的稳定控制。

2.模糊控制在交通信号灯控制中的应用:交通信号灯控制是一个动态复杂的系统,传统的定时控制往往不能适应不同时间段、不同拥堵程度下的交通流需求。

而模糊控制可以通过模糊规则来根据交通流的情况进行动态调整。

例如,交通信号灯的绿灯时间可以根据路口的车辆数量和流动情况进行自适应调整。

当车辆较多时,绿灯时间可以延长,以减少拥堵;当车辆较少时,绿灯时间可以缩短,以提高交通效率。

模糊控制可以将车辆数量和流动情况等模糊化,然后利用模糊规则来决策绿灯时间,从而实现交通信号灯的优化控制。

3.模糊控制在飞行器自动驾驶中的应用:飞行器自动驾驶是一个高度复杂的系统,传统的控制方法往往不能满足复杂的空中飞行任务。

模糊控制可以通过模糊规则来根据飞行器的状态和目标任务要求进行决策。

例如,飞行器的高度控制可以利用模糊控制来应对不同高度要求的任务。

通过将目标高度和当前高度模糊化处理,然后利用模糊规则来决策飞行器的升降舵和发动机功率等参数,从而实现对飞行器高度的精准控制。

综上所述,模糊控制作为一种针对模糊系统进行控制的方法,具有很大的应用潜力。

它可以通过建立模糊规则来解决传统控制方法难以解决的复杂问题。

虽然模糊控制存在一些问题,如规则的设计和调试等工作比较困难,但是随着计算机技术的发展和模糊控制理论的不断完善,模糊控制在各个领域中的应用将会越来越广泛。

模糊控制应用实例

模糊控制应用实例

模糊控制应用实例模糊控制是一种部分基于逻辑的控制方法,它通过将模糊集合理论应用于控制系统中的输入和输出来模拟人类决策的过程。

与传统的精确控制方法相比,模糊控制更适合于处理模糊的、不确定的和复杂的系统。

在现实世界中,模糊控制广泛应用于各个领域,例如工业自动化、交通控制、飞行器导航等。

在本文中,我将介绍几个模糊控制的应用实例,以帮助读者更好地了解其实际应用价值。

1. 交通信号灯控制系统交通信号灯控制是一个典型的实时决策问题,涉及到多个信号灯的切换以及车辆和行人的流量控制。

传统的定时控制方法往往无法适应实际交通状况的变化,而模糊控制可以根据不同时间段和交通流量的变化,动态地调整信号灯的切换时间和优先级,以实现交通拥堵的缓解和行车效率的提高。

2. 温度控制系统在许多工业生产过程中,温度的精确控制对产品质量和产量的影响非常重要。

模糊控制可以根据温度传感器采集到的实时数据,结合事先建立的模糊规则库,调整加热或制冷设备的输出,以实现温度的稳定和精确控制。

与传统的PID控制方法相比,模糊控制对于非线性和时变的系统具有更好的适应性和鲁棒性。

3. 汽车制动系统汽车制动系统是保证驾驶安全的重要组成部分,而制动力的控制是其关键。

模糊控制可以根据制动踏板的压力以及车辆的速度和加速度等信息,动态地调整制动力的输出,以实现舒适而有效的制动。

模糊控制还可以考虑路面的湿滑情况和车辆的负荷情况等因素,自适应地调整制动力的分配,提高制动系统的性能和安全性。

4. 智能家居系统智能家居系统通过感应器、执行器和控制器等组件,实现对家庭设备和环境的智能控制。

模糊控制可以根据家庭成员的习惯和偏好,结合各种传感器采集到的数据,自动地调节室内温度、湿度、光线等参数,提高居住舒适度并节约能源。

在夏天的炎热天气中,模糊控制可以根据室内外温度、湿度和人体感觉来控制空调的开关和风速,实现智能舒适的环境控制。

总结回顾:模糊控制在各个领域都有着广泛的应用。

它通过基于模糊集合理论的推理和决策方法,实现对复杂系统的智能控制。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

• (3)洗涤剂 • 洗涤剂的成分主要以烷基苯活性剂为主, 不同的洗涤剂还会添加各种不同的辅助剂、 酵素、荧光增白剂、香料等。 • 7.1.2 模糊控制洗衣机结构 • (1)负载检测 • 这主要用来检测所洗衣物的重量,以决定 水位。这可用不同的方法实现。最容易想 到的方法是用静态的压力传感器直接测量, 但结构要稍复杂一些。
根据以下要求来选择控制值。 • 规律 1:为了乘坐舒适性,在通过标志时, 应该保持当前的控制值,以避免惯性冲击。 • 规律2:为了缩短行驶时间,同时考虑乘坐 舒适性,在标志前不要刹车,过了标志开 始缓慢刹车。 • 规律3:为了精确定位,在过了标志后,就 应该在±n个控制值范围内选择适当的控制 值来调节车速,以便准确地停车,同时要 避免发生惯性冲击。
• 规则10:如果NC=-2时,S=G且C=G • 且T=VG,那么NC=-2; • 规则11:如果NC=-3时,S=G且C=G • 且T=VG,那么NC=-3; • 规则12:如果NC=-4时,S=G且C=G • 且T=VG,那么NC=-4。 • 2)车站停车控制规则 • 操作经验的语言描述为:当列车通过车站 前放置的停车标志后,指示可以开始控制 停车定位,但同时要考虑乘坐舒适。具体
• Bn:表示刹车刻度盘上的刻度; • Bmax:表示紧急刹车; • N(t)是当前控制值。 • 1)站间定速行驶规则 • 规律1:为了确保安全性和乘坐的舒适,当 速度高于所限速度时,把控制值调到当前 控制值与紧急刹车控制值之间的中间值, 如果需要紧急刹车,冲击就会减小。 • 规律2:为了节约能源,当可以确保行驶时 间时,就利用惯性运行,这时既不加速也 不刹车。
• 7.2.3 充电控制原理
图7.17 手机模糊充电控制器系统原理框图
图7.18 恒流充电模块原理图
图7.19 LM317的基本工作电路
• 输出恒压值的计算公式如式(7.1)所示:
(7.1)
(7.2)
• 7.2.4 控制软件
图7.20 主流程框图
• 7.3 地铁机车模糊控制器
• 7.3.1 对评价指标的定义 • 用6个符号表示有关论域: • A:(Accuracy of stop gap)停车准确 度 • C:(Comfort of riding)乘坐舒适性 • E:(Energy saving)节约能源 • R:(Running time )行驶时间 • S:(Safety)安全性 • T:(Traceability of speed)速度跟踪 性
图7.13 模糊控制洗衣机控制结构图
• (2)模糊规则 • 1)输入变量(分三级) • ①负载:大、中等、小。 • ②质料:棉制品偏多、棉和化纤制品各半、 化纤制品偏多。 • ③水温:偏高、中等、偏低。 • 2)输出变量(分四级) • ①水流强度:很强、强、中、弱。 • ②洗涤时间:很长、长、中、短。 • 3)模糊规则
• 规则5:如果NC=-1时R=VG且C=G且 A=VG,那么NC=-1; • 规则6:如果NC=-2时R=VG且C=G且 A=VG,那么NC=-2; • 规则7:如果NC=-3时R=VG且C=G且 A=VG,那么NC=-3; • 规则8:如果N=P7时 R=VB且C=G且 S=G,那么N=P7; • 规则9:如果N=P4时R=B且A=B且S=G, 那么N=P4;
• (5)水的透光率检测 • 水的透光率用光电传感器实现。
图7.7 污垢程度透光率曲线
污垢的性质
图7.8 污垢性质透光率曲线
图7.9 用不同洗涤剂时透光率曲线
• 7.1.3 控制电路设计
图7.10 模糊控制洗衣机电路框图
图7.11 负载检测电路图
图7.12 负载检测电路的波形图
• 7.1.4 模糊控制实现方法 • (1)基本结构和控制过程
• 规律 3:为了缩短行驶时间,当速度小于 所限速度时,则可用最大加速。 • 规律4:为了乘坐舒适,如果用当前控制值 就可保持车速跟踪目标速度,就可保持当 前控制值。
• 规律5:为了保证速度跟踪性,如果在当前 控制下不能达到目标值,就应该在±n个控 制值范围内选择适当的控制值来调节车速, 以达到目标值。同时,还要考虑到乘坐舒 适,避免加速过大。
• 根据这些控制规律,就可制定出如下满足 模糊控制要求的控制规则: • 规 则 1 : 如 果 NC=+3 时 R=VG 且 C=G 且 A=VG,那么NC=3; • 规 则 2 : 如 果 NC=+2 时 R=VG 且 C=G 且 A=VG,那么NC=2; • 规 则 3 : 如 果 NC=+1 时 R=VG 且 C=G 且 A=VG,那么NC=1; • 规则4:如果NC=0时 R=VG且A=G,那 么 • NC=0;
第7章 模糊控制应用实例
• 7.1 模糊控制全自动洗衣机
• 7.1.1 洗衣条件 • (1)衣服的质料 • 一般衣服质料纤维可分两大类:自然纤维 的棉织品和人造化学纤维织品。 • (2)水 • 水可带走一般的灰尘和水溶性污垢,所以, 不用洗涤剂也可能洗去部分污垢。
图7.1 水温与洗净力之间的关系曲线
• 用5个符号表示模糊概念的等级: • VG:(Very Good)非常好 • G:(Good)好 • M :(Medium)中等 • B:(Bad)差 • VB:(Very Bad)非常差 • (1)停车准确度 • (2)乘坐舒适度 • (3)节约能源
• (4)行驶时间 • (5)安全性 • (6)速度跟踪性 • 7.3.2 对机车的运动特性模拟实验 • 7.3.3 模糊控制规则的制定 • 在规则中: • N:表示控制阀值; • NC:表示相对于当前的控制阀值的变化量; • Pn:表示行驶控制刻度盘上的刻度,P7表 示最大控制值;

• 规 则 5 : 如 果 NC=3 时 , S=G 且 C=G 且 T=VG,那么NC=3; • 规 则 6 : 如 果 NC=2 时 , S=G 且 C=G 且 T=VG,那么NC=2;
• 规 则 7 : 如 果 NC=1 时 , S=G 且 C=G 且 T=VG,那么NC=1; • 规则8:如果NC=0时,S=G且T=G,那 么NC=0; • 规则9: 如果NC=-1时,S=G且C=G 且 T=VG,那么NC=-1;
• 规则10:如果N=0时R=M且C=G且S=G,
那么N=0;
• 规则11:如果N=B1时R=G且C=G且
S=G,那么N=B1;
• 规则12:如果N=B7时且S=VB,那么
N=0。
• 7.3.4 模糊控制的实现
图7.21 预见型模糊停车控制的推理过程
图7.2 模糊控制洗衣机结构剖面图
图7.3 计数脉冲与衣物重量关系曲线
• (2)质料检测
图7.4 棉制品与化纤制品辨别曲线
图7.5 柔软布料和硬厚布料的水位变化曲线
图7.6 不同软硬度布料情况下驱动电流波形
• (3)水位检测 • 水位检测用一种专用水位传感器实现。 • (4)水温检测
• 水温检测通过热电耦测量。
• (3)模糊控制的隶属函数 • 1)输入变量
图7.14 输入变量的隶属函数 (a)负载量;(b)水;(c)质料
• 2)输出变量
图7.15 输出变量的隶属函数
• (4)解模糊判决结果
• 据此又细分成如下的洗涤控制:
• ①水流9种;
• ②洗涤时间16种;
• ③清洗时间6种;
• ④脱水时间6种。
• 根据这些控制规律,就可制定出如下满足模 糊控制要求的控制规则: • 规则1:如果N =0时,S=G且C=G且E=G, 那么N=0;
• 规则2:如果N =P7时,S=G且C=G且 T=B,那么N=P7; • 规则3:如果N=B7时,S=B,那么N=(N (t)+Bmax)/2; • 规则4:如果NC=4时,S=G且C=G且 T=VG,那么NC=4;
• 7.2 智能手机充电器
• 7.2.1 智能充电原理
• 电池充电的关键在于实现有效充电的同时
保证可以适时终止充电,防止过充电对电 池造成损害;充电中应显示电量,以便了 解充电情况;要有查错功能,在发现错误 时及时停止充电,以保护电池和充电器。 • 7.2.2 手机充电器模糊控制的系统原理框 图
图7.16 智能手机充电器系统原理框图
相关文档
最新文档