立体几何中折叠与展开问题(2)(优.选)
高中数学立体几何动点和折叠问题-含答案
高中数学立体几何动点和折叠问题-含答案1.在正方体ABCD-A1B1C1D1中,BC的中点为M,点P在正方体的表面DCC1D1上移动,且满足∠APD=∠MPC。
求三棱锥P-BCD的体积的最大值。
2.△ABC是边长为23的等边三角形,E、F分别为AB、AC的中点,沿EF把四面体OAEF折起,使点A翻折到点P的位置,连接PB、PC。
当四棱锥P-BCFE的外接球的表面积最小时,求四棱锥P-BCFE的体积。
3.△ABC是边长为23的等边三角形,E、F分别在线段AB、AC上滑动,且EF//BC,沿EF把△AEF折起,使点A翻折到点P的位置,连接PB、PC。
求四棱锥P-BCFE的体积的最大值。
4.已知三棱锥P-ABC满足PA⊥底面ABC,在△ABC中,AB=6,AC=8,且AB⊥AC,D是线段AC上一点,且AD=3DC,球O为三棱锥P-ABC的外接球,过点D作球O的截面。
若所得截面圆的面积的最小值与最大值之和为44π,则求球O的表面积。
5.已知A、B、C、D四点均在半径为R(R为常数)的球O的球面上运动,且AB=AC,AB⊥AC,AD⊥BC。
若四面体ABCD的体积的最大值为V,求V的值。
6.已知A、B、C是球O的球面上的三点,AB=2,AC=23,∠ABC=60°,且三棱锥O-ABC的体积为V。
求V的值。
7.已知三棱柱ABC-A1B1C1内接于一个半径为3的球,四边形A1ACC1与B1BCC1为两个全等的矩形,M是A1B1的中点,且C1M=√3.求三棱锥C1-ABC的体积。
8.在四棱柱ABCD-A1B1C1D1中,底面四边形ABCD是菱形,∠ADC=120°,连接AC,BD交于点O,A1O⊥平面ABCD,AO=BD=4,点C'与点C关于平面BC1D对称。
求三棱锥C'-ABD的体积。
1.删除该题,因为这明显是一道数学计算题,没有文章可言。
2.球O的表面积为4π,则球O的体积为(4/3)π。
立体几何中的折叠、展开与动点问题
2 尽
于是
得
由余 弦定理可求得 AC= 5 z
C
A + D = D , B B 2 A
A B上B D.
又平面 E D上平面 A D, 面 E D n平 面 A D= B B 平 B B B A D,Bc平 面 A D, A B 得 B上平 面 E D 由 D B. Ec平
B= 0 , 6 。得
例 1 一 张正 方形 的 纸 A C B 是对 角线 , B D, D 过 A C 的中点 E, B,D F的线段交 B D于点 0, E 以 F
・
3 ・ 0
中 学教 研 ( 学 ) 数
/ _A1 = 1 5。, C1 C 3
BD= 、A +A /B D 一2 B ・ Dc s_D B = A A o/ A
性 和交 汇性. 立体 几何 中 的轨迹 问题将立体几何 与 解析几何 有机地结合 起来 , 解决 此类问题 的关 键是
把空 间问题转化 为平 面问题 , 然后 再根据 曲线 的定
√ 芎 / 。 2 + a . n
又在 AB D中 , O 由余 弦定 理可得
c s BOD = o 2 2 2 2 6
问题 , 常把几何体 的侧面 展开转化 为平面 图形 中 通 的两点距离 问题.
在 R △ t 培E中 , 由
解析 几何 与立体几何 的知识交 汇处设 计图形 , 仅 不
能考查 立体几何点 、 、 线 面之 间的位置关系 , 而且 能
△C D沿 B B D折起 到 △船 D
C
巧妙地考 查求轨迹 的基本 方 法. 由于知 识点 多 , 数 学思想 和方法 考查 充分 , 因此 笔 者预 计 2 1 高 00年
立体几何中“折叠问题”解题策略(含详细解析)
立体几何中“折叠问题”的解题策略[例题]如图1,在直角梯形ABCD中,AD∥BC,AB∥BC,BD∥DC,点E是BC边的中点,将∥ABD沿BD折起,使平面ABD∥平面BCD,连接AE,AC,DE,得到如图2所示的几何体.(1)求证:AB∥平面ADC;(2)若AD=1,二面角CABD的平面角的正切值为6,求二面角BADE的余弦值.[解](1)证明:因为平面ABD∥平面BCD,平面ABD∩平面BCD=BD,BD∥DC,DC∥平面BCD,所以DC∥平面ABD.因为AB∥平面ABD,所以DC∥AB.又因为折叠前后均有AD∥AB,DC∩AD=D,所以AB∥平面ADC.(2)由(1)知AB∥平面ADC,所以二面角CABD的平面角为∥CAD.又DC∥平面ABD,AD∥平面ABD,所以DC∥AD.依题意tan∥CAD =CDAD = 6. 因为AD =1,所以CD = 6. 设AB =x (x >0),则BD =x 2+1. 依题意∥ABD ∥∥DCB ,所以AB AD =CDBD , 即x 1=6x 2+1,解得x =2,故AB =2,BD =3,BC =BD 2+CD 2=3.以D 为坐标原点,射线DB ,DC 分别为x 轴,y 轴的正半轴,建立如图所示的空间直角坐标系D xyz ,则D (0,0,0), B (3,0,0), C (0,6,0), E (23,26,0), A (33,0,36), 所以DE ―→=(23,26,0),DA ―→=(33,0,36).由(1)知平面BAD 的一个法向量n =(0,1,0). 设平面ADE 的法向量为m =(x ,y ,z ),由⎩⎨⎧m·DE ―→=0,m·DA ―→=0,得⎩⎨⎧32x +62y =0,33x +63z =0.令x =6,得y =-3,z =-3,所以m =(6,-3,-3)为平面ADE 的一个法向量. 所以cos<n ,m>=n ·m |n |·|m |=-12.由图可知二面角B AD E 的平面角为锐角, 所以二面角B AD E 的余弦值为12. 解题策略:1.确定翻折前后变与不变的关系画好翻折前后的平面图形与立体图形,分清翻折前后图形的位置和数量关系的变与不变.一般地,位于“折痕”同侧的点、线、面之间的位置和数量关系不变,而位于“折痕”两侧的点、线、面之间的位置关系会发生变化;对于不变的关系应在平面图形中处理,而对于变化的关系则要在立体图形中解决.2.确定翻折后关键点的位置所谓的关键点,是指翻折过程中运动变化的点.因为这些点的位置移动,会带动与其相关的其他的点、线、面的关系变化,以及其他点、线、面之间位置关系与数量关系的变化.只有分析清楚关键点的准确位置,才能以此为参照点,确定其他点、线、面的位置,进而进行有关的证明与计算.变式练习:1.如图1,在四边形ABCD 中,AD ∥BC ,∥BAD =90°, AB =23,BC =4,AD =6,E 是AD 上的点,AE =13AD , P 为BE 的中点,将∥ABE 沿BE 折起到∥A 1BE 的位置, 使得A 1C =4,如图2.(1)求证:平面A1CP∥平面A1BE;(2)求二面角BA1PD的余弦值.解:(1)证明:如图3,连接AP,PC.∥在四边形ABCD中,AD∥BC,∥BAD=90°,AB=23,BC=4,AD=6,E是AD上的点,AE=13AD,P为BE的中点,∥BE=4,∥ABE=30°,∥EBC=60°,BP=2,∥PC=23,∥BP2+PC2=BC2,∥BP∥PC.∥A1P=AP=2,A1C=4,∥A1P2+PC2=A1C2,∥PC∥A1P.∥BP∩A1P=P,∥PC∥平面A1BE.∥PC∥平面A1CP,∥平面A1CP∥平面A1BE.(2)如图4,以P 为坐标原点,PB 所在直线为x 轴,PC 所在直线为y 轴,过P 作平面BCDE 的垂线为z 轴,建立空间直角坐标系,则A 1(-1,0,3),P (0,0,0),D (-4,23,0), ∥P A 1―→=(-1,0,3), PD ―→=(-4,23,0), 设平面A 1PD 的法向量为m =(x ,y ,z ),则⎩⎨⎧m·P A 1―→=0,m·PD ―→=0,即⎩⎪⎨⎪⎧-x +3z =0,-4x +23y =0,取x =3,得m =(3,2,1).易知平面A 1PB 的一个法向量n =(0,1,0), 则cos 〈m ,n 〉=m ·n |m||n|=22. 由图可知二面角B A 1P D 是钝角, ∥二面角B A 1P D 的余弦值为-22.2.如图1,在高为2的梯形ABCD 中,AB ∥CD ,AB =2,CD =5,过A ,B 分别作AE ∥CD ,BF ∥CD ,垂足分别为E ,F .已知DE =1,将梯形ABCD 沿AE ,BF 同侧折起,得空间几何体ADE BCF ,如图2.(1)若AF ∥BD ,证明:DE ∥BE ;(2)若DE ∥CF ,CD =3,在线段AB 上是否存在点P ,使得CP 与平面ACD 所成角的正弦值为3535?并说明理由.解:(1)证明:由已知得四边形ABFE 是正方形,且边长为2, ∥AF ∥BE .∥AF ∥BD ,BE ∩BD =B ,∥AF ∥平面BDE . 又DE ∥平面BDE ,∥AF ∥DE .∥AE ∥DE ,AE ∩AF =A ,∥DE ∥平面ABFE . 又BE ∥平面ABFE ,∥DE ∥BE .(2)当P 为AB 的中点时满足条件.理由如下: ∥AE ∥DE ,AE ∥EF ,DE ∩EF =E ,∥AE ∥平面DEFC . 如图,过E 作EG ∥EF 交DC 于点G ,可知GE ,EA ,EF 两两垂直,以E 为坐标原点,以EA ―→,EF ―→,EG ―→分别为x 轴,y 轴,z 轴的正方向建立空间直角坐标系,则A (2,0,0),B (2,2,0),C (0,1,3),D (0,21-,23), AC ―→=(-2,1,3),AD ―→=(-2,21-,23).设平面ACD 的法向量为n =(x ,y ,z ),则⎩⎨⎧ n ·AC ―→=0,n ·AD ―→=0,即⎩⎨⎧-2x +y +3z =0,-2x -12y +32z =0,令x =1,得n =(1,-1,3).设AP ―→=λPB ―→,则P (2,λλ+12,0),λ∥(0,+∞),可得CP ―→=(2,λλ+-11,-3).设CP 与平面ACD 所成的角为θ,则sin θ=|cos<CP ,n>|=52)11(7111⨯+-++---λλλλ=3535,解得λ=1或λ=-25(舍去),∥P 为AB 的中点时,满足条件.。
苏科版数学七年级上册5.3《展开与折叠》说课稿
苏科版数学七年级上册5.3《展开与折叠》说课稿一. 教材分析《展开与折叠》是苏科版数学七年级上册第五章第三节的内容。
本节内容是在学生学习了平面几何图形的基础上,引入立体几何图形的一种表现形式——展开图。
通过展开与折叠,使学生更好地理解立体图形和平面图形之间的关系,提高学生的空间想象能力。
二. 学情分析七年级的学生已经掌握了平面几何图形的基本知识,具备一定的空间想象能力。
但立体几何图形对于他们来说还是一个新的领域,需要通过具体的活动和操作来建立立体几何图形和平面几何图形之间的联系。
三. 说教学目标1.知识与技能目标:理解展开与折叠的概念,掌握展开图的基本特点,能将立体几何图形正确地展开成平面图形。
2.过程与方法目标:通过观察、操作、思考,培养学生的空间想象能力,提高学生的动手实践能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作精神,使学生感受到数学与生活的紧密联系。
四. 说教学重难点1.教学重点:展开图的概念及其基本特点。
2.教学难点:如何将立体几何图形正确地展开成平面图形,以及展开图与立体图形的相互转化。
五. 说教学方法与手段1.教学方法:采用问题驱动法、合作交流法、实践操作法等,引导学生主动探究,培养学生的空间想象能力。
2.教学手段:利用多媒体课件、实体模型、展开图卡片等,帮助学生直观地理解展开与折叠的概念。
六. 说教学过程1.导入新课:通过一个简单的谜语,引发学生对展开与折叠的思考,激发学生的学习兴趣。
2.自主探究:学生分组讨论,观察生活中的展开图,总结展开图的特点。
3.教师讲解:讲解展开图的概念及其基本特点,引导学生理解展开图与立体图形之间的关系。
4.实践操作:学生动手操作,尝试将立体几何图形正确地展开成平面图形。
5.合作交流:学生分组展示自己的展开图作品,互相评价,总结经验。
6.巩固提高:出示一些生活中的展开图,让学生判断其是否正确,并提出改进意见。
7.课堂小结:教师引导学生总结本节课的学习内容,巩固知识点。
高考数学专题四立体几何 微专题29 立体几何中的动态问题
√C.若点N到直线BB1与直线DC的距离相等,则点N的轨迹为抛物线 √D.若D1N与AB所成的角为 π3,则点N的轨迹为双曲线
如图所示,对于A, 根据正方体的性质可知,MD⊥平面ABCD, 所以∠MND为MN与平面ABCD所成的角, 所以∠MND=4π,所以 DN=DM=12DD1=12×4=2, 所以点N的轨迹是以D为圆心,2为半径的圆,故A正确;
思维导图
内容索引
典型例题
热点突破
PART ONE
典型例题
考点一 动点的轨迹
典例1 (1)(多选)已知正方体ABCD-A1B1C1D1 的棱长为4,M为DD1的中点,N为四边形ABCD 所在平面上一动点,则下列命题正确的是
√A.若MN与平面ABCD所成的角为 π4,则点N的
轨迹为圆
B.若MN=4,则MN的中点P的轨迹所围成图
当 B 是 AC 的中点时,AB=BC= 6,
此时△SAB为等腰三角形,△ABC为等腰直角三角形,
将△SAB,△ABC沿AB展开至同一个平面,得到如
图2所示的平面图形,
取AB的中点D,连接SC,SD,CD,
则 SD=
22-
262=
210,
所以 sin ∠ABS=SSDB= 410, 所以 cos∠CBS=cos(90°+∠ABS)=-sin∠ABS=- 410,
此时点B与点Q重合,点P与点O1重合,故C正确;
对于D,当点P与点B1,点Q与点A重合时,
AP+PQ+QB1 的值为 3AP=3 12+22=3 5>2 3+ 5,故 D 错误.
考点二 折叠、展开问题
典例2 (多选)如图,在矩形ABCD中,M为BC的中点,将△ABM沿直线 AM翻折成△AB1M,连接B1D,N为B1D的中点,则在翻折过程中,下列 说法正确的是 A.存在某个位置,使得CN⊥AB1
立体形的展开与折叠综合练习题
立体形的展开与折叠综合练习题在几何学中,立体形的展开与折叠是一种重要的技巧和练习。
通过将立体形展开成平面图形,我们可以更好地理解其结构和特点,同时也有助于解决一些与立体形相关的问题。
本文将介绍一些立体形的展开与折叠综合练习题,帮助读者提升立体几何的认知和技能。
练习一:正方体的展开与折叠第一个练习题是关于正方体的展开与折叠。
正方体是一种最简单的立体形,由六个正方形面构成。
将正方体展开成平面图形可以帮助我们更清晰地观察其面、边和顶点的关系。
解答:(在这里插入正方体展开的图片)首先,可以将正方体的底部面沿着边缘剪开,并将其展开成一个正方形。
接下来,将正方体的四个侧面剪开,并展开成四个矩形,这四个矩形与正方形相连,构成了整个正方体的展开图。
通过将这个展开图沿着边缘折叠并粘贴起来,我们就可以重新组装成一个正方体。
练习二:四面体的展开与折叠第二个练习题是关于四面体的展开与折叠。
四面体是一种由四个三角形面构成的立体形,它有一个顶点和四个面上的三个顶点连接而成。
解答:(在这里插入四面体展开的图片)将四面体展开,我们可以观察到其顶点和面的关系。
首先,将四面体的底面剪开,并展开成一个三角形。
接着,将四面体的其他三个面分别剪开,并展开成三个小三角形。
这四个三角形可以连接起来,构成整个四面体的展开图。
通过将展开图折叠并粘贴起来,我们就可以重新组装成一个四面体。
练习三:圆柱体的展开与折叠第三个练习题是关于圆柱体的展开与折叠。
圆柱体是一种由一个圆形底面和一个平行于底面的圆柱面构成的立体形。
解答:(在这里插入圆柱体展开的图片)展开圆柱体的过程比较有趣。
首先,将圆柱体的圆柱面剪开,并展开成一个长方形。
接着,将圆柱体的两个底面分别剪开,并展开成两个圆形。
这个长方形和两个圆形可以连接起来,构成整个圆柱体的展开图。
通过将展开图折叠并粘贴起来,我们就可以重新组装成一个圆柱体。
通过以上三个练习题,我们可以更加深入地理解立体形的展开与折叠。
立体几何中的折叠问题PPT课件
2020/10/13
图5-10
7
易得:D(0,0,0),B(1,0,0),C(0,3,0),A(0,0, 3),E12,23,0,
∴ AE =12,32,-
3, DB =(1,0,0),
1
∴cos< AE , DB >=|A→A→EE|··D|→D→BB|=1× 2
= 22 4
22 22 .
∴
AE
2020/10/13
6
解析:(1)证明:∵折起前 AD 是 BC 边上的高, ∴当△ABD 折起后,AD⊥DC,AD⊥DB. 又 DB∩DC=D,∴AD⊥平面 BDC. ∵AD⊆平面 ABD,∴平面 ABD⊥平面 BDC. (2)由∠BDC=90°及(1)知 DA,DB,DC 两两垂直,不妨设|DB| =1,以 D 为坐标原点,以DB,DC ,DA所在直线为 x,y,z 轴 建立如图 5-10 所示的空间直角坐标系,
与 DB
夹角的余弦值是
22 22 .
2020/10/13
8
(1)确定图形在折起前后的不变性质,如角的大小不 变,线段长度不变,线线关系不变,再由面面垂直的判定定理 进行推理证明.(2)在(1)的基础上确定出三线两两垂直,建立空 间直角坐标系,利用向量的坐标和向量的数量积运算求解.
2020/10/13
2020/10/13
11
小结
折叠的问题通常涉及空间元素的位置关系和 几何量的求解
解答折叠问题的关键在于画好折叠前后的平 面图形与立体图形,并弄清折叠前后哪些发生 了变化,哪些没有发生变化.这些未变化。
2020/10/13
12
谢谢您的指导
THANK YOU FOR YOUR GUIDANCE.
高三一轮复习-立体几何常见问题(带答案)
个性化辅导授课教案学员姓名 : 辅导类型(1对1、小班): 年 级: 辅 导 科 目 : 学 科 教 师 : 课 题课 型 □ 预习课 □ 同步课 □ 复习课 □ 习题课 授课日期及时段年 月 日 时间段教 学 内 容 多面体与球组合问题纵观近几年高考对于组合体的考查,重点放在与球相关的外接与内切问题上.要求学生有较强的空间想象能力和准确的计算能力,才能顺利解答.从实际教学来看,这部分知识是学生掌握最为模糊,看到就头疼的题目.分析原因,除了这类题目的入手确实不易之外,主要是学生没有形成解题的模式和套路,以至于遇到类似的题目便产生畏惧心理.本文就高中阶段出现这类问题加以类型的总结和方法的探讨.一、球与柱体的组合体规则的柱体,如正方体、长方体、正棱柱等能够和球进行充分的组合,以外接和内切两种形态进行结合,通过球的半径和棱柱的棱产生联系,然后考查几何体的体积或者表面积等相关问题. 1.1 球与正方体如图1所示,正方体1111ABCD A B C D -,设正方体的棱长为a ,,,,E F H G 为棱的中点,O 为球的球心.常见组合方式有三类:一是球为正方体的内切球,截面图为正方形EFGH 和其内切圆,则2aOJ r ==;二是与正方体各棱相切的球,截面图为正方形EFGH 和其外接圆,则22GO R a ==;三是球为正方体的外接球,截面图为长方形11ACA C 和其外接圆,则132A O R a '==.通过这三种类型可以发现,解决正方体与球的组合问题,常用工具是截面图,即根据组合的形式找到两个几何体的轴截面,通过两个截面图的位置关系,确定好正方体的棱与球的半径的关系,进而将空间问题转化为平面问题.例 1 棱长为1的正方体1111ABCD A B C D -的8个顶点都在球O 的表面上,E F ,分别是棱1AA ,1DD 的中点,则直线EF 被球O 截得的线段长为( )A .22B .1C .212+D .2解:由题意可知,球为正方体的外接球.平面11AA DD 截面所得圆面的半径12,22AD R ==11EF AA DD ⊂面,∴直线EF 被球O 截得的线段为球的截面圆的直径22R =.【牛刀小试】将棱长为2的正方体木块削成一个体积最大的球,则这个球的表面积为( ) A .2πB .4πC .8πD .16π【答案】B【解析】体积最大的球是其内切球,即球半径为1,所以表面积为ππ4142=⋅=S .1.2 球与长方体长方体各顶点可在一个球面上,故长方体存在外切球.但是不一定存在内切球.设长方体的棱长为,,,a b c 其体对角线为l .当球为长方体的外接球时,截面图为长方体的对角面和其外接圆,和正方体的外接球的道理是一样的,故球的半径222.22l a b c R ++==例 2 在长、宽、高分别为2,2,4的长方体内有一个半径为1的球,任意摆动此长方体,则球经过的空间部分的体积为( ) A.10π3B.4πC.8π3D.7π3【牛刀小试】已知正四棱柱的底边和侧棱长均为32,则该正四棱锥的外接球的表面积为 .1.3 球与正棱柱球与一般的正棱柱的组合体,常以外接形态居多.下面以正三棱柱为例,介绍本类题目的解法构造直角三角形法.设正三棱柱111ABC A B C -的高为,h 底面边长为a ,如图2所示,D 和1D 分别为上下底面的中心.根据几何体的特点,球心必落在高1DD 的中点O ,3,,,23h OD AO R AD a ===借助直角三角形AOD 的勾股定理,可求223()()23hR a =+.例3 正四棱柱1111ABCD A B C D -的各顶点都在半径为R 的球面上,则正四棱柱的侧面积有最 值,为 .【牛刀小试】直三棱柱111ABC A B C -的六个顶点都在球O 的球面上,若1AB BC ==,0120ABC ∠=,123AA =,则球O 的表面积为( )A .4πB .8πC .16πD .24π二、球与锥体的组合体规则的锥体,如正四面体、正棱锥、特殊的一些棱锥等能够和球进行充分的组合,以外接和内切两种形态进行结合,通过球的半径和棱锥的棱和高产生联系,然后考查几何体的体积或者表面积等相关问题.2.1 球与正四面体正四面体作为一个规则的几何体,它既存在外接球,也存在内切球,并且两心合一,利用这点可顺利解决球的半径与正四面体的棱长的关系.如图4,设正四面体S ABC -的棱长为a ,内切球半径为r ,外接球的半径为R ,取AB 的中点为D ,E 为S 在底面的射影,连接,,CD SD SE 为正四面体的高.在截面三角形SDC ,作一个与边SD 和DC 相切,圆心在高SE 上的圆,即为内切球的截面.因为正四面体本身的对称性可知,外接球和内切球的球心同为O .此时,,CO OS R OE r ===,23,,33SE a CE a ==则有2222233a R r a R r CE +=-=,=,解得:66,.412R a r a ==这个解法是通过利用两心合一的思路,建立含有两个球的半径的等量关系进行求解.同时我们可以发现,球心O 为正四面体高的四等分点.如果我们牢记这些数量关系,可为解题带来极大的方便.2.2 球与三条侧棱互相垂直的三棱锥球与三条侧棱互相垂直的三棱锥组合问题,主要是体现在球为三棱锥的外接球.解决的基本方法是补形法,即把三棱锥补形成正方体或者长方体.常见两种形式:一是三棱锥的三条侧棱互相垂直并且相等,则可以补形为一个正方体,它的外接球的球心就是三棱锥的外接球的球心.如图5,三棱锥111A AB D -的外接球的球心和正方体1111ABCD A B C D -的外接球的球心重合.设1AA a =,则32R a =.二是如果三棱锥的三条侧棱互相垂直并且不相等,则可以补形为一个长方体,它的外接球的球心就是三棱锥的外接球的球心.2222244a b c l R ++==(l 为长方体的体对角线长). CB ADSOE 图4例5 在正三棱锥S ABC -中,M N 、分别是棱SC BC 、的中点,且AM MN ⊥,若侧棱23SA =,则正三棱锥S ABC -外接球的表面积是 .【牛刀小试】一个几何体的三视图如图所示,其中主视图和左视图是腰长为1的两个全等的等腰直角三角形,则该几何体的外接球的表面积为( )A .12πB .43πC .3πD .123π2.3 球与正棱锥球与正棱锥的组合,常见的有两类,一是球为三棱锥的外接球,此时三棱锥的各个顶点在球面上,根据截面图的特点,可以构造直角三角形进行求解.二是球为正棱锥的内切球,例如正三棱锥的内切球,球与正三棱锥四个面相切,球心到四个面的距离相等,都为球半径R .这样求球的半径可转化为球球心到三棱锥面的距离,故可采用等体积法解决,即四个小三棱锥的体积和为正三棱锥的体积.例6 在三棱锥P -ABC 中,PA =PB=PC=3,侧棱PA 与底面ABC 所成的角为60°,则该三棱锥外接球的体积为( ) A .π B.3π C. 4π D.43π【牛刀小试】已知正三棱锥P -ABC ,点P ,A ,B ,C 都在半径为3的球面上,若PA,PB,PC 两两互相垂直,则球心到截面ABC 的距离为____________.2.4 球与特殊的棱锥球与一些特殊的棱锥进行组合,一定要抓住棱锥的几何性质,可综合利用截面法、补形法等进行求解.例如,四个面都是直角三角形的三棱锥,可利用直角三角形斜边中点几何特征,巧定球心位置.如图8,三棱锥S ABC -,满足,,SA ABC AB BC ⊥⊥面取SC 的中点为O ,由直角三角形的性质可得:,OA OS OB OC ===所以O 点为三棱锥S ABC -的外接球的球心,则2SCR =. 例7 矩形ABCD 中,4,3,AB BC ==沿AC 将矩形ABCD 折成一个直二面角B ACD --,则四面体ABCD 的外接球的体积是( )A.π12125 B.π9125 C.π6125 D.π3125解:由题意分析可知,四面体ABCD 的外接球的球心落在AC 的中点,此时满足,OA OD OB OC ===522AC R ∴==,343V R π=1256π=. 五、与三视图相结合的组合体问题本类问题一般首先给出三视图,然后考查其直观图的相关的组合体问题.解答的一般思路是根据三视图还CBASO原几何体,根据几何体的特征选择以上介绍的方法进行求解.例9 【河北省唐山市2014-2015学年度高三年级摸底考试】某几何体的三视图如图所示,则该几何体的外 接球的球面面积为( ) A .5πB .12πC .20πD .8π【牛刀小试】若一个底面是正三角形的三棱柱的正视图如图所示,其顶点都在一个球面上,则该球的表面积为( )A.163 πB.193 πC.1912 πD.43π综合上面的五种类型,解决与球的外切问题主要是指球外切多面体与旋转体,解答时首先要找准切点,通过作截面来解决.如果外切的是多面体,则作截面时主要抓住多面体过球心的对角面来作;把一个多面体的几个顶点放在球面上即为球的内接问题.解决这类问题的关键是抓住内接的特点,即球心到多面体的顶点的距离等于球的半径.发挥好空间想象力,借助于数形结合进行转化,问题即可得解.如果是一些特殊的几何体,如正方体、正四面体等可以借助结论直接求解,此时结论的记忆必须准确.问题二:立体几何中的折叠问题立体几何中的折叠问题主要包含两大问题:平面图形的折叠与几何体的表面展开。
解密初中数学解题技巧之立体形的展开与折叠
解密初中数学解题技巧之立体形的展开与折叠数学是一门既有逻辑又有创造性的学科,其中立体几何是初中数学的重要内容之一。
在立体几何中,展开与折叠是解题的重要技巧之一。
本文将围绕这一主题展开。
一、展开的概念及方法在解决立体几何问题时,有时需要将立体形体展开成平面图形来进行分析与计算。
展开就是将一个立体形体在平面上按照一定规则展开,使之成为一个平面图形的过程。
展开后,我们可以更好地观察各个面的结构和关系,进而解决问题。
展开的方法主要有以下几种:1. 表面展开法:通过边沿的共边共点将立体形体展开。
2. 断口展开法:在立体形体上选择适当位置,然后将其切割成若干个部分,使得每个部分能够展开。
3. 考虑对称性:对于具有对称性的立体形体,可以利用对称性将其展开。
二、折叠的概念及技巧与展开相反,折叠是将一个平面图形折叠成一个立体形体的过程。
折叠可以将平面上的关系转化为空间中的关系,从而解决立体几何问题。
折叠的技巧主要有以下几点:1. 边线对折:将图形的边线按照一定关系对折,可以得到立体形体的边。
2. 角点对折:将图形的角点按照一定关系对折,可以得到立体形体的顶点。
3. 面对折:将图形的面按照一定关系对折,可以得到立体形体的面。
三、展开与折叠的应用举例为了更好地理解展开与折叠的技巧,我们来看几个具体的例子。
例1:展开与折叠的应用 - 正方体展开为平面图形假设有一个边长为a的正方体,我们将其展开为平面图形。
首先,我们将正方体的各个面按照一定规则展开,最后将展开后的各个面的边线进行连接,就可以得到一个包含正方形的平面图形。
例2:展开与折叠的应用 - 圆锥展开为扇形考虑一个圆锥,我们可以将其展开为扇形。
将圆锥绕着底面上的一条边旋转,就可以得到一个扇形。
在解题时,我们可以利用扇形的性质来解决问题。
例3:展开与折叠的应用 - 矩形展开为长方体将一个矩形的两个相对边折叠,使其形成一条立体的边,然后将其余两边折叠,可以得到一个长方体。
立体几何中的折叠与展开问题
立体几何中的折叠与展开问题魏文 张亮 徐婷 江涛 张忠强 马吉 戴尚超一、折叠与展开中的垂直问题例1. 将矩形ABCD 沿对角线BD 折起来,使点C 的新位置C '在面ABC 上的射影E 恰在AB 上.求证:C B C A '⊥'分析:欲证C B C A '⊥',只须证C B '与C A '所在平面D C A '垂直;而要证C B '⊥平面D C A ',只须证C B '⊥D C '且C B '⊥AD .因此,如何利用三垂线定理证明线线垂直就成为关键步骤了.证明:由题意,C B '⊥D C ',又斜线C B '在平面ABCD 上的射影是BA , ∵ BA ⊥AD ,由三垂线定理,得AD B C ⊥',D DA D C =' .∴ C B '⊥平面AD C ',而A C '⊂平面AD C '∴ C B '⊥C A '例2.如图在ΔABC 中, AD ⊥BC , ED=2AE , 过E 作FG ∥BC , 且将ΔAFG 沿FG 折起,使∠A 'ED=60°,求证:A 'E ⊥平面A 'BC解析:弄清折叠前后,图形中各元素之间的数量关系和位置关系。
解: ∵FG ∥BC ,AD ⊥BC∴A 'E ⊥FG∴A 'E ⊥BC设A 'E=a ,则ED=2a由余弦定理得:A 'D 2=A 'E 2+ED 2-2•A 'E •EDcos60°=3a2 A B C D F E G A'∴ED 2=A 'D 2+A 'E2∴A 'D ⊥A 'E ∴A 'E ⊥平面A 'BC例3. 如图:D 、E 是是等腰直角三角形ABC 中斜边BC 的两个三等分点,沿AD 和AE 将△ABD 和△ACE 折起,使AB 和AC 重合,求证:平面ABD ⊥平面ABE.解析:过D 作DF ⊥AB 交AB 于F ,连结EF ,计算DF 、EF 的长,又DE 为已知,三边长满足勾股定理,∴∠DFE =090;二、折叠与展开中的空间角问题例4. 矩形ABCD ,AB=3,BC=4,沿对角线BD 把△ABD 折起,使点A 在平面BCD 上的射影A′落在BC 上,求二面角A —BC-—C 的大小。
立体几何中的折叠与展开问题
立体几何中的折叠与展开问题知识点梳理:1.解决折叠问题最重要的就是对比折叠前后的图形,找到哪些线、面的位置关系和数学量没有发生变化,哪些发生了变化,在证明和求解的过程中恰当地加以利用.解决此类问题的步骤:考向导航2.展开问题是折叠问题的逆向思维、逆过程,是将空间问题转化为平面问题来处理.一般地,涉及到多面体表面的问题,解题时不妨将它展开成平面图形试一试.目录类型一折叠问题 (1)类型二展开问题 (3)类型一折叠问题【例1】如图甲,在四边形ABCD中,23AD=2∆是边长为4的正三角形,CD=,ABC把ABC∆的位置,使得平面PAC⊥平面ACD;如图乙所示,点O、M、∆沿AC折起到PACN分别为棱AC、PA、AD的中点.(1)求证:平面PAD⊥平面PON;(2)求三棱锥M ANO-的体积.【例2】如图,在平面图形PABCD 中,ABCD 为菱形,60DAB ∠=︒,2PA PD ==,M 为CD 的中点,将PAD ∆沿直线AD 向上折起,使BD PM ⊥.(1)求证:平面PAD ⊥平面ABCD ;(2)若直线PM 与平面ABCD 所成的角为30︒,求四棱锥P ABCD -的体积.【变式1-1】如图甲的平面五边形PABCD 中,PD PA =,5AC CD BD ===,1AB =,2AD =,PD PA ⊥,现将图甲中的三角形PAD 沿AD 边折起,使平面PAD ⊥平面ABCD 得图乙的四棱锥P ABCD -.在图乙中(1)求证:PD ⊥平面PAB ;(2)求二面角A PB C --的大小;(3)在棱PA 上是否存在点M 使得BM 与平面PCB 所成的角的正弦值为13?并说明理由.类型二展开问题【例1】如图,已知正三棱柱111ABC A B C -的底面边长为2cm ,高为5cm ,则一质点自点A 出发,沿着三棱柱的侧面绕行两周到达点1A 的最短路线的长为()A .5cm B .12cm C .13cm D .25cm【例2】如图,正三棱锥S ABC -中,40BSC ∠=︒,2SB =,一质点自点B 出发,沿着三棱锥的侧面绕行一周回到点B 的最短路线的长为()A .2B .3C .3D .33【变式2-1】如图,在直三棱柱111ABC A B C -中,1AB =,2BC =,13BB =,90ABC ∠=︒,点D 为侧棱1BB 上的动点.(1)求此直三棱柱111ABC A B C -的表面积;(2)当1AD DC +最小时,三棱锥1D ABC -的体积.巩固训练1.把如图的平面图形分别沿AB 、BC 、AC 翻折,已知1D 、2D 、3D 三点始终可以重合于点D 得到三棱锥D ABC -,那么当该三棱锥体积最大时,其外接球的表面积为.2、如图,AB 是圆O 的直径,点C 是圆O 上异于A ,B 的点,PO 垂直于圆O 所在的平面,且1PO OB ==,(Ⅰ)若D 为线段AC 的中点,求证:AC ⊥平面PDO ;(Ⅱ)求三棱锥P ABC -体积的最大值;(Ⅲ)若2BC =E 在线段PB 上,求CE OE +的最小值.3.请从下面三个条件中任选一个,补充在下面的横线上,并作答.①()0BA PA PD ⋅+= ;②7PC =;③点P 在平面ABCD 的射影在直线AD 上.如图,平面五边形PABCD 中,PAD ∆是边长为2的等边三角形,//AD BC ,22AB BC ==,AB BC ⊥,将PAD ∆沿AD 翻折成四棱锥P ABCD -,E 是棱PD 上的动点(端点除外),F ,M 分别是AB ,CE 的中点,且____.(1)求证://FM 平面PAD ;(2)当EF 与平面PAD 所成角最大时,求平面ACE 与平面ABCD 所成的锐二面角的余弦值.4.如图,在矩形ABCD 中,2,23AB AD ==,ABPCDFEE ,F 分别为AD ,BC 的中点,以DF 为折痕把CDF ∆折起,点C 到达点P 的位置,使1PE =.(1)证明:平面PEF ⊥平面ABFD ;(2)求二面角P DF E --的正弦值.参考答案类型一折叠问题【例1】【分析】(1)证明PO ⊥平面ACD 可得PO AD ⊥,根据中位线定理和勾股定理可证AD ON ⊥,故而AD ⊥平面PON ,于是平面PAD ⊥平面PON ;(2)分别计算AON ∆的面积和M 到平面ACD 的距离,代入体积公式计算.【解答】(1)证明:PA PC = ,O 是AC 的中点,PO AC ∴⊥,又平面PAC ⊥平面ACD ,平面PAC ⋂平面ACD AC =,PO ∴⊥平面ACD ,又AD ⊂平面ACD ,PO AD ∴⊥,23AD = ,2CD =,4AC =,222AD CD AC ∴+=,AD CD ∴⊥,ON 是ACD ∆的中位线,//ON CD ∴,AD ON ∴⊥,又ON PO O = ,AD ∴⊥平面PON ,又AD ⊂平面PAD ,∴平面PAD ⊥平面PON .(2)PAC ∆ 是边长为4的等边三角形,3PO ∴=M ∴到平面ACD 的距离132d PO ==,ON 是ACD ∆的中位线,1113324422AON ACD S S ∆∆∴==⨯=,11131332322M ANO AON V S PO -∆∴==⨯⨯ .【点评】本题考查了面面垂直的判定,棱锥的体积计算,属于中档题.【例2】【分析】(1)取AD 中点E ,连接PE ,EM ,AC ,可得PE AD ⊥,然后证明BD PE ⊥,可得PE ⊥平面ABCD ,进一步得到平面PAD ⊥平面ABCD ;(2)由(1)知,PE ⊥平面ABCD ,连接EM ,可得30PME ∠=︒,求解三角形可得1PE =,再求出四边形ABCD 的面积,代入棱锥体积公式求解.【解答】(1)证明:取AD 中点E ,连接PE ,EM ,AC ,PA PD = ,得PE AD ⊥,由底面ABCD 为菱形,得BD AC ⊥,E ,M 分别为AD ,CD 的中点,//EM AC ∴,则BD EM ⊥,又BD PM ⊥,BD ∴⊥平面PEM ,则BD PE ⊥,PE ∴⊥平面ABCD ,而PE ⊂平面PAD ,∴平面PAD ⊥平面ABCD ;(2)解:由(1)知,PE ⊥平面ABCD ,连接EM ,可得30PME ∠=︒,设AB a =,则224a PE =-,322AC EM ==,故tan tan 30PE PME EM ∠=︒=,即2234332a a -=,解得2a =.故1PE =,3ABCD S =四边形.故23133P ABCD ABCD V S PE -=⋅⋅=四边形.【点评】本题考查平面与平面垂直的判定,考查空间想象能力与思维能力,训练了多面体体积的求法,是中档题.【变式1-1】【分析】(1)推导出AB AD ⊥,AB ⊥平面PAD ,AB PD ⊥,PD PA ⊥,由此能证明PD ⊥平面PAB .(2)取AD 的中点O ,连结OP ,OC ,由AC CD =知OC OA ⊥,以O 为坐标原点,OC 所在的直线为x 轴,OA 所在的直线为y 轴建立空间直角坐标系,利用向量法能求出二面角A PB C --的大小.(3)假设点M 存在,其坐标为(x ,y ,)z ,BM 与平面PBC 所成的角为α,则存在(0,1)λ∈,有AM AP λ= ,利用向量法能求出在棱PA 上满足题意的点M 存在.【解答】证明:(1)1AB = ,2AD =,5BD =222AB AD BD ∴+=,AB AD ∴⊥,平面PAD ⊥平面ABCD ,平面PAD ⋂平面ABCD AD =,AB ∴⊥平面PAD ,又PD ⊂ 平面PAD ,AB PD ∴⊥,又PD PA ⊥ ,PA AB A= PD ∴⊥平面PAB .解:(2)取AD 的中点O ,连结OP ,OC ,由平面PAD ⊥平面ABCD 知PO ⊥平面ABCD ,由AC CD =知OC OA ⊥,以O 为坐标原点,OC 所在的直线为x 轴,OA 所在的直线为y 轴建立空间直角坐标系如图示,则(2C ,0,0),(0P ,0,1),(0D ,1-,0),(0A ,1,0),(1B ,1,0)∴(1,1,1)PB =- ,(2,0,1)PC =- ,(0,1,1)PD =-- ,设平面PBC 的法向量为(,,)m a b c = ,由00m PB m PC ⎧⋅=⎪⎨⋅=⎪⎩ ,得020a b c a c +-=⎧⎨-=⎩,令1a =得1b =,2c =,∴(1,1,2)m = ,PD ⊥ 平面PAB ,∴(0DP = ,1,1)是平面PAB 的法向量,设二面角A PB C --大小为θ,则123cos 2||||62m DP m DP θ⋅==⋅⋅ ,0θπ ,∴二面角A PB C --的大小6πθ=.(3)假设点M 存在,其坐标为(x ,y ,)z ,BM 与平面PBC 所成的角为α,则存在(0,1)λ∈,有AM AP λ= ,即(x ,1y -,)(0z λ=,1-,1),(0M ,1λ-,)λ,则(1,,)BM λλ=-- ,从而211sin ||3||||612m BM m BM αλ⋅==⋅⋅+ ,[0λ∈ ,1],103λ∴=-,∴在棱PA 上满足题意的点M 存在.【点评】本题考查线面垂直的证明,考查二面角的求法,考查满足线面角的正弦值点是否存在的判断与求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.类型二展开问题【例1】【分析】将三棱柱展开两次如图,不难发现最短距离是六个矩形对角线的连线,正好相当于绕三棱柱转两次的最短路径.【解答】解:将正三棱柱111ABC A B C -沿侧棱展开,再拼接一次,其侧面展开图如图所示,在展开图中,最短距离是六个矩形对角线的连线的长度,也即为三棱柱的侧面上所求距离的最小值.由已知求得矩形的长等于6212⨯=,宽等于5,由勾股定理2212513d =+=.故选:C .【点评】本题考查棱柱的结构特征,考查空间想象能力和思维能力,考查数学转化思想方法,是中档题.【例2】【分析】画出解答几何体的部分侧面展开图,利用三角形的边的关系容易解得边长的值,从而得出其中的最小值.【解答】解:将三棱锥S ABC -沿侧棱SB 展开,其侧面展开图如图所示,由图中红色路线可得结论.根据余弦定理得,沿着三棱锥的侧面绕行一周回到点B 的最短路线的长为:14422232++⨯⨯⨯=故选:C .【点评】本题考查多面体和旋转体表面上的最短距离问题,空间想象能力,几何体的展开与折叠,是基础题.【变式2-1】【分析】(1)直三棱柱111ABC A B C -的表面积:1111112ABC ABB A BCC B ACC A S S S S S ∆=+++矩形矩形矩形.(2)将直三棱柱111ABC A B C -展开成矩形11ACC A ,如图,连结1AC ,交1BB 于D ,此时1AD DC +最小,当1AD DC +最小时,1BD =,此时三棱锥1D ABC -的体积:11D ABC C ABD V V --=,由此能求出结果.【解答】解:(1) 在直三棱柱111ABC A B C -中,1AB =,2BC =,13BB =,90ABC ∠=︒,∴此直三棱柱111ABC A B C -的表面积:1111112ABC ABB A BCC B ACC A S S S S S ∆=+++矩形矩形矩形121213231432=⨯⨯⨯+⨯+⨯++1135=+(2)将直三棱柱111ABC A B C -展开成矩形11ACC A ,如图,连结1AC ,交1BB 于D ,此时1AD DC +最小,1AB = ,2BC =,13BB =,90ABC ∠=︒,点D 为侧棱1BB 上的动点,∴当1AD DC +最小时,1BD =,此时三棱锥1D ABC -的体积:11D ABC C ABDV V --=1113ABD S B C ∆=⨯111132AB BD B C =⨯⨯⨯⨯1111232=⨯⨯⨯⨯13=.∴当1AD DC +最小时,三棱锥1D ABC -的体积为13.【点评】本题考查几何体的表面积、体积的求法,考查空间中线线、线面、面面的位置关系等基础知识,考查推理论证能力、运算求解能力、空间思维能力,考查数数结合思想、函数与方程思想、化归与转化思想,是中档题.巩固练习1.【分析】在三棱锥D ABC -中,当且仅当DA ⊥平面ABC 时,三棱锥的体积达到最大,然后根据三棱锥的性质求出外接球的半径,进而可以求解.【解答】解:在三棱锥D ABC -中,当且仅当DA ⊥平面ABC 时,三棱锥的体积达到最大,此时,设外接球的半径为R ,球心为O ,球心O 到平面ABC 的投影点为F ,则有2222R OA OF AF ==+,又1522OF AD ==,1522AF AC ==,所以2225525()()222R =+=,所以球的表面积为22544502S R πππ==⨯=,故答案为:50π.【点评】本题考查了三棱锥的外接球的表面积问题,考查了学生的空间想象能力以及运算能力,属于中档题.2、【分析】(Ⅰ)由题意可证AC DO ⊥,又PO AC ⊥,即可证明AC ⊥平面PDO .(Ⅱ)当CO AB ⊥时,C 到AB 的距离最大且最大值为1,又2AB =,即可求ABC ∆面积的最大值,又三棱锥P ABC -的高1PO =,即可求得三棱锥P ABC -体积的最大值.(Ⅲ)可求22112PB PC +==,即有PB PC BC ==,由OP OB =,C P C B '=',可证E 为PB 中点,从而可求2626OC OE EC +'=+'=,从而得解.【解答】解:(Ⅰ)在AOC ∆中,因为OA OC =,D 为AC 的中点,所以AC DO ⊥,又PO 垂直于圆O 所在的平面,所以PO AC ⊥,因为DO PO O = ,所以AC ⊥平面PDO .(Ⅱ)因为点C 在圆O 上,所以当CO AB ⊥时,C 到AB 的距离最大,且最大值为1,又2AB =,所以ABC ∆面积的最大值为12112⨯⨯=,又因为三棱锥P ABC -的高1PO =,故三棱锥P ABC -体积的最大值为:111133⨯⨯=.(Ⅲ)在POB ∆中,1PO OB ==,90POB ∠=︒,所以22112PB =+=同理2PC =,所以PB PC BC ==,在三棱锥P ABC -中,将侧面BCP 绕PB 旋转至平面BC P ',使之与平面ABP 共面,如图所示,当O ,E ,C '共线时,CE OE +取得最小值,又因为OP OB =,C P C B '=',所以OC '垂直平分PB ,即E 为PB 中点.从而2626222OC OE EC '=+'=+=.亦即CE OE +的最小值为:262.【点评】本题主要考查了直线与直线、直线与平面的位置关系、锥体的体积的求法等基础知识,考查了空间想象能力、推理论证能力、运算求解能力,考查了数形结合思想、化归与转化思想,属于中档题.3.【分析】(1)取CD 中点为G ,连接MG ,FG ,//GM PD ,//FG AD ,进而可证平面//MFG 平面PAD ,可证//FM 平面PAD ;(2)根据条件选择①:由已知可证BA ⊥平面PAD ,PO ⊥平面ABCD ,以点O 为坐标原点,以OC 为x 轴,OD 为y 轴,OP 为z 轴,建立如图所示的空间直角坐标系,利用向量法平面ACE 与平面PAD 所成的锐二面角的余弦值.同理选择②,③可求平面ACE 与平面ABCD 所成的锐二面角的余弦值.【解答】(1)证明:取CD 中点为G ,连接MG ,FG ,则MG ,FG 分别为三角形CDE ,梯形ABCD 的中位线,//GM PD ∴,//FG AD ,MG FG G = ,∴平面//MFG 平面PAD ,FM ⊂ 平面MGF ,//FM ∴平面PAD ,(2)解:取AD 为O ,连接PO ,FG ,EG .选择①:因为()0BA PA PD ⋅+= ,2PA PD PO += ,所以0BA PO ⋅= ,即BA PO ⊥.又BA AD ⊥,AD PO O = ,所以BA ⊥平面PAD .连接AE ,EF ,所以AEF ∠即为EF 与平面PAD 所成的角.因为1tan AF AEF AE AE∠==,所以当AE 最小时,AEF ∠最大,所以当AE PD ⊥,即E 为PD 的中点,AE 最小.下面求二面角余弦值法一:BA ⊂ 平面ABCD ,∴平面ABCD ⊥平面PAD ,平面ABCD ⊥平面PAD ,平面ABCD ⋂平面PAD AD =,PO AD ⊥ ,PO ∴⊥平面ABCD ,以点O 为坐标原点,以OC 为x 轴,OD 为y 轴,OP 为z 轴,建立如图所示的空间直角坐标系,则(0A ,1-,0),1(0,2E ,(2C ,0,0).所以3(0,2AE = ,(2,1,0)AC = .设平面CAE 的法向量为111(,,)m x y z =,则111130,220y x y ⎧+=⎪⎨⎪+=⎩,令1z =,得1(,2m =- .由题意可知:平面ABCD 的法向量为(0,0,1)n = ,所以cos ,||||17m n m n m n ⋅〈〉==⋅ ,所以平面ACE 与平面PAD 所成的锐二面角的余弦值为25117.法二:在平面PAD 内,作ER AD ⊥,垂足为R ,则ER ⊥平面ABCD ,过R 作RK AC ⊥,连接EK ,由三垂线定理及逆定理知EKR ∠为平面ACE 与平面ABCD 所成的锐二面角的平面角,在EKR RT ∆中,易得2ER =,RK =,则EK =所以251cos 17RK EKR EK ∠==,所以平面ACE 与平面PAD.选择②:连接OC ,则2OC AB ==,OP =,因为PC =,222PC OP OC =+,所以BA PO ⊥.又BA AD ⊥,AD PO O = ,所以BA ⊥平面PAD .连接AE ,EF ,所以AEF ∠即为EF 与平面PAD 所成的角.因为1tan AF AEF AE AE∠==,所以当AE 最小时,AEF ∠最大,所以当AE PD ⊥,即E 为PD 的中点,AE 最小.下面求二面角余弦值,法一:BA ⊂ 平面ABCD ,∴平面ABCD ⊥平面PAD ,平面ABCD ⊥平面PAD ,平面ABCD ⋂平面PAD AD =,PO AD ⊥ ,PO ∴⊥平面ABCD ,以点O 为坐标原点,以OC 为x 轴,OD 为y 轴,OP 为z 轴,建立如图所示的空间直角坐标系,于是(0A ,1-,0),1(0,2E ,(2C ,0,0).所以3(0,2AE = ,(2,1,0)AC = .设平面CAE 的法向量为111(,,)m x y z = ,则111130,220y x y ⎧+=⎪⎨⎪+=⎩,令1z =,得1(,2m =- .由题意可知:平面ABCD 的法向量为(0,0,1)n = ,所以cos ,||||m n m n m n ⋅〈〉==⋅ ,所以平面ACE 与平面PAD.法二:在平面PAD 内,作ER AD ⊥,垂足为R ,则ER ⊥平面ABCD ,过R 作RK AC ⊥,连接EK ,由三垂线定理及逆定理知EKR ∠为平面ACE 与平面ABCD 所成的锐二面角的平面角,在EKR RT ∆中,易得ER =RK =,则EK =所以cos 17RK EKR EK ∠==,选择③:因为点P 在平面ABCD 的射影在直线AD 上,所以平面PAD ⊥平面ABCD .因为平面PAD ⋂平面ABCD CD =,OP ⊂平面PAD ,AD PO ⊥,所以OP ⊥平面ABCD ,所以BA PO ⊥.又BA AD ⊥,AD PO O = ,所以BA ⊥平面PAD .连接AE ,EF ,所以AEF ∠即为EF 与平面PAD 所成的角.因为1tan AF AEF AE AE∠==,所以当AE 最小时,AEF ∠最大,所以当AE PD ⊥,即E 为PD 中点,AE 最小.下面求二面角余弦值,法一:BA ⊂ 平面ABCD ⊥,∴平面ABCD ⊥平面PAD ,平面ABCD ⋂平面PAD ,平面ABCD ⋂平面PAD AD =,PO AD ⊥ ,PO ∴⊥平面ABCD ,以点O 为坐标原点,以OC 为x 轴,OD 为y 轴,OP 为z 轴,建立如图所示的空间直角坐标系,于是(0A ,1-,0),1(0,2E ,(2C ,0,0).所以3(0,2AE = ,(2,1,0)AC = .设平面CAE 的法向量为111(,,)m x y z = ,则1111330,2220y z x y ⎧+=⎪⎨⎪+=⎩,令1z =,得1(,2m =- .由题意可知:平面ABCD 的法向量为(0,0,1)n = ,所以cos ,||||m n m n m n ⋅〈〉==⋅ ,所以平面ACE 与平面PAD所成的锐二面角的余弦值为17.法二:在平面PAD 内,作ER AD ⊥,垂足为R ,则ER ⊥平面ABCD ,过R 作RK AC ⊥,连接EK ,由三垂线定理及逆定理知EKR ∠为平面ACE 与平面ABCD 所成的锐二面角的平面角,在EKR RT ∆中,易得ER =RK =,则EK =所以cos 17RK EKR EK ∠==,【点评】本题考查线面平行的证明,以及面面角的求法,属中档题.4.【分析】(1)推导出//EF AB 且3DE =,AD EF ⊥,DE PE ⊥,AD PE ⊥,由此能证明AD ⊥平面PEF ,从而平面PEF ⊥平面ABFD .(2)过点P 作PH EF ⊥交EF 于H ,由平面垂直性质定理得PH ⊥平面ABFD ,过点P 作PO DF ⊥交DF 于O ,连结OH ,则OH DF ⊥,从而POH ∠为二面角P DF E --的平面角,由此能求出二面角P DF E --的正弦值.【解答】证明:(1)E 、F 分别为AD ,BC 的中点,//EF AB ∴且3DE =,在矩形ABCD 中,AD AB ⊥,AD EF ∴⊥,由翻折的不变性,2,3PD PF CF DE ===,7DF =又1PE =,有222PD PE DE =+,DE PE ∴⊥,即AD PE ⊥,又PE EF E = ,PE ,EF ⊂平面PEF ,AD ∴⊥平面PEF ,AD ⊂ 平面ABFD ,∴平面PEF ⊥平面ABFD .解:(2)过点P 作PH EF ⊥交EF 于H ,由平面垂直性质定理得PH ⊥平面ABFD ,过点P 作PO DF ⊥交DF 于O ,连结OH ,则OH DF ⊥,POH ∴∠为二面角P DF E --的平面角.222PE PF EF += ,90EPF ∴∠=︒,由等面积法求得322127PH PO ==.在直角POH ∆中,7sin 4PH POH PO ∠==,即二面角P DF E --的正弦值为74.【点评】本题考查面面垂直的证明,考查二面角的正弦值的求法,考查运算求解能力,考查函数与方程思想,考查化归与转化思想,是中档题.。
高中数学立体几何动点和折叠问题-含答案
立体几何折叠动点问题1.(2020•湖南模拟)在棱长为6的正方体1111ABCD A B C D -,中,M 是BC 的中点,点P 是正方体的表面11DCC D (包括边界)上的动点,且满足APD MPC ∠=∠,则三棱锥P BCD -体积的最大值是( )A .B .36C .24D .2.(2020•德阳模拟)ABC ∆是边长为E ,F 分别为AB ,AC 的中点,沿EF 把OAEF 折起,使点A 翻折到点P 的位置,连接PB 、PC ,当四棱锥P BCFE -的外接球的表面积最小时,四棱锥P BCFE -的体积为( )A B C D3.(2020•德阳模拟)ABC ∆是边长为的等边三角形,E 、F 分别在线段AB 、AC 上滑动,//EF BC ,沿EF 把AEF ∆折起,使点A 翻折到点P 的位置,连接PB 、PC ,则四棱锥P BCFE -的体积的最大值为()A .BC .3D .24.(2020春•江西月考)已知三棱锥P ABC -满足PA ⊥底面ABC ,在ABC ∆中,6AB =,8AC =,AB AC ⊥,D 是线段AC 上一点,且3AD DC =,球O 为三棱锥P ABC -的外接球,过点D 作球O 的截面,若所得截面圆的面积的最小值与最大值之和为44π,则球O 的表面积为( ) A .72π B .86π C .112π D .128π5.(2020春•沙坪坝区校级期中)已知A ,B ,C ,D 四点均在半径为(R R 为常数)的球O 的球面上运动,且AB AC =,AB AC ⊥,AD BC ⊥,若四面体ABCD 的体积的最大值为16,则球O 的表面积为( ) A .32π B .2π C .94π D .83π6.(2020春•五华区校级月考)已知A ,B ,C 是球O 的球面上的三点,2AB =,AC =60ABC ∠=︒,且三棱锥O ABC -,则球O 的体积为( )A .24πB .48πC .D .7.(2020•东莞市模拟)已知三棱柱111ABC A B C -四边形11A ACC 与11B BCC 为两个全等的矩形,M 是11A B 的中点,且11112C M A B =,则三棱柱111ABC A B C -体积的最大值为( ) A .12B .16C .4D .438.(2020•江西模拟)四棱柱1111ABCD A B C D -中,底面四边形ABCD 是菱形,120ADC ∠=︒,连接AC ,BD 交于点O ,1A O ⊥平面ABCD ,14AO BD ==,点C '与点C 关于平面1BC D 对称,则三棱锥C ABD '-的体积为( )A .B .C .D .9.(2020•浙江模拟)在长方体1111ABCD A B C D -中,底面ABCD 是边长为4的正方形,侧棱1(4)AA t t =>,点E 是BC 的中点,点P 是侧面11ABB A 内的动点(包括四条边上的点),且满足tan 4tan APD EPB ∠=∠,则四棱锥P ABED -的体积的最大值是( )A B . C D10.(2019秋•包河区校级期末)矩形ABCD 中,2BC =,沿对角线AC 将三角形ADC 折起,得到四面体A BCD -,四面体A BCD -外接球表面积为16π,当四面体A BCD -的体积取最大值时,四面体A BCD -的表面积为( )A .B .C .D .11.(2020•山东模拟)如图,正方体1111ABCD A B C D -的棱长为1,线段11A C 上有两个动点E ,F ,且12EF =;则下列结论错误的是( )A .BD CE ⊥B .//EF 平面ABCDC .三棱锥E FBC -的体积为定值D .BEF ∆的面积与CEF ∆的面积相等12.(2020•海淀区校级模拟)在边长为1的正方体中,E ,F ,G ,H 分别为11A B ,11C D ,AB ,CD 的中点,点P 从G 出发,沿折线GBCH 匀速运动,点Q 从H 出发,沿折线HDAG 匀速运动,且点P 与点Q 运动的速度相等,记E ,F ,P ,Q 四点为顶点的三棱锥的体积为V ,点P 运动的路程为x ,在02x 剟时,V 与x 的图象应为( )A .B .C .D .13.(2019秋•襄城区校级月考)如图,在四棱锥P ABCD -中,顶点P 在底面的投影O 恰为正方形ABCD 的中心且AB =设点M ,N 分别为线段PD ,PO 上的动点,已知当AN MN +取得最小值时,动点M 恰为PD 的中点,则该四棱锥的外接球的表面积为( )A .643π B .163π C .253π D .649π14.(2019春•昆明期末)在平行四边形ABCD 中,3BAD π∠=,点E 在AB 边上,112AD AE AB ===,将ADE ∆沿直线DE 折起成△A DE ',F 为A C '的中点,则下列结论正确的是( )A .直线A E '与直线BF 共面B .12BF =C .△A EC '可以是直角三角形D .A C DE '⊥15.(2019秋•安顺月考)如图,正方体1111ABCD A B C D -的棱长为2m ,E 为1AA 的中点,动点P 从点D 出发,沿DA AB BC CD ---运动,最后返回D .已知P 的运动速度为1/m s ,那么三棱锥11P EC D -的体积y (单位:3)m 关于时间x (单位:)s 的函数图象大致为( )A .B .C .D .16.(2019秋•沙坪坝区校级期中)如图,正方体1111ABCD A B C D -中,E 为AB 中点,F 在线段1DD 上.给出下列判断:①存在点F 使得1A C ⊥平面1B EF ;②在平面1111A B C D 内总存在与平面1B EF 平行的直线;③平面1B EF 与平面ABCD 所成的二面角(锐角)的大小与点F 的位置无关; ④三棱锥1B B EF -的体积与点F 的位置无关. 其中正确判断的有( ) A .①② B .③④ C .①③ D .②④17.(2019秋•镜湖区校级期中)如图,正方体1111ABCD A B C D -的棱长为1,动点E 在线段11A C 上,F 、M 分别是AD 、CD 的中点,则下列结论中错误的是( )A .11//FM ACB .BM ⊥平面1CC FC .存在点E ,使得平面//BEF 平面11CCD D D .三棱锥B CEF -的体积为定值18.(2019•越城区校级学业考试)如图,线段AB 是圆的直径,圆内一条动弦CD 与AB 交于点M ,且22MB AM ==.现将半圆ACB 沿直径AB 翻折,则三棱锥C ABD -体积的最大值是( )A .23B .13C .3D .1参考答案与试题解析1.(2020•湖南模拟)在棱长为6的正方体1111ABCD A B C D -,中,M 是BC 的中点,点P 是正方体的表面11DCC D (包括边界)上的动点,且满足APD MPC ∠=∠,则三棱锥P BCD -体积的最大值是( )A .B .36C .24D .【解答】解:Q 在棱长为6的正方体1111ABCD A B C D -中,M 是BC 的中点,点P 是面11DCC D 所在的平面内的动点,且满足APD MPC ∠=∠,Rt ADP ∴∆∽△Rt PMC ∆,∴2AD PDMC PC==,即2PD PC =,设DO x =,PO h =,作PO CD ⊥,∴=,化简得:223348144h x x =-+-,06x 剟,根据函数单调性判断:6x =时,23h 最大值为36,h =最大值,Q 在正方体中PO ⊥面BCD ,∴三棱锥P BCD -的体积最大值:116632⨯⨯⨯⨯=2.(2020•德阳模拟)ABC ∆是边长为E ,F 分别为AB ,AC 的中点,沿EF 把OAEF 折起,使点A 翻折到点P 的位置,连接PB 、PC ,当四棱锥P BCFE -的外接球的表面积最小时,四棱锥P BCFE -的体积为( )A B C D 【解答】解:如图,由题意,BC 的中点O 为等腰梯形BCFE 的外接圆的圆心,则四棱锥P BCFE -的外接球的球心在过O 且垂直于平面BCFE 的直线上,要使四棱锥P BCFE -的外接球的表面积最小,则半径最小,即需要O 为四棱锥P BCFE -的外接球的球心,此时OP OB ==1322PG OG OA ===,则99344cos 322POG +-∠==, P ∴到平面BCFE的距离为sin d OP POG =∠g1322BCFE S =⨯ ∴四棱锥P BCFE -的体积为13V =D . 3.(2020•德阳模拟)ABC ∆是边长为的等边三角形,E 、F 分别在线段AB 、AC 上滑动,//EF BC ,沿EF 把AEF ∆折起,使点A 翻折到点P 的位置,连接PB 、PC ,则四棱锥P BCFE -的体积的最大值为()A.BC .3D .2【解答】解:要想体积最大,高得最大,底面积也得最大,当平面AEF ⊥平面EFCB 时,体积才最大;设2EF a =;设O 为EF 的中点,如图: Q 等边ABC ∆中,点E ,F 分别为AB ,AC 上一点,且//EF BC ,AE AF ∴=,O Q 为EF 的中点,AO EF ∴⊥,Q 平面AEF ⊥平面EFCB ,平面AEF ⋂平面EFCB EF =,AO ∴⊥平面EFCB ,2EF a =Q,AO ∴.∴四棱锥A EFCB -的体积311(2(3)()332V a a a a a a =⨯⨯+⨯==-,2330V a ∴'=-=,1a ∴= (负值舍),01a <<,V1a >>,V 单调递减, 1a ∴=,四棱锥A EFCB -的体积最大,最大值为:312-=.故选:D .4.(2020春•江西月考)已知三棱锥P ABC -满足PA ⊥底面ABC ,在ABC ∆中,6AB =,8AC =,AB AC ⊥,D 是线段AC 上一点,且3AD DC =,球O 为三棱锥P ABC -的外接球,过点D 作球O 的截面,若所得截面圆的面积的最小值与最大值之和为44π,则球O 的表面积为( ) A .72πB .86πC .112πD .128π【解答】解:如图.M 是BC 边中点,E 是AC 边中点,AB AC ⊥Q ,M ∴是ABC ∆的外心,作//OM PA ,PA ⊥Q 平面ABC ,OM ∴⊥平面ABC ,OM AM ∴⊥,OM MD ⊥,取12OM PA =,易得OA OP =,O ∴是三棱锥P ABC -的外接球的球心. E 是AC 中点,则//ME AB ,132ME AB ==,ME AC ∴⊥,3AD DC =Q ,∴124ED AC ==,∴MD =,设2PA a =,则OM a =,222213OD OM MD a =+=+,又152AM BC ==, 222225OA OM AM a ∴=+=+,过D 且与OD 垂直的截面圆半径为r ,则r ==径等于球半径OA ,222(25)1244OA r a πππππ∴+=++=,22(25)32OA a ππ=+=.∴24128S OA ππ==球.故选:D .5.(2020春•沙坪坝区校级期中)已知A ,B ,C ,D 四点均在半径为(R R 为常数)的球O 的球面上运动,且AB AC =,AB AC ⊥,AD BC ⊥,若四面体ABCD 的体积的最大值为16,则球O 的表面积为( ) A .32πB .2πC .94π D .83π 【解答】解:因为AB AC =,AB AC ⊥,AD BC ⊥,作AN BC ⊥于N ,则N 为BC 的中点,且12AN BC =, 若四面体ABCD 的体积的最大值时,则DN ⊥面ABC ,则外接球的球心在DN 上,设为O , 设外接球的半径为R ,连接OA ,则OA OD R ==,211112()()3263D ABC V BC AN DN AN AN R ON AN R ON -==+=+g g g g g g g2211()()()()()33OA ON R ON R ON R ON R ON =-+=+-+ 3311()(22)()14()(22)()()()66363R ON R ON R ON R R ON R ON R ON ++-++=+-+=g …, 当且仅当22R ON R ON -=+,即3R ON =时取等号,因为三棱锥的最大体积为16,所以3141()636R =g ,可得34R =,所以外接球的表面积为29944164S R πππ===g ,6.(2020春•五华区校级月考)已知A ,B ,C 是球O 的球面上的三点,2AB =,AC =60ABC ∠=︒,且三棱锥O ABC -,则球O 的体积为( ) A .24πB .48π C. D.【解答】解:O 到截面ABC 的投影为三角形ABC 的外接圆的圆心,设为E ,连接AE ,则AE 为底面外接圆的圆心,OE OB OC ==为球的半径R ,因为2AB =,AC =,60ABC ∠=︒,由余弦定理可得:22221412cos cos602222AB BC AC BC ABC AB BC BC+-+-∠=︒===g g g g ,整理可得:2280BC BC --=,解得4BC =, 设三角形ABC 的外接圆半径为r,则2sin 60AC r ==︒2r =,111sin 6024326O ABC V AB BC OE OE -=︒==g g g g g g,所以OE = 在三角形OAE中,R OA ===所以外接球的体积为3441233V R ππ===g g .7.(2020•东莞市模拟)已知三棱柱111ABC A B C -四边形11A ACC 与11B BCC 为两个全等的矩形,M 是11A B 的中点,且11112C M A B =,则三棱柱111ABC A B C -体积的最大值为( ) A .12B .16C .4D .43【解答】解:Q 四边形11A ACC 与11B BCC 为两个全等的矩形,AC BC ∴=,1CC AC ⊥,1CC BC ⊥,又AC BC C =Q I ,AC ,BC ⊂平面ABC ,1CC ∴⊥平面ABC ;M Q 是11A B 的中点,且11112C M A B =,∴底面△111A B C 是直角三角形;综上,三棱柱111ABC A B C -是底面为等腰三角形的直棱柱.设AC BC a ==,1CC b =,将三棱柱还原为长方体,即22212a b +=;∴三棱柱的体积2231111(12)(12),244ABC V S CC a b b b b b b ∆===-=-+∈g ; 记31()(12)4f b b b =-+,则213()(312)(2)(2)44f b b b b '=-+=--+,当f '(b )0>时,02b <<;当f '(b )0<时,2b <<f ∴(b )在(0,2)上单调递增,(2,上单调递减, 故f (b )max f =(2)4=.故选:C .8.(2020•江西模拟)四棱柱1111ABCD A B C D -中,底面四边形ABCD 是菱形,120ADC ∠=︒,连接AC ,BD 交于点O ,1A O ⊥平面ABCD ,14AO BD ==,点C '与点C 关于平面1BC D 对称,则三棱锥C ABD '-的体积为( )A .B .C .D .【解答】解:连接1OC ,过点C 作1CM OC ⊥,垂足为M ,因为1OA ⊥平面ABCD ,故1OA BD ⊥, 因为四边形ABCD 是菱形,故OA BD ⊥,故BD ⊥平面11ACC A ,故BD CM ⊥,又1CM OC ⊥,故CM ⊥平面1BDC ,又ABD ∆是边长为4的等边三角形,可得OC OA ==所以11A C AC ==Rt △11A C O 中,可得1160AOC ∠=︒,则30MOC ∠=︒,可知OCC '∆为等边三角形,且所在平面垂直底面,故114432C ABD V '-=⨯⨯⨯=三棱锥,故选:D .9.(2020•浙江模拟)在长方体1111ABCD A B C D -中,底面ABCD 是边长为4的正方形,侧棱1(4)AA t t =>,点E 是BC 的中点,点P 是侧面11ABB A 内的动点(包括四条边上的点),且满足tan 4tan APD EPB ∠=∠,则四棱锥P ABED -的体积的最大值是( )A B . C D 【解答】解:作PN AB ⊥于N ,在长方体1111ABCD A B C D -中,DA ⊥平面11A ABB ,CB ⊥平面11A ABB , 在Rt PAD ∆和Rt PBC ∆中,tan AD APD AP ∠=,tan BE EPB PB ∠=,tan 4tan APD EPB ∠=∠Q ,1122BE BC AD ==,12PA PB ∴=,设PN h =,AN x =,则4BN x =-,[0x ∈,4],由12PA PB =,得2214PA PB =,即22221[(4)]4h x h x +=+-,整理得2281633h x x =--+,[0x ∈,4],开口向下,对称轴为43x =-,∴在[0x ∈,4]单调递减,则0x =时,2h 取到最大值163,即h∴四棱锥P ABED -的体积的最大值是11(24)432⨯+⨯=故选:C .10.(2019秋•包河区校级期末)矩形ABCD 中,2BC =,沿对角线AC 将三角形ADC 折起,得到四面体A BCD -,四面体A BCD -外接球表面积为16π,当四面体A BCD -的体积取最大值时,四面体A BCD -的表面积为( )A .B .C .D .【解答】解:由题意可知,直角三角形斜边的中线是斜边的一半,所以长宽分别为2和1的长方形ABCD 沿对角线AC 折起二面角,得到四面体A BCD -,则四面体A BCD -的外接球的球心O 为AC 中点,半径12R AC =,所求四面体A BCD -的外接球的表面积为2416R ππ⨯=;24R AC AB ⇒=⇒=⇒=∴矩形ABCD 中,AB =2BC =,沿AC 将三角形ADC 折起,当平面ADC ⊥平面ABC 时,得到的四面体A BCD -的体积最大,如图所示;过点D 作DO ⊥平面ABC ,垂足为O ,则点D 到平面ABC 的距离为AD CD d OD AC ⨯==== 过点O 作OM AB ⊥,作ON BC ⊥,垂足分别为M 、N ,连接DM ,DN ;则BM AB ⊥,DN BC ⊥;所以1AO =,3OC =,所以12OM =,ON =;所以DMDN ==;又122ADC ABC S S ∆∆==⨯22=11222ACD S AB DM ∆==⨯g =11222BCD S BC DN ∆==⨯=g ;所以四面体A BCD -的表面积为:24ABC ACD BCD S S S S ∆∆∆=++=B .11.(2020•山东模拟)如图,正方体1111ABCD A B C D -的棱长为1,线段11A C 上有两个动点E ,F ,且12EF =;则下列结论错误的是( )A .BD CE ⊥B .//EF 平面ABCDC .三棱锥E FBC -的体积为定值D .BEF ∆的面积与CEF ∆的面积相等【解答】解:对于A ,连接AC ,则BD AC ⊥,1BD AA ⊥,BD ∴⊥平面11AA C C ,又AE ⊂平面11AA C C ,BD AE ∴⊥.故A 正确;对于B ,11//AC AC Q ,即//EF AC ,又EF ⊂/平面ABCD ,AC ⊂平面ABCD ,//EF ∴平面ABCD ,故B 正确;对于C ,1111112224AEF S EF AA ∆==⨯⨯=g g ,点B 到平面AEF 的距离为B 到平面11AA C C 的距离12d BD ==,1134A BEF B AEF V V --∴==⨯,故C 正确;对于D ,连接1A B ,1C B ,则△11A BC B ∴到EF =A 到EF 的距离为11AA =,AEF ∴∆的面积与BEF ∆的面积不相等.故D 错误.故选:D .12.(2020•海淀区校级模拟)在边长为1的正方体中,E ,F ,G ,H 分别为11A B ,11C D ,AB ,CD 的中点,点P 从G 出发,沿折线GBCH 匀速运动,点Q 从H 出发,沿折线HDAG 匀速运动,且点P 与点Q 运动的速度相等,记E ,F ,P ,Q 四点为顶点的三棱锥的体积为V ,点P 运动的路程为x ,在02x 剟时,V 与x 的图象应为( )A .B .C .D .【解答】解:(1)当102x剟时,点P 与点Q 运动的速度相等根据下图得出:面OEF 把几何体PEFQ 分割为相等的几何体,111122OEF S ∆=⨯⨯=Q ,P 到面OEF 的距离为x ,112223263PEFQ P OEF x xV V x -==⨯⨯==g ,23(2)当1322x <…时,P 在AB 上,Q 在11C D 上,P 到12,111122OEF S ∆=⨯⨯=, 1111223226PEFQ P OEF V V -==⨯⨯⨯==定值.(3)当322x <…时,111122OEF S ∆=⨯⨯=,P 到面OEF 的距离为2x -, 112122(2)3233PEFQ P OEF V V x x -==⨯⨯⨯-=-,1,032113,622213,2332xx V x x x ⎧<⎪⎪⎪=<⎨⎪⎪-⎪⎩……剟故选:C .13.(2019秋•襄城区校级月考)如图,在四棱锥P ABCD -中,顶点P 在底面的投影O 恰为正方形ABCD 的中心且AB =设点M ,N 分别为线段PD ,PO 上的动点,已知当AN MN +取得最小值时,动点M 恰为PD 的中点,则该四棱锥的外接球的表面积为( )A .643π B .163π C .253π D .649π 【解答】解:将三角形POD 展开到与平面PAO 共面,则AN MN +的最小值时,A 、M 、N 三点共线,记作AM .M Q 点在线段PD 上,AM 最短时恰为PD 中点,AM PD ∴⊥,AM ∴既为PD 中线,又是PD 边上的高,AP AD ∴=.Q 顶点P 在底面的投影恰为正方形ABCD 的中心,则四棱锥为正四棱锥,AP PD ∴=,∴三角形APD 为等边三角形.Q AB =2AO ∴=,24AP AD AO ∴===,则PO ==设球心为Q ,连接QA ,则在Rt QOA ∆中,222QA AO QO =+,∴224)R R =+,解得R =,∴外接球的表面积216644433S R πππ==⨯=.故选:A . 14.(2019春•昆明期末)在平行四边形ABCD 中,3BAD π∠=,点E 在AB 边上,112AD AE AB ===,将ADE ∆沿直线DE 折起成△A DE ',F 为A C '的中点,则下列结论正确的是( )A .直线A E '与直线BF 共面B .12BF =C .△A EC '可以是直角三角形D .A C DE '⊥【解答】解:在平行四边形ABCD 中,3BAD π∠=,点E 在AB 边上,112AD AE AB ===, 将ADE ∆沿直线DE 折起成△A DE ',F 为A C '的中点,在A 中,取CD 中点G ,连结BG ,FG ,则//BG DE ,//FG A D ', BG FG G =Q I ,∴平面//BGF 平面A DE ',BF ⊂Q 平面BFG ,//BF ∴平面A DE ',∴直线A E '与直线BF 平行或异面,故A 错误;在B 中,Q 将ADE ∆沿直线DE 折起成△A DE ',F 为A C '的中点,A '点位置不确定,BF ∴的长不是常数,故B 错误;在C 中,1A E '=,CE =∴当2A E '=时,A E CE '⊥,△A EC '是直角三角形,故D 正确;在D 中,DE CE ⊥Q ,60DEA ∠'=︒,DE ∴与A C '不垂直,故D 错误.故选:C .15.(2019秋•安顺月考)如图,正方体1111ABCD A B C D -的棱长为2m ,E 为1AA 的中点,动点P 从点D 出发,沿DA AB BC CD ---运动,最后返回D .已知P 的运动速度为1/m s ,那么三棱锥11P EC D -的体积y (单位:3)m 关于时间x (单位:)s 的函数图象大致为( )A .B .C .D .【解答】解:(1)当02x 剟时,P 在线段DA 上运动,此时DP x =, 112224()22222PED x x x S ⨯-=-++=-V ,所以1111112(2)(4)323P EC D C PED x V V x --==⨯⨯-=-;(2)当24x 剟时,P 在线段AB 上,因为//AB 平面11EC D ,所以P 到平面11EC D 的距离为定值,所以11P EC D V -为定值,1112(42)33A EC D V -=-=;(3)当46x 剟时,P 在线段BC 上,取1BB 的中点F ,1111P EC D P FC E E PFC V V V ---==, 此时6CP x =-,同理可得112PC F x S =-V ,所以11(2)3E PFC V x -=-; (4)当68x 剟时,P 在线段CD 上,因为//CD 平面11EC D ,所以P 到平面11EC D 的距离为定值,所以11P EC D V -为定值,1114(62)33D EC D V -=-=.综上,三棱锥11P EC D -的体积y (单位:3)m 关于时间x (单位:)s 的函数大致图象如右图所示. 故选:B .16.(2019秋•沙坪坝区校级期中)如图,正方体1111ABCD A B C D -中,E 为AB 中点,F 在线段1DD 上.给出下列判断:①存在点F 使得1A C ⊥平面1B EF ;②在平面1111A B C D 内总存在与平面1B EF 平行的直线;③平面1B EF 与平面ABCD 所成的二面角(锐角)的大小与点F 的位置无关; ④三棱锥1B B EF -的体积与点F 的位置无关. 其中正确判断的有( )A .①②B .③④C .①③D .②④【解答】解:对于①,假设存在F 使得1A C ⊥平面1B EF ,则11AC B E ⊥,又1BC B E ⊥,1BC A C C =I ,1B E ∴⊥平面1A BC ,则11B E A B ⊥,这与11A B AB ⊥矛盾,所以①错误;对于②,因为平面1B EF 与平面1111A B C D 相交,设交线为l ,则在平面1111A B C D 内与l 平行的直线平行于平面1B EF ,故②正确;对于③,以D 点为坐标原点,以DA 所在直线为x 轴,DC 所在直线为y 轴,1DD 所在直线为z 轴,建立空间坐标系,则平面ABCD 的法向量为(0m =r ,0,1),而平面1B EF 的法向量n r,随着F 位置变化,故平面1B EF 与平面ABCD 所成的二面角(锐角)的大小与点F 的位置有关,故③错误;对于④,三棱锥1B B EF -的体积即为三棱锥1F BB E -,因为1//DD 平面11ABB A ,所以,当F 在线段1DD 上移动时,F 到平面11ABB A 的距离不变,故三棱锥1B B EF -的体积与点F 的位置无关,即④正确. 故选:D .17.(2019秋•镜湖区校级期中)如图,正方体1111ABCD A B C D -的棱长为1,动点E 在线段11A C 上,F 、M 分别是AD 、CD 的中点,则下列结论中错误的是( )A .11//FM ACB .BM ⊥平面1CC FC .存在点E ,使得平面//BEF 平面11CCD D D .三棱锥B CEF -的体积为定值【解答】解:在A 中,因为F 、M 分别是AD 、CD 的中点,所以11////FM AC AC ,故A 正确; 在B 中,由平面几何得BM CF ⊥,又有1BM C C ⊥,所以BM ⊥平面1CC F ,故B 正确;在C 中,BF 与平面11CC D D 有交点,所以不存在点E ,使得平面//BEF 平面11CC D D ,故C 错误.在D 中,三棱锥B CEF -以面BCF 为底,则高是定值,所以三棱锥B CEF -的体积为定值,故D 正确. 故选:C .18.(2019•越城区校级学业考试)如图,线段AB 是圆的直径,圆内一条动弦CD 与AB 交于点M ,且22MB AM ==.现将半圆ACB 沿直径AB 翻折,则三棱锥C ABD -体积的最大值是( )A .23B .13C .3D .1【解答】解:记翻折后CM 与平面ABD 所成角为α,则三棱锥C ABD -的高为sin h CM α=,∴三棱锥C ABD -体积:11(sin )sin 32C ABD V AB DM DMA CM α-=⨯⨯⨯⨯∠⨯⨯16AB DM CM ⨯⨯⨯…, 3AB =Q ,2DM CM AM BM ⨯=⨯=,∴三棱锥C ABD -体积的最大值是: 1()3216C ABD max V -=⨯⨯=V .故选:D .。
立体几何中折叠问题-高考数学大题精做之解答题题型全覆盖高端精品
高考数学大题精做之解答题题型全覆盖高端精品第三篇立体几何专题06立体几何中折叠问题类型对应典例折叠问题中的点线面位置关系典例1折叠问题中的体积典例2折叠问题中的线面角典例3折叠问题中的二面角典例4【典例1】如图,在直角梯形ABCD 中,//AB DC ,90BAD ∠=,4AB =,2AD =,3DC =,点E 在CD 上,且2DE =,将ADE 沿AE 折起,使得平面ADE ⊥平面ABCE (如图).G 为AE 中点.(1)求证:DG ⊥平面ABCE ;(2)求四棱锥D ABCE -的体积;(3)在线段BD 上是否存在点P ,使得//CP 平面ADE ?若存在,求BPBD的值;若不存在,请说明理由.【典例2】如图1,在正方形ABCD 中,E 是AB 的中点,点F 在线段BC 上,且14BF BC =.若将,AED CFD ∆∆分别沿,ED FD 折起,使,A C 两点重合于点M ,如图2.图1图2(1)求证:EF ⊥平面MED ;(2)求直线EM 与平面MFD 所成角的正弦值.【典例3】如图1,已知菱形AECD 的对角线,AC DE 交于点F ,点E 为线段AB 的中点,2AB =,60BAD ∠=︒,将三角形ADE 沿线段DE 折起到PDE 的位置,2PC =,如图2所示.(Ⅰ)证明:平面PBC ⊥平面PCF ;(Ⅱ)求三棱锥E PBC -的体积.【典例4】如图,ABC 中,4AB BC ==, 90ABC ∠=︒,,E F 分别为 AB ,AC 边的中点,以EF 为折痕把AEF 折起,使点 A 到达点 P 的位置,且 PB BE =.(1)证明: BC ⊥平面 PBE ;(2)求平面 PBE 与平面 PCF 所成锐二面角的余弦值.1.在Rt ABC △中,90ABC ∠=︒,1tan 2ACB ∠=.已知E ,F 分别是BC ,AC 的中点.将CEF △沿EF 折起,使C 到'C 的位置且二面角'C EF B --的大小是60︒.连接C'B ,'C A ,如图:(Ⅰ)求证:平面'FA C ⊥平面'ABC ;(Ⅱ)求平面'AFC 与平面'BEC 所成二面角的大小.2.已知长方形ABCD 中,1AB =,AD =BD 折起,使AC a =,得到一个四面体A BCD -,如图所示.(1)试问:在折叠的过程中,异面直线AB 与CD 能否垂直?若能垂直,求出相应的a 的值;若不垂直,请说明理由;(2)当四面体A BCD -体积最大时,求二面角A CD B --的余弦值.3.如图,在平行四边形ABCM 中,3AB AC ==,90ACM ∠=︒,以AC 为折痕将△ACM 折起,使点M 到达点D 的位置,且AB DA ⊥.(1)证明:平面ACD ⊥平面ABC ;(2)Q 为线段AD 上一点,P 为线段BC 上一点,且23BP DQ DA ==,求三棱锥Q ABP -的体积.4.如图1,在矩形ABCD 中,AB =4,AD =2,E 是CD 的中点,将△ADE 沿AE 折起,得到如图2所示的四棱锥D 1—ABCE ,其中平面D 1AE ⊥平面ABCE .(1)证明:BE ⊥平面D 1AE ;(2)设F 为CD 1的中点,在线段AB 上是否存在一点M ,使得MF ∥平面D 1AE ,若存在,求出AMAB的值;若不存在,请说明理由.5.如图,在边长为4的菱形ABCD 中,60DAB ︒∠=,点E ,F 分别是边CD ,CB 的中点,AC EF O ⋂=.沿EF 将△CEF 翻折到△PEF ,连接,,PA PB PD ,得到如图的五棱锥P ABFED -,且PB =.(1)求证:BD ⊥平面POA ;(2)求四棱锥P BFED -的体积.6.已知三棱锥P ABC -(如图一)的平面展开图(如图二)中,四边形ABCD的正方形,ABE ∆和BCF ∆均为正三角形,在三棱锥P ABC -中:(I )证明:平面PAC ⊥平面ABC ;(Ⅱ)若点M 在棱PA 上运动,当直线BM 与平面PAC 所成的角最大时,求二面角P BC M --的余弦值.图一图二参考答案【典例1】【思路引导】(1)证明DG AE ⊥,再根据面面垂直的性质得出DG ⊥平面ABCE ;(2)分别计算DG 和梯形ABCE 的面积,即可得出棱锥的体积;(3)过点C 作//CF AE 交AB 于点F ,过点F 作//FP AD 交DB 于点P ,连接PC ,可证平面//CFP 平面ADE ,故//CP 平面ADE ,根据//FP AD 计算BPBD的值.【详解】(1)证明:因为G 为AE 中点,2AD DE ==,所以DG AE ⊥.因为平面ADE ⊥平面ABCE ,平面ADE 平面ABCE AE =,DG ⊂平面ADE ,所以DG ⊥平面ABCE .(2)在直角三角形ADE 中,易求AE =则AD DEDG AE⋅==.所以四棱锥D ABCE -的体积为1(14)232D ABCE V -+⨯=⨯=.(3)过点C 作//CF AE 交AB 于点F ,则:1:3AF FB =.过点F 作//FP AD 交DB 于点P ,连接PC ,则:1:3DP PB =.又因为CF //A E ,AE ⊂平面,ADE CF ⊄平面ADE ,所以CF //平面ADE .同理//FP 平面ADE .又因为CF PF F ⋂=,所以平面CFP //平面ADE .因为CP ⊂平面CFP ,所以//CP 平面ADE .所以在BD 上存在点P ,使得//CP 平面ADE ,且34BP BD =.【典例2】【思路引导】(1)设正方形ABCD 的边长为4,由222DE EF DF +=,可得EF ED ⊥,结合MD EF ⊥,利用线面垂直的判定定理,即可得到EF ⊥平面MED .(2)建立空间直角坐标系,过点M 作MN ED ⊥,垂足为N ,求出向量EM和平面MFD 的一个法向量,利用向量的夹角公式,即可求解.【详解】(1)证明:设正方形的边长为4,由图1知,,,,,,即由题意知,在图2中,,,平面,平面,且,平面,平面,.又平面,平面,且,平面(2)由(1)知平面,则建立如图所示空间直角坐标系,过点作,垂足为,在中,,,从而,,,,,.设平面的一个法向量为,则,令,则,,.设直线与平面所成角为,则,.直线与平面所成角的正弦值为.【典例3】【思路引导】(Ⅰ)折叠前,AC ⊥DE ;,从而折叠后,DE ⊥PF ,DE ⊥CF ,由此能证明DE ⊥平面PCF .再由DC ∥AE ,DC =AE 能得到DC ∥EB ,DC =EB .说明四边形DEBC 为平行四边形.可得CB ∥DE .由此能证明平面PBC ⊥平面PCF .(Ⅱ)由题意根据勾股定理运算得到PF CF ⊥,又由(Ⅰ)的结论得到BC ⊥PF ,可得PF ⊥平面BCDE ,再利用等体积转化有13E PBC P BCE BCE V V S PF --∆==⨯⨯,计算结果.【详解】(Ⅰ)折叠前,因为四边形AECD 为菱形,所以AC DE ⊥;所以折叠后,DE PF ⊥,DE CF ⊥,又PF CF F ⋂=,,PF CF ⊂平面PCF ,所以DE ⊥平面PCF因为四边形AECD 为菱形,所以//,AE DC AE DC =.又点E 为线段AB 的中点,所以//,EB DC EB DC =.所以四边形DEBC 为平行四边形.所以//CB DE .又DE ⊥平面PCF ,所以BC ⊥平面PCF .因为BC ⊂平面PBC ,所以平面PBC ⊥平面PCF .(Ⅱ)图1中,由已知得32AF CF ==,1BC BE ==,60CBE ∠=︒所以图2中,2PF CF ==,又2PC =所以222PF CF PC +=,所以PF CF ⊥又BC ⊥平面PCF ,所以BC ⊥PF 又BC CF C ⋂=,,BC CF ⊂平面BCDE ,所以PF ⊥平面BCDE ,所以1113111sin6033228E PBC P BCE BCE V V S PF --∆==⨯⨯=⨯⨯⨯⨯⨯= .所以三棱锥E PBC -的体积为18.【典例4】【思路引导】(1)由E ,F 分别为AB ,AC 边的中点,可得EF BC ,由已知结合线面垂直的判定可得EF ⊥平面PBE ,从而得到BC ⊥平面PBE ;(2)取BE 的中点O ,连接PO ,由已知证明PO ⊥平面BCFE ,过O 作OM BC 交CF 于M ,分别以OB ,OM ,OP 所在直线为x ,y ,z 轴建立空间直角坐标系,分别求出平面PCF 与平面PBE 的一个法向量,由两法向量所成角的余弦值可得平面PBE 与平面PCF 所成锐二面角的余弦值.【详解】(1)因为,E F 分别为AB ,AC 边的中点,所以EF BC ,因为90ABC ∠=︒,所以EF BE ⊥,EF PE ⊥,又因为BE PE E ⋂=,所以EF ⊥平面PBE ,所以BC ⊥平面PBE .(2)取BE 的中点O ,连接PO ,由(1)知BC ⊥平面PBE ,BC ⊂平面BCFE ,所以平面PBE ⊥平面BCFE ,因为PB BE PE ==,所以PO BE ⊥,又因为PO ⊂平面PBE ,平面PBE ⋂平面BCFE BE =,所以PO ⊥平面BCFE ,过O 作OM BC 交CF 于M ,分别以OB ,OM ,OP 所在直线为,,x y z轴建立空间直角坐标系,则(P ,()1,4,0C ,()1,2,0F -.(1,4,PC =,(1,2,PF =-,设平面PCF 的法向量为(),,m x y z=,则0,0,PC m PF m ⎧⋅=⎨⋅=⎩即40,20,x y x y ⎧+=⎪⎨-+-=⎪⎩则(m =-,易知()0,1,0n=为平面PBE的一个法向量,cos<,5m n >=== ,所以平面PBE 与平面PCF所成锐二面角的余弦值55.1.【思路引导】(Ⅰ)法一:由'AF C F =.设'AC 的中点为G ,连接FG .设'BC 的中点为H ,连接GH ,EH .而'BEC ∠即为二面角'C EF B --的平面角.'60BEC ∠=︒,推导出'EH BC ⊥.由'EF C E ⊥,EF BE ⊥,从而EF ⊥平面'BEC .由//EF AB ,得AB ⊥平面'BEC ∠,从而AB EH ⊥,即EH AB ⊥.进而EH ⊥平面'ABC .推导出四边形EHGF 为平行四边形.从而//FG EH ,FG ⊥平面'ABC ,由此能证明平面'AFC ⊥平面'ABC .法二:以B 为原点,在平面'BEC 中过B 作BE 的垂线为x 轴,BE 为y 轴,BA 为z 轴,建立空间直角坐标系,利用向量法能证明平面'AFC ⊥平面'ABC .(Ⅱ)以B 为原点,在平面'BEC 中过B .作BE 的垂线为x 轴,BE 为y 轴,BA 为z 轴,建立空间直角坐标系,利用向量法能求出平面'AFC 与平面'BEC 所成二面角大小.【详解】(Ⅰ)证法一:F 是AC 的中点,'AF C F ∴=.设'AC 的中点为G ,连接FG .设'BC 的中点为H ,连接GH ,EH .由题意得'C E EF ⊥,BE EF ⊥,'BEC ∴即为二面角'C EF B --的平面角.'60BEC ∴=︒,E 为BC 的中点.'BE EC ∴=,'BEC ∴∆为等边三角形,'EH BC ∴⊥.'EF C E ⊥ ,EF BE ⊥,'C E BE E ⋂=,EF ∴⊥平面'BEC .//EF AB ,AB ∴⊥平面'BEC ,AB EH ∴⊥,即EH AB ⊥.'BC AB B ⋂= ,EH ∴⊥平面'ABC .G ,H 分别为'AC ,'BC 的中点.////GH AB FE ∴,12GH AB FE∴==四边形EHGF 为平行四边形.//FG EH ∴,FG ⊥平面'ABC ,又FG ⊂平面'AFC .∴平面'AFC ⊥平面'ABC.法二:如图,以B 为原点,BE 为x 轴,在平面'BEC 中过B 作BE 的垂线为y 轴,BA 为z 轴,建立空间直角坐标系,设2AB =.则()0,0,2A ,()0,0,0B ,()2,0,1F ,()2,0,0E,()'C .设平面'ABC 的法向量为(),,a x y z = ,()0,0,2BA =,()'BC =,20'0a BA z a BC x ⎧⋅==⎪∴⎨⋅=+=⎪⎩,令1y =,则()a = ,设平面'AFC 的法向量为(),,b x y z = ,()2,0,1AF =-,()'2AC =-,20'20b AF x z b AC x z ⎧⋅=-=⎪∴⎨⋅=+-=⎪⎩,取1x =,得()2b =.0a b ⋅= ,∴平面'AFC ⊥平面'ABC .解:(Ⅱ)如图,以B 为原点,BE 为x 轴,在平面'BEC 中过B 作BE 的垂线为y 轴,BA 为z 轴,建立空间直角坐标系,设2AB =.则()0,0,2A ,()0,0,0B ,()2,0,1F ,()2,0,0E ,()'3,0C .平面'BEC 的法向量()0,0,1m = 设平面'AFC 的法向量为(),,n x y z = ,()'3,2AC =- ,()2,0,1AF =- ,'32020n AC x y z n AF x z ⎧⋅=+-=⎪∴⎨⋅=-=⎪⎩ ,取1x =,得()3,2n = .设平面'AFC 与平面'BEC 所成的二面角的平面角为θ,2cos 2m n m nθ⋅∴==⋅ 由图形观察可知,平面'AFC 与平面'BEC 所成的二面角的平面角为锐角.∴平面'AFC 与平面'BEC 所成二面角大小为45 .2.【思路引导】(1)若AB ⊥CD ,得AB ⊥面ACD ,由于AB ⊥AC .,所以AB 2+a 2=BC,解得a 2=1,成立;(2)四面体A ﹣BCD 体积最大时面ABD ⊥面BCD ,以A 为原点,在平面ACD 中过O 作BD 的垂线为x 轴,OD 为y 轴,OA 为z 轴,建立空间直角坐标系,利用向量法能求出二面角A ﹣CD ﹣B 的余弦值.【详解】(1)若AB ⊥CD ,因为AB ⊥AD ,AD ∩CD =D ,所以AB ⊥面ACD ⇒AB ⊥AC .由于AB=1,2,AC=a ,由于AB ⊥AC .,所以AB 2+a 2=BC,所以12+a 2=(2)2⇒a =1,所以在折叠的过程中,异面直线AB 与CD 可以垂直,此时a 的值为1(2)要使四面体A -BCD 体积最大,因为△BCD 面积为定值22,所以只需三棱锥A -BCD 的高最大即可,此时面ABD ⊥面BCD .过A 作AO ⊥BD 于O ,则AO ⊥面BCD ,以O 为原点建立空间直角坐标系o xyz -(如图),则易知,显然,面BCD 的法向量为,设面ACD 的法向量为n=(x ,y ,z ),因为所以,令y =2,得n=(1,2,2),故二面角A -CD -B 的余弦值即为|cos n OA ,.3.【思路引导】(1)首先根据题的条件,可以得到BAC ∠=90,即BA AC ⊥,再结合已知条件BA ⊥AD ,利用线面垂直的判定定理证得AB ⊥平面ACD ,又因为AB ⊂平面ABC ,根据面面垂直的判定定理,证得平面ACD ⊥平面ABC ;(2)根据已知条件,求得相关的线段的长度,根据第一问的相关垂直的条件,求得三棱锥的高,之后借助于三棱锥的体积公式求得三棱锥的体积.详解:(1)由已知可得,BAC ∠=90°,BA AC ⊥.又BA ⊥AD ,且AC AD A = ,所以AB ⊥平面ACD .又AB ⊂平面ABC ,所以平面ACD ⊥平面ABC .(2)由已知可得,DC =CM =AB =3,DA =又23BP DQ DA ==,所以BP =作QE ⊥AC ,垂足为E ,则QE =13DC .由已知及(1)可得DC ⊥平面ABC ,所以QE ⊥平面ABC ,QE =1.因此,三棱锥Q ABP -的体积为111131332Q ABP ABP V QE S -=⨯⨯=⨯⨯⨯⨯︒= .4.【思路引导】(1)先计算得BE ⊥AE ,再根据面面垂直性质定理得结果,(2)先分析确定点M 位置,再取D 1E 的中点L ,根据平几知识得AMFL 为平行四边形,最后根据线面平行判定定理得结果.【详解】(1)证明连接BE ,∵ABCD 为矩形且AD =DE =EC =BC =2,∴∠AEB =90°,即BE ⊥AE ,又平面D 1AE ⊥平面ABCE ,平面D 1AE ∩平面ABCE =AE ,BE ⊂平面ABCE ,∴BE ⊥平面D 1AE .(2)解AM =14AB ,取D 1E 的中点L ,连接AL ,FL ,∵FL ∥EC ,EC ∥AB ,∴FL ∥AB 且FL =14AB ,∴FL ∥AM ,FL =AM∴AMFL 为平行四边形,∴MF ∥AL ,因为MF 不在平面AD 1E 上,AL ⊂平面AD 1E ,所以MF ∥平面AD 1E .故线段AB 上存在满足题意的点M ,且AM AB =14.5.【思路引导】(1)证明:∵点E ,F 分别是边CD ,CB 的中点,∴BD ∥EF .∵菱形ABCD 的对角线互相垂直,∴BD AC ⊥.∴EF AC ⊥.∴EF AO ⊥,EF PO ⊥.分∵AO ⊂平面POA ,PO ⊂平面POA ,AO PO O = ,∴EF ⊥平面POA .∴BD ⊥平面POA .(2)解:设,连接BO ,∵60DAB ︒∠=,∴△ABD 为等边三角形.∴4BD =,2BH =,23HA =3HO PO ==.在R t △BHO 中,227BO BH HO =+=在△PBO 中,22210BO PO PB +==,∴PO BO ⊥.∵PO EF ⊥,EF BO O ⋂=,EF ⊂平面BFED ,BO ⊂平面BFED ,∴PO ⊥平面BFED .梯形BFED 的面积为()1332S EF BD HO =+⋅=∴四棱锥P BFED -的体积11333333V S PO =⋅=⨯=.6.【思路引导】(1)设AC 的中点为O,证明PO 垂直AC,OB,结合平面与平面垂直判定,即可.(2)建立直角坐标系,分别计算两相交平面的法向量,结合向量的数量积公式,计算夹角,即可.【详解】(Ⅰ)设AC 的中点为O ,连接BO ,PO .由题意,得2PA PB PC ===,1PO =,1AO BO CO ===.因为在PAC ∆中,PA PC =,O 为AC 的中点,所以PO AC ⊥,因为在POB ∆中,1PO =,1OB =,PB =222PO OB PB +=,所以PO OB ⊥.因为AC OB O ⋂=,,AC OB ⊂平面ABC ,所以PO ⊥平面ABC ,因为PO ⊂平面PAC ,所以平面PAC ⊥平面ABC.(Ⅱ)由(Ⅰ)知,BO PO ⊥,BO AC ⊥,BO ⊥平面PAC ,所以BMO ∠是直线BM 与平面PAC 所成的角,且1tan BOBMO OM OM ∠==,所以当OM 最短时,即M 是PA 的中点时,BMO ∠最大.由PO ⊥平面ABC ,OB AC ⊥,所以PO OB ⊥,PO OC ⊥,于是以OC ,OB ,OD 所在直线分别为x 轴,y 轴,z 轴建立如图示空间直角坐标系,则()0,0,0O ,()1,0,0C ,()0,1,0B ,()1,0,0A -,()0,0,1P ,11,0,22M ⎛⎫- ⎪⎝⎭,()1,1,0BC =- ,()1,0,1PC =- ,31,0,22MC ⎛⎫=- ⎪⎝⎭ .设平面MBC 的法向量为()111,,m x y z = ,则由00m BC m MC⎧⋅=⎨⋅=⎩得:1111030x y x z -=⎧⎨-=⎩.令11x =,得11y =,13z =,即()1,1,3m =.设平面PBC 的法向量为()222,,n x y z = ,由00n BC n PC ⎧⋅=⎨⋅=⎩ 得:222200x y x z -=⎧⎨-=⎩,令1x =,得1y =,1z =,即()1,1,1n =.cos ,33m n n m m n ⋅===⋅ .由图可知,二面角P BC M --的余弦值为33.。
初一立体几何
考点1 图形的展开与折叠『例1』(1)(2012山东德州)如图给定的是纸盒的外表面,下面能由它折叠而成的是()A. B. C. D.(2)(2012南京模拟)如图是一个三棱柱,下列图形中,能通过折叠围成一个三棱柱的是()(3)(2012山东青岛)如图,圆柱形玻璃杯高为12cm、底面周长为18cm,在杯内离杯底4cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短距离为 cm.考点2 三视图『例2』(1) (2012山西省)如图所示的工件的主视图是( )A. B. C. D.(2)(2012福建莆田)某几何组合体的主视图和左视图为同一个视图,如图所示,则该几何组合体的俯视图不可能...是( )A. B. C. D.(3)(2012福建南平)如图所示,水平放置的长方体底面是长为4和宽为2的矩形,它的主视图的面积为12,则长方体的体积等于( )A .16B .24C .32D .48 (4)(2012宁夏)一个几何体的三视图如图所示,网格中小正方形的边长均为1,那么下列选项中最接近这个几何体的侧面积的是( )A .24.0B .62.8C .74.2D .113.0考点3 综合应用 『例3』(1)(2012乌兰察布模拟)己知O 为圆锥的顶点,M 为圆锥底面上一点,点 P 在 OM 上.一只锅牛从P 点出发,绕圆锥侧面爬行,回到P 点时所爬过的最短路线的痕迹如图所示,若沿OM 将圆锥侧面剪开并展开,所得侧面展开图是( )(2)(2012广州模拟)如图1所示,将矩形纸片先沿虚线AB 按箭头方向向右..对折,接着将对折后的纸片沿虚线CD 向下对折,然后剪下一个小三角形,再将纸片打开,则打开后的展开图是( )B图1A.B. C.D.(3)(2012杭州模拟)如果用4个相同的长为3宽为1的长方形,拼成一个大的长方形,那么这个大的长方形的周长可以是_____________.【当堂过关】1. (2012四川攀枝花)如图是由五个相同的小正方体组成的立体图形,它的俯视图是()A.B.C.D.2. (2012山东济宁)如图,是由若干个完全相同的小正方体组成的一个几何体的主视图和左视图,则组成这个几何体的小正方体的个数是( )A.3个或4个 B.4个或5个 C.5个或6个 D.6个或7个3. (2012山东临沂)如图是一个几何体的三视图,则这个几何体的侧面积是( )A.18cm2B.20cm2C.(18+2)cm2D.(18+4)cm24. (2012甘肃兰州)一个长方体的左视图、俯视图及相关数据如图所示,则其主视图的面积为( )A.6 B.8 C.12 D.245. (2012四川内江)由一些大小相同的小正方形组成的一个几何体的主视图和俯视图如图所示,那么组成该几何体所需的小正方形的个数最少为6. (2012四川乐山)从棱长为2的正方体毛坯的一角,挖去一个棱长为1的小正方体,得到一个如图所示的零件,则这个零件的表面积为.7. (2012湖北荆门)如图是一个上下底密封纸盒的三视图,请你根据图中数据,计算这个密封纸盒的表面积为cm2.(结果可保留根号)8. (2012贵州毕节)在下图中,每个图案均由边长为1的小正方形按一定的规律堆叠而成,照此规律,第10个图案中共有个小正方形.【迎考精炼】一、选择题(本大题共10小题,每小题3分,共30分.每小题只有一个选项是正确的,不选,多选,错选均不给分)1. (2012绍兴)如图所示的几何体,其主视图是()2. (2012山东滨州)某几何体的三视图如图所示,则这个几何体是()A.圆柱B.正方体C.球D.圆锥3. (2012北京市)下图是某个几何体的三视图,该几何体是( )A.长方体 B.正方体 C.圆柱 D.三棱柱4. (2012甘肃白银)将如图所示的Rt△ACB绕直角边AC旋转一周,所得几何体的主视图(正视图)是( )A. B. C. D.5. (2012安徽省)下面的几何体中,主(正)视图为三角形的是( )A. B. C.6. (2012四川巴中)由5个相同的正方体搭成的几何体如图所示,则它的左视图是( )7. (2012广东佛山)一个几何体的展开图如图所示,这个几何体是()A.三棱柱 B.三棱锥C.四棱柱D.四棱锥8. (2012湖州)下列四个水平放置的几何体中,三视图如图所示的是()A. B. C. D.9. (2012四川广安)如图是一个正方体的表面展开图,则原正方体中与“建”字所在的面相对的面上标的字是( )A.美 B.丽 C.广 D.安10.(2012贵州毕节)王老师有一个装文具用的盒子,它的三视图如图所示,这个盒子类似于( )A.圆锥B.圆柱C.长方体D.三棱柱二、填空题(本大题共6小题,每小题4分,共24分,请将答案填在横线上)11. (2012随州)一个几何体的三视图如下:其中主视图和左视图都是腰长为4,底边为2的等腰三角形,则这个几何体侧面展开图的面积为 .12. (2012连云港模拟)如图,是由8个相同的小立方块搭成的几何体,它的三个视图都是2×2的正方形,若拿掉若干个小立方块后(几何体不倒掉...),其三个视图仍都为2×2的正方形,则最多能拿掉小立方块的个数为.13. (2012大庆)由几个相同小正方体搭成的几何体的主视图与左视图如图所示,则该几何体最少由 个小正方体搭成.14. (2012凉山模拟)一个长方体的三视图如图,若其俯视图为正方形,则这个长方体的表面积为.15. (2011四川广安)由n 个相同的小正方体堆成的几何体,其视图如下所示,则n的最大值是 .16. (2012山西模拟)如图是一个工件的三视图,图中标有尺寸,则这个工件的体积是 .主视图 俯视图(左视图)(主视图)(俯视图)㎝三、解答题(本大题共5小题,共46分.解答应写出文字说明、证明过程或演算过程)17.(8分)(2012广州市模拟)5个棱长为1的正方体组成如图5的几何体.(1)该几何体的体积是(立方单位),表面积是(平方单位)(2)画出该几何体的主视图和左视图18.(8分)(2012杭州市模拟)一个几何体的三视图如图所示,它的俯视图为菱形.请写出该几何体的形状,并根据图中所给的数据求出它的侧面积和体积.19.(2005•芜湖)如图1所示为一上面无盖的正方体纸盒,现将其剪开展成平面图,如图2所示.已知展开图中每个正方形的边长为1.(1)求在该展开图中可画出最长线段的长度这样的线段可画几条?(2)试比较立体图中∠BAC与平面展开图中∠B′A′C′的大小关系?20.如图,如果约定用字母S表示正方体的侧面,用T表示上面,B表示底面.请把相应的字母配置在已知加上某些面的记号的正方体的展开图中.21.在下面正方体中,P、Q、S、T分别是所在边的中点,将此正方体展开,请在展开图中标出P、Q、S、T的位置,当正方体的边长为a时,写出展开图中△PSQ的面积.22.某班数学活动小组的同学用纸板制作长方体包装盒,其平面展开图和相关尺寸如下,其中阴影部分为内部粘贴角料(单位:毫米)(1)此长方体包装盒的体积为______立方毫米(用含x、y的式子表示).(2)若内部粘贴角料的面积占长方体表面纸板面积的1/5,求当x=40,y=70时制作这样一个长方体共需要纸板多少平方毫米?23.如图是一个多面体的展开图,每个面上都标注了字母,请你根据回答问题:(1)这个多面体是一个什么物体?(2)如果D是多面体的底部,那么哪一面会在上面?(3)如果B在前面,C在左面,那么哪一面在上面?(4)如果E在右面,F在后面,那么哪一面会在上面?24.如图1,一个边长为2cm的立方体按某种方式展开后,恰好能放在一个长方形内.(1)计算图1长方形的面积;(2)小明认为把该立方体按某种方式展开后可以放在如图2的长方形内,请你在图2中划出这个立方体的表面展开图;(图2每个小正方形边长为2cm);(3)如图3,在长12cm、宽8cm的长方形内已经画出该立方体的一种表面展开图(各个面都用数字“1”表示),请你在剩下部分再画出2个该立方体的表面展开图,把一个立方体的每一个面标记为“2”,另一个立方体的每一个面标记为“3”.25.如图是一个无盖的正五棱柱的盒子,有一只蚂蚁在F处发现一只虫子在外表面的D处,立刻赶去捕捉,你知道它怎样爬路线最短吗?21.(10分)我们学习过物体的三视图(主视图、俯视图和左视图),实际上看物体往往不是这样来看的,比如在拍照时我们总是从不同的角度去拍摄。
第15讲 解答题立体几何折叠问题(解析版)
第15讲 立体几何折叠问题1.如图,矩形ABCD 中,24AD AB ==,E 为BC 的中点,现将BAE ∆与DCE ∆折起,使得平面BAE 及平面DEC 都与平面ADE 垂直.(1)求证://BC 平面ADE ; (2)求二面角A BE C --的余弦值.【解答】解:(1)证明:分别取AE ,DE 的中点M ,N ,连结BM ,CN ,MN , 则BM AE ⊥,CN DE ⊥,平面BAE 与平面DEC 都与平面ADE 垂直, BM ∴⊥平面ADE ,CN ⊥平面ADE ,由线面垂直的性质定理得//BM CN ,BM CN =,∴四边形BCNM 是平行四边形,//BC MN ∴, BC ⊂/平面ADE ,//BC ∴平面ADE .(2)解:如图,以E 为原点,ED ,EA 为x ,y 正半轴,过E 作平面ADE 的垂线为z 轴,建立空间直角坐标系,则B ,C ,平面ABE 的法向量(1n =,0,0), 设平面CBE 的法向量(m x =,y ,)z ,则2020EB m y EC m x ⎧=+=⎪⎨==⎪⎩,取1x =,得(1m =,1,1)-, 设二面角A BE C --的平面角为θ,由图知θ为钝角,||1cos ||||3m n m n θ∴=-=-=∴二面角A BE C --的余弦值为.2.如图,在直角梯形ABCD 中,//AD BC ,AB BC ⊥,且24BC AD ==,E ,F 分别为线段AB ,DC 的中点,沿EF 把AEFD 折起,使AE CF ⊥,得到如下的立体图形. (1)证明:平面AEFD ⊥平面EBCF ;(2)若BD EC ⊥,求二面角F BD C --的余弦值.【解答】(1)证明:在直角梯形ABCD 中,//AD BC ,AB BC ⊥, E ,F 分别为线段AB ,DC 的中点, //EF AD ∴,AE EF ∴⊥,又AE CF ⊥,且EF CF F =,AE ∴⊥平面EBCF , AE ⊂平面AEFD ,∴平面AEFD ⊥平面EBCF .(2)解:由(1)可得EA ,EB ,EF 两两垂直, 故以E 为原点建立空间直角坐标系,(如图)设AE m =,则(0E ,0,0),(0A ,0,)m ,(B m ,0,0), (0F ,3,0),(C m ,4,0),(0D ,2,)m ,∴(BD m =-,2,)m ,(,4,0)EC m =,DB EC ⊥,280m ∴-+=,22m ∴=∴(22BD =-,2,2),(22,3,0)FB =-,(0,4,0)CB =-,设面DBF 的法向量为(,,)m x y z =,则00m BD m FB ⎧⋅=⎪⎨⋅=⎪⎩,即2222202230x y z x y ⎧-++=⎪⎨-=⎪⎩,令4y =可得:(32m =,42), 同理可得平面CDB 的法向量为(1,0,1)n =, 422cos ,||||362m n m n m n ⋅∴<>===⨯.由图形可知二面角F BD C --为锐角,∴二面角F BD C --的余弦值为23.3.如图1,在平行四边形11ABB A 中,160ABB ∠=︒,4AB =,12AA =,C 、1C 分别为AB 、11A B 的中点,现把平行四边形111ABB A 沿1CC 折起如图2所示,连接1B C 、1B A 、11B A . (1)求证:11AB CC ⊥;(2)若16AB =11C AB A --的正弦值.【解答】证明:(1)取1CC 的中点O ,连接OA ,1OB ,1AC ,在平行四边形11ABB A 中,160ABB ∠=︒,4AB =,12AA =,C 、1C 分别为AB 、11A B 的中点, 1ACC ∴∆,1BCC ∆为正三角形,则1AO CC ⊥,11OB CC ⊥,又1AOOB O =,1CC ∴⊥平面1OAB ,1AB ⊂平面1OAB 11AB CC ∴⊥;4⋯分(2)160ABB ∠=︒,4AB =,12AA =,C 、1C 分别为AB 、11A B 的中点,2AC ∴=,13OA OB ==16AB =22211OA OB AB +=,则三角形1AOB 为直角三角形,则1AO OB ⊥,6⋯分以O 为原点,以OC ,1OB ,OA 为x ,y ,z 轴建立空间直角坐标系, 则(1C ,0,0),1(0B ,30),1(1C -,0,0),(0A ,0,3),则1(2,0,0)CC =- 则11(2,0,0)AA CC ==-,1(0AB =33)-,(1AC =,0,3)-, 设平面1AB C 的法向量为(,,)n x y z =,则133030n AB y z n AC x z ⎧==⎪⎨==⎪⎩,令1z =,则1y =,3x =(3,1,1)n =, 设平面11A B A 的法向量为(,,)m x y z =,则1120330m AA x m AB y z ⎧=-=⎪⎨==⎪⎩,令1z =,则0x =,1y =,即(0,1,1)m =,8⋯分则10cos ,105m n <>=分 ∴二面角11C AB A --15.12⋯分.4.如图1所示,在等腰梯形ABCD 中,,3,15,33BE AD BC AD BE ⊥===把ABE ∆沿BE 折起,使得62AC =得到四棱锥A BCDE -.如图2所示. (1)求证:面ACE ⊥面ABD ;(2)求平面ABE 与平面ACD 所成锐二面角的余弦值. 【解答】证明:(1)在等腰梯形ABCD 中3BC =,15AD =,BE AD ⊥,可知6AE =,9DE =.因为3,33,BC BE BE AD ==⊥,可得6CE =.又因为6,62AE AC ==,即222AC CE AE =+,则AE EC ⊥.又BE AE ⊥,BEEC E =,可得AE ⊥面BCDE ,故AE BD ⊥.又因为tan 333DE DBE BE ∠===, 则60DBE ∠=︒,3tan 33BC BEC BE ∠===,则30BEC ∠=︒, 所以CE BD ⊥,又AE EC E =,所以BD ⊥面ACE ,又BD ⊂面ABD ,所以面ABD ⊥面ACE ;解:(2)设ECBD O =,过点O 作//OF AE 交AC 于点F ,以点O 为原点,以OB ,OC ,OF 所在直线分别为x ,y ,z 轴,建立如图所示的空间直角坐标系O BCF -. 在BCE ∆中,30BEO ∠=︒,BO EO ⊥,∴9333,,22EO CO BO ===2339((0,,0),(0,,0)22B C E -,1//,,62FO AE FO AE AE ==,3FO ∴=,则9(0,0,3),(0,,6)2F A -,//DE BC ,9DE =,∴3ED BC =,∴93(D ,∴339933(,,0),(0,0,6),(0,6,6),(,0)2222BE AE CA CD ===-=--,设平面ABE 的法向量为1111(,,)n x y z =,由1111160339022n AE z n BE y ⎧==⎪⎨=+=⎪⎩,取13x =ABE 的法向量为1(3,1,0)n =-, 设平面ACD 的一个法向量为2222(,,)n x y z =,由222222660933022n CA y z n CD y ⎧=-+=⎪⎨=--=⎪⎩, 取21x =,可得平面ABE 的一个法向量为2(1n =,33-,33)-.设平面ABE 与平面ACD所成锐二面角为θ,则1212||432165cos ||||255n n n n θ===,所以平面ABE 与平面ACD 所成锐二面角的余弦值为21655.如图1,菱形ABCD 的边长为12,60BAD ∠=︒,AC 与BD 交于O 点.将菱形ABCD 沿对角线AC 折起,得到三棱锥B ACD -,点M 是棱BC 的中点,62DM = (Ⅰ)求证:平面ODM ⊥平面ABC ; (Ⅱ)求二面角M AD C --的余弦值.【解答】(本小题满分12分) 证明:(Ⅰ)ABCD 是菱形, AD DC ∴=,OD AC ⊥,ADC ∆中,12AD DC ==,120ADC ∠=︒, 6OD ∴=,又M 是BC 中点,∴16,622OM AB MD === 222OD OM MD +=,DO OM ∴⊥,OM ,AC ⊂面ABC ,OM AC O =,OD ∴⊥面ABC ,又OD ⊂平面ODM ,∴平面ODM ⊥平面ABC .⋯(6分) 解:(Ⅱ)由题意,OD OC ⊥,OB OC ⊥,又由(Ⅰ)知OB OD ⊥,建立如图所示空间直角坐标系,由条件知:(6,0,0),(0,63,0),(0,33,3)D A M - 故(0,93,3),(6,63,0)AM AD ==, 设平面MAD 的法向量(,,)m x y z =,则00m AM m AD ⎧=⎪⎨=⎪⎩,即93306630y z x ⎧+=⎪⎨+=⎪⎩,令3y =-3x =,9z = ∴(3,3,9)m =-由条件知OB ⊥平面ACD ,故取平面ACD 的法向量为(0,0,1)n = 所以,393cos ,||||31m n m n m n 〈〉==由图知二面角M AD C --为锐二面角, 故二面角M AD C --393(12分)6.如图1,已知在菱形ABCD 中,120B ∠=︒,E 为AB 的中点,现将四边形EBCD 沿DE 折起至EBHD ,如图2.(1)求证:DE ⊥面ABE ;(2)若二面角A DE H --的大小为23π,求平面ABH 与平面ADE 所成锐二面角的余弦值. 【解答】(1)证明:四边形ABCD 为菱形,且120B ∠=︒, ABD ∴∆为正三角形, E 为AB 的中点,DE AE ∴⊥,DE BE ⊥, DE ∴⊥面ABE ;(2)解:以点E 为坐标原点,分别以线段ED ,EA 所在直线为x ,y 轴,再以过点E 且垂直于平面ADE 且向上的直线为z 轴,建立空间直角坐标系如图所示.DE ⊥面ABE ,AEB ∴∠为二面角A DE H --的一个平面角,则23AEB π∠=, 设1AE =,则(0E ,0,0),(0A ,1,0),(0B ,12-3),(3D 0,0),由2DH EB =,得(3,3)H -,∴33(0,2AB =-,(3,3)AH =-, 设平面ABH 的法向量为(,,)n x y z =,则33023230n AB y n AH x y z ⎧=-+=⎪⎨⎪=-=⎩,令3y =,得(1,3,3)n =-.而平面ADE 的一个法向量为(0,0,1)m =,设平面ABH 与平面ADE 所成锐二面角的大小为θ,则313313cos |||||||13n m n m θ===. ∴平面ABH 与平面ADE 313.7.如图1,四边形ABCD 中AC BD ⊥,2222CE AE BE DE ====,将四边形ABCD 沿着BD 折叠,得到图2所示的三棱锥A BCD -,其中AB CD ⊥. (Ⅰ)证明:平面ACD ⊥平面BAD ;(Ⅱ)若F 为CD 中点,求二面角C AB F --的余弦值.【解答】证明:(Ⅰ)AE BD ⊥,且BE DE =,ABD ∴∆是等腰直角三角形,AB AD ∴⊥,又AB CD ⊥,且AD ,CD ⊂平面ACD ,ADCD D =,AB ∴⊥平面ACD ,又AB ⊂平面BAD ,∴平面ACD ⊥平面BAD . 解:(Ⅱ)以E 为原点,EC 为x 轴,ED 为y 轴,过E 作平面BDC 的垂直为z 轴,建立空间直角坐标系,过A 作平面BCD 的垂线,垂足为G ,根据对称性,G 点在x 轴上,设AG h =,由题设知: (0E ,0,0),(2C ,0,0),(0B ,1-,0),(0D ,1,0), 2(1A h -0,)h ,(1F ,12,0),2(1BA h =-1,)h ,(2DC =,1-,0),AB CD ⊥,∴22110BA DC h =-=,解得3h =,13(2A ∴. 13(2BA =,(1BF =,32,0),设平面ABF 的法向量(a μ=,b ,)c ,则1302302BA a b BF a b μμ⎧=+=⎪⎪⎨⎪=+=⎪⎩, 令9a =,得(9μ=,6-,3),AD AB ⊥,AD AC ⊥,2(1DA ∴=,2-3)是平面ABC 的一个法向量,cos μ∴<,(2)91231525|||2|1208DA DA DA μμ++>===,二面角C AB F --是锐角,∴二面角C AB F --的余弦15.8.如图1,在直角梯形ABCD 中,//AD BC ,AB BC ⊥,BD DC ⊥,点E 是BC 边的中点,将ABD ∆沿BD 折起,使平面ABD ⊥平面BCD ,连接AE ,AC ,DE ,得到如图2所示的几何体. (Ⅰ)求证:AB ⊥平面ADC ;(Ⅱ)若1AD =,二面角C AB D --6,求二面角B AD E --的余弦值.【解答】解:(Ⅰ)因为平面ABD ⊥平面BCD ,平面ABD ⋂平面BCD BD =,又BD DC ⊥,所以DC ⊥平面ABD .⋯(1分)因为AB ⊂平面ABD ,所以DC AB ⊥.⋯(2分) 又因为折叠前后均有AD AB ⊥,DCAD D =,⋯(3分)所以AB ⊥平面ADC .⋯(4分)(Ⅱ)由(Ⅰ)知AB ⊥平面ADC ,所以二面角C AB D --的平面角为CAD ∠.⋯(5分) 又DC ⊥平面ABD ,AD ⊂平面ABD ,所以DC AD ⊥.依题意tan 6CDCAD AD∠==.⋯(6分) 因为1AD =,所以6CD =(0)AB x x =>,则21BD x =+ 依题意~ABD BDC ∆∆,所以AB CDAD BD=,即2611x x =+⋯(7分)解得2x ,故222,3,3AB BD BC BD CD ===+.⋯(8分)如图所示,建立空间直角坐标系D xyz -,则(0D ,0,0),(3,0,0)B ,6,0)C ,36(E ,36(A ,所以36(2DE =,36(3DA =.由(Ⅰ)知平面BAD 的法向量(0,1,0)n =.⋯(9分)设平面ADE 的法向量(,,)m x y z =由0,0m DE m DA ⋅=⋅=得360360.y == 令6x =,得3,3y z =-=,所以(6,3,3)m =-.⋯(10分)所以1cos ,||||2n m n m n m ⋅<>==-⋅.⋯(11分)由图可知二面角B AD E --的平面角为锐角,所以二面角B AD E --的余弦值为12.⋯(12分) 9.如图所示,在平行四边形ABCD 中,4AB =,BC =45ABC ∠=︒,点E 是CD 边的中点,将DAE ∆沿AEE 折起,使点D 到达点P 的位置,且PB =(1)求证:平面PAE ⊥平面ABCE ;(2)若平面PAE 和平面PBC 的交线为l ,求二面角B lE --的余弦值.【解答】(1)证明:连接BE ,在平行四边形ABCD 中,2DE =,AD =45ADC ∠=︒,2AE∴=AE DE ∴⊥,即AE PE ⊥,且AE BA ⊥.在Rt BEA ∆中,得BE ==.又2PE =,PB =222PE BE PB ∴+=,即PE BE ⊥.又AE ⊂平面ABCE ,BE ⊂平面ABCE ,且AE BE E =,PE ∴⊥平面ABCE .又PE ⊂平面PAE ,∴平面PAE ⊥平面ABCE ; (2)解:由(1)得PE ,AE ,CE 两两垂直,故以E 为原点,EC ,EA ,EP 所在直线分别为x ,y ,z 轴建立空间直角坐标系. 则(0A ,2-,0),(2C ,0,0),(0P ,0,2),(4B ,2-,0).∴(2,0,2)PC =-,(2,2,0)BC =-可知1(1,0,0)n =是平面PAE 的一个法向量,设平面PBC 的一个法向量为2(,,)n x y z =.由22220220n PC x z n BC x y ⎧⋅=-=⎪⎨⋅=-+=⎪⎩,取1z =,得2(1,1,1)n =.1212123cos,3||||n n n n n n ⋅∴<>==⋅.10.已知长方形ABCD 中,1AB =,2AD ,现将长方形沿对角线BD 折起,使AC a =,得到一个四面体A BCD -,如图所示.(1)试问:在折叠的过程中,异面直线AB 与CD ,AD 与BC 能否垂直?若能垂直,求出相应的a 值;若不垂直,请说明理由.(2)当四面体A BCD -体积最大时,求二面角A CD B --的余弦值.【解答】解:(1)若AB CD ⊥,由AB AD ⊥,ADCD D =,得AB ⊥面ACD ,AB AC ∴⊥,222AB a BC ∴+=,即212a +=,解得1a =, 若AD BC ⊥,由AB AD ⊥,ABBC B =,得AD ⊥平面ABC ,AD AC ∴⊥,222AD a CD ∴+=,即221a +=,解得21a =-,不成立,AD BC ∴⊥不成立.(2)四面体A BCD -体积最大,BCD ∆2,∴只需三棱锥A BCD -的高最大即可,此时面ABD ⊥面BCD ,以A 为原点,在平面ACD 中过O 作BD 的垂线为x 轴,OD 为y 轴,OA 为z 轴,建立空间直角坐标系,则(0A ,06),63(,C ,0),(0D 23,0), 面BCD 的法向量为(0OA =,06, 面ACD 的法向量(n x =,y ,)z ,63(3CD =-,236(0,)DA =,则630323603n CD x y n DA y ⎧=-=⎪⎪⎨⎪=-+=⎪⎩,取2y =,得(1,2,2)n =, 设二面角A CD B --的平面角为θ,则26||273cos |cos ,|||||673n OA n OA n OA θ=<>===, ∴二面角A CD B --2711.如图,在长方形ABCD 中,AB π=,2AD =,E 、F 为线段AB 的三等分点,G 、H 为线段DC 的三等分点.将长方形ABCD 卷成以AD 为母线的圆柱W 的半个侧面,AB 、CD 分别为圆柱W 上、下底面的直径.(1)证明:平面ADHF ⊥平面BCHF ;(2)求二面角A BH D --的余弦值.【解答】(本小题满分12分)证明:(1)因为H 在下底面圆周上,且CD 为下底面半圆的直径, 所以DH HC ⊥,又因为DH FH ⊥,且CH FH H =,所以DH ⊥平面BCHF , 又因为DH ⊂平面ADHF ,所以平面ADHF ⊥平面BCHF . 解:(2)以H 为坐标原点,分别以HD 、HC 、HF 为x ,y ,z 轴建立空间直角坐标系O xyz -, 设下底面半径为r ,由题r ππ=,所以1r =,2CD =因为G 、H 为DC 的三等分点所以30HDC ∠=︒, 所以在Rt DHC ∆中,3,1HD HC ==所以(3,0,2)A ,(0B ,1,2),(3,0,0)D , 设平面ABH 的法向量(,,)n x y z=,因为(,,)(3,0,2)0n HA x y z ==, (,,)(0,1,2)0n HB x y z ==,所以2020z y z +=+=⎪⎩,所以平面ABH 的法向量(2,n =--, 设平面BHD 的法向量(,,)m x y z =, 因为(,,)(3,0,0)0m HD x y z ==,(,,)(0,1,2)0m HB x y z ==所以020x y z =⎧⎨+=⎩,所以平面BHD 的法向量(0,2,1)m =-. 所以二面角A BH D --的余弦值为285cos ||||||19m n m n θ==. 12.在菱形ABCD 中,2AB =且60ABC ∠=︒,点M ,N 分别是棱CD ,AD 的中点,将四边形ANMC 沿着AC 转动,使得EF 与MN 重合,形成如图所示多面体,分别取BF ,DE 的中点P ,Q .(1)求证://PQ 平面ABCD ;(2)若平面AFEC ⊥平面ABCD ,求多面体ABCDFE 的体积.【解答】解:(1)证明:取BE 中点R ,连接PR ,QR ,BD ,由P ,Q 分别是BF ,DE 的中点, //PR EF ∴,//QR BD ,又//EF AC ,//PR ∴平面ABCD ,//QR 平面ABCD ,又PRQR R =, ∴平面//PQR 平面ABCD ,又PQ ⊂平面PQR , //PQ ∴平面ABCD .(2)解:连接AC ,设AC ,BD 交于点O ,BD AC ∴⊥,又平面AFEC ⊥平面ABCD ,平面AFEC ⋂平面ABCD AC =, BD ∴⊥平面AFEC .∴多面体ABCDFE 可以分解为四棱锥B ACEF -和四棱锥D ACEF -,菱形ABCD 中,2AB =且60ABC ∠=︒知:2AC =,BD =12AC EF ==, 设梯形EFAC 的面积为133()244EFAC BD S EF AC =+=, ∴多面体ABCDFE 的体积为1332ABCDFE EFAC V S BD ==.13.已知等腰直角△S AB ',4S A AB '==,S A AB '⊥,C ,D 分别为S B ',S A '的中点,将△S CD '沿CD 折到SCD ∆的位置,22SA =,取线段SB 的中点为E .()I 求证://CE 平面SAD ; (Ⅱ)求二面角A EC B --的余弦值.【解答】(Ⅰ)证明:取SA 中点F ,连接DF ,EF ,SE EB =,SF FA =,//EF AB ∴,12EF AB =, 又//CD AB ,12CD AB =, CD EF ∴=,//CD EF ,∴四边形CDEF 为平行四边形,则//CE FD .CE ⊂/平面SAD ,FD ⊂平面SAD ,//CE ∴平面SAD ;(Ⅱ)解:面SCD ⊥面ABCD ,面SCD ⋂面ABCD CD =,SD CD ⊥,SD ⊂面SCD ,SD ∴⊥面ABCD , AD ,CD ⊂面ABCD ,SD AD ∴⊥,SD CD ⊥.又AD DC ⊥,DA ∴,DC ,DS 两两互相垂直,如图所示,分别以DA ,DC ,DS 为x ,y ,z 轴建立空间直角坐标系D xyz -. 则(2A ,0,0),(0C ,2,0),(0S ,0,2),(2B ,4,0),(1E ,2,1), (1,0,1)CE =,(2,2,0)CA =-,(2,2,0)CB =, 设平面ECA ,平面ECB 的法向量分别为111(,,)m x y z =,222(,,)n x y z =, 则11110220m CE x z m CA x y ⎧=+=⎪⎨=-=⎪⎩,取11y =,可得(1,1,1)m =-; 22220220n CE x y n CB x y ⎧=+=⎪⎨=+=⎪⎩,取21y =-,得(1,1,1)n =--. 111cos ,||||33m n m n m n -+∴<>===⨯. ∴二面角A EC B --的平面角的余弦值为13-.。
高中数学例题:简单几何体的表面展开与折叠问题
高中数学例题:简单几何体的表面展开与折叠问题例6.长方体ABCD-A1B1C1D1(如图)中,AB=3,BC=4,A1A=5,现有一甲壳虫从A出发沿长方体表面爬行到C.来获取食物,试画出它的最短爬行路线,并求其路程的最小值.
【解析】把长方体的部分面展开,如右图所示.
对甲、乙、丙三种展开图利用勾股定理可得AC
1
、,由此可见乙是最短线路,所以甲壳虫可以先在长方形
ABB1A1内由A到E,再在长方形BCC1B1内由E到C1,也可以先在长
方形AA1D1D内由A到F,再在长方形DCC1D1内到F到C1,其最短路
.
【总结升华】在几何体表面求最短路径问题,就是要“化折为直”,
因此需要把几何体表面展开,本题注意要分三种情况讨论.举一反三:
【变式1】圆台的上、下底面半径分别为5 cm、10 cm,母线长A8=20 cm,从圆台母线AB的中点M拉一条绳子,绕圆台侧面转到A
点,如图.求:
(1)绳子的最短长度;
(2)当绳子最短时,上底圆周上的点到绳子的最短距离.
【答案】(1)绳子的最短长度为50 cm.(2)上底圆周上的点到绳子的最短距离为4 cm.
例7.根据下图所给的平面图形,画出立体图形.
【解析】将各平面图形折起后形成的空间图形如下图所示.
【总结升华】平面图形的折叠问题实质上是多面体的表面展开问题的逆向问题(即逆向过程).这两类问题都是立体几何中的基本问题,我们必须熟练掌握折叠与展开这两个基本功,并能准确地画出折叠和展开前后的平面图形和立体图形,找到这两个图形之间的构成关系.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
立体几何中折叠与展开问题(2)【知识与方法】折叠与展开问题是立体几何的两个重要问题,这两种方式的转变正是空间几何与平面几何问题转化的集中体现。
处理这类题型的关键是抓住两图的特征关系。
折叠问题是立体几何的一类典型问题是实践能力与创新能力考查的好素材。
解答折叠问题的关键在于画好折叠前后的平面图形与立体图形,并弄清折叠前后哪些发生了变化,哪些没有发生变化。
这些未变化的已知条件都是我们分析问题和解决问题的依据。
而表面展开问题是折叠问题的逆向思维、逆过程,一般地,涉及到多面体表面的问题,解题时不妨将它展开成平面图形试一试。
【认知训练】1.△ABC 的BC 边上的高线为AD ,BD=a ,CD=b ,将△ABC 沿AD 折成大小为θ的二面角B-AD-C ,若ba=θcos ,则三棱锥A-BCD 的侧面三角形ABC 是( ) A 、锐角三角形 B 、钝角三角形C 、直角三角形D 、形状与a 、b 的值有关的三角形2.如图为棱长是1的正方体的表面展开图,在原正方体中,给出下列三个命题:①点M 到AB 的距离为22 ②三棱锥C -DNE 的体积是61③AB 与EF 所成角是2π 其中正确命题的序号是3.将下面的平面图形(每个点都是正三角形的顶点或边的中点)沿虚线折成一个正四面体后,直线MN 与PQ 是异面直线的是 ……………………………………………( ) ① ② ③ ④A .①②B .②④C .①④D .①③4.正方形ABCD 中,M 为AD 的中点,N 为AB 中点,沿CM 、CN 分别将三角形CDM 和△CBN 折起,使CB 与CD 重合,设B 点与D 点重合于P ,设T 为PM 的中点,则异面直线CT 与PN 所MNP QMQN MN PQMNP Q成的角为( )A,300 B,450 C,600 D,90) AN MPC(B)(D)T 第11题图5.(06山东卷)如图,在等腰梯形ABCD 中,AB=2DC=2, ∠DAB =60°,E 为AB 的中点,将△ADE 与△BEC 分别沿ED 、 EC 向上折起,使A 、B 重合于点P ,则P -DCE 三棱锥的 外接球的体积为 (A)2734π(B)26π (C)86π (D)246π6.在直三棱柱ABC -A 1B 1C 1中,底面为直角三角形,∠ACB =90︒,AC =6,BC =CC 12,P 是BC 1上一动点,则CP +PA 1 的最小值是___________7.用一张正方形的包装纸把一个棱长为a 的立方体完全包住,不能将正方形纸撕开,所需包装纸的最小面积为A.29a B .28a C. 27a D. 26a【能力训练】例1.点O 是边长为4的正方形ABCD 的中心,点E ,F 分别是AD ,BC 的中点.沿对角线AC 把正方形ABCD 折成直二面角D -AC -B .(Ⅰ)求EOF ∠的大小; (Ⅱ)求二面角E OF A --的大小.例2.如图,在正三棱柱ABC-A 1B 1C 1中,AB=3,AA 1=4,M 为AA 1的中点,P 是BC 上一点,且由P 沿棱柱侧面经过棱CC 1到M 点的最短路线长为29,设这条最短路线与C 1C 的交点为N 。
求1) 该三棱柱的侧面展开图的对角线长;2) PC 和NC 的长;3) 平面NMP 和平面ABC 所成二面角(锐角)的大小(用反三角函数表示)例3.已知△ABC 的边长为3,D 、E 分别是边BC 上的三等分点,沿AD 、AE 把△ABC 折成A -DEF ,使B 、C 两点重合于点F ,且G 是DE 的中点(1)求证:DE ⊥平面AGF(2)求二面角A ―DE ―F 的大小;C 1CBA 1 A 1C 1CA MB 1A(3)求点F 到平面ADE 的距离.例4(江苏卷)在正三角形ABC 中,E 、F 、P 分别是AB 、AC 、BC 边上的点,满足AE:EB =CF:FA =CP:PB =1:2(如图1)。
将△AEF 沿EF 折起到EF A 1∆的位置,使二面角A 1-EF -B 成直二面角,连结A 1B 、A 1P (如图2)(Ⅰ)求证:A 1E ⊥平面BEP ;(Ⅱ)求直线A 1E 与平面A 1BP 所成角的大小;(Ⅲ)求二面角B -A 1P -F 的大小(用反三角函数表示)例5.(辽宁卷)已知正方形ABCD .E 、F 分别是AB 、CD 的中点,将ADE 沿DE 折起,如图所示,记二面角A DE C --的大小为(0)θθπ<<.(I) 证明//BF 平面ADE ;(II)若ACD 为正三角形,试判断点A 在平面BCDE 内的射影G 是否在直线EF 上,证明你的结论,并求角θ的余弦值.【达成测试】1.长方形中,AB=32BC,把它折成正三棱柱的侧面,使AD 与BC 重合,长方形的对角线AC 与折痕线EF 、GH 分别交于M 、N,则截面MNA 与棱柱的底面DFH 所成的角等于( )A .30oB .45oC .60oD .90o2.如图9—99是一个无盖的正方体盒子展开后的平面图,A 、B 、C 是展开图上的三点,则在正方体盒子中,∠ABC 的值为( )CDFCEAFECBA 1EFCP B图9—99A.180°B.120°C.45°D.60°3.如图,在正三角形ABC中,D,E,F分别为各边的中点,G,H,I,J分别为AF,AD,BE,DE的中点.将△ABC沿DE,EF,DF折成三棱锥以后,GH与IJ所成角的度数为()A.90°B.60°C.45°D.0°4.如图9—100表示一个正方体表面的一种展开图,图中的四条线段AB、CD、EF和GH在原正方体中相互异面的有_____对.图9—100 图9—101【分析】平面图形的翻折应注意翻折前后各元素相对位置的变化,AB、CD、EF和GH 在原正方体中如图9—101.有AB与CD、EF与GH、AB和GH三对异面直线.5.如下图,在下列六个图形中,每个小四边形皆为全等的正方形,那么沿其正方形相邻边折叠,能够围成正方体的是_____________(要求:把你认为正确图形的序号都填上)① ② ③④ ⑤ ⑥6.设角梯形AB CD 两腰的中点,D E ⊥A B 于E (如图)6.解:如左图,在平面AED 内作MQ ∥AE 交ED 于Q,则MQ ⊥ED,且Q 为ED 的中点,连结QN,则NQ ⊥ED 且QN ∥EB,QN=EB,∠MQN 为二面角A -DE -B 的平面角, ∴∠MQN=45°∵AB ⊥平面BCDE,又∠AEB=∠MQN=45°,MQ=12在平面MQN 内作MP ⊥BQ,得QP=MP=12EB,故PB=QP=12EB,故QMN 是以∠QMN 为直角的等腰三角形,即MN ⊥QM,也即MN 子AE 所成角大小等于90° 7.如图,已知正三棱柱111ABC A B C 的底面边长为1,高为8,一质点自A 点出发,沿着三棱柱的侧面绕行两周.. 到达1A 点的最短路线的长为 . 8.如图,已知ABCD 是上、下底边长分别为2和6,高为3的等腰梯形,将它沿对称轴OO 1折成直二面角, (Ⅰ)证明:AC ⊥BO 1;(Ⅱ)求二面角O -AC -O 1的大小。
C C O 19. 如图4,在正三棱锥A -BCD 中,底面边长为a ,侧棱长为2a ,E 、F 分别为AC 、AD 上的动点,求截面△BEF 的周长的最小值,以及此时E 、F 的位置。
10.如图:在直角三角形ABC 中,已知AB=a ,∠ACB=30o ,∠B=90o ,D 为AC 的中点,E 为BD 的中点,AE 的延长线交BC 于F ,将△ABD 沿BD 折起,二面角A'-BD-C 的大小记为θ。
⑴求证:平面A'EF ⊥平面BCD ; ⑵θ为何值时A'B ⊥CD ? ⑶在⑵的条件下,求点C 到平面A'BD 的距离。
折叠与展开问题参考答案【认知训练】1. 答案:C点评:将平面图形折成空间图形后线面位置关系理不清,易瞎猜。
2. 答案:①②③,把所给平面图复原成3.C4. 取AN 的中点S ,则PN 2+PT 2=TS 2+SN 2=TN 2∴PN ⊥PT ,又PN ⊥PC ∴PN ⊥平面CMP ,选DEE ABA ’“‘F D CB FCD N ACFE BDM5.解:易证所得三棱锥为正四面体,它的棱长为1,故外接球半径为6,外接球的体积为3466()348ππ=,选C 6.解:连A 1B ,沿BC 1将△CBC 1展开与△A 1BC 1在同一个平 面内,如图所示,连A 1C ,则A 1C 的长度就是所求的最小值。
通过计算可得∠A 1C 1C =90︒又∠BC 1C =45︒, ∴∠A 1C 1C =135︒ 由余弦定理可求得A 1C =527.试题背景:本题与以往把立体图简单地展开为平面图是不一样的,因为正方形的纸不能撕开来。
此题情境新颖,具有较高的探索价值,类似于2002年文史类最后一道高考附加题。
解析:将正方形纸如图划分, 其中BC=2AB=2CD ,用标III 的部分作下底面,标II 的部 分作四个侧面,标I 的部分 正好盖住立方体的上底面。
由题意知,标I 的部分正好盖住立方体的上底面。
由题意知,标II 的正方形的边长为a ,所以正方形纸的边长为a 22,面积为28a 。
故选B 。
评析:新世纪的高考试题的新颖性越来越明显,能力要求也越来越高,并且也越来越广泛。
要在“创新”的大环境下来面对高考,我们应把握好平时的一些新颖试题,充分挖掘其立意,举一反三,广泛联系,以适应新课程的理念及新时代的高考。
【能力训练】 例1.解法一:(Ⅰ)如图,过点E 作EG ⊥AC ,垂足为G ,过点F 作FH ⊥AC ,垂足为H ,则2EG FH ==,22GH =.因为二面角D -AC -B 为直二面角, 22222EF GH EG FH EG FH ∴=++-⋅222(22)(2)(2)012.=++-=CDMHGO FAB EGHM AB CDEFO又在EOF ∆中,2OE OF ==,222222221cos 22222OE OF EF EOF OE OF +-+-∴∠===-⋅⨯⨯.120EOF ∴∠=.(Ⅱ)过点G 作GM 垂直于FO 的延长线于点M ,连EM .∵二面角D -AC -B 为直二面角,∴平面DAC ⊥平面BAC ,交线为AC ,又∵EG ⊥AC ,∴EG ⊥平面BAC .∵GM ⊥OF ,由三垂线定理,得EM ⊥OF .∴EMG ∠就是二面角E OF A --的平面角.在Rt ∆EGM 中,90EGM ∠=,EG =,112GM OE ==,∴tan EGEMG GM∠==EMG ∠= 所以,二面角E OF A --的大小为arctan . 解法二:(Ⅰ)建立如图所示的直角坐标系O -xyz ,则(1,OE =-,(0,2,0)OF =.1cos ,2||||OE OF OE OF OE OF ⋅∴<>==-.120EOF ∴∠=.(Ⅱ)设平面OEF 的法向量为1(1,,)n y z =. 由110,0,n OE n OF ⋅=⋅=得10,20,y y ⎧-=⎪⎨=⎪⎩解得0,2y z ==-. 所以,1(1,0,2n =-. 又因为平面AOF 的法向量为2(0,0,1)n =,1212123cos ,||||n n n n n n ⋅∴<>==.∴12,arccos 3n n <>=.所以,二面角E OF A --的大小为 例2.正解:①正三棱柱ABC-A 1B 1C 1的侧面展开图是一个长为9,宽为4的矩形,其对角线长为974922=+②如图1,将侧面BC 1旋转120使其与侧面AC 1在同一平面上,点P 运动到点P 1的位置,连接MP 1,则MP 1就是由点P 沿棱柱侧面经过CC 1到点M 的最短路线。