直角三角形全等的判定方法
直角三角形全等的判定
两边及其中一边的对角对应相等的两个三角形不一定 全等.
证明:只要举一个反例即可.如图:
B B′ B′
A
●
C A′ (1)
●
(2)
C′A′
●
(3) C′
因此,两边及其中一边的对角对应相等的两个三角形不 一定全等. 切记!!! 两边及其中一边的对角对应相等的两个三 角形不一定全等. 即(SSA)是一个假冒产品!!!
B
B′
C
A C′
A′
直角三角形全等的判定定理
定理:
斜边和一条直角边对应相等的两个直角三角形全 等(斜边,直角边或HL).
如图,在△ABC和△A′B′C′中, ∠C=∠C′=900 , ∵ AC=A′C ′
AB=A′B′
B
∴Rt△ABC≌Rt△A′B′C′(HL).
B′
C
A C′
A′
知识在于积累
回味无穷
结束寄语
• 严格性之于数学家,犹如道德之于人. • 证明的规范性在于:条理清晰,因果 相应,言必有据.这是初学证明者谨记 和遵循的原则.
; / 优鸟-专业菜谱摄影设计制作
hmq823dfk
有生死离别,但也充满了坑坑坎坎。从女儿的出生、送人到今天的相聚,一幕幕场景在脑海中浮现„„人有悲欢离合, 月有阴晴圆缺,此事古难全。想着想着,渐渐地进入了梦乡。我梦见在一个鲜花烂漫的春天,女儿们手拉手地向我走 来„„她们欢呼着跳跃着把我和肖燕围在中间„„ “爸,我是大荷,是一个在温室里长大的女儿。我的人生没有经过 任何分吹雨打,一路从幸福中走来。直到有一天,我知道了„„我的亲生父亲原来是那位与我素不相识的乡巴佬„„我 才开始逐渐放下我的高贵,醒悟我的公主人生„„妈,我感谢您给了我生命;更感谢我的爹地和妈咪对我的养育之恩。 今天,我终于明白了:我有两个爸爸、两个妈妈,你们都在关心我爱护我„„我是世界上最幸福最幸福的女儿„„” “爸,我是荷花,是一个从黄土高坡走来的女儿。我的人生几经波折,充满了泪水和欢乐,一路从荆棘中走来„„我爱 过也恨过,更多的是对人生不公的抱怨„„直到今天,我才知道我的父母无时无刻不在关心着我爱护着我,原来我根本 就不是那种被父母抛弃的弃儿„„爸,我终于明白了您对女儿的一片苦心;我感谢我的母亲给了我生命;也忘不了那些 曾经养育过我的人;更忘不了我的阿爹和阿妈„„感谢上帝给了我这么多的人生磨练,让我深深地体会到我是一个不幸 之中最幸运的女儿„„” “爸„„妈,合上眼不用看就知道我是您的女儿小荷。人们都说我是个幸运儿,是躺在妈妈 的怀里骑在爸爸的背上长大的„„如果说妈妈的怀抱爸爸的背是我童年的摇篮,那么爸妈的肩头就是女儿登天的云梯。 直到今天,我才知道„„爸妈把所有的付出所有的爱都给与了我一个人,我就是爸妈的唯一„„如果不是为了我,我坚 信我的人生会彻底改写,我的爸妈也绝对不是现在的样子,也许您就是某一家国有企业的老板或者拥有自己的公司„„ 然而,您现在却什么也没有,除了老人和孩子„„但是,在女儿的心里你们才是世界上最伟大的父母!是世界上最富有 的人!爸„„妈,如果人生真的有来世,我一定还做您的女儿!”„„„„深夜,万籁俱静,我独自一人思前想后,一 个念头跳入我的脑际,如果能把我过去的一切写下来,不也是一件很有意义的事情吗?于是,我写下了这部不成文的东 西,自名为《把往事写下来》,把它留给我的儿女们,让他们自己去品尝去回味„„这样,也总算是了却了我人生的一 件心事。拉郎配 ——寻求合作伙伴(二)|在回办公室的路上,马启明边走边想,早就听说三角债已经拖垮了许多企业, 没想到华泰啤酒也掉进了这个怪圈,而且是吃人的怪圈。再加上投资人参口服液的项目,的确很烂,到现在连一支人参 口服液也没销售出去,这是一笔非常冒险并且绝对毫无收益的愚蠢投资决策。投资失误!雪上
直角三角形全等的判定
直角三角形全等的判定
直角三角形同余的判断:1。
对应边相等的两个三角形的三组同余。
2.两条边和它们的夹角相等的两个三角形。
3.两个三角形有两个角,它们的夹紧边全等。
判定方法
方法一:SSS(边边边),即三边对应相等的两个三角形全等。
方法二:SAS(边角边),即三角形的其中两条边对应相等,且两条边的夹角也对应相等的两个三角形全等。
方法三:ASA(角边角),即三角形的其中两个角对应相等,且两个角夹的的边也对应相等的两个三角形全等。
方法四:AAS(角角边),即三角形的其中两个角对应相等,且对应相等的角所对应的边也对应相等的两个三角形全等。
方法五:HL(斜边、直角边),即在直角三角形中一条斜边和一条直角边对应相等的两个直角三角形全等。
性质
1.全等三角形的对应角相等。
2.全等三角形的对应边相等。
3.。
能够完全重合的顶点称为对应顶点。
4.全等三角形的对应边上的高对应相等。
5.全等三角形的对应角的角平分线相等。
6.全等三角形的对应边上的中线相等。
7.全等三角形面积和周长相等。
8.全等三角形的对应角的三角函数值相等。
直角三角形全等的判定
全等相似三角形的判定方法
全等相似三角形的判定方法
全等和相似三角形的判定方法如下:
全等三角形的判定方法:
1.SSS(边、边、边):三边长度相等。
2.SAS(边、角、边):两边夹角相等。
3.ASA(角、边、角):两角夹边相等。
4.AAS(角、角、边):两角非夹边相等。
5.RHS(直角、斜边、边):在一对直角三角形中,斜边及另一条
直角边相等。
相似三角形的判定方法:
1.两角分别对应相等的两个三角形相似。
2.两边成比例且夹角相等的两个三角形相似。
3.三边成比例的两个三角形相似。
4.一条直角边与斜边成比例的两个直角三角形相似。
三角形全等与相似判定
三角形全等与相似判定
三角形全等:完全重合
判定
1、三组对应边分别相等(SSS或“边边边”) 这一条也是三角形具有稳定性的原因 2.有两边及其夹角对应相等(SAS或“边角边”)
3.有两角及其夹边对应相等(ASA或“角边角”) 4.有两角及一边对应相等(AAS或“角角边”)
பைடு நூலகம்
5.直角三角形全等条件:斜边及一直角边对应相等 (HL或“斜边,直角边”)
3.如图,在△ABC中,AB=AC,D为边BC上一点,以AB, BD为邻边作▱ABDE,连接AD,EC. (1)求证:△ADC≌△ECD; (2)若BD=CD,求证:四边形ADCE是矩形.
4.四边形ABCD是平行四边形,点E 在BA 的延长线上, 且BE=AD ,点F 在AD上,AF=AB, 求证:△AEF≌△DFC
1.如图,△ABC和△ADE中,∠BAC=∠DAE,AB=AE,AC=AD, 连接BD,CE,求证:△ABD≌△AEC.
2.如图,在△ABC中,∠ACB=90°,AC=BC,延长AB 至点D,使DB=AB,连结CD,以CD为直角边作等腰直 角三角形CDE,其中∠DCE=90°,连结BE (1)求证:△ACD≌△BCE; (2)若AC=3cm,则BE=__________cm
三角形相似:对应角相等,对应边成比例。
(1)平行于三角形一边的直线,截三角形其他两边 或延长线所得的三角形与原三角形相似。(简叙为 两角对应相等两个三角形相似). (2)两边夹角相等 (SAS) (3)三条边对应成比例 ( SSS) (4)两个角分别对应相等(AA)
直角三角形相似的判定定理: 直角三角形被斜边上的高分成两个直角三角形和 原三角形相似.
直角三角形全等判定定理
在Rt△ADB和Rt△ADC中
A
{ AB=AC AD=AD
∴ Rt△ADB≌Rt△ADC(HL)
∴BD=CD,∠BAD=∠CAD
等腰三角形三线合一
B
D
C
例2
已知:如图,在△ABC和△ABD中,AC⊥BC, AD⊥BD, 垂足分别为C,D,AD=BC,求证: △ABC≌△BAD.
证明:∵ AC⊥BC, AD⊥BD
动动手 做一做
用三角板和圆规,画一个Rt△ABC,使得∠C=90°, 一直角边CA=4cm,斜边AB=5cm.
B
5cm
A
4cm
C
斜边、直角边公理
有斜边和一条直角边对应相等的两个直角三角形全等.
简写成“斜边、直角边”或“HL”
斜边、直角边公理 (HL)
有斜边和一条直角边对应相等的两个直角三角形全等.
忆一忆
1、全等三角形的对应边 应角-相---等-------
-相---等-----,,对
2、判定三角形全等的方法有:
SAS、ASA、AAS、SSS
认识直角三角形 Rt△ABC
A
直
斜边
角
边
C
直角边
B
直角三角形全等的判定
直角三角形全等的判定
舞台背景的形状是两个直角三角形,工作人 员想知道两个直角三角形是否全等,但每个三 角形都有一条直角边被花盆遮住,无法测量。 (1) 你能帮他想个办法吗?
∴∠C=∠D=90° 在Rt△ABC和Rt△BAD中
ቤተ መጻሕፍቲ ባይዱ
D
AB BA BC AD
∴ Rt△ABC≌Rt△BAD (HL) A
C B
小结
一般三角
形全等的 “SAS” “ ASA ” “ AAS ” “ SSS ”
直角三角形全等的判定
结束寄语
• 严格性之于数学家,犹如道德之于人. • 证明的规范性在于:条理清晰,因果
相应,言必有据.这是初学证明者谨记 和遵循的原则.
; 亚博足彩 亚博app ;
H.L.). 2.三边对应相等的两个三角形全等(S.S.S.).
3.两边及其夹角对应相等的两个三角形全等(S.A.S.).
4.两角及其夹边对应相等的两个三角形全等(A.S.A.).
5.两角及其中一角的对边对应相等的两个三角形全等(A.A.S.).
综上所述,直角三角形全等的判定条件可归纳为: 一边及一个锐角对应相等的两个直角三角形全等; 两边对应相等的两个直角三角形全等;
两边及其中一边的对角对应相等的两个三角形不一定 全等.
证明:只要举一个反例即可.如图:
B
B′
B′
A● (1)
C A′ ● (2)
C′A′
●
(3)
C′
因此,两边及其中一边的对角对应相等的两个三角形不
一定全等.
切记!!! 两边及其中一边的对角对应相等的两个三 角形不一定全等. 即(SSA)是一个假冒产品!!!
三角形全等的判定
两边及其中一边的对角对应相等的两个三 角形不一定全等.
如果其中一边的所对的角是直角呢?
两边及其中一边的对角对应相等的两个三角形不一定全等.但如 果其中一边的所对的角是直角,那么这两个三角形全等. 已知:如图,在△ABC和△A′B′C′中, AC=A′C ′,
AB=A′B′, ∠C=∠C′=900.
C D
F
E
A
B
老师期望:请将证明过程规范化书写出来 .
直角三角形全等的判定
全等三角形判定条件(六种)
全等三角形判定条件(六种)
①边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等。
②角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等。
③推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等。
④边边边公理(SSS)有三边对应相等的两个三角形全等。
⑤斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角
三角形全等。
出现两等边三角形、两等腰直角三角形通常用SAS证全等;等腰直角
三角形常见辅助线添法--连结直角顶点和斜边中点;两直角三角形证全等
常用方法:SAS,AAS,HL;出现等腰直角三角形或正方形可能用到K型全等。
直角三角形全等的判定
结束寄语
• 严格性之于数学家,犹如道德之于人. • 证明的规范性在于:条理清晰,因果
相应,言必有据.这是初学证明者谨记 和遵循的原则.
;股票新闻 股票新闻 ;
不上,自己现在圣果很是充裕,每月给他一些也无妨. 行走在二层,白重炙没有想去打扰兰妃,而是向去巫山那里走去,巫山对他态度不错,并且是二层の统领,去他那里套套口风最好不过. 然而行走中,他却感觉二层练家子看他の目光,似乎有些不对劲了.以前是带着恭敬和惊讶,现在恭敬之余却是有 些淡淡の嫉妒和鄙夷? 自己老老实实在练功房修炼,没得罪什么人吧?白重炙心里有些纳闷了,不过却没有想太多,自己现在又不靠他们吃饭,兰妃可是保证过,不会对他使绊子,其他人怎么想,怎么看他无所谓. 走到一条长廊,在一些十字交叉口の时候,白重炙看到前方两名练家子,冷冷の望了自己一 眼,甚至嘴角还露出很明显の嘲弄.微微一愣,有些出神の朝左边拐去,没想到却是一把撞到一面巨墙之上,让他脚步踉跄了一下,巨大の反弹力让他连续退后了好几步. "哼,你呀眼睛瞎了?" 就在白重炙凝神朝这面巨墙望去の时候,对面那面巨墙却开口了.声音宛如午夜炸雷,将白重炙の耳膜都炸了 生疼,也将附近の练家子纷纷炸醒.当他们听清楚话の内容,看到那面墙和白重炙の时候,纷纷眼中露出了幸灾乐祸の表情,围了过来. 白重炙眼睛微微眯起,望着眼前の这巨汉,巨汉身高最少有三米,长得异常强壮,浑身都是长毛,并且头顶上还有一根犀牛般の独角.他很清楚,就算自己走神了,但是也 不可能有这么一些强者走来都没发觉.唯一の解释就是……对面这巨汉故意敛去声息,直接撞了自己. "对不起,大人,俺行走匆忙一时没看清!" 白重炙虽然知道对方是故意の,但是清楚对面の练家子实力明显是
直角三角形全等的判定
三角形全等的判定
两边及其中一边的对角对应相等的两个三 角形不一定全等.
如果其中一边的所对的角是直角呢?
两边及其中一边的对角对应相等的两个三角形不一定全等.但如 果其中一边的所对的角是直角,那么这两个三角形全等. 已知:如图,在△ABC和△A′B′C′中, AC=A′C ′,
AB=A′B′, ∠C=∠C′=900.
; https:/// 网上赚钱棋牌游戏 ;
没有回头路可以走的,刻骨铭心的友谊也如仇恨一样,没齿难忘。 友情这棵树上只结一个果子,叫做信任。红苹果只留给灌溉果树的人品尝。别的人摘下来尝一口,很可能酸倒了牙。 友谊之链不可继承,不可转让,不可贴上封条保存起来而不腐烂,不可冷冻在冰箱里永远新鲜。 友谊需要滋养。有的人用钱,有的人用汗,还有的人用血。友谊是很贪婪的,绝不会满足于餐风饮露。友谊是最简朴同时也是最奢侈的营养,需要用时间去灌溉。友谊必须述说,友谊必须倾听,友谊必须交谈的时刻双目凝视,友谊必须倾听的时分全神贯注。友谊有的时候是那样脆弱,一 句不经意的言辞,就会使大厦顷刻倒塌。友谊有的时候是那样容易变质,一个未经实的传言,就会让整盆牛奶变酸。这个世界日新月异。在什么都是越现代越好的年代里,唯有友谊,人们保持着古老的准则。朋友就像文物,越老越珍贵。 礼物分两种,一种是实用的,一种是象征性 的。 我喜欢送实用的礼物。 不单是因为它可为朋友提供立等可取的服务功能,更因为我的利己考虑。 此刻我们是朋友,十年以后不一定是朋友。 就算你耿耿忠心,对方也许早已淡忘。 速朽的礼物,既表达了我此时此刻的善意,又给予朋友可果腹可悦目可哈哈 一笑或是凝神端详的价值,虽是一次性的,也留下美好的瞬间,我心足矣。象征久远意义的礼物,若是人家不珍惜这份友谊了,留着就是尴尬。或丢或毁,都是物件的悲哀,我的心在远处也会颤抖。 若是给自己的礼物,还是具有象征意义的好。比如一块石子一片树叶,在别人眼里 那样普通,其中的美妙含义只有自己知晓。 电话簿是一个储存朋友的魔盒,假如我遇到困难,就要向他们发出求救信号。一种畏惧孤独的潜意识,像冬眠的虫子蛰伏在心灵的旮旯。人生一世,消失的是岁月,收获的是朋友。虽然我有时会几天不同任何朋友联络,但我知道自己牢牢 地粘附于友谊网络之中。 利害关系这件事,实在是交友的大敌。我不相信有永久的利益,我更珍视患难与共的友谊。长留史册的,不是锱铢必较的利益,而是肝胆相照的情分,和朋友坦诚的交往,会使我们留存着对真情的敏感,会使我们的眼睛抹去云翳,心境重新开朗。 ? 孝心无 价 ? ? 我不喜欢一个苦孩求学的故事。家庭十分困难,父亲逝去,弟妹嗷嗷待哺,可他大学毕业后,还要坚持读研究生,母亲只有去卖血……我以为那是一个自私的学子。求学的路很漫长,一生一世的事业,何必太在意几年蹉跎?况且这时间的分分秒秒都苦涩无比,需用母亲的鲜血灌溉! 一个连母亲都无法挚爱的人,还能指望他会爱谁?把自己的利益放在至高无上位置的人,怎能成为为人类献身的大师? ? 我也不喜欢父母重病在床,断然离去的游子,无论你有多少理由。地球离了谁都照样转动,不必将个人的力量夸大到不可思议的程度。在一位老人行将就木的时候,将 他对人世间最后的期冀斩断,以绝望之心在寂寞中远行,那是对生命的大不敬。 ?我相信每一个赤诚忠厚的孩子,都曾在心底向父母许下“孝”的宏愿,相信来日方长,相信水到渠成,相信自己必有功成名就衣锦还乡的那一天,可以从容尽孝。 ?可惜人们忘了,忘了时间的残酷,忘了人 生的短暂,忘了世上有永远无法报答的恩情,忘了生命本身有不堪一击的脆弱。 ?父母走了,带着对我们深深的挂念。父母走了,遗留给我们永无偿还的心情。你就永远无以言孝。 ?有一些事情,当我们年轻的时候,无法懂得。当我们懂得的时候,已不再年轻。世上有些东西可以弥补, 有些东西永无弥补。 ?“孝”是稍纵即逝的眷恋,“孝”是无法重现的幸福。“孝”是一失足成千古恨的往事,“孝”是生命与生命交接处的链条,一旦断裂,永无连接。 ?赶快为你的父母尽一份孝心。也许是一处豪宅,也许是一片砖瓦。也许是大洋彼岸的一只鸿雁,也许是近在咫尺的 一个口信。也许是一顶纯黑的博士帽,也许是作业簿上的一个红五分。也许是一桌山珍海味,也许是一只野果一朵小花。也许是花团锦簇的盛世华衣,也许是一双洁净的旧鞋。也许是数以万计的金钱,也许只是含着体温的一枚硬币……但“孝”的天平上,它们等值。 ?只是,天下的儿女 们,一定要抓紧啊!趁你父母健在的光阴。 请为你的夸奖道歉 朋友同我讲过这样一个故事。 她到北欧某国做访问学者,周末到当地教授家中做客。一进屋,问候之后,看到教授五岁的小女儿。这孩子满头金发,眼珠如同纯蓝的蝌蚪顾盼生辉,极其美丽。朋友带去了中国礼物, 小女孩有礼貌地微笑道谢,朋友抚摸着女孩的头发说,你长得这么漂亮,真是可爱极了! 教授等女儿退走之后,很严肃地对朋友说,你伤害了我的女儿,你要向她道歉。朋友大惊,说我一番好意,夸奖她,还送了她礼物,伤害二字从何谈起?教授说,你是因为她的漂亮而夸奖她, 而漂亮这件事,不是她的功劳,这取决于我和她的父亲的基因遗传,与她个人基本上没有关系。你夸奖了她,孩子很小,不会分辨,她就会认为这是她的本领。而她一旦认为天生的美丽是值得骄傲的资本,她就会看不起长相平平甚至丑陋的孩子,这就成了误区。而且,你未经她的允许, 就抚摸她的头,这使她以为一个陌生人可以随意抚摸她的身体而可以不经她的同意,这也是不良引导。不过你不要这样沮丧,你还有机会弥补。有一点,你是可以夸奖她的,这就是她的微笑和有礼貌。这是她自己努力的结果。 请你为你刚才的夸奖道歉。教授这样结束了她的话。 后来呢?我问。 后来我就很正式地向教授的小女儿道了歉,同时表扬了她的礼貌。朋友说。 从那以后,每当我看到美丽的孩子,我都会对自己说,忍住你对他们容貌的夸赞,从他们成长的角度来说,这件事要处之淡然。孩子不是一件可供欣赏的瓷器或是可供抚摸的羽毛。他们 的心灵像很软的透明皂,每一次夸奖都会留下划痕。 给人生加个意义 那是一所很有名望的大学,从我演讲一开始就不断有纸条递上来.纸条上提得最多的问题是"人生有什么意义?请你务必说真话,因为我们已经听了太多言不由衷的假话了." 我念完这个纸条后台上响起了掌声,我说今天你 们提的这个问题很好,我会讲真话.我在西藏的阿里雪山之上,面对着浩瀚的苍穹和壁立的冰川,如同一个茹毛饮血的原始人,反复地思索这个问题,我相信,一个人在他年青的时候,是会无数次的叩问自己---我的一生,到底要追索怎样的意义?我想了无数个晚上和白天,终于得到了一个答案.今 天,在这里,我将非常负责任地对大家说,人生是没有任何意义的. 这句话说完,全场出现了短暂的寂静,如同是旷野 ,但是紧接着就响起了暴风雨般的掌声.那是我演讲中获得的最热烈的掌声.在以前我从来不相信什么"暴风雨"般的掌声这种话,觉得那只是一个拙劣的比喻.但这一次我相信了. 我赶快用手做了一个"暂停"的手势,但掌声还是绵延了若干时间. 我说,大家先不要忙着给我鼓掌,我的话还没有说完.我说人生是没有意义的,这不错,但是----我信每一个人要为自己确立一个意义! 是的,关于人生的意义的讨论,充斥在我们的周围.很多说法,由于熟习和重复,已让我们----从熟视无睹滑到了厌烦.可是,这不是问题的真谛.真谛是,别人强加给你的意义,无论它多么正确,如果它不曾进入你的心理结构,它就永远是身外之物.比如我们从小就被家长灌输过人生意义的答案.在此后漫长的岁月里,谆谆告诫的老师和各种类型的教育,也都不断地向我们批发人生意义的 补充版.但是有多少人把这种外在的框架,当成了自己内在的标杆,并为之下定了终身的决心? 那一天结束讲演之后,我听到有同学说,他觉得最大的收获是听到一个活生生的中年人亲口说,人生是没有意义的,你要为之确立一个意义. 其实,不单是中国的年轻人在目标这个问题上飘忽不定,就 是在美国的著名学府哈佛大学,有很多人在青年时代也大都未确立自己的目标.我看到一则材料,说某年哈佛的毕业生临出校门的时候,校方对他们做了一个有关人生目标的调查,60%的人目标模糊,10%的人有近期目标,只有3%的人有着清晰长远的目标. 25年过去了,那3%的人不懈地朝着一个目 标坚韧努力,成了社会的精英,而其余的人,成就要相差很多. 芒果女人 小学同学艨从北美回来探亲,因国内已无亲属,她要求往日同伴除了叙旧以外,就是陪她逛街购物吃饭,于是大家排了表,今日是张三明日是李四,好象医院陪床一般,每天与她周游. 艨的先生在外发了财,艨家 有花园洋房游泳池,艨的女儿在读博士,艨真是吃穿不愁. 可是艨依然很朴素,就像当年在乡下插队时一般. 艨说我这么多年主要是当家庭妇女,每日修剪草坪和购物. 要说有什么本领,就是学会了如何当一名消费者. 艨说中国的商家已经学会了赚钱,可很多人还不知道钱要赚得有 理. 中国老百姓也已经知道了,钱可以买来服务. 可这服务是什么质量的,心里却没数. 和艨乘出租汽车. 司机一边开车,一边用打火机引着了烟. 艨对我说,你抽烟吗?我偏头躲着烟雾说,不抽. 艨说,我也不抽. 然后是寂静,只有发动机的震颤声. 等了一会儿,艨对司机说,师 傅,我本来是想委婉地提醒您一下,没想到您不察觉. 那我就得明说了,请您把烟熄了. 司机愣了一下,好像没听懂他的话,想了想,还算和气地说,起得早,困. 抽一支,提提神. 我这车,不禁烟,没看不贴禁止吸烟的标志吗?艨说,这跟禁烟标志无关,而是您抽烟并没有得到我们的 允许啊 .司机说,新鲜.抽烟这事,连老婆都管不着我,干吗要得到你们的允许? 艨说,你老婆给你钱吗? 司机说,新鲜. 我老婆给我什么钱?是我给她钱,养家糊口. 艨沉着地说,这就对了. 你老婆和你是私事,你可听也可不听. 我们出了钱,从上车到目的地这段时间 内,买了你的服务. 我们是你的雇主,你在车内吸烟,怎能不征询主人的意见呢? 我捏了一把汗,怕司机火起来,没想到他握着烟想了半天把长长的烟蒂丢到车窗外面了. 过了一会,司机看看表,把车上的收音机打开,开始听评书连播《肖飞买药》. 音波起伏,使车内略显尴尬的 气氛,得到某种稀释. 艨的眉头皱起来,这一次,她不再旁敲侧击,径直说,师傅,我心脏不好,不能听这种激动的声音. 请您关闭音响. 司机旧恨新仇一起发作,
直角三角形全等的判定
两边及其中一边的对角对应相等的两个三角形不一定 全等.
证明:只要举一个反例即可.如图:
B B′ B′
A
●
C A′ (1)
●
(2)
C′A′
●
(3) C′
因此,两边及其中一边的对角对应相等的两个三角形不 一定全等. 切记!!! 两边及其中一边的对角对应相等的两个三 角形不一定全等. 即(SSA)是一个假冒产品!!!
A
F B D
E C
老师期望:请将证明过程规范化书写出来 .
2.已知:如图,AB=CD,DE⊥AC,BF⊥AC,垂足分 别为E,F,DE=BF. 求证:(1)AE=AF (2)AB∥CD.
D E A C F
B
老师期望:请将证明过程规范化书写出来 .
3、已知BE和CF是△ABC的高, BE=CF, H是BE和CF的交点。求证:HB=HC。
判断下列命题的真假,并说明理由:
两个锐角对应相等的两个直角三角形全等; 斜边及一个锐角对应相等的两个直角三角形全等;
两直角边对应相等的两个直角三角形全等;
一条直角边和另一条直角边上的中线对应相等 的两个直角三角形全等.
一个角和一条直角分别相等的两个直角三角形全 等.
1.已知:如图,D是△ABC的BC边上的中 点,DE⊥AC,DF⊥AB,垂足分别为E,F,且 DE=DF. 求证: △ABC是等腰三角形.
两个三角形全等的识别方法:
A
A` A A` C B`
B
C B`
C`
B
C`
① 边边边(S S S)
② 边角边(S A S)
A
A` C B`
A
A` C B`
B
C`
B
三角形全等的五种判定方法及如何构造三角形全等
三角形全等的五种判定方法及如何构造三角形全等三角形全等是指两个三角形的所有对应边和对应角相等。
在几何学中,有五种常见的判定方法来确定两个三角形是否全等:SSS(边-边-边)判定法、SAS(边-角-边)判定法、ASA(角-边-角)判定法、AAS(角-角-边)判定法和HL(斜边-直角-斜边)判定法。
下面将分别介绍这五种方法,并给出如何构造三角形全等的例子。
1.SSS(边-边-边)判定法:如果两个三角形的三条边分别相等,则这两个三角形全等。
例子:给定两个三角形ABC和DEF,若AB=DE,BC=EF,AC=DF,则可判断三角形ABC和DEF全等。
2.SAS(边-角-边)判定法:如果两个三角形的两条边和它们之间的夹角分别相等,则这两个三角形全等。
例子:给定两个三角形ABC和DEF,若AB=DE,∠BAC=∠EDF,AC=DF,则可判断三角形ABC和DEF全等。
3.ASA(角-边-角)判定法:如果两个三角形的一个角和两边分别相等,则这两个三角形全等。
例子:给定两个三角形ABC和DEF,若∠BAC=∠EDF,AB=DE,∠ABC=∠DEF,则可判断三角形ABC和DEF全等。
4.AAS(角-角-边)判定法:如果两个三角形的两个角和一边分别相等,则这两个三角形全等。
例子:给定两个三角形ABC和DEF,若∠BAC=∠EDF,∠ABC=∠DEF,AB=DE,则可判断三角形ABC和DEF全等。
5.HL(斜边-直角-斜边)判定法:如果两个直角三角形的一个直角和一个斜边分别相等,则这两个三角形全等。
例子:给定两个直角三角形ABC和DEF,若∠BAC=∠EDF,AB=DE,则可判断三角形ABC和DEF全等。
以上是判定两个三角形全等的五种方法。
下面将介绍如何通过给定条件构造全等的三角形。
1.给定两边和夹角:以一条边为边长,另一条边为夹角的边,在端点处画出一条与给定边相等的线段作为第二条边,然后以给定夹角为顶点画出第三边,两个三角形即构造完成。
2.8直角三角形的全等判定
斜边和一条直角边对应相等的两个直角三角形全等.
简写:“斜边、直角边定理”或“HL”
A
A'
C
几何语言表示:
∵
B C'
B'
∠C=∠C´=90°
A B=A´B´
A C= A´C´( 或BC= B´C´)
∴Rt△ABC≌Rt△ A´B´C´(H L)
验证斜边、直角边定理
B
1
A
D
2
C
1、你能够用几种方法说明两个直角三角形全等?
直角三角形是特殊的三角形,所以不仅 有一般三角形判定全等的方法:SAS、 ASA、AAS、SSS,还有直角三角形特 殊的判定方法——“HL”.
2、角平分线的判定
练一练:
1、判断下列命题的真假,并说明理由:
× 两个锐角对应相等的两个直角三角形全等;
D
∴ AB=AC(在一个三角形中,等角对等边)
2、已知△ABC ,请找出一点P,使它到三边的距离 都相等(只要求作出图形,并保留作图痕迹).
三角形的角平分线的交点到三边的距离相等。
3、如图,∠B=∠E=Rt∠,AB=AE,∠1=∠2,则
∠3=∠4 ,请说明理由。
A
3
B
1
C
4
E
2
D
4、如图,∠ABD=∠ACD=90°,∠1=∠2,则 AD平分∠BAC,请说明理由。
已知:如图,在Δ ABC和Δ A’B’C’中, ∠ C= ∠ C’=Rt∠,AB=A’B’,AC=A’C’ 证明RtΔ ABC和RtΔ A’B’C’ 全等。
B
A
C
B/
A/
C/
在使用“HL”时,同学们应注意什么?
直角三角形判定全等的方法
直角三角形判定全等的方法
要判定两个直角三角形是否全等,需要比较它们的三个角度和三个边
长是否相等。
以下是判定方法:
1.角度相等判定法。
直角三角形的两个锐角相加必须等于90度,所以如果两个直角三角
形的两个角度分别相等,那么这两个三角形全等。
2.边长相等判定法。
如果两个直角三角形的两条直角边长度分别相等,那么这两个三角形
全等。
3.边角边相等判定法。
如果两个直角三角形的一条直角边和两条与其相邻的边长度分别相等,那么这两个三角形全等。
注意:这种情况也可以写成边边角相等判定法。
4.正弦定理和余弦定理。
正弦定理和余弦定理可以用来判断两个不全等的三角形是否相似或全等。
但如果两个三角形中有一个是直角三角形,那么用这种方法判断是否
全等会显得复杂,不利于实际应用。
如何判定两个直角三角形全等
Question:如何判定两个直角三角形全等?判定1:有一个角为90°的三角形是直角三角形。
判定2:一个三角形,如果一边上的中线等于这条边的一半,那么这个三角形是以这条边为斜边的直角三角形。
判定3:若a的平方+b的平方=c的平方,则以a、b、c为边的三角形是以c为斜边的直角三角形(勾股定理的逆定理)。
判定4:若一个三角形30°内角所对的边是某一边的一半,那么这个三角形是以这条长边为斜边的直角三角形。
判定5:两个锐角互余的三角形是直角三角形。
判定6:在直角三角形中,60度内角所对的直角边等于斜边长的二分之根号三。
判定7:在证明直角三角形全等的时候可以利用HL 两个三角形的斜边长对应相等以及一个直角边对应相等可判断两直角三角形全等.数学教案-直角三角形全等的判定直角三角形全等的判定重点与难点分析:本节课教学方法主要是“自学辅导与发现探究法”。
力求体现知识结构完整、知识理解完整;注重学生的参与度,在师生共同参与下,探索问题、动手试验、发现规律、做出归纳。
让学生直接参加课堂活动,将教与学融为一体。
具体说明如下:(1)由“先教后学”转向“先学后教本节课开始,让同学们自己思考问题:判定三角形全等的方法有四种,如果这两个三角形是直角三角形,那么判定它们全等的方法有哪些呢?学生展开讨论,初步形成意见,然后由教师答疑。
这样促进了学生学习,体现了以“学生为主体”的教育思想。
(2)在层次教学中培养学生的思维能力本节课的层次主要表现为两个方面:一是对公理的多层次理解;二是综合练习的多层次变化。
公理的多层次理解包括:明确公理的条件及结论;公理的文字语言、图形语言、符号语言的理解及掌握;公理的作用。
这里特别强调三个方面:1、特殊三角形的特殊性;2、归纳总结判定直角三角形全等的方法。
综合练习的多层次变化:首先给出直接应用公理证明三角形全等的题目;然后给出变式题目;最后给出综合应用题目。
这里注意两点:一是给出题目后先让学生独立思考,并按教材的形式严格书写。
直角三角形全等的判定
两边及其中一边的对角对应相等的两个三角形不一定 全等. 证明:只要举一个反例即可.如图:
B B′ B′
A
●
C A′ (1)
●
(2)
C′A′
●
(3) C′
因此,两边及其中一边的对角对应相等的两个三角形不 一定全等. 切记!!! 两边及其中一边的对角对应相等的两个三 角形不一定全等. 即(SSA)是一个假冒产品!!!
A
F B
H
E
C
2. 如图, AB是圆O的直径, ∠ 1 = ∠ 2 ,
试说明△ABC≌△ABD
C
A
1 2
D
•
O
B
直角三角形全等的判定定理: 1.斜边和一条直角边对应相等的两个直角三角形全等(斜 边,直角边或 H.L.). 2.三边对应相等的两个三角形全等(S.S.S.). 3.两边及其夹角对应相等的两个三角形全等(S.A.S.).
判断下列命题的真假,并说明理由:
两个锐角对应相等的两个直角三角形全等;
斜边及一个锐角对应相等的两个直角三角形全等; 两直角边对应相等的两个直角三角形全等; 一条直角边和另一条直角边上的中线对应相等 的两个直角三角形全等. 一个角和一条直角分别相等的两个直角三角形全 等.
1.已知:如图,D是△ABC的BC边上的中 点,DE⊥AC,DF⊥AB,垂足分别为E,F,且 DE=DF. 求证: △ABC是等腰三角形.
三角形全等的判定
两边及其中一边的对角对应相等的两个三 角形不一定全等.
如果其中一边的所对的角是直角呢?
两边及其中一边的对角对应相等的两个三角形不一定全等.但如 果其中一边的所对的角是直角,那么这两个三角形全等. 已知:如图,在△ABC和△A′B′C′中, AC=A′C ′, AB=A′B′, ∠C=∠C′=900. 求证:△ABC≌△A′B′C′.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
直角三角形全等的判定
教学目的:
1、通过本节课的学习,进一步弄清全等三角形的判定定理:SAS、ASA、AAS、SSS。
2、通过探究,弄清直角三角形全等的判定定理:HL。
3、培养学生探究解决问题的能力和合作的品质。
教学要求:
1、熟练运用SAS、ASA、AAS、SSS。
2、理解并运用HL。
教学重点:引导学生分析、理解HL定理。
教学难点:熟练运用HL定理解决问题。
教学方法:探究、合作学习。
教学过程:
一、复习引入:
1、学生先说说三角形全等的判定定理有哪些?
2、做一做:
具有下列条件的Rt△ABC和Rt△A′B′C′是否全等。
①AC=A′C′∠A=∠A′
②AC=A′C′BC=B′C′
③AB=A′B′∠B=∠B′
④AC=A′C′AB=A′B′
二、探究:已知Rt△ABC和Rt△A′B′C′,AC=A′C′,
AB=A′B′,它们全等吗?
推理过程:P.91
结论:斜边、直角边定理:HL
斜边和一条直角边对应相等的两个直角三角形全等。
三、例题讲解:P.91、例1
结论:角平分线的性质;三角形的内心。
四、练习:
1、判断下列说法是否正确,说明理由。
①②③④
2、如图:AC=AD,∠C=∠D=90°,你
能说明∠ABC与∠ABD为什么相等吗?
3、如图:∠B=∠E=90°,AB=AE,
∠1=∠2,则∠3=∠4,请说明理由。
4、议一议:已知∠ACB=∠BDA=90°,
要使△ABC≌BDA,还需要增加一个什么
条件?把它们分别写出来。
5、如图,AB⊥BD于点B,CD⊥BD于点D,P是BD上一点,且AP=PC,AP⊥PC,则△ABP≌△PDC,请说明理由。
五、体会分享:学生说一说。
六、小结:①②③
七、作业:课本P.94第6题;练习册P.41第4题。
A
B
C
D P。