2013湖北高考数学文科试题及解析

合集下载

2013年湖北省高考数学试卷(文科)学生版

2013年湖北省高考数学试卷(文科)学生版

2013 年湖北省高考数学试卷(文科)一、选择题:本大题共10 小题,每题 5 分,共 50 分.在每题给出的四个选项中,只有一项为哪一项切合题目要求的.1.(5 分)(2013?湖北)已知全集 U={ 1,2,3,4,5} ,会合 A={ 1, 2} ,B={ 2,,,则B∩?A=()3 4}∪A.{ 2}B.{ 3,4}C.{ 1,4,5}D.{ 2,3,4,5} 2.( 5 分)( 2013?湖北)已知<<,则双曲线 C1:与 C2:的()A.实轴长相等B.虚轴长相等C.离心率相等D.焦距相等3.(5 分)(2013?湖北)在一次跳伞训练中,甲、乙两位学员各跳一次,设命题p 是“甲下降在指定范围”,q 是“乙下降在指定范围”,则命题“起码有一位学员没有下降在指定范围”可表示为()A.(¬ p)∨(¬ q)B.p∨(¬ q)D.p∨q4.(5 分)(2013?湖北)四名同学依据各自的样本数据研究变量关关系,并求得回归直线方程,分别获得以下四个结论:C.(¬ p)∧(¬ q)x,y 之间的相①y 与 x 负有关且 =2.347x﹣ 6.423;② y 与 x 负有关且 =﹣3.476x+5.648;③ y 与x 正有关且=5.437x+8.493;④y 与 x 正有关且 =﹣4.326x﹣4.578.此中必定不正确的结论的序是()A.①②B.②③C.③④D.①④5.(5 分)(2013?湖北)小明骑车上学,开始时匀速行驶,途中因交通拥塞逗留了一段时间,后为了赶时间加迅速度行驶.与以上事件符合得最好的图象是()A.B.C.D.6.(5 分)(2013?湖北)将函数 y= cosx+sinx( x∈R)的图象向左平移m(m>0)个长度单位后,所获得的图象对于y 轴对称,则m 的最小值是()A.B.C.D.7.(5 分)(2013?湖北)已知点 A(﹣ 1,1),B(1,2),C(﹣ 2,﹣1),D( 3,4),则向量在方向上的投影为()A.B.C.D.8.(5 分)(2013?湖北) x 为实数, [ x] 表示不超出 x 的最大整数,则函数f(x)=x﹣ [ x] 在R 上为()A.奇函数B.偶函数C.增函数D.周期函数9.( 5 分)( 2013?湖北)某旅游社租用A、B 两种型的客车安排900 名客人旅游,A、B 两种车辆的载客量分别为36 人和 60 人,租金分别为 1600 元 / 辆和 2400元/ 辆,旅游社要求租车总数不超出 21 辆,且 B 型车不多于 A 型车 7 辆.则租金最少为()A.31200 元B.36000 元C.36800 元D.38400 元10.( 5 分)( 2013?湖北)已知函数 f(x)=x(lnx﹣ax)有两个极值点,则实数a 的取值范围是().(﹣∞,0)B.(0,)C.(0,1)D.(0,+∞)A二、填空题:本大题共7 小题,每题 5 分,共 35 分.请将答案填在答题卡对应题的地点上 .答错地点,书写不清,含糊其词均不得分.11.( 5 分)(2013?湖北) i 为虚数单位,设复数z1,z2在复平面内对应的点对于原点对称,若 z1﹣3i ,则 2.=2z =12.( 5 分)(2013?湖北)某学员在一次射击测试中射靶10 次,命中环数以下:7,8,7,9,5,4,9,10,7,4 则(Ⅰ)均匀命中环数为;(Ⅱ)命中环数的标准差为.13.( 5 分)(2013?湖北)阅读以下图的程序框图,运转相应的程序.若输入m 的值为 2,则输出的结果i=.14.(5 分)(2013?湖北)已知圆 O:x2+y2=5,直线 l:xcos θ+ysin θ(=10<<).设圆 O 上到直线 l 的距离等于 1 的点的个数为 k,则 k=.15.( 5 分)(2013?湖北)在区间 [ ﹣2,4] 上随机地取一个数x,若 x 知足 | x| ≤m 的概率为,则m=.16.(5 分)( 2013?湖北)我国古代数学名著《数书九章》中有“天池盆测雨”题:在下雨时,用一个圆台形的天池盆接雨水.天池盆盆口直径为二尺八寸,盆底直径为一尺二寸,盆深一尺八寸.若盆中积水深九寸,则平川降雨量是寸.(注:①平川降雨量等于盆中积水体积除以盆口面积;②一尺等于十寸)17.( 5 分)(2013?湖北)在平面直角坐标系中,若点 P(x,y)的坐标 x,y 均为整数,则称点P 为格点.若一个多边形的极点全部是格点,则称该多边形为格点多边形.格点多边形的面积记为S,其内部的格点数记为N,界限上的格点数记为 L.比如图中△ ABC是格点三角形,对应的S=1,N=0, L=4.(Ⅰ)图中格点四边形DEFG对应的 S,N,L 分别是;(Ⅱ)已知格点多边形的面积可表示为S=aN+bL+c 此中 a,b,c 为常数.若某格点多边形对应的 N=71, L=18,则 S=(用数值作答).三、解答题:本大题共5 小题,共 65 分.解答应写出文字说明、证明过程或演算步骤 .18.( 12 分)( 2013?湖北)在△ ABC中,角 A,B,C 对应的边分别是a,b, c,已知 cos2A﹣3cos(B+C) =1.(Ⅰ)求角 A 的大小;(Ⅱ)若△ ABC的面积 S=5,b=5,求sinBsinC的值.19.( 13 分)( 2013?湖北)已知 S n是等比数列 { a n} 的前 n 项和, S4,S2,S3成等差数列,且 a2+a3+a4=﹣18.(Ⅰ)求数列 { a n} 的通项公式;(Ⅱ)能否存在正整数n,使得 S n≥ 2013?若存在,求出切合条件的全部n 的集合;若不存在,说明原因.20.( 13 分)(2013?湖北)如图,某地质队自水平川面A,B,C 三处垂直向地下钻探,自 A 点向下钻到 A1处发现矿藏,再持续下钻到 A2处后下边已无矿,进而获得在 A 处正下方的矿层厚度为 A1A2=d1.相同可得在 B, C 处正下方的矿层厚度分别为 B1B2=d2, C1C2=d3,且 d1<d2< d3.过 AB, AC的中点 M ,N 且与直线 AA2平行的平面截多面体 A1B1 C1﹣A2B2C2所得的截面 DEFG为该多面体的一此中截面,其面积记为 S 中.(Ⅰ)证明:中截面DEFG是梯形;(Ⅱ)在△ ABC 中,记 BC=a,BC 边上的高为h,面积为 S.在估测三角形 ABC 地区内正下方的矿藏储量(即多面体 A1B1C1﹣A2B2C2的体积 V)时,可用近似公式 V 估 =S中 ?h 来估量.已知 V= ( d1+d2+d3)S,试判断 V 估与 V 的大小关系,并加以证明.21.( 13 分)( 2013?湖北)设a>0,b>0,已知函数f( x)=.(Ⅰ)当(Ⅱ)当a≠b 时,议论函数 f( x)的单一性;x> 0 时,称 f( x)为 a、b 对于 x 的加权均匀数.( i)判断 f (1), f(), f()能否成等比数列,并证明 f ()≤ f();( ii)a、b 的几何均匀数记为G.称为a、b的调解均匀数,记为H.若 H≤f( x)≤ G,求 x 的取值范围.22.( 14 分)( 2013?湖北)如图,已知椭圆 C1与 C2的中心在座标原点 O,长轴均为 MN 且在 x 轴上,短轴长分别为 2m,2n(m>n),过原点且不与 x 轴重合的直线l 与 C1,C2的四个交点按纵坐标从大到小挨次为A,B,C,D,记,△BDM 和△ ABN 的面积分别为 S1和 S2.(Ⅰ)当直线 l 与y 轴重合时,若S1=λS2,求λ的值;(Ⅱ)当λ变化时,能否存在与坐标轴不重合的直线l,使得S1=λS2?并说明理由.。

2013年湖北高考数学文科试卷带详解

2013年湖北高考数学文科试卷带详解

2013年普通高等学校招生全国统一考试(湖北卷)数 学(文史类)一、选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集{1,2,3,4,5}U =,集合{1,2}A =,{2,3,4}B =,则U B A = ð( )A .{2}B .{3,4}C .{1,4,5}D .{2,3,4,5}【测量目标】集合的补集和交集的运算.【考查方式】列举法表示全集S 和子集A,B ,求子集A 的补集与子集B 的交集. 【参考答案】B【试题解析】,U A 先求再找公共元素.ð{}{}1,2,3,4,5,1,2,U A == {}3,4,5,U A ∴=ð{}{}{}2,3,43,4,53,4.U B A ∴== ð2.已知π04θ<<,则双曲线1C :22221sin cos x y θθ-=与2C :22221cos sin y x θθ-=的( )A .实轴长相等B .虚轴长相等C .离心率相等D .焦距相等【测量目标】双曲线的实轴,虚轴,焦距和离心率.【考查方式】给定角度θ的取值范围,由含θ的三角函数确定的两条双曲线,判断两条双 曲线的实轴,虚轴,焦距和离心率的大小. 【参考答案】D【试题解析】先确定实半轴和虚半轴的长,再求出半焦距.双曲线12C C 和的实半长轴分 别是sin cos ,θθ和虚半轴长分别是cos sin ,θθ和则半焦距c 都等于1,故选D .3.在一次跳伞训练中,甲、乙两位学员各跳一次.设命题p 是“甲降落在指定范围”,q 是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为( ) A .()p ⌝∨()q ⌝ B .p ∨()q ⌝C .()p ⌝∧()q ⌝D .p ∨q【测量目标】常用的逻辑用语,简单的逻辑联结词.【考查方式】已知甲乙完成任务的概率,用数学形式表示至少一位没有成功的概率. 【参考答案】A【试题解析】根据逻辑联结词“或”“且”“非”的含义判断.依题意得,p ⌝:“甲没有降落在 指定范围”,q ⌝:“乙没有降落在指定范围” ,因此“至少有一位学员没有降落在指定范围”, 可表示为()().p q ⌝⌝∨4.四名同学根据各自的样本数据研究变量,x y 之间的相关关系,并求得回归直线方程,分 别得到以下四个结论:( )① y 与x 负相关且 2.347 6.423y x =-; ② y 与x 负相关且 3.476 5.648y x =-+; ③ y 与x 正相关且 5.4378.493y x =+; ④ y 与x 正相关且 4.326 4.578y x =--. 其中一定不正确...的结论的序号是A .①②B .②③C .③④D . ①④【测量目标】线性回归方程中y 与x 的正负相关性的判定. 【考查方式】由样本得出回归方程,判断学生对回归直线方程正负相关性的判定是否正确. 【参考答案】D【试题解析】根据正负相关性的定义作出判断.由正负相关性的定义知①④一定不正确. 5.小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间,后为了赶时间加快速度行驶. 与以上事件吻合得最好的图象是( )A BC D 第5题图【测量目标】函数与图象的对应,函数的实际应用.【考查方式】实际生活中提炼函数,进而大致确定函数图象. 【参考答案】C 【试题解析】先分析小明的运动规律,再结合图象作出判断.距离学校的距离应逐渐减小,由于小明先是匀速运动,故前段是直线段,途中停留时距离不变,后段加速,直线段比前段下降的快,故应选C .6.将函数sin ()y x x x +∈R 的图象向左平移(0)m m >个单位长度后,所得到的图象关于y 轴对称,则m 的最小值是( ) A .π12B .π6C .π3D .5π6【测量目标】三角函数的平移的变换.【考查方式】将一般的三角函数的函数表达式,向左平移m 个使图象对称,求m 的最小值.【参考答案】B【试题解析】先将函数解析式化简,再写出平移后的解析式,然后根据函数为偶函数求得m 的值(步骤1)由于πc o s s i n 2c o s 6y x x x ⎛⎫=+=- ⎪⎝⎭,向左平移m (m >0)个单位后得到函数π2cos 6y x m ⎛⎫=+- ⎪⎝⎭的图象(步骤2)由于该图象关于y 轴对称,所以()ππ,6m k k -=∈Z 于是ππ6m k =+()k ∈Z ,又m >0,故当k =0时,m 的最小值π6.(步骤3) 7.已知点(1,1)A -、(1,2)B 、(2,1)C --、(3,4)D ,则向量AB 在CD方向上的投影为( )A B C . D . 【测量目标】平面向量的投影.【考查方式】给出平面上四个点的坐标确定两向量,求一向量在另一向量上的投影. 【参考答案】A【试题解析】首先求出,AB CD的坐标,然后根据投影的定义进行计算.由已知得()()2,1,5,5,AB CD ==因此AB 在CD 方向上的投影为2AB CD CD== 8.x 为实数,[]x 表示不超过x 的最大整数,则函数()[]f x x x =-在R 上为( ) A .奇函数B .偶函数C .增函数D . 周期函数【测量目标】抽象函数奇偶性,单调性和周期性的判断.【考查方式】给出函数函数,判定函数的奇偶性,单调性和周期性. 【参考答案】D【试题解析】首先理解题意,画出函数的图象.函数的图象(图象略)在两个整数之间都是斜率为1的线段(不含终点),故选D . 9.某旅行社租用A 、B 两种型号的客车安排900名客人旅行,A 、B 两种车辆的载客量分别为36人和60人,租金分别为1600元/辆和2400元/辆,旅行社要求租车总数不超过21辆,且B 型车不多于A 型车7辆.则租金最少为( )A .31200元B .36000元C .36800元D .38400元 【测量目标】线性规划的最优解.【考查方式】生活中的实际问题,某旅行社有两种车型,租车时两种车型如何安排才能使租金最少.【参考答案】C【试题解析】先根据题意列出约束条件和目标函数,通过平移目标函数加以解决. 设租用A 型车x 辆,B 型车y 辆,目标函数为z =1600x +2400y ,则约束条件为3660900,21,7,,,x y x y y x x y +⎧⎪+⎪⎨-⎪⎪∈⎩N ………作出可行域,如图中阴影部分所示,可知目标函数过点(5,12)时,有最小值()m i n 36800.z =元第9题图10.已知函数()(ln )f x x x ax =-有两个极值点,则实数a 的取值范围是( )A .(,0)-∞B .1(0,)2C .(0,1)D .(0,)+∞【测量目标】函数极值和单调性的判定和导数的应用.【考查方式】已知函数的极值点个数,确定函数中未知数a 的值. 【参考答案】B【试题解析】由已知得()0f x '=由两个正实根()1212,,x x x x <即()f x '图象与x 轴有两个交点,从而得出a 的取值范围.(步骤1)()ln 12,f x x ax '=+-依题意得ln 120x ax +-=有两个正实数根()1212,.x x x x <(步骤2)设()ln 12,g x x ax =+-函数()ln 12g x x x =+-有两个零点,显然0a …时不合题意,必有a>0;()12,g x a x '=-令()0,g x '=得1,2x a =于是()10,2g x a ⎛⎫⎪⎝⎭在上单调递增,在1,2a ⎛⎫+∞ ⎪⎝⎭上单调递减,所以()g x 在12x a =处取得极大值,即111l n 0,1,222f a a a⎛⎫'=>> ⎪⎝⎭所以10.2a <<(步骤3)二、填空题:本大题共7小题,每小题5分,共35分.请将答案填在答题卡对应题号.......的位置上. 答错位置,书写不清,模棱两可均不得分.11.i 为虚数单位,设复数1z ,2z 在复平面内对应的点关于原点对称,若123i z =-,则2z = .【测量目标】复数在复平面上的表示.【考查方式】两复数在复平面上关于原点对称,已知其中一复数,求另一复数. 【参考答案】23i -+【试题解析】根据复平面内点的对称性,找出2z 的实部和虚部(-2,3),223i .z ∴=-+12.某学员在一次射击测试中射靶10次,命中环数如下:7,8,7,9,5,4,9,10,7,4则(1)平均命中环数为 ; (2)命中环数的标准差为 . 【测量目标】计算试验样本中的平均数和标准差.【考查方式】直接给出样本数据,求数据的平均数和标准差. 【参考答案】(1)7 (2)2 【试题解析】 平均命中环数 (1)787954910747.10x +++++++++==(2)()()()()()()2222222177877797574710s =-+-+-+-+-+-⎡⎣()()()()22229710777474, 2.s ⎤+-+-+-+-=∴=⎦13.阅读如图所示的程序框图,运行相应的程序. 若输入m 的值为2, 则输出的结果i = .【测量目标】循环结构的程序框图.【考查方式】给出程序框图,输入一个数求输出数的值. 【参考答案】4【试题解析】根据循环结构找出i 的值. m =2,A =1,B =1,i =0.第一次:i =0+1=1,A =1⨯2=2,B =1⨯1=1,A >B ;第二次:i =1+1=2,A =2⨯2=4,B =1⨯2=2,A >B ; 第三次:i =2+1=3,A =4⨯2=8,B =2⨯3=6,A >B ; 第四次:i =3+1=4,A =8⨯2=16,B =6⨯4=24,A <B ; 终止循环,输出i =4.第13题图 14.已知圆O :225x y +=,直线l :cos sin 1x y θθ+=(π02θ<<).设圆O 上到直线l 的距离等于1的点的个数为k ,则k = .【测量目标】直线与圆的位置关系. 【考查方式】给定圆的方程和含变量θ的变直线方程,圆到直线距离确定求满足该距离点的个数.【参考答案】4【试题解析】先求出圆心到直线的距离,再进行判断.圆心(0,0)到直线的距离为d ==1,又 圆O 的半径rr d -11>故圆上有4个点符合条件.15.在区间[2,4]-上随机地取一个数x ,若x 满足||x m …的概率为56,则m = . 【测量目标】几何概型.【考查方式】确定的区间,从中随机抽数满足条件的概率已知,求条件中的未知量. 【参考答案】3【试题解析】因为区间[]2,4-的长度为6,不等式x m …的解区间为[],m m -,其区间长度为2m ,那么在区间[]2,4-上随机取一数x ,要使x 满足x m …的概率为56,m 将区间[]2,4-分为[]2,m -和[],4m ,且两区间长度比为5:1,所以3m =.16.我国古代数学名著《数书九章》中有“天池盆测雨”题:在下雨时,用一个圆台形的天池盆接雨水. 天池盆盆口直径为二尺八寸,盆底直径为一尺二寸,盆深一尺八寸. 若盆中积水深九寸,则平地降雨量是 寸. (注:①平地降雨量等于盆中积水体积除以盆口面积;②一尺等于十寸)【测量目标】圆台的体积.【考查方式】由《数书九章》中的天池盆测雨,计算天池盆测雨的雨量. 【参考答案】3【试题解析】求出水面的半径,根据圆台的体积公式求出雨水的体积,除以盆口的面积即得.圆台的轴截面时下底长为12寸,上底为长为28寸,高为18寸的等腰梯形,雨水线恰为中位线,故雨水线直径是20寸,()()222π10+106+693=3.π14⨯⨯∴⨯降水量为寸17.在平面直角坐标系中,若点(,)P x y 的坐标x ,y 均为整数,则称点P 为格点. 若一个多边形的顶点全是格点,则称该多边形为格点多边形. 格点多边形的面积记为S ,其内部的格点数记为N ,边界上的格点数记为L . 例如图中△ABC 是格点三角形,对应的1S =,0N =,4L =.(Ⅰ)图中格点四边形DEFG 对应的,,S N L 分别是 ;(Ⅱ)已知格点多边形的面积可表示为S aN bL c =++,其中a ,b ,c 为常数. 若某格点多边形对应的71N =,18L =, 则S = (用数值作答).【测量目标】待定系数法求函数表达式【考查方式】由图象给出函数的值,再给定带有未知数的函数方程,观察图象得出函数值求解函数表达式. 【参考答案】(1)3,1,6 (2)79 【试题解析】(1)观察图形得出结论;(2)由条件及(1),同时第17题图再找一格点多边形确定出a ,b ,c 的值,再求S .(1)由图可知四边形DEFG 是直角梯形,=2S 由图知N =1,L =6.(2)取相邻四个小正方形组成△ABC ,四边形DEFG 可列方程组:41,63,84,b c a b c a b c +=⎧⎪++=⎨⎪++=⎩解得1,1,21,a b c =⎧⎪⎪=⎨⎪=-⎪⎩117118179.2S =⨯+⨯-= 三、解答题:本大题共5小题,共65分.解答应写出文字说明、证明过程或演算步骤. 18.(本小题满分12分)在△ABC 中,角A ,B ,C 对应的边分别是a ,b ,c . 已知cos23cos()1A B C -+=. (Ⅰ)求角A 的大小; (Ⅱ)若△ABC的面积S =5b =,求sin sin B C 的值. 【测量目标】正弦公式,余弦公式,诱导公式.【考查方式】在△ABC 中,给出三角形中三个角余弦值的数量关系,求出角的大小,已知三角函数△ABC 的面积大小,求解sin sin B C 的值.【试题解析】(Ⅰ)由cos23cos()1A B C -+=,得22cos 3cos 20A A +-=, 即(2cos 1)(cos 2)0A A -+=,解得1cos 2A = 或cos 2A =-(舍去). 因为0πA <<,所以π3A =.(步骤1)(Ⅱ)由11sin 22S bc A bc ====得20bc =. 又5b =,知4c =.( 步骤2)由余弦定理,得2222cos 25162021,a b c bc A =+-=+-=故a =(步骤3)又由正弦定理,得222035sin sin sin sin sin 2147b c bc B C A A A a a a ===⨯= .(步骤4)19.(本小题满分13分)已知n S 是等比数列{}n a 的前n 项和,4S ,2S ,3S 成等差数列,且23418a a a ++=-. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)是否存在正整数n ,使得2013n S …?若存在,求出符合条件的所有n 的集合;若不存在,说明理由.【测量目标】等比数列的通项公式和数列前n 项和的公式.【考查方式】等比数列前n 项和中三项成等差数列且知道数列中三项的和,求等比数列的通 项公式和前n 项和的集合是否满足不等式.【试题解析】(Ⅰ)设数列{}n a 的公比为q ,则10a ≠,0q ≠. 由题意得 2432234,18,S S S S a a a -=-⎧⎨++=-⎩ 即23211121,(1)18,a q a q a q a q q q ⎧--=⎪⎨++=-⎪⎩解得13,2.a q =⎧⎨=-⎩故数列{}n a 的通项公式为13(2)n n a -=-.(步骤1)(Ⅱ)由(Ⅰ)有 3[1(2)]1(2)1(2)n n n S ⨯--==----. (步骤2) 若存在n ,使得2013n S …,则1(2)2013n --…,即(2)2012.n --… 当n 为偶数时,(2)0n ->, 上式不成立;当n 为奇数时,(2)22012n n -=--…,即22012n …,则11n ….(步骤3)综上,存在符合条件的正整数n ,且所有这样的n 的集合为{21,,5}n n k k k =+∈N …(步骤4)20.(本小题满分13分)如图,某地质队自水平地面A ,B ,C 三处垂直向地下钻探,自A 点向下钻到A 1处发现矿藏,再继续下钻到A 2处后下面已无矿,从而得到在A 处正下方的矿层厚度为121A A d =.同样可得在B ,C 处正下方的矿层厚度分别为122B B d =,123C C d =,且123d d d <<. 过AB ,AC的中点M ,N 且与直线2AA 平行的平面截多面体111222A B C A B C -所得的截面DEFG 为该多面体的一个中截面,其面积记为S 中. (Ⅰ)证明:中截面DEFG 是梯形;(Ⅱ)在△ABC 中,记BC a =,BC 边上的高为h ,面积为S . 在估测三角形ABC 区域内正下方的矿藏储量(即多面体111222A B C A B C -的体积V )时,可用近似公式V S h =⋅估中来估算. 已知1231()3V d d d S =++,试判断V 估与V 的大小关系,并加以证明.【测量目标】空间几何体中边与边的关系和体积的计算 第20题图 【考查方式】从实际中引出空间几何体的数量和位置关系,求解立体几何的体积.【试题解析】(Ⅰ)依题意12A A ⊥平面ABC ,12B B ⊥平面ABC ,12C C ⊥平面ABC ,所以A 1A 2∥B 1B 2∥C 1C 2. 又121A A d =,122B B d =,123C C d =,且123d d d << . 因此四边形1221A A B B 、1221A A C C 均是梯形.(步骤1)由2AA ∥平面MEFN ,2AA ⊂平面22AA B B ,且平面22AA B B 平面MEFN ME =, 可得AA 2∥ME ,即A 1A 2∥DE . 同理可证A 1A 2∥FG ,所以DE ∥FG .(步骤2) 又M 、N 分别为AB 、AC 的中点,则D 、E 、F 、G 分别为11A B 、22A B 、22A C 、11AC 的中点, 即DE 、FG 分别为梯形1221A A B B 、1221A A C C 的中位线. (步骤3)因此 12121211()()22DE A A B B d d =+=+,12121311()()22FG A A C C d d =+=+,而123d d d <<,故DE FG <,所以中截面DEFG 是梯形. (步骤4) (Ⅱ)V V <估. 证明如下:由12A A ⊥平面ABC ,MN ⊂平面ABC ,可得12A A MN ⊥. 而EM ∥A 1A 2,所以EM MN ⊥,同理可得FN MN ⊥. (步骤5) 由MN 是△ABC 的中位线,可得1122MN BC a ==即为梯形DEFG 的高, 因此13121231()(2)22228DEFG d d d d a a S S d d d ++==+⋅=++中梯形, 即123(2)8ahV S h d d d =⋅=++估中. (步骤6) 又12S ah =,所以1231231()()36ahV d d d S d d d =++=++.于是1231232131()(2)[()()]6824ah ah ahV V d d d d d d d d d d -=++-++=-+-估.由123d d d <<,得210d d ->,310d d ->,故V V <估. (步骤7)21.(本小题满分13分)设0a >,0b >,已知函数()1ax bf x x +=+. (Ⅰ)当a b ≠时,讨论函数()f x 的单调性;(Ⅱ)当0x >时,称()f x 为a 、b 关于x 的加权平均数.(i )判断(1)f , f ,()bf a是否成等比数列,并证明()b f f a …; (ii )a 、b 的几何平均数记为G . 称2aba b+为a 、b 的调和平均数,记为H . 若()H f x G 剟,求x 的取值范围.【测量目标】导数研究含参函数单调性,等比数列,不等式比较大小. 【考查方式】由函数表达式和函数值成等比数列以及加权平均数求解函数的单调性函数值不等式的证明.【试题解析】(Ⅰ)()f x 的定义域为(,1)(1,)-∞--+∞ ,22(1)()()(1)(1)a x ax b a bf x x x +-+-'==++. 当a b >时,()0f x '>,函数()f x 在(,1)-∞-,(1,)-+∞上单调递增;当a b <时,()0f x '<,函数()f x 在(,1)-∞-,(1,)-+∞上单调递减.(步骤1)(Ⅱ)(i )计算得(1)02a b f +=>,2()0b abf a a b=>+,0f =>.故22(1)()[2b a b ab f f ab f a a b +=⋅==+, 即2(1)())]b f f f a =.①所以(1),()bf f f a成等比数列.0,0a b >>2a b+(1)f f ….又(1),()b f f f a 成等比数列由①得()b f f a …. (步骤2)(ii )由(i )知()bf H a =,f G =.故由()H f x G 剟,得()()bf f x f a剟. ②(步骤3)当a b =时,()()b f f x f a a ===.这时,x 的取值范围为(0,)+∞; (步骤4)当a b >时,01ba<<,从而b a <()f x 在(0,)+∞上单调递增与②式,得bxa剟,即x 的取值范围为,b a ⎡⎢⎣;(步骤5)当a b <时,1ba>,从而b a >()f x 在(0,)+∞上单调递减与②式,bx a ,即x 的取值范围为b a ⎤⎥⎦.(步骤6) 22.(本小题满分14分)如图,已知椭圆1C 与2C 的中心在坐标原点O ,长轴均为MN 且在x 轴上,短轴长分别 为2m ,2()n m n >,过原点且不与x 轴重合的直线l 与1C ,2C 的四个交点按纵坐标从 大到小依次为A ,B ,C ,D .记mnλ=,△BDM 和△ABN 的面积分别为1S 和2S .(Ⅰ)当直线l 与y 轴重合时,若12S S λ=,求λ的值; (Ⅱ)当λ变化时,是否存在与坐标轴不重合的直线l ,使得12S S λ=?并说明理由.第22题图 【测量目标】椭圆中边与边的数量关系和面积的大小关系 【考查方式】给出两椭圆中短轴的长度和经过原点的动直线,求直线与椭圆组成三角形的面积比.【试题解析】依题意可设椭圆1C 和2C 的方程分别为1C :22221x y a m +=,2C :22221x y a n+=. 其中0a m n >>>, 1.m n λ=>(Ⅰ)解法1:如图1,若直线l 与y 轴重合,即直线l 的方程为0x =,则111||||||22S BD OM a BD == ,211||||||22S AB ON a AB == ,所以12||||S BD S AB =.(步骤1) 在C 1和C 2的方程中分别令0x =,可得A y m =,B y n =,D y m =-, 于是||||1||||1B D A B y y BD m n AB y y m n λλ-++===---. 若12S S λ=,则11λλλ+=-,化简得2210λλ--=. 由1λ>,可解得1λ.故当直线l 与y 轴重合时,若12S S λ=,则1λ. (步骤2) 解法2:如图1,若直线l 与y 轴重合,则||||||BD OB OD m n =+=+,||||||AB OA OB m n =-=-;111||||||22S BD OM a BD == ,211||||||22S AB ON a AB == . 所以12||1||1S BD m n S AB m n λλ++===--. (步骤1)若12S S λ=,则11λλλ+=-,化简得2210λλ--=. 由1λ>,可解得1λ. 故当直线l 与y 轴重合时,若12S S λ=,则1λ. (步骤2)第22题图(1 ) 第22题图(2)(Ⅱ)解法1:如图2,若存在与坐标轴不重合的直线l ,使得12S S λ=. 根据对称性, 不妨设直线l :(0)y kx k =>,点(,0)M a -,(,0)N a 到直线l 的距离分别为1d ,2d ,则因为1d ==,2d ==12d d =. (步骤3)又111||2S BD d =,221||2S AB d =,所以12||||S BD S AB λ==,即||||BD AB λ=. (步骤4) 由对称性可知||||AB CD =,所以||||||(1)||BC BD AB AB λ=-=-, ||||||(1)||AD BD AB AB λ=+=+,于是||1||1AD BC λλ+=-. ①(步骤5) 将l 的方程分别与C 1,C 2的方程联立,可求得A x =B x =.根据对称性可知C B x x =-,D A x x =-,于是2||||2A B x AD BC x == ② 从而由①和②式可得1(1)λλλ+-. ③ 令1(1)t λλλ+=-,则由m n >,可得1t ≠,于是由③可解得222222(1)(1)n t k a t λ-=-.(步骤6)因为0k ≠,所以20k >. 于是③式关于k 有解,当且仅当22222(1)0(1)n t a t λ->-, 等价于2221(1)()0t t λ--<. 由1λ>,可解得11t λ<<,即111(1)λλλλ+<<-,由1λ>,解得1λ>,所以当11λ<…l ,使得12S S λ=;当1λ>l 使得12S S λ=. (步骤7) 解法2:如图2,若存在与坐标轴不重合的直线l ,使得12S S λ=.根据对称性, 不妨设直线l :(0)y kx k =>,点(,0)M a -,(,0)N a 到直线l 的距离分别为1d ,2d ,则因为1d ==,2d ==12d d =. (步骤3)又111||2S BD d =,221||2S AB d =,所以12||||S BD S AB λ==.(步骤3)因为||||A B A Bx x BD AB x x λ+==-,所以11A B x x λλ+=-.(步骤4) 由点(,)A A A x kx ,(,)B B B x kx 分别在C 1,C 2上,可得222221A A x k x a m +=,222221B B x k x a n +=,两式相减可得22222222()0A B A B x x k x x a m λ--+=, 依题意0A B x x >>,所以22AB x x >. 所以由上式解得22222222()()A B B A m x x k a x x λ-=-.(步骤5) 因为20k >,所以由2222222()0()A B B A m x x a x x λ->-,可解得1A B x x λ<<. 从而111λλλ+<<-,解得1λ>,所以当11λ<…l ,使得12S S λ=;(步骤6)当1λ>l 使得12S S λ=.(步骤7)。

2013高考真题文数湖北卷

2013高考真题文数湖北卷

绝密★启用前2013年普通高等学校招生全国统一考试(湖北卷)数 学(文史类)本试题卷共5页,22题。

全卷满分150分。

考试用时120分钟。

★祝考试顺利★注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

用统一提供的2B 铅笔将答题卡上试卷类型A 后的方框涂黑。

2.选择题的作答:每小题选出答案后,用统一提供的2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

答在试题卷、草稿纸上无效。

3.填空题和解答题的作答:用统一提供的签字笔直接答在答题卡上对应的答题区域内。

答在试题卷、草稿纸上无效。

4.考生必须保持答题卡的整洁。

考试结束后,请将本试题卷和答题卡一并上交。

一、选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集{1,2,3,4,5}U =,集合{1,2}A =,{2,3,4}B =,则U B A =A .{2}B .{3,4}C .{1,4,5}D .{2,3,4,5}2.已知π04θ<<,则双曲线1C :22221sin cos x y θθ-=与2C :22221cos sin y x θθ-=的A .实轴长相等B .虚轴长相等C .离心率相等D .焦距相等3.在一次跳伞训练中,甲、乙两位学员各跳一次.设命题p 是“甲降落在指定范围”,q 是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为 A .()p ⌝∨()q ⌝ B .p ∨()q ⌝C .()p ⌝∧()q ⌝D .p ∨q4.四名同学根据各自的样本数据研究变量,x y 之间的相关关系,并求得回归直线方程,分 别得到以下四个结论:① y 与x 负相关且 2.347 6.423y x =-; ② y 与x 负相关且 3.476 5.648y x =-+; ③ y 与x 正相关且 5.4378.493y x =+; ④ y 与x 正相关且 4.326 4.578y x =--. 其中一定不.正确..的结论的序号是 A .①② B .②③ C .③④ D . ①④5.小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间,后为了赶时间加快速度行驶. 与以上事件吻合得最好的图象是6.将函数sin ()y x x x =+∈R 的图象向左平移(0)m m >个单位长度后,所得到的图象关于y 轴对称,则m 的最小值是 A .π12B .π6C .π3D .5π67.已知点(1,1)A -、(1,2)B 、(2,1)C --、(3,4)D ,则向量AB 在CD 方向上的投影为A B C . D . 8.x 为实数,[]x 表示不超过x 的最大整数,则函数()[]f x x x =-在R 上为 A .奇函数B .偶函数C .增函数D . 周期函数9.某旅行社租用A 、B 两种型号的客车安排900名客人旅行,A 、B 两种车辆的载客量分别为36人和60人,租金分别为1600元/辆和2400元/辆,旅行社要求租车总数不超过21辆,且B 型车不多于A 型车7辆.则租金最少为A .31200元B .36000元C .36800元D .38400元 10.已知函数()(ln )f x x x ax =-有两个极值点,则实数a 的取值范围是A .(,0)-∞B .1(0,)2C .(0,1)D .(0,)+∞二、填空题:本大题共7小题,每小题5分,共35分.请将答案填在答题卡对应题号.......的位置上. 答错位置,书写不清,模棱两可均不得分.11.i 为虚数单位,设复数1z ,2z 在复平面内对应的点关于原点对称,若123i z =-,则2z = .12.某学员在一次射击测试中射靶10次,命中环数如下:7,8,7,9,5,4,9,10,7,4则(Ⅰ)平均命中环数为 ; (Ⅱ)命中环数的标准差为 .13.阅读如图所示的程序框图,运行相应的程序. 若输入m 的值为2,则输出的结果i = .14.已知圆O :225x y +=,直线l :cos sin 1x y θθ+=(π02θ<<).设圆O 上到直线l 的距离等于1的点的个数为k ,则k = .15.在区间[2,4]-上随机地取一个数x ,若x 满足||x m ≤的概率为56, 则m = .16.我国古代数学名著《数书九章》中有“天池盆测雨”题:在下雨时,用一个圆台形的天池盆接雨水. 天池盆盆口直径为二尺八寸,盆底直径为一尺二寸,盆深一尺八寸. 若盆中积水深九寸,则平地降雨量是 寸.(注:①平地降雨量等于盆中积水体积除以盆口面积;②一尺等于十寸)17.在平面直角坐标系中,若点(,)P x y 的坐标x ,y 均为整数,则称点P 为格点. 若一个多边形的顶点全是格点,则称该多边形为格点多边形. 格点多边形的面积记为S ,其内部的格点数记为N ,边界上的格点数记为L . 例如图中△ABC 是格点三角形,对应的1S =,0N =,4L =.(Ⅰ)图中格点四边形DEFG 对应的,,S N L 分别是 ;(Ⅱ)已知格点多边形的面积可表示为S aN bL c =++,其中a ,b ,c 为常数.若某格点多边形对应的71N =,18L =, 则S = (用数值作答).否A A m =⨯1i i =+ 输入m1, 1, 0A B i ===开始 结束是 ?A B <输出i第13题图B B i =⨯ 第17题图三、解答题:本大题共5小题,共65分.解答应写出文字说明、证明过程或演算步骤. 18.(本小题满分12分)在△ABC 中,角A ,B ,C 对应的边分别是a ,b ,c . 已知cos23cos()1A B C -+=. (Ⅰ)求角A 的大小;(Ⅱ)若△ABC 的面积53S =,5b =,求sin sin B C 的值. 19.(本小题满分13分)已知n S 是等比数列{}n a 的前n 项和,4S ,2S ,3S 成等差数列,且23418a a a ++=-. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)是否存在正整数n ,使得2013n S ≥?若存在,求出符合条件的所有n 的集合;若不存在,说明理由.20.(本小题满分13分)如图,某地质队自水平地面A ,B ,C 三处垂直向地下钻探,自A 点向下钻到A 1处发现矿藏,再继续下钻到A 2处后下面已无矿,从而得到在A 处正下方的矿层厚度为121A A d =.同样可得在B ,C 处正下方的矿层厚度分别为122B B d =,123C C d =,且123d d d <<. 过AB ,AC 的中点M ,N 且与直线2AA 平行的平面截多面体111222A B C A B C -所得的截面DEFG 为该多面体的一个中截面,其面积记为S 中. (Ⅰ)证明:中截面DEFG 是梯形;(Ⅱ)在△ABC 中,记BC a =,BC 边上的高为h ,面积为S . 在估测三角形ABC 区域内正下方的矿藏储量(即多面体111222A B C A B C -的体积V )时,可用近似公式V S h =⋅估中来估算. 已知1231()3V d d d S =++,试判断V 估与V 的大小关系,并加以证明.第20题图21.(本小题满分13分)设0a >,0b >,已知函数()1ax bf x x +=+. (Ⅰ)当a b ≠时,讨论函数()f x 的单调性;(Ⅱ)当0x >时,称()f x 为a 、b 关于x 的加权平均数.(i )判断(1)f, f ,()bf a是否成等比数列,并证明()b f f a ≤; (ii )a 、b 的几何平均数记为G . 称2aba b+为a 、b 的调和平均数,记为H . 若()H f x G ≤≤,求x 的取值范围.22.(本小题满分14分)如图,已知椭圆1C 与2C 的中心在坐标原点O ,长轴均为MN 且在x 轴上,短轴长分别 为2m ,2()n m n >,过原点且不与x 轴重合的直线l 与1C ,2C 的四个交点按纵坐标从 大到小依次为A ,B ,C ,D .记mnλ=,△BDM 和△ABN 的面积分别为1S 和2S . (Ⅰ)当直线l 与y 轴重合时,若12S S λ=,求λ的值;(Ⅱ)当λ变化时,是否存在与坐标轴不重合的直线l ,使得12S S λ=?并说明理由.第22题图2013年普通高等学校招生全国统一考试(湖北卷)数学(文史类)试题参考答案一、选择题:1.B 2.D 3.A 4.D 5.C 6.B 7.A 8.D 9.C 10.B 二、填空题:11.23i -+ 12.(Ⅰ)7 (Ⅱ)2 13.414.4 15.3 16.3 17.(Ⅰ)3, 1, 6 (Ⅱ)79 三、解答题: 18.(Ⅰ)由cos23cos()1A B C -+=,得22cos 3cos 20A A +-=, 即(2cos 1)(cos 2)0A A -+=,解得1cos 2A = 或cos 2A =-(舍去). 因为0πA <<,所以π3A =.(Ⅱ)由11sin 22S bc A bc ====得20bc =. 又5b =,知4c =.由余弦定理得2222cos 25162021,a b c bc A =+-=+-=故a =又由正弦定理得222035sin sin sin sin sin 2147b c bc B C A A A a a a =⋅==⨯=.19.(Ⅰ)设数列{}n a 的公比为q ,则10a ≠,0q ≠. 由题意得 2432234,18,S S S S a a a -=-⎧⎨++=-⎩ 即23211121,(1)18,a q a q a q a q q q ⎧--=⎪⎨++=-⎪⎩ 解得13,2.a q =⎧⎨=-⎩故数列{}n a 的通项公式为13(2)n n a -=-.(Ⅱ)由(Ⅰ)有 3[1(2)]1(2)1(2)n n n S ⋅--==----.若存在n ,使得2013n S ≥,则1(2)2013n --≥,即(2)2012.n -≤- 当n 为偶数时,(2)0n ->, 上式不成立;当n 为奇数时,(2)22012n n -=-≤-,即22012n ≥,则11n ≥.综上,存在符合条件的正整数n ,且所有这样的n 的集合为{21,,5}n n k k k =+∈≥N . 20.(Ⅰ)依题意12A A ⊥平面ABC ,12B B ⊥平面ABC ,12C C ⊥平面ABC ,所以A 1A 2∥B 1B 2∥C 1C 2. 又121A A d =,122B B d =,123C C d =,且123d d d << . 因此四边形1221A A B B 、1221A A C C 均是梯形.由2AA ∥平面MEFN ,2AA ⊂平面22AA B B ,且平面22AA B B 平面MEFN ME =,可得AA 2∥ME ,即A 1A 2∥DE . 同理可证A 1A 2∥FG ,所以DE ∥FG .又M 、N 分别为AB 、AC 的中点,则D 、E 、F 、G 分别为11A B 、22A B 、22A C 、11A C 的中点, 即DE 、FG 分别为梯形1221A A B B 、1221A A C C 的中位线.因此 12121211()()22DE A A B B d d =+=+,12121311()()22FG A A C C d d =+=+,而123d d d <<,故DE FG <,所以中截面DEFG 是梯形. (Ⅱ)V V <估. 证明如下:由12A A ⊥平面ABC ,MN ⊂平面ABC ,可得12A A MN ⊥. 而EM ∥A 1A 2,所以EM MN ⊥,同理可得FN MN ⊥. 由MN 是△ABC 的中位线,可得1122MN BC a ==即为梯形DEFG 的高, 因此13121231()(2)22228DEFG d d d d a a S S d d d ++==+⋅=++中梯形, 即123(2)8ahV S h d d d =⋅=++估中. 又12S ah =,所以1231231()()36ahV d d d S d d d =++=++.于是1231232131()(2)[()()]6824ah ah ahV V d d d d d d d d d d -=++-++=-+-估.由123d d d <<,得210d d ->,310d d ->,故V V <估.(Ⅰ)()f x 的定义域为(,1)(1,)-∞--+∞,22(1)()()(1)(1)a x ax b a bf x x x +-+-'==++. 当a b >时,()0f x '>,函数()f x 在(,1)-∞-,(1,)-+∞上单调递增; 当a b <时,()0f x '<,函数()f x 在(,1)-∞-,(1,)-+∞上单调递减.(Ⅱ)(i )计算得(1)02a b f +=>,2()0b abf a a b=>+,0f =>.故22(1)()[2b a b ab f f ab f a a b +=⋅==+, 即2(1)()[b f f f a =. ①所以(1),()bf f f a成等比数列.因2a b +≥,即(1)f f ≥. 由①得()b f f a ≤.(ii )由(i )知()bf H a =,f G =.故由()H f x G ≤≤,得()()b f f x f a ≤≤. ②当a b =时,()()b f f x f a a ===.这时,x 的取值范围为(0,)+∞;当a b >时,01ba<<,从而b a <()f x 在(0,)+∞上单调递增与②式,得b x a ≤≤x 的取值范围为,b a⎡⎢⎣;当a b <时,1ba>,从而b a >()f x 在(0,)+∞上单调递减与②式,bx a ≤≤,即x 的取值范围为b a ⎤⎥⎦.依题意可设椭圆1C 和2C 的方程分别为1C :22221x y a m +=,2C :22221x y a n +=. 其中0a m n >>>, 1.mnλ=>(Ⅰ)解法1:如图1,若直线l 与y 轴重合,即直线l 的方程为0x =,则111||||||22S BD OM a BD =⋅=,211||||||22S AB ON a AB =⋅=,所以12||||S BD S AB =. 在C 1和C 2的方程中分别令0x =,可得A y m =,B y n =,D y m =-, 于是||||1||||1B D A B y y BD m n AB y y m n λλ-++===---. 若12S S λ=,则11λλλ+=-,化简得2210λλ--=. 由1λ>,可解得1λ. 故当直线l 与y 轴重合时,若12S S λ=,则1λ=. 解法2:如图1,若直线l 与y 轴重合,则||||||BD OB OD m n =+=+,||||||AB OA OB m n =-=-;111||||||22S BD OM a BD =⋅=,211||||||22S AB ON a AB =⋅=. 所以12||1||1S BD m n S AB m n λλ++===--. 若12S S λ=,则11λλλ+=-,化简得2210λλ--=. 由1λ>,可解得1λ. 故当直线l 与y 轴重合时,若12S S λ=,则1λ=.(Ⅱ)解法1:如图2,若存在与坐标轴不重合的直线l ,使得12S S λ=. 根据对称性, 不妨设直线l :(0)y kx k =>,点(,0)M a -,(,0)N a 到直线l 的距离分别为1d ,2d ,则因为1d =2d =,所以12d d =.又111||2S BD d =,221||2S AB d =,所以12||||S BD S AB λ==,即||||BD AB λ=. 由对称性可知||||AB CD =,所以||||||(1)||BC BD AB AB λ=-=-, ||||||(1)||AD BD AB AB λ=+=+,于是第22题解答图1第22题解答图2||1||1AD BC λλ+=-. ① 将l 的方程分别与C 1,C 2的方程联立,可求得A x =B x =.根据对称性可知C B x x =-,D A x x =-,于是2||||2A Bx AD BC x === ② 从而由①和②式可得1(1)λλλ+=-. ③令1(1)t λλλ+=-,则由m n >,可得1t ≠,于是由③可解得222222(1)(1)n t k a t λ-=-.因为0k ≠,所以20k >. 于是③式关于k 有解,当且仅当22222(1)0(1)n t a t λ->-,等价于2221(1)()0t t λ--<. 由1λ>,可解得11t λ<<,即111(1)λλλλ+<<-,由1λ>,解得1λ>当11λ<≤l ,使得12S S λ=;当1λ>l 使得12S S λ=. 解法2:如图2,若存在与坐标轴不重合的直线l ,使得12S S λ=. 根据对称性, 不妨设直线l :(0)y kx k =>,点(,0)M a -,(,0)N a 到直线l 的距离分别为1d ,2d ,则因为1d =2d =,所以12d d =.又111||2S BD d =,221||2S AB d =,所以12||||S BD S AB λ==.因为||||A B A Bx x BD AB x x λ+===-,所以11A B x x λλ+=-. 由点(,)A A A x kx ,(,)B B B x kx 分别在C 1,C 2上,可得222221A A x k x a m +=,222221B B x k x a n+=,两式相减可得22222222()0A B A B x x k x x a m λ--+=, 依题意0A B x x >>,所以22AB x x >. 所以由上式解得22222222()()A B B A m x x k a x x λ-=-.因为20k >,所以由2222222()0()A B B A m x x a x x λ->-,可解得1ABx x λ<<.梦想不会辜负一个努力的人all`试题 11 从而111λλλ+<<-,解得1λ>当11λ<≤l ,使得12S S λ=;当1λ>l 使得12S S λ=.。

数学(文)_2013湖北卷_11页

数学(文)_2013湖北卷_11页

绝密★启用前2013年普通高等学校招生全国统一考试(湖北卷)数学(文史类)本试题卷共5页,22题。

全卷满分150分。

考试用时120分钟。

★祝考试顺利★注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

用统一提供的2B铅笔将答题卡上试卷类型A后的方框涂黑。

2.选择题的作答:每小题选出答案后,用统一提供的2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

答在试题卷、草稿纸上无效。

3.填空题和解答题的作答:用统一提供的签字笔直接答在答题卡上对应的答题区域内。

答在试题卷、草稿纸上无效。

4.考生必须保持答题卡的整洁。

考试结束后,请将本试题卷和答题卡一并上交。

一、选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集,集合,,则A. B. C. D.2.已知,则双曲线:与:的A.实轴长相等 B.虚轴长相等 C.离心率相等D.焦距相等3.在一次跳伞训练中,甲、乙两位学员各跳一次.设命题p是“甲降落在指定范围”,q是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为A.∨ B.∨ C.∧ D.∨4.四名同学根据各自的样本数据研究变量之间的相关关系,并求得回归直线方程,分别得到以下四个结论:①y与x负相关且;② y与x负相关且;③ y与x正相关且;④ y与x正相关且.其中一定不正确的结论的序号是A.①② B.②③ C.③④ D.①④5.小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间,后为了赶时间加快速度行驶. 与以上事件吻合得最好的图象是距学校的距离距学校的距离距学校的距离ABCD时间时间时间时间OOOO距学校的距离6.将函数的图象向左平移个单位长度后,所得到的图象关于y轴对称,则m的最小值是A. B. C. D.7.已知点、、、,则向量在方向上的投影为A. B. C. D.8.x为实数,表示不超过的最大整数,则函数在上为A.奇函数 B.偶函数 C.增函数 D.周期函数9.某旅行社租用、两种型号的客车安排900名客人旅行,、两种车辆的载客量分别为36人和60人,租金分别为1600元/辆和2400元/辆,旅行社要求租车总数不超过21辆,且型车不多于型车7辆.则租金最少为A.31200元 B.36000元 C.36800元 D.38400元10.已知函数有两个极值点,则实数的取值范围是A. B. C. D.二、填空题:本大题共7小题,每小题5分,共35分.请将答案填在答题卡对应题号的位置上. 答错位置,书写不清,模棱两可均不得分.11.为虚数单位,设复数,在复平面内对应的点关于原点对称,若,则.否输入开始结束是输出第13题图12.某学员在一次射击测试中射靶10次,命中环数如下:7,8,7,9,5,4,9,10,7,4则(Ⅰ)平均命中环数为;(Ⅱ)命中环数的标准差为 .13.阅读如图所示的程序框图,运行相应的程序. 若输入的值为2,则输出的结果 .已知圆:,直线:().设圆上到直线的距离等于1的点的个数为,则.15.在区间上随机地取一个数x,若x满足的概率为,则 .16.我国古代数学名著《数书九章》中有“天池盆测雨”题:在下雨时,用一个圆台形的天池盆接雨水. 天池盆盆口直径为二尺八寸,盆底直径为一尺二寸,盆深一尺八寸. 若盆中积水深九寸,则平地降雨量是寸.(注:①平地降雨量等于盆中积水体积除以盆口面积;②一尺等于十寸)17.在平面直角坐标系中,若点的坐标,均为整数,则称点为格点. 若一个多边形的顶点全是格点,则称该多边形为格点多边形. 格点多边形的面积记为,其内部的格点数记为,边界上的格点数记为. 例如图中△是格点三角形,对应的,,.(Ⅰ)图中格点四边形DEFG对应的分别是;(Ⅱ)已知格点多边形的面积可表示为,其中a,b,c为常数.若某格点多边形对应的,,则(用数值作答).第17题图三、解答题:本大题共5小题,共65分.解答应写出文字说明、证明过程或演算步骤.18.(本小题满分12分)在△中,角,,对应的边分别是,,. 已知.(Ⅰ)求角A的大小;(Ⅱ)若△的面积,,求的值.19.(本小题满分13分)已知是等比数列的前项和,,,成等差数列,且.(Ⅰ)求数列的通项公式;(Ⅱ)是否存在正整数,使得?若存在,求出符合条件的所有的集合;若不存在,说明理由.20.(本小题满分13分)如图,某地质队自水平地面A,B,C三处垂直向地下钻探,自A点向下钻到A1处发现矿藏,再继续下钻到A2处后下面已无矿,从而得到在A处正下方的矿层厚度为.同样可得在B,C处正下方的矿层厚度分别为,,且. 过,的中点,且与直线平行的平面截多面体所得的截面为该多面体的一个中截面,其面积记为.(Ⅰ)证明:中截面是梯形;(Ⅱ)在△ABC中,记,BC边上的高为,面积为. 在估测三角形区域内正下方的矿藏储量(即多面体的体积)时,可用近似公式来估算. 已知,试判断与V的大小关系,并加以证明.第20题图21.(本小题满分13分)设,,已知函数.(Ⅰ)当时,讨论函数的单调性;(Ⅱ)当时,称为、关于的加权平均数.(i)判断, ,是否成等比数列,并证明;(ii)、的几何平均数记为G. 称为、的调和平均数,记为H.若,求的取值范围.22.(本小题满分14分)如图,已知椭圆与的中心在坐标原点,长轴均为且在轴上,短轴长分别为,,过原点且不与轴重合的直线与,的四个交点按纵坐标从大到小依次为A,B,C,D.记,△和△的面积分别为和.(Ⅰ)当直线与轴重合时,若,求的值;(Ⅱ)当变化时,是否存在与坐标轴不重合的直线l,使得?并说明理由.第22题图2013年普通高等学校招生全国统一考试(湖北卷)数学(文史类)试题参考答案一、选择题:1.B 2.D 3.A 4.D 5.C 6.B 7.A 8.D 9.C 10.B二、填空题:11. 12.(Ⅰ)7 (Ⅱ)2 13.414.4 15.3 16.3 17.(Ⅰ)3, 1, 6 (Ⅱ)79三、解答题:18.(Ⅰ)由,得,即,解得或(舍去).因为,所以. (Ⅱ)由得. 又,知.由余弦定理得故.又由正弦定理得.19.(Ⅰ)设数列的公比为,则,. 由题意得即 解得故数列的通项公式为. (Ⅱ)由(Ⅰ)有 .若存在,使得,则,即当为偶数时,,上式不成立;当为奇数时,,即,则.综上,存在符合条件的正整数,且所有这样的n的集合为.20.(Ⅰ)依题意平面,平面,平面,所以A1A2∥B1B2∥C1C2. 又,,,且 .因此四边形、均是梯形.由∥平面,平面,且平面平面,可得AA2∥ME,即A1A2∥DE. 同理可证A1A2∥FG,所以DE∥FG.又、分别为、的中点,则、、、分别为、、、 的中点,即、分别为梯形、的中位线.因此 ,,而,故,所以中截面是梯形.(Ⅱ). 证明如下:由平面,平面,可得.而EM∥A1A2,所以,同理可得.由是△的中位线,可得即为梯形的高,因此,即.又,所以.于是.由,得,,故.(Ⅰ)的定义域为,.当时,,函数在,上单调递增;当时,,函数在,上单调递减.(Ⅱ)(i)计算得,,.故, 即. ①所以成等比数列.因,即. 由①得.(ii)由(i)知,.故由,得. ②当时,.这时,的取值范围为;当时,,从而,由在上单调递增与②式, 得,即的取值范围为;当时,,从而,由在上单调递减与②式, 得,即的取值范围为.依题意可设椭圆和的方程分别为:,:. 其中,(Ⅰ)解法1:如图1,若直线与轴重合,即直线的方程为,则,,所以.在C1和C2的方程中分别令,可得,,,于是.若,则,化简得. 由,可解得.故当直线与轴重合时,若,则.解法2:如图1,若直线与轴重合,则,;,.所以.若,则,化简得. 由,可解得.故当直线与轴重合时,若,则.第22题解答图1第22题解答图2(Ⅱ)解法1:如图2,若存在与坐标轴不重合的直线l,使得. 根据对称性,不妨设直线:,点,到直线的距离分别为,,则因为,,所以.又,,所以,即.由对称性可知,所以,,于是. ①将的方程分别与C1,C2的方程联立,可求得,.根据对称性可知,,于是. ②从而由①和②式可得. ③令,则由,可得,于是由③可解得.因为,所以. 于是③式关于有解,当且仅当,等价于. 由,可解得,即,由,解得,所以当时,不存在与坐标轴不重合的直线l,使得;当时,存在与坐标轴不重合的直线l使得.解法2:如图2,若存在与坐标轴不重合的直线l,使得. 根据对称性,不妨设直线:,点,到直线的距离分别为,,则因为,,所以.又,,所以.因为,所以.由点,分别在C1,C2上,可得,,两式相减可得,依题意,所以. 所以由上式解得.因为,所以由,可解得.从而,解得,所以当时,不存在与坐标轴不重合的直线l,使得;当时,存在与坐标轴不重合的直线l使得.。

2013湖北卷 (文数)真题解析

2013湖北卷 (文数)真题解析

绝密★启用前2013年普通高等学校招生全国统一考试(湖北卷)数 学(文史类)本试题卷共6页,22题,其中第15、16题为选考题。

全卷满分150分。

考试用时120分钟。

★祝考试顺利★注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

用统一提供的2B 铅笔将答题卡上试卷类型A 后的方框涂黑。

2.选择题的作答:每小题选出答案后,用统一提供的2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

答在试题卷、草稿纸上无效。

3.填空题和解答题的作答:用统一提供的签字笔直接答在答题卡上对应的答题区域内。

答在试题卷、草稿纸上无效。

4.选考题的作答:先把所选题目的题号在答题卡上指定的位置用统一提供的2B 铅笔涂黑。

考生应根据自己选做的题目准确填涂题号,不得多选。

答题答在答题卡上对应的答题区域内,答在试题卷、草稿纸上无效。

5.考生必须保持答题卡的整洁。

考试结束后,请将本试题卷和答题卡一并上交。

一、选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集{1,2,3,4,5}U =,集合{1,2}A =,{2,3,4}B =,则U B C A =I ( ) A. {2} B. {3,4} C. {1,4,5} D. {2,3,4,5} 答案:B考点:集合的运算分析:先算出U C A ,再算U B C A I .解答:{3,4,5}U C A =,{2,3,4}{3,4,5}{3,4}U B C A = I ð.故答案为B. 备注:考点:集合的运算.难度A.2.已知04< ,则双曲线22122:1sin cos x y C 与22222:1cos sin y x C的( )A.实轴长相等B.虚轴长相等C.离心率相等D.焦距相等答案:D考点:双曲线的性质.分析:分别表示出双曲线1C 和2C 的实轴,虚轴,离心率和焦距,最后比较即可.解答:双曲线1C 的实轴长为2sin ,虚轴长为2cos ,焦距为2 ,离心率为1sin;双曲线2C 的实轴长为2cos ,虚轴长为2sin ,焦距为2 ,离心率为1cos,故只有焦距相等.故答案为D.备注:考点:双曲线的性质.难度A.3.在一次跳伞训练中,甲、乙两位学员各跳一次.设命题p 是“甲降落在指定范围”,q 是“乙 降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为( ) A.()()p q B. ()p q C. ()()p q D. p q答案:A考点:命题,逻辑联结词.分析:分析“至少有一位学员没有降落在指定范围”包含的情况.便可选出答案. 解答:“至少有一位学员没有降落在指定范围”包括“甲降落在指定范围,乙没有降落在指定范围”,“甲没有降落在指定范围,乙降落在指定范围”, “甲没有降落在指定范 围,乙没有降落在指定范围”三种情况.故答案为A.备注:考点:命题,逻辑联结词.难度A.4.四名同学根据各自的样本数据研究变量,x y 之间的相关关系,并求得回归直线方程,分 别得到以下四个结论:①y 与x 负相关且 2.347 6.423y x = ;②y 与x 负相关且 3.476 5.648y x = ; ③y 与x 正相关且 5.4788.493y x = ;④y 与x 正相关且 4.326 4.578y x = ; 其中一定不正确的结论的序号是( )A.①②B.②③C.③④D.①④ 答案:D考点:回归直线方程.分析:回归直线的一次项系数为正,则正相关,为负,则负相关.解答:回归直线的一次项系数为正,则正相关,为负,则负相关.故错误的有①④.故答案为D.备注:考点:回归直线方程.难度:A.5.小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间,后为了赶时间加快速度行驶.与以上时间吻合得最好的图象是( )答案:C考点:函数的图象的实际应用.分析:分析骑车过程中的速度变化便可选出答案.解答:骑车的速度变化有三个阶段,第一阶段速度较小,第二阶段速度为0,第三阶段速度较大,故答案为C.备注:考点:函数的图象的实际应用.难度A.6. 将函数sin ()y x x x R = +的图象向左平移(0)m m >个单位长度后,所得到的图象关于y 轴对称,则m 的最小值是( ) A.12B.6C.3D.56答案:B考点:三角函数的图象.分析:先将函数sin ()y x x x R = +化简,在进行计算.解答:sin 2sin()3y x x x=+,其向左平移6个单位后得到函数2sin(2sin(2cos 362y x x x=++,其图象关于y 轴对称.故答案为B.备注:考点:三角函数的图象.难度A.7. 已知点)1,1( A 、)2,1(B 、)1,2( C 、)4,3(D ,则向量AB 在方向的投影为( )A.223 B. 2153 C. 223 D. 2153 答案: A考点:向量的投影。

2013年全国高考(文科)数学试卷(湖北卷)【已整理】

2013年全国高考(文科)数学试卷(湖北卷)【已整理】

2013年湖北高考数学试题(文科)一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1、已知全集}5 , 4 , 3 , 2 , 1{=U ,集合}2 , 1{=A ,}4 , 3 , 2{=B ,则=)(A C B U ( ) A .}2{ B .}4 , 3{ C .}5 , 4 , 1{ D .}5 , 4 , 3 , 2{2、已知40πθ<<,则双曲线1cos sin :22221=-θθy x C 与1sin cos :22222=-θθx y C 的( ) A .实轴长相等 B .虚轴长相等 C .离心率相等 D .焦距相等3、在一次跳伞训练中,甲、乙两位学员各跳一次.设命题p 是“甲降落在指定范围”,q 是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为( ) A .)()(q p ⌝∨⌝ B .)(q p ⌝∨ C .)()(q p ⌝∧⌝ D .q p ∨4、四名同学根据各自的样本数据研究变量x 、y 之间的相关关系,并求得回归直线方程,分别得到以下四个结论:①y 与x 负相关且423.6347.2ˆ-=x y;②y 与x 负相关且648.5476.3ˆ+-=x y ;③y 与x 正相关且493.8437.5ˆ+=x y;④y 与x 正相关且578.4326.4ˆ--=x y .其中一定不正确的结论的序号是( )A .①②B .②③C .③④D .①④5、小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间,后为了赶时间加快速度行驶. 与以上事件吻合得最好的图象是( )6、将函数x x y sin cos 3+=(R x ∈)的图象向左平移m (0>m )个单位长度后,所得到的图象关于y 轴对称,则m 的最小值是( )A .12π B .6π C .3π D .65π 7、已知点)1 , 1(-A 、)2 , 1(B 、)1 , 2(--C 、)4 , 3(D ,则向量AB 在CD 方向上的投影为( ) A .223 B .2153 C .223- D .2153- 8、已知x 为实数,若][x 表示不超过x 的最大整数,则函数][)(x x x f -=在R 上为( ) A .奇函数 B .偶函数 C .增函数 D .周期函数9、某旅行社租用A 、B 两种型号的客车安排900名客人旅行,A 、B 两种车辆的载客量分别为36人和60人,租金分别为1600元/辆和2400元/辆,旅行社要求租车总数不超过21辆,且B 型车不多于A 型车7辆,则租金最少为( )A .31200元B .36000元C .36800元D .38400元10、已知函数)(ln )(ax x x x f -=有两个极值点,则实数a 的取值范围是( ) A .)0 , (-∞ B .)21, 0( C .)1 , 0( D .) , 0(∞+二、填空题:本大题共7小题,每小题5分,共35分.请将答案填在答题卡对应题号的位置上. 11、已知i 为虚数单位,设复数1z 、2z 在复平面内对应的点关于原点对称,若i z 321-=,则=2z _____________.12、某学员在一次射击测试中射靶10次,命中环数如下:7、8、7、9、5、4、9、10、7、4.则:(1)平均命中环数为_____________;(2)命中环数的标准差为_____________.13、阅读如图所示的程序框图,运行相应的程序.若输入m 的值为2,则输出的结果=i _____________.14、已知圆5:22=+y x O ,直线1sin cos :=+θθy x l (20πθ<<).设圆O 上到直线l 的距离等于1的点的个数为k ,则=k _____________.15、在区间]4 , 2[-上随机地取一个数x ,若x 满足m x ≤||的概率为65,则=m _____________. 16、我国古代数学名著《数书九章》中有“天池盆测雨”题:在下雨时,用一个圆台形的天池盆接雨水.天池盆盆口直径为二尺八寸,盆底直径为一尺二寸,盆深一尺八寸.若盆中积水深九寸,则平地降雨量是_____________寸.(注:①平地降雨量等于盆中积水体积除以盆口面积;②一尺等于十寸)17、在平面直角坐标系中,若点) , (y x P 的坐标x 、y 均为整数,则称点P 为格点.若一个多边形的顶点全是格点,则称该多边形为格点多边形.格点多边形的面积记为S ,其内部的格点数记为N ,边界上的格点数记为L .例如图中ABC ∆是格点三角形,对应的1=S ,0=N ,4=L .(1)图中格点四边形DEFG 对应的S 、N 、L 分别是__________;(2)已知格点多边形的面积可表示为c bL aN S ++=,其中a 、b 、c 为常数.若某格点多边形对应的71=N ,18=L ,则=S _________(用数值作答).三、解答题:本大题共5个小题,共65分.解答应写出文字说明、证明过程或演算步骤. 18、(本小题满分12分)在ABC ∆中,角A 、B 、C 对应的边分别是a 、b 、c .已知1)cos(32cos =+-C B A .(1)求角A 的大小;(2)若ABC ∆的面积35=S ,5=b ,求C B sin sin 的值.19、(本小题满分13分)已知n S 是等比数列}{n a 的前n 项和,4S 、2S 、3S 成等差数列,且18432-=++a a a .(1)求数列}{n a 的通项公式;(2)是否存在正整数n ,使得2013≥n S ?若存在,求出符合条件的所有n 的集合;若不存在,说明理由.20、(本小题满分13分)如图,某地质队自水平地面A 、B 、C 三处垂直向地下钻探,自A 点向下钻到1A 处发现矿藏,再继续下钻到2A 处后下面已无矿,从而得到在A 处正下方的矿层厚度为121d A A =.同样可得在B 、C 处正下方的矿层厚度分别为221d B B =,321d C C =,且321d d d <<.过AB 、AC 的中点M 、N 且与直线2AA 平行的平面截多面体222111C B A C B A -所得的截面DEFG 为该多面体的一个中截面,其面积记为中S .(1)证明:中截面DEFG 是梯形;(2)在ABC ∆中,记a BC =,BC 边上的高为h ,面积为S .在估测ABC ∆区域内正下方的矿藏储量(即多面体222111C B A C B A -的体积V )时,可用近似公式h S V ⋅=中估来估算,已知S d d d V ⋅++=)(31321,试判断估V 与V 的大小关系,并加以证明.21、(本小题满分13分)设0>a ,0>b ,已知函数1)(++=x bax x f . (1)当b a ≠时,讨论函数)(x f 的单调性;(2)当0>x 时,称)(x f 为a 、b 关于x 的加权平均数. ①判断)1(f 、)(a b f 、)(a b f 是否成等比数列,并证明:)()(ab f a b f ≤;②a 、b 的几何平均数记为G ;称ba ab+2为a 、b 的调和平均数,记为H .若G x f H ≤≤)(,求x 的取值范围.22、(本小题满分14分)如图,已知椭圆1C 与2C 的中心在坐标原点O ,长轴均为MN 且在x 轴上,短轴长分别为m 2、n 2(n m >),过原点且不与x 轴重合的直线l 与1C 、2C 的四个交点按纵坐标从大到小依次为A 、B 、C 、D .记nm=λ,BDM ∆和ABN ∆的面积分别为1S 和2S .(1)当直线l 与y 轴重合时,若21S S λ=,求λ的值; (2)当λ变化时,是否存在与坐标轴不重合的直线l ,使得?并说明理由.。

(文科)(新课标Ⅰ)2013年全国统一高考数学试卷答案与解析

(文科)(新课标Ⅰ)2013年全国统一高考数学试卷答案与解析

2013年全国统一高考数学试卷(文科)(新课标Ⅰ)参考答案与试题解析一、选择题共12小题.每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的一项.22.(5分)=()i i 1+i===1+.C D.=.4.(5分)已知双曲线C:的离心率为,则C的渐近线方程为().C D由题意可得,由此求得=,从而求得双曲线的渐近线方程.的离心率为,故有,∴,解得=x x326.(5分)(2014•武汉模拟)设首项为1,公比为的等比数列{a n}的前n项和为S n,则()×==3=37.(5分)(2014•武汉模拟)执行右面的程序框图,如果输入的t∈[﹣1,3],则输出的s属于(),8.(5分)(2014•武汉模拟)O为坐标原点,F为抛物线C:y2=4x的焦点,P为C上一点,若|PF|=4,则△POF|PF|=4n==42p=4,可得=,得焦点=4,=4n=|OF|=|OF||n|=x的点.C D.2A=cosA=,﹣11.(5分)(2014•武汉模拟)某几何体的三视图如图所示,则该几何体的体积为()×12.(5分)(2014•武汉模拟)已知函数f(x)=,若|f(x)|≥ax,则a的取值范围是()二.填空题:本大题共四小题,每小题5分.13.(5分)(2014•苏州一模)已知两个单位向量,的夹角为60°,=t+(1﹣t).若•=0,则t=2.•,对式子=t+两边与作数量积可得解:∵,,∴=0,∴14.(5分)(2014•重庆模拟)设x,y满足约束条件,则z=2x﹣y的最大值为3.15.(5分)已知H是球O的直径AB上一点,AH:HB=1:2,AB⊥平面α,H为垂足,α截球O所得截面的面积为π,则球O的表面积为.,根据题意知由与球心距离为RRd=RR.故答案为:16.(5分)设当x=θ时,函数f(x)=sinx﹣2cosx取得最大值,则cosθ=﹣.)解析式提取=2cosx=(=﹣三.解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)已知等差数列{a n}的前n项和S n满足S3=0,S5=﹣5.(Ⅰ)求{a n}的通项公式;(Ⅱ)求数列{}的前n项和.{},则由已知可得,即{}18.(12分)为了比较两种治疗失眠症的药(分别成为A药,B药)的疗效,随机地选取20位患者服用A药,20位患者服用B药,这40位患者服用一段时间后,记录他们日平均增加的睡眠时间(单位:h)实验的观测结果如下:服用A药的20位患者日平均增加的睡眠时间:0.6 1.2 2.7 1.5 2.8 1.8 2.2 2.3 3.2 3.52.5 2.6 1.2 2.7 1.5 2.93.0 3.1 2.3 2.4服用B药的20位患者日平均增加的睡眠时间:3.2 1.7 1.9 0.8 0.9 2.4 1.2 2.6 1.3 1.41.6 0.5 1.8 0.62.1 1.1 2.5 1.2 2.7 0.5(Ⅰ)分别计算两种药的平均数,从计算结果看,哪种药的疗效更好?(Ⅱ)根据两组数据完成下面茎叶图,从茎叶图看,哪种药的疗效更好?药观测数据的平均数据的平均数为,设药观测数据的平均数据的平均数为=的叶集中在的叶19.(12分)(2014•开封二模)如图,三棱柱ABC﹣A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°(Ⅰ)证明:AB⊥A1C;(Ⅱ)若AB=CB=2,A1C=,求三棱柱ABC﹣A1B1C1的体积..,则的面积,故三棱柱的体积20.(12分)已知函数f(x)=e x(ax+b)﹣x2﹣4x,曲线y=f(x)在点(0,f(0))处切线方程为y=4x+4.(Ⅰ)求a,b的值;(Ⅱ)讨论f(x)的单调性,并求f(x)的极大值.﹣21.(12分)已知圆M:(x+1)2+y2=1,圆N:(x﹣1)2+y2=9,动圆P与圆M外切并与圆N内切,圆心P的轨迹为曲线C.(Ⅰ)求C的方程;(Ⅱ)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P的半径最长时,求|AB|.根据的方程为|AB|=,解得时,联立∴.|AB|==由于对称性可知:当.请考生在第22、23、24三题中任选一题作答。

2013高考湖北数学真题及答案

2013高考湖北数学真题及答案

绝密★启用前2013年普通高等学校招生全国统一考试(湖北卷)数学(文史类)本试题卷共5页,22题。

全卷满分150分。

考试用时120分钟。

★祝考试顺利★注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

用统一提供的2B铅笔将答题卡上试卷类型A后的方框涂黑。

2.选择题的作答:每小题选出答案后,用统一提供的2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

答在试题卷、草稿纸上无效。

3.填空题和解答题的作答:用统一提供的签字笔直接答在答题卡上对应的答题区域内。

答在试题卷、草稿纸上无效。

4.考生必须保持答题卡的整洁。

考试结束后,请将本试题卷和答题卡一并上交。

一、选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集,集合,,则A. B. C. D.2.已知,则双曲线:与:的A.实轴长相等B.虚轴长相等C.离心率相等D.焦距相等3.在一次跳伞训练中,甲、乙两位学员各跳一次.设命题p是“甲降落在指定范围”,q 是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为A.∨B.∨C.∧D.∨4.四名同学根据各自的样本数据研究变量之间的相关关系,并求得回归直线方程,分别得到以下四个结论:① y与x负相关且; ② y与x负相关且;③ y与x正相关且; ④ y与x正相关且.其中一定不正确的结论的序号是A.①②B.②③C.③④D. ①④5.小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间,后为了赶时间加快速度行驶. 与以上事件吻合得最好的图象是6.将函数的图象向左平移个单位长度后,所得到的图象关于y轴对称,则m的最小值是A. B. C. D.7.已知点、、、,则向量在方向上的投影为A. B. C. D.8.x为实数,表示不超过的最大整数,则函数在上为A.奇函数B.偶函数C.增函数D. 周期函数9.某旅行社租用、两种型号的客车安排900名客人旅行,、两种车辆的载客量分别为36人和60人,租金分别为1600元/辆和2400元/辆,旅行社要求租车总数不超过21辆,且型车不多于型车7辆.则租金最少为A.31200元B.36000元C.36800元D.38400元10.已知函数有两个极值点,则实数的取值范围是A. B. C. D.二、填空题:本大题共7小题,每小题5分,共35分.请将答案填在答题卡对应题号的位置上. 答错位置,书写不清,模棱两可均不得分.11.为虚数单位,设复数,在复平面内对应的点关于原点对称,若,则 .12.某学员在一次射击测试中射靶10次,命中环数如下:7,8,7,9,5,4,9,10,7,4则(Ⅰ)平均命中环数为 ;(Ⅱ)命中环数的标准差为 .13.阅读如图所示的程序框图,运行相应的程序. 若输入的值为2,则输出的结果 .14.已知圆:,直线:().设圆上到直线的距离等于1的点的个数为,则 .15.在区间上随机地取一个数x,若x满足的概率为,则 .16.我国古代数学名著《数书九章》中有“天池盆测雨”题:在下雨时,用一个圆台形的天池盆接雨水. 天池盆盆口直径为二尺八寸,盆底直径为一尺二寸,盆深一尺八寸. 若盆中积水深九寸,则平地降雨量是寸.(注:①平地降雨量等于盆中积水体积除以盆口面积;②一尺等于十寸)17.在平面直角坐标系中,若点的坐标,均为整数,则称点为格点. 若一个多边形的顶点全是格点,则称该多边形为格点多边形. 格点多边形的面积记为,其内部的格点数记为,边界上的格点数记为. 例如图中△是格点三角形,对应的,,.(Ⅰ)图中格点四边形DEFG对应的分别是 ;(Ⅱ)已知格点多边形的面积可表示为,其中a,b,c为常数.若某格点多边形对应的,,则 (用数值作答).三、解答题:本大题共5小题,共65分.解答应写出文字说明、证明过程或演算步骤.18.(本小题满分12分)在△中,角,,对应的边分别是,,. 已知.(Ⅰ)求角A的大小;(Ⅱ)若△的面积,,求的值.19.(本小题满分13分)已知是等比数列的前项和,,,成等差数列,且.(Ⅰ)求数列的通项公式;(Ⅱ)是否存在正整数,使得?若存在,求出符合条件的所有的集合;若不存在,说明理由.20.(本小题满分13分)如图,某地质队自水平地面A,B,C三处垂直向地下钻探,自A点向下钻到A1处发现矿藏,再继续下钻到A2处后下面已无矿,从而得到在A处正下方的矿层厚度为.同样可得在B,C处正下方的矿层厚度分别为,,且. 过,的中点,且与直线平行的平面截多面体所得的截面为该多面体的一个中截面,其面积记为.(Ⅰ)证明:中截面是梯形;(Ⅱ)在△ABC中,记,BC边上的高为,面积为. 在估测三角形区域内正下方的矿藏储量(即多面体的体积)时,可用近似公式来估算. 已知,试判断与V的大小关系,并加以证明.21.(本小题满分13分)设,,已知函数.(Ⅰ)当时,讨论函数的单调性;(Ⅱ)当时,称为、关于的加权平均数.(i)判断, ,是否成等比数列,并证明;(ii)、的几何平均数记为G. 称为、的调和平均数,记为H.若,求的取值范围.22.(本小题满分14分)如图,已知椭圆与的中心在坐标原点,长轴均为且在轴上,短轴长分别为,,过原点且不与轴重合的直线与,的四个交点按纵坐标从大到小依次为A,B,C,D.记,△和△的面积分别为和.(Ⅰ)当直线与轴重合时,若,求的值;(Ⅱ)当变化时,是否存在与坐标轴不重合的直线l,使得?并说明理由.。

2013年湖北高考数学试题及答案(文科)

2013年湖北高考数学试题及答案(文科)

2013年湖北高考数学试题及答案(文科)一、选择题1. 已知全集U ={1,2,3,4,5},集合A ={1,2},B ={2,3,4},则B ∩(∁U A)=( )A .{2}B .{3,4}C .{1,4,5}D .{2,3,4,5}1.B [解析] ∁U A ={3,4,5},B ∩(∁U A)={3,4}.2. 已知0<θ<π4,则双曲线C 1:x 2sin 2θ-y 2cos 2θ=1与C 2:y 2cos 2θ-x 2sin 2θ=1的( )A .实轴长相等B .虚轴长相等C .离心率相等D .焦距相等2.D [解析] c 1=c 2=sin 2 θ+cos 2 θ=1,故焦距相等. 3. 在一次跳伞训练中,甲、乙两位学员各跳 一次.设命题p 是“甲降落在指定范围”,q 是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为( )A .(⌝p)∨(⌝q)B .p ∨(⌝q)C .(⌝p)∧(⌝q)D .p ∨q3.A [解析] “至少一位学员没降落在指定区域”即为“甲没降落在指定区域或乙没降落在指定区域”,可知选A.4. 四名同学根据各自的样本数据研究变量x ,y 之间的相关关系,并求得回归直线方程,分别得到以下四个结论:①y 与x 负相关且y ︿=2.347x -6.423;②y 与x 负相关且y ︿=-3.476x +5.648;③y 与x正相关且y ︿=5.437x +8.493;④y 与x 正相关且y ︿=-4.326x -4.578.其中一定不正确...的结论的序号是( ) A .①② B .②③ C .③④ D .①④4.D [解析] r 为正时正相关,r 为负时负相关,r 与k 符号相同,故k>0时正相关,k<0时负相关.5. 小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间,后为了赶时间加快速度行驶,与以上事件吻合得最好的图像是( )图1-15.C [解析] 由题意可知函数图像最开始为“斜率为负的线段”,接着为“与x 轴平行的线段”,最后为“斜率为负值,且小于之前斜率的线段”.观察选项中图像可知,C 项符合,故选C.6. 将函数y =3cos x +sin x(x ∈)的图像向左平移m(m >0)个单位长度后,所得到的图像关于y 轴对称,则m 的最小值是( )A.π12B.π6C.π3D.5π66.B [解析] 结合选项,将函数y =3cos x +sin x =2sin ⎝⎛⎭⎫x +π3的图像向左平移π6个单位得到y =2sin ⎝⎛⎭⎫x +π2=2cos x ,它的图像关于y 轴对称,选B.7. 已知点A(-1,1),B(1,2),C(-2,-1),D(3,4),则向量AB →在CD →方向上的投影为( )A.3 22B.3 152C .-3 22D .-3 1527.A [解析] AB →=(2,1),CD →=(5,5),|AB →|·cos 〈AB →,CD →〉=AB →·CD →|CD →|=3 22.8. x 为实数,[x]表示不超过x 的最大整数,则函数f(x)=x -[x]在上为( ) A .奇函数 B .偶函数 C .增函数 D .周期函数 8.D [解析] 作出函数f(x)=x -[x]的大致图像如下:观察图像,易知函数f(x)=x -[x]是周期函数.9. 某旅行社租用A ,B 两种型号的客车安排900名客人旅行,A ,B 两种车辆的载客量分别为36人和60人,租金分别为1 600元/辆和2 400元/辆,旅行社要求租车总数不超过21辆,且B 型车不多于A 型车7辆,则租金最少为( )A .31 200元B .36 000元C .36 800元D .38 400元9.C [解析] 由题意知⎩⎪⎨⎪⎧36A +60B ≥900,A +B ≤21,B -A ≤7,其可行域如图中阴影部分,令z =1 600A +2400BB =-23A +z2 400,过点M(5,12)时,z min =1 600×5+2 400×12=36 800.10. 已知函数f(x)=x(ln x -ax)有两个极值点,则实数a 的取值范围是( )A .(-∞,0) B.⎝⎛⎭⎫0,12 C .(0,1) D .(0,+∞)10.B [解析] f′(x)=ln x -ax +x(1x-a)=ln x -2ax +1,函数f(x)有两个极值点等价于方程ln x -2ax +1=0有两个大于零的不相等的实数根.令y 1=ln x ,y 2=2ax -1,在同一坐标系中作出这两个函数的图像,显然a ≤0时,两个函数图像只有一个公共点,故a>0,此时当直线的斜率逐渐变大直到直线y =2ax -1与曲线y =ln x 相切时,两函数图像均有两个不同的公共点,y ′1=1x ,故曲线y =ln x 上的点(x 0,ln x 0)处的切线方程是y -ln x 0=1x 0(x -x 0),该直线过点(0,-1),则-1-ln x 0=-1,解得x 0=1,故过点(0,-1)的曲线y =ln x的切线斜率是1,故2a =1,即a =12,所以a 的取值范围是(0,12).11. i 为虚数单位,设复数z 1,z 2在复平面内对应的点关于原点对称,若z 1=2-3i ,则z 2=________.11.-2+3i [解析] 由z 2与z 1对应的点关于原点对称知:z 2=-2+3i. 12. 某学员在一次射击测试中射靶10次,命中环数如下: 7,8,7,9,5,4,9,10,7,4 则(1)平均命中环数为________; (2)命中环数的标准差为________.12.(1)7 (2)2 [解析] x =7+8+7+9+5+4+9+10+7+410=7,标准差σ=110[(7-7)2+(8-7)2+…+(4-7)2]=2. 13. 阅读如图1-2所示的程序框图,运行相应的程序,若输入m 的值为2,则输出的结果i =________.图1-213.4 [解析] 逐次运行结果是i =1,A =2,B =1;i =2,A =4,B =2;i =3,A =8,B =6;i =4,A =16,B =24,此时A<B 成立,故输出i =4.14. 已知圆O :x 2+y 2=5,直线l :x cos θ+y sin θ=1⎝⎛⎭⎫0<θ<π2.设圆O 上到直线l的距离等于1的点的个数为k ,则k =________.14.4 [解析] 圆心到直线的距离d =1,r =5,r -d>d ,所以圆O 上共有4个点到直线的距离为1,k =4.15. 在区间[-2,4]上随机地取一个数x ,若x 满足|x|≤m 的概率为56,则m =________.15.3 [解析] 由题意知m>0,当0<m<2时,-m ≤x ≤m ,此时所求概率为m -(-m )4-(-2)=56,得m =52(舍去);当2≤m<4时,所求概率为m -(-2)4-(-2)=56,得m =3;当m ≥4时,概率为1,不合题意,故m =3.16. 我国古代数学名著《数书九章》中有“天池盆测雨”题:在下雨时,用一个圆台形的天池盆接雨水,天池盆盆口直径为二尺八寸,盆底直径为一尺二寸,盆深一尺八寸.若盆中积水深九寸,则平地降雨量是________寸.(注:①平地降雨量等于盆中积水体积除以盆口面积;②一尺等于十寸)16.3 [解析] 积水深度为盆深的一半,故此时积水部分的圆台上底面直径为二尺,圆台的高为九寸,故此时积水的体积是13π(102+62+10×6)×9=196×3π(立方寸),盆口的面积是π×142=196π,所以平均降雨量是196×3π196π=3寸.图1-317. 在平面直角坐标系中,若点P(x ,y)的坐标x ,y 均为整数,则称点P 为格点.若一个多边形的顶点全是格点,则称该多边形为格点多边形.格点多边形的面积记为S ,其内部的格点数记为N ,边界上的格点数记为L.例如图1-3中△ABC 是格点三角形,对应的S =1,N =0,L =4.(1)图中格点四边形DEFG 对应的S ,N ,L 分别是________;(2)已知格点多边形的面积可表示为S =aN +bL +c ,其中a ,b ,c 为常数,若某格点多边形对应的N =71,L =18,则S =________(用数值作答).17.(1)3,1,6 (2)79 [解析] (1)把四边形面积分割,其中四个面积为12的三角形,一个面积为1的正方形,故其面积为S =3;四边形内部只有一个格点;边界上有6个格点,故答案为3,6,1.(2)根据图中的格点三角形和四边形可得1=4b +c ,3=a +6b +c ,再选顶点为(0,0),(2,0),(2,2),(0,2)的格点正方形可得4=a +8b +c ,由上述三个方程组解得a =1,b =12,c =-1,所以S =N +12L -1,将已知数据代入得S =71+9-1=79.18. 在△ABC 中,角A ,B ,C 对应的边分别是a ,b ,c.已知cos 2A -3cos(B +C)=1.(1)求角A 的大小;(2)若△ABC 的面积S =5 3,b =5,求sinB sin C 的值.18.解:(1)由cos 2A -3cos(B +C)=1,得2cos 2A +3cos A -2=0,即(2cos A -1)(cos A +2)=0,解得cos A =12或cos A =-2(舍去).因为0<A <π,所以A =π3.(2)由S =12bc sin A =12bc ·32=34bc =5 3,得bc =20,又b =5,知c =4.由余弦定理得a 2=b 2+c 2-2bc·cos A =25+16-20=21,故a =21.又由正弦定理得sin Bsin C =b a sin A ·c a sin A =bc a 2sin 2A =2021×34=57.19. 已知S n 是等比数列{a n }的前n 项和,S 4,S 2,S 3成等差数列,且a 2+a 3+a 4=-18. (1)求数列{a n }的通项公式;(2)是否存在正整数n ,使得S n ≥2 013?若存在,求出符合条件的所有n 的集合;若不存在,说明理由.19.解:(1)设数列{a n }的公比为q ,则a 1≠0,q ≠0.由题意得 ⎩⎪⎨⎪⎧S 2-S 4=S 3-S 2,a 2+a 3+a 4=-18, 即⎩⎪⎨⎪⎧-a 1q 2-a 1q 3=a 1q 2,a 1q (1+q +q 2)=-18,解得⎩⎪⎨⎪⎧a 1=3,q =-2,故数列{a n }的通项公式为a n =3(-2)n -1.(2)由(1)有S n =3[1-(-2)n ]1-(-2)=1-(-2)n .若存在n ,使得S n ≥2 013,则1-(-2)n ≥2 013, 即(-2)n ≤-2 012.当n 为偶数时,(-2)n >0,上式不成立;当n 为奇数时,(-2)n =-2n ≤-2 012,即2n ≥2 012,则n ≥11.综上,存在符合条件的正整数n ,且所有这样的n 的集合为{n|n =2k +1,k ∈,k ≥5}. 20. 如图1-4所示,某地质队自水平地面A ,B ,C 三处垂直向地下钻探,自A 点向下钻到A 1处发现矿藏,再继续下钻到A 2处后下面已无矿,从而得到在A 处正下方的矿层厚度为A 1A 2=d 1.同样可得在B ,C 处正下方的矿层厚度分别为B 1B 2=d 2,C 1C 2=d 3,且d 1<d 2<d 3.过AB ,AC 的中点M ,N 且与直线AA 2平行的平面截多面体A 1B 1C 1-A 2B 2C 2所得的截面DEFG 为该多面体的一个中截面,其面积记为S 中.(1)证明:中截面DEFG 是梯形;(2)在△ABC 中,记BC =a ,BC 边上的高为h ,面积为S.在估测三角形ABC 区域内正下方的矿藏储量(即多面体A 1B 1C 1-A 2B 2C 2的体积V)时,可用近似公式V 估=S 中·h 来估算,已知V =13(d 1+d 2+d 3)S ,试判断V 估与V 的大小关系,并加以证明.图1-420.解:(1)证明:依题意A 1A 2⊥平面ABC ,B 1B 2⊥平面ABC ,C 1C 2⊥平面ABC , 所以A 1A 2∥B 1B 2∥C 1C 2.又A 1A 2=d 1,B 1B 2=d 2,C 1C 2=d 3,且d 1<d 2<d 3, 因此四边形A 1A 2B 2B 1,A 1A 2C 2C 1均是梯形,由AA 2∥平面MEFN ,AA 2平面AA 2B 2B ,且平面AA 2B 2B ∩平面MEFN =ME ,可得AA 2∥ME ,即A 1A 2∥DE.同理可证A 1A 2∥FG ,所以DE ∥FG . 又M ,N 分别为AB ,AC 的中点.则D ,E ,F ,G 分别为A 1B 1,A 2B 2,A 2C 2,A 1C 1的中点, 即DE ,FG 分别为梯形A 1A 2B 2B 1,A 1A 2C 2C 1的中位线.因此DE =12(A 1A 2+B 1B 2)=12(d 1+d 2),FG =12(A 1A 2+C 1C 2)=12(d 1+d 3),而d 1<d 2<d 3,故DE<FG ,所以中截面DEFG 是梯形. (2)V 估<V ,证明如下:由A 1A 2⊥平面ABC ,MN 平面ABC ,可得A 1A 2⊥MN. 而EM ∥A 1A 2,所以EM ⊥MN ,同理可得FN ⊥MN.由MN 是△ABC 的中位线,可得MN =12BC =12a 即为梯形DEFG 的高,因此S 中=S 梯形DEFG =12⎝⎛⎭⎫d 1+d 22+d 1+d 32·a 2=a8(2d 1+d 2+d 3).即V 估=S 中h =ah8(2d 1+d 2+d 3),又S =12ah ,所以V =13(d 1+d 2+d 3)S =ah6(d 1+d 2+d 3).于是V -V 估=ah 6(d 1+d 2+d 3)-ah 8(2d 1+d 2+d 3)=ah24[(d 2-d 1)+(d 3-d 1)].由d 1<d 2<d 3,得d 2-d 1>0,d 3-d 1>0,故V -V 估>0,即V 估<V .21., 设a>0,b>0,已知函数f(x)=ax +bx +1.(1)当a ≠b 时,讨论函数f(x)的单调性;(2)当x>0时,称f(x)为a ,b 关于x 的加权平均数.(i)判断f(1),f(b a ),f(b a )是否成等比数列,并证明f(b a )≤f(ba);(ii)a ,b 的几何平均数记为G ,称2aba +b为a ,b 的调和平均数,记为H.若H ≤f(x)≤G ,求x 的取值范围.21.解:(1)f(x)的定义域为(-∞,-1)∪(-1,+∞),f ′(x)=a (x +1)-(ax +b )(x +1)2=a -b(x +1)2.当a >b 时,f ′(x)>0,函数f(x)在(-∞,-1),(-1,+∞)上单调递增; 当a <b 时,f ′(x)<0,函数f(x)在(-∞,-1),(-1,+∞)上单调递减.(2)(i)计算得f(1)=a +b 2>0,f ⎝⎛⎭⎫b a =2aba +b >0, f ⎝⎛⎭⎫b a =ab >0. 故f(1)f ⎝⎛⎭⎫b a =a +b 2·2ab a +b =ab =⎣⎡⎦⎤f ⎝⎛⎭⎫b a 2,即f(1)f ⎝⎛⎭⎫b a =⎣⎡⎦⎤f ⎝⎛⎭⎫b a 2.①所以f(1),f ⎝⎛⎭⎫b a ,f ⎝⎛⎭⎫b a 成等比数列.因a +b 2≥ab ,即f(1)≥f ⎝⎛⎭⎫b a ,结合①得f ⎝⎛⎭⎫b a ≤f ⎝⎛⎭⎫b a . (ii)由(i)知f(b a )=H ,f(ba)=G ,故由H ≤f(x)≤G ,得f ⎝⎛⎭⎫b a ≤f(x)≤f ⎝⎛⎭⎫b a .② 当a =b 时,f ⎝⎛⎭⎫b a =f(x)=f ⎝⎛⎭⎫b a =a. 这时,x 的取值范围为(0,+∞);当a >b 时,0<b a <1,从而b a <b a ,由f(x)在(0,+∞)上单调递增与②式,得b a ≤x ≤ba ,即x 的取值范围为⎣⎡⎦⎤b a,b a ;当a <b 时,b a >1,从而b a >ba,由f(x)在(0,+∞)上单调递减与②式,得b a ≤x ≤b a ,即x 的取值范围为⎣⎡⎦⎤b a ,b a .22., 如图1-5所示,已知椭圆C 1与C 2的中心在坐标原点O ,长轴均为MN 且在x 轴上,短轴长分别为2m ,2n(m>n),过原点且不与x 轴重合的直线l 与C 1,C 2的四个交点按纵坐标从大到小依次为A ,B ,C ,D.记λ=mn,△BDM 和△ABN 的面积分别为S 1和S 2.(1)当直线l 与y 轴重合时,若S 1=λS 2,求λ的值;(2)当λ变化时,是否存在与坐标轴不重合的直线l ,使得S 1=λS 2?并说明理由.图1-522.解:依题意可设椭圆C 1和C 2的方程分别为C 1:x 2a 2+y 2m 2=1,C 2:x 2a 2+y 2n 2=1,其中a>m>n>0,λ=m n>1.(1)方法一:如图①,若直线l 与y 轴重合,即直线l 的方程为x =0.则S 1=12|BD|·|OM|=12a|BD|,S 2=12|AB|·|ON|=12a|AB|,所以S 1S 2=|BD||AB|. 在C 1和C 2的方程中分别令x =0,可得y A =m ,y B =n ,y D =-m ,于是|BD||AB|=|y B -y D ||y A -y B |=m +n m -n =λ+1λ-1.若S 1S 2=λ,则λ+1λ-1=λ,化简得λ2-2λ-1=0. 由λ>1,可解得λ=2+1.故当直线l 与y 轴重合时,若S 1=λS 2,则λ=2+1.方法二:如图①,若直线l 与y 轴重合,则|BD|=|OB|+|OD|=m +n ,|AB|=|OA|-|OB|=m -n.S 1=12|BD|·|OM|=12a|BD|,S 2=12|AB|·|ON|=12a|AB|.所以S 1S 2=|BD||AB|=m +n m -n =λ+1λ-1.若S 1S 2=λ,则λ+1λ-1=λ,化简得λ2-2λ-1=0,由λ>1,可解得λ=2+1. 故当直线l 与y 轴重合时,若S 1=λS 2,则λ=2+1.(2)方法一:如图②,若存在与坐标轴不重合的直线l ,使得S 1=λS 2,根据对称性,不妨设直线l :y =kx(k>0),点M(-a ,0),N(a ,0)到直线l 的距离分别为d 1,d 2,则因为d 1=|-ak -0|1+k 2=ak1+k 2,d 2=|ak -0|1+k 2=ak 1+k 2,所以d 1=d 2.又S 1=12|BD|d 1,S 2=12|AB|d 2,所以S 1S 2=|BD||AB|=λ,即|BD|=λ|AB|.由对称性可知|AB|=|CD|,所以|BC|=|BD|-|AB|=(λ-1)|AB|,|AD|=|BD|+|AB|=(λ+1)|AB|,于是|AD||BC|=λ+1λ-1,①将l 的方程分别与C 1,C 2的方程联立,可求得x A =am a 2k 2+m 2,x B=ana 2k 2+n 2. 根据对称性可知x C =-x B ,x D =-x A ,于是|AD||BC|=1+k 2|x A -x D |1+k 2|x B -x C |=2x A 2x B =m n a 2k 2+n 2a 2k 2+m 2.②从而由①和②式可得a 2k 2+n 2a 2k 2+m 2=λ+1λ(λ-1).③令t =λ+1λ(λ-1),则由m>n ,可得t ≠1,于是由③可解得k 2=n 2(λ2t 2-1)a 2(1-t 2). 因为k ≠0,所以k 2>0,于是③式关于k 有解,当且仅当n 2(λ2t 2-1)a 2(1-t 2)>0,等价于(t 2-1)(t 2-1λ2)<0.由λ>1,可解得1λ<t<1,即1λ<λ+1λ(λ-1)<1,由λ>1,解得λ>1+2,所以当1<λ≤1+2时,不存在与坐标轴不重合的直线l ,使得S 1=λS 2;当λ>1+2时,存在与坐标轴不重合的直线l ,使得S 1=λS 2.方法二:如图②,若存在与坐标轴不重合的直线l ,使得S 1=λS 2.根据对称性,不妨设直线l :y =kx(k>0),点M(-a ,0),N(a ,0)到直线l 的距离分别为d 1,d 2,则因为d 1=|-ak -0|1+k 2=ak 1+k 2,d 2=|ak -0|1+k 2=ak1+k 2,所以d 1=d 2. 又S 1=12|BD|d 1,S 2=12|AB|d 2,所以S 1S 2=|BD||AB|=λ.因为|BD||AB|=1+k 2|x B -x D |1+k 2|x A -x B |=x A +x B x A -x B=λ,所以x A x B =λ+1λ-1.由点A(x A ,kx A ),B(x B ,kx B )分别在C 1,C 2上,可得x 2A a 2+k 2x 2A m 2=1,x 2B a 2+k 2x 2Bn2=1,两式相减可得x 2A -x 2B a 2+k 2(x 2A -λ2x 2B )m 2=0,依题意x A >x B >0,所以x 2A >x 2B ,所以由上式解得k 2=m 2(x 2A -x 2B )a 2(λ2x 2B -x 2A ).因为k 2>0,所以由m 2(x 2A -x 2B )a 2(λ2x 2B -x 2A )>0,可解得1<x A x B <λ. 从而1<λ+1λ-1<λ,解得λ>1+2,所以当1<λ≤1+2时,不存在与坐标轴不重合的直线l ,使得S 1=λS 2;当λ>1+2时,存在与坐标轴不重合的直线l ,使得S 1=λS 2.。

【高考试题】2013年湖北省高考数学试卷(文科)

【高考试题】2013年湖北省高考数学试卷(文科)

【高考试题】2013年湖北省高考数学试卷(文科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知全集U={1,2,3,4,5},集合A={1,2},B={2,3,4},则B ∩∁A=()∪A.{2}B.{3,4}C.{1,4,5}D.{2,3,4,5}2.(5分)已知,则双曲线C1:与C2:的()A.实轴长相等B.虚轴长相等C.离心率相等D.焦距相等3.(5分)在一次跳伞训练中,甲、乙两位学员各跳一次,设命题p是“甲降落在指定范围”,q是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为()A.(¬p)∨(¬q)B.p∨(¬q)C.(¬p)∧(¬q)D.p∨q 4.(5分)四名同学根据各自的样本数据研究变量x,y之间的相关关系,并求得回归直线方程,分别得到以下四个结论:①y与x负相关且=2.347x﹣6.423;②y与x负相关且=﹣3.476x+5.648;③y与x正相关且=5.437x+8.493;④y与x正相关且=﹣4.326x﹣4.578.其中一定不正确的结论的序号是()A.①②B.②③C.③④D.①④5.(5分)小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间,后为了赶时间加快速度行驶.与以上事件吻合得最好的图象是()A.B.C.D.6.(5分)将函数y=cosx+sinx(x∈R)的图象向左平移m(m>0)个单位长度后,所得到的图象关于y轴对称,则m的最小值是()A.B.C.D.7.(5分)已知点A(﹣1,1),B(1,2),C(﹣2,﹣1),D(3,4),则向量在方向上的投影为()A.B.C.D.8.(5分)x为实数,[x]表示不超过x的最大整数,则函数f(x)=x﹣[x]在R 上为()A.奇函数B.偶函数C.增函数D.周期函数9.(5分)某旅行社租用A、B两种型号的客车安排900名客人旅行,A、B两种车辆的载客量分别为36人和60人,租金分别为1600元/辆和2400元/辆,旅行社要求租车总数不超过21辆,且B型车不多于A型车7辆.则租金最少为()A.31200元B.36000元C.36800元D.38400元10.(5分)已知函数f(x)=x(lnx﹣ax)有两个极值点,则实数a的取值范围是()A.(﹣∞,0)B.(0,)C.(0,1) D.(0,+∞)二、填空题:本大题共7小题,每小题5分,共35分.请将答案填在答题卡对应题号的位置上.答错位置,书写不清,模棱两可均不得分.11.(5分)i为虚数单位,设复数z1,z2在复平面内对应的点关于原点对称,若z1=2﹣3i,则z2=.12.(5分)某学员在一次射击测试中射靶10次,命中环数如下:7,8,7,9,5,4,9,10,7,4则(Ⅰ)平均命中环数为;(Ⅱ)命中环数的标准差为.13.(5分)阅读如图所示的程序框图,运行相应的程序.若输入m的值为2,则输出的结果i=.14.(5分)已知圆O:x2+y2=5,直线l:xcosθ+ysinθ=1(0).设圆O 上到直线l的距离等于1的点的个数为k,则k=.15.(5分)在区间[﹣2,4]上随机地取一个数x,若x满足|x|≤m的概率为,则m=.16.(5分)我国古代数学名著《数书九章》中有“天池盆测雨”题:在下雨时,用一个圆台形的天池盆接雨水.天池盆盆口直径为二尺八寸,盆底直径为一尺二寸,盆深一尺八寸.若盆中积水深九寸,则平地降雨量是寸.(注:①平地降雨量等于盆中积水体积除以盆口面积;②一尺等于十寸)17.(5分)在平面直角坐标系中,若点P(x,y)的坐标x,y均为整数,则称点P为格点.若一个多边形的顶点全是格点,则称该多边形为格点多边形.格点多边形的面积记为S,其内部的格点数记为N,边界上的格点数记为L.例如图中△ABC是格点三角形,对应的S=1,N=0,L=4.(Ⅰ)图中格点四边形DEFG对应的S,N,L分别是;(Ⅱ)已知格点多边形的面积可表示为S=aN+bL+c其中a,b,c为常数.若某格点多边形对应的N=71,L=18,则S=(用数值作答).三、解答题:本大题共5小题,共65分.解答应写出文字说明、证明过程或演算步骤.18.(12分)在△ABC中,角A,B,C对应的边分别是a,b,c,已知cos2A﹣3cos(B+C)=1.(Ⅰ)求角A的大小;(Ⅱ)若△ABC的面积S=5,b=5,求sinBsinC的值.19.(13分)已知S n是等比数列{a n}的前n项和,S4,S2,S3成等差数列,且a2+a3+a4=﹣18.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)是否存在正整数n,使得S n≥2013?若存在,求出符合条件的所有n的集合;若不存在,说明理由.20.(13分)如图,某地质队自水平地面A,B,C三处垂直向地下钻探,自A点向下钻到A1处发现矿藏,再继续下钻到A2处后下面已无矿,从而得到在A处正下方的矿层厚度为A1A2=d1.同样可得在B,C处正下方的矿层厚度分别为B1B2=d2,C1C2=d3,且d1<d2<d3.过AB,AC的中点M,N且与直线AA2平行的平面截多面体A1B1C1﹣A2B2C2所得的截面DEFG为该多面体的一个中截面,其面积记为S中.(Ⅰ)证明:中截面DEFG是梯形;(Ⅱ)在△ABC中,记BC=a,BC边上的高为h,面积为S.在估测三角形ABC 区域内正下方的矿藏储量(即多面体A1B1C1﹣A2B2C2的体积V)时,可用近似公式V估=S中•h来估算.已知V=(d1+d2+d3)S,试判断V估与V的大小关系,并加以证明.21.(13分)设a>0,b>0,已知函数f(x)=.(Ⅰ)当a≠b时,讨论函数f(x)的单调性;(Ⅱ)当x>0时,称f(x)为a、b关于x的加权平均数.(i)判断f(1),f(),f()是否成等比数列,并证明f()≤f();(ii)a、b的几何平均数记为G.称为a、b的调和平均数,记为H.若H≤f(x)≤G,求x的取值范围.22.(14分)如图,已知椭圆C1与C2的中心在坐标原点O,长轴均为MN且在x 轴上,短轴长分别为2m,2n(m>n),过原点且不与x轴重合的直线l与C1,C2的四个交点按纵坐标从大到小依次为A,B,C,D,记,△BDM和△ABN 的面积分别为S1和S2.(Ⅰ)当直线l与y轴重合时,若S1=λS2,求λ的值;(Ⅱ)当λ变化时,是否存在与坐标轴不重合的直线l,使得S1=λS2?并说明理由.。

2013湖北高考数学文科试题及解析(2021年整理)

2013湖北高考数学文科试题及解析(2021年整理)

2013湖北高考数学文科试题及解析(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2013湖北高考数学文科试题及解析(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2013湖北高考数学文科试题及解析(word版可编辑修改)的全部内容。

2013年普通高等学校招生全国统一考试(湖北卷)数 学(文史类)乐享玲珑,为中国数学增光添彩!免费玲珑3D 画板,全开放的几何教学软件,功能强大,好用实用一、选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集{1,2,3,4,5}U =,集合{1,2}A =,{2,3,4}B =,则U B A =A .{2}B .{3,4}C .{1,4,5}D .{2,3,4,5}2.已知π04θ<<,则双曲线1C :22221sin cos x y θθ-=与2C :22221cos sin y x θθ-=的A .实轴长相等B .虚轴长相等C .离心率相等D .焦距相等3.在一次跳伞训练中,甲、乙两位学员各跳一次.设命题p 是“甲降落在指定范围”,q 是“乙降落在指定范围",则命题“至少有一位学员没有降落在指定范围”可表示为 A .()p ⌝∨()q ⌝ B .p ∨()q ⌝ C .()p ⌝∧()q ⌝D .p ∨q4.四名同学根据各自的样本数据研究变量,x y 之间的相关关系,并求得回归直线方程,分别得到以下四个结论:① y 与x 负相关且 2.347 6.423y x =-; ② y 与x 负相关且 3.476 5.648y x =-+; ③ y 与x 正相关且 5.4378.493y x =+; ④ y 与x 正相关且 4.326 4.578y x =--。

2013年全国统一高考数学试卷(文科)(新课标ⅰ)(含答案及解析)

2013年全国统一高考数学试卷(文科)(新课标ⅰ)(含答案及解析)

2013年全国统一高考数学试卷(文科)(新课标Ⅰ)一、选择题共12小题.每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的一项.1.(5分)已知集合A={1,2,3,4},B={x|x=n2,n∈A},则A∩B=()A.{1,4}B.{2,3}C.{9,16}D.{1,2}2.(5分)=()A.﹣1﹣i B.﹣1+i C.1+i D.1﹣i3.(5分)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是()A.B.C.D.4.(5分)已知双曲线C:(a>0,b>0)的离心率为,则C的渐近线方程为()A.y=B.y=C.y=±x D.y=5.(5分)已知命题p:∀x∈R,2x<3x;命题q:∃x∈R,x3=1﹣x2,则下列命题中为真命题的是()A.p∧q B.¬p∧q C.p∧¬q D.¬p∧¬q 6.(5分)设首项为1,公比为的等比数列{a n}的前n项和为S n,则()A.S n=2a n﹣1B.S n=3a n﹣2C.S n=4﹣3a n D.S n=3﹣2a n 7.(5分)执行程序框图,如果输入的t∈[﹣1,3],则输出的s属于()A.[﹣3,4]B.[﹣5,2]C.[﹣4,3]D.[﹣2,5] 8.(5分)O为坐标原点,F为抛物线C:y2=4x的焦点,P为C上一点,若|PF|=4,则△POF的面积为()A.2B.2C.2D.49.(5分)函数f(x)=(1﹣cosx)sinx在[﹣π,π]的图象大致为()A.B.C.D.10.(5分)已知锐角△ABC的内角A,B,C的对边分别为a,b,c,23cos2A+cos2A=0,a=7,c=6,则b=()A.10B.9C.8D.511.(5分)某几何体的三视图如图所示,则该几何体的体积为()A.16+8πB.8+8πC.16+16πD.8+16π12.(5分)已知函数f(x)=,若|f(x)|≥ax,则a的取值范围是()A.(﹣∞,0]B.(﹣∞,1]C.[﹣2,1]D.[﹣2,0]二.填空题:本大题共四小题,每小题5分.13.(5分)已知两个单位向量,的夹角为60°,=t+(1﹣t).若•=0,则t=.14.(5分)设x,y满足约束条件,则z=2x﹣y的最大值为.15.(5分)已知H是球O的直径AB上一点,AH:HB=1:2,AB⊥平面α,H为垂足,α截球O所得截面的面积为π,则球O的表面积为.16.(5分)设当x=θ时,函数f(x)=sinx﹣2cosx取得最大值,则cosθ=.三.解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)已知等差数列{a n}的前n项和S n满足S3=0,S5=﹣5.(Ⅰ)求{a n}的通项公式;(Ⅱ)求数列{}的前n项和.18.(12分)为了比较两种治疗失眠症的药(分别成为A药,B药)的疗效,随机地选取20位患者服用A药,20位患者服用B药,这40位患者服用一段时间后,记录他们日平均增加的睡眠时间(单位:h)实验的观测结果如下:服用A药的20位患者日平均增加的睡眠时间:0.6 1.2 2.7 1.5 2.8 1.8 2.2 2.3 3.2 3.52.5 2.6 1.2 2.7 1.5 2.93.0 3.1 2.3 2.4服用B药的20位患者日平均增加的睡眠时间:3.2 1.7 1.9 0.8 0.9 2.4 1.2 2.6 1.3 1.4 1.6 0.5 1.8 0.6 2.1 1.1 2.5 1.2 2.7 0.5(Ⅰ)分别计算两种药的平均数,从计算结果看,哪种药的疗效更好?(Ⅱ)根据两组数据完成下面茎叶图,从茎叶图看,哪种药的疗效更好?19.(12分)如图,三棱柱ABC﹣A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°(Ⅰ)证明:AB⊥A1C;(Ⅱ)若AB=CB=2,A1C=,求三棱柱ABC﹣A1B1C1的体积.20.(12分)已知函数f(x)=e x(ax+b)﹣x2﹣4x,曲线y=f(x)在点(0,f(0))处切线方程为y=4x+4.(Ⅰ)求a,b的值;(Ⅱ)讨论f(x)的单调性,并求f(x)的极大值.21.(12分)已知圆M:(x+1)2+y2=1,圆N:(x﹣1)2+y2=9,动圆P与圆M外切并与圆N内切,圆心P的轨迹为曲线C.(Ⅰ)求C的方程;(Ⅱ)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P 的半径最长时,求|AB|.请考生在第22、23、24三题中任选一题作答。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013年普通高等学校招生全国统一考试(湖北卷)数 学(文史类)乐享玲珑,为中国数学增光添彩!免费玲珑3D 画板,全开放的几何教学软件,功能强大,好用实用一、选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集{1,2,3,4,5}U =,集合{1,2}A =,{2,3,4}B =,则U B A =A .{2}B .{3,4}C .{1,4,5}D .{2,3,4,5}2.已知π04θ<<,则双曲线1C :22221sin cos x y θθ-=与2C :22221cos sin y x θθ-=的 A .实轴长相等 B .虚轴长相等C .离心率相等D .焦距相等3.在一次跳伞训练中,甲、乙两位学员各跳一次.设命题p 是“甲降落在指定范围”,q 是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为 A .()p ⌝∨()q ⌝B .p ∨()q ⌝C .()p ⌝∧()q ⌝D .p ∨q4.四名同学根据各自的样本数据研究变量,x y 之间的相关关系,并求得回归直线方程,分 别得到以下四个结论:① y 与x 负相关且 2.347 6.423y x =-; ② y 与x 负相关且 3.476 5.648y x =-+; ③ y 与x 正相关且 5.4378.493y x =+; ④ y 与x 正相关且 4.326 4.578y x =--. 其中一定不.正确..的结论的序号是 A .①② B .②③C .③④D . ①④5.小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间,后为了赶时间加快速度行驶. 与以上事件吻合得最好的图象是6.将函数sin ()y x x x =+∈R 的图象向左平移(0)m m >个单位长度后,所得到的图象关于y 轴对称,则m 的最小值是 A .π12B .π6C .π3D .5π67.已知点(1,1)A -、(1,2)B 、(2,1)C --、(3,4)D ,则向量AB 在CD 方向上的投影为ABC. D. 8.x 为实数,[]x 表示不超过x 的最大整数,则函数()[]f x x x =-在R 上为 A .奇函数B .偶函数C .增函数D . 周期函数9.某旅行社租用A 、B 两种型号的客车安排900名客人旅行,A 、B 两种车辆的载客量分别为36人和60人,租金分别为1600元/辆和2400元/辆,旅行社要求租车总数不超过21辆,且B 型车不多于A 型车7辆.则租金最少为 A .31200元B .36000元C .36800元D .38400元10.已知函数()(ln )f x x x ax =-有两个极值点,则实数a 的取值范围是A .(,0)-∞B .1(0,)2C .(0,1)D .(0,)+∞二、填空题:本大题共7小题,每小题5分,共35分.请将答案填在答题卡对应题号.......的位置上. 答错位置,书写不清,模棱两可均不得分.11.i 为虚数单位,设复数1z ,2z 在复平面内对应的点关于原点对称,若123i z =-,则2z = . 12.某学员在一次射击测试中射靶10次,命中环数如下:7,8,7,9,5,4,9,10,7,4则(Ⅰ)平均命中环数为 ; (Ⅱ)命中环数的标准差为 .13.阅读如图所示的程序框图,运行相应的程序. 若输入m 的值为2, 则输出的结果i = .第13题图14.已知圆O :225x y +=,直线l :cos sin 1x y θθ+=(π02θ<<).设圆O 上到直线l 的距离等于1的点的个数为k ,则k = .15.在区间[2,4]-上随机地取一个数x ,若x 满足||x m ≤的概率为56,则m = . 16.我国古代数学名著《数书九章》中有“天池盆测雨”题:在下雨时,用一个圆台形的天池盆接雨水. 天池盆盆口直径为二尺八寸,盆底直径为一尺二寸,盆深一尺八寸. 若盆中积水深九寸,则平地降雨量是 寸.(注:①平地降雨量等于盆中积水体积除以盆口面积;②一尺等于十寸)17.在平面直角坐标系中,若点(,)P x y 的坐标x ,y 均为整数,则称点P 为格点. 若一个多边形的顶点全是格点,则称该多边形为格点多边形. 格点多边形的面积记为S ,其内部的格点数记为N ,边界上的格点数记为L . 例如图中△ABC 是格点三角形,对应的1S =,0N =,4L =. (Ⅰ)图中格点四边形DEFG 对应的,,S N L 分别是 ;(Ⅱ)已知格点多边形的面积可表示为S aN bL c =++,其中a ,b ,c 为常数. 若某格点多边形对应的71N =,18L =, 则S = (用数值作答).三、解答题:本大题共5小题,共65分.解答应写出文字说明、证明过程或演算步骤. 18.(本小题满分12分)在△ABC 中,角A ,B ,C 对应的边分别是a ,b ,c . 已知cos23cos()1A B C -+=. (Ⅰ)求角A 的大小; (Ⅱ)若△ABC 的面积53S =5b =,求sin sin B C 的值.19.(本小题满分13分)已知n S 是等比数列{}n a 的前n 项和,4S ,2S ,3S 成等差数列,且23418a a a ++=-. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)是否存在正整数n ,使得2013n S ≥?若存在,求出符合条件的所有n 的集合;若不存在,说明理由.20.(本小题满分13分)如图,某地质队自水平地面A ,B ,C 三处垂直向地下钻探,自A 点向下钻到A 1处发现矿藏,再继续下钻到A 2处后下面已无矿,从而得到在A 处正下方的矿层厚度为121A A d =.同样可得在B ,C 处正下方的矿层厚度分别为122B B d =,123C C d =,且123d d d <<. 过AB ,AC 的中点M ,N 且与直线2AA 平行的平面截多面体111222A B C A B C -所得的截面DEFG 为该多面体的一个中截面,其面积记为S 中. (Ⅰ)证明:中截面DEFG 是梯形;(Ⅱ)在△ABC 中,记BC a =,BC 边上的高为h ,面积为S . 在估测三角形ABC 区域内正下方的矿藏储量(即多面体111222A B C A B C -的体积V )时,可用近似公式V S h =⋅估中来估算. 已知1231()3V d dd S =++,试判断V 估与V 的大小关系,并加以证明.21.(本小题满分13分)设0a >,0b >,已知函数()1ax bf x x +=+. (Ⅰ)当a b ≠时,讨论函数()f x 的单调性;(Ⅱ)当0x >时,称()f x 为a 、b 关于x 的加权平均数.(i )判断(1)f , ()b f a ,()bf a是否成等比数列,并证明()()b b f f a a ≤; (ii )a 、b 的几何平均数记为G . 称2aba b+为a 、b 的调和平均数,记为H . 若()H f x G ≤≤,求x 的取值范围.第20题图22.(本小题满分14分)如图,已知椭圆1C 与2C 的中心在坐标原点O ,长轴均为MN 且在x 轴上,短轴长分别 为2m ,2()n m n >,过原点且不与x 轴重合的直线l 与1C ,2C 的四个交点按纵坐标从 大到小依次为A ,B ,C ,D .记mnλ=,△BDM 和△ABN 的面积分别为1S 和2S . (Ⅰ)当直线l 与y 轴重合时,若12S S λ=,求λ的值;(Ⅱ)当λ变化时,是否存在与坐标轴不重合的直线l ,使得12S S λ=?并说明理由.第22题图2013年普通高等学校招生全国统一考试(湖北卷)数学(文史类)试题参考答案一、选择题:1.B UBA =}.4,3{}5,4,3{}4,3,2{=2.D 在双曲线1C :22221sin cos x y θθ-=与2C :22221cos sin y x θθ-=中,都有1cos sin 222=+=θθc ,即焦距相等3.A 因为p 是“甲降落在指定范围”,q 是“乙降落在指定范围”,则p -是“没有降落在指定范围”,q -是“乙没有降落在指定范围”,所以命题“至少有一位学员没有降落在指定范围”可表示为()p ⌝∨()q ⌝ . 4.D 在○1中,y 与x 不是负相关;○1一定不正确;同理○4也一定不正确.5.C 可以将小明骑车上学的行程分为三段,第一段是匀速行驶,运动方程是一次函数,即小明距学校的距离是他骑行时间的一次函数,所对应的函数图象是一条直线段,由此可以判断A 是错误的;第二段因交通拥堵停留了一段时间,这段时间内小明距学校的距离没有改变,即小明距学校的距离是行驶时间的常值函数,所对应的函数图象是平行于x 轴的一条线段,由此可以排除D ;第三段小明为了赶时间加快速度行驶,即小明在第三段的行驶速度大于第一段的行驶速度,所以第三段所对应的函数图象不与第一段的平行,从而排除B. 故选C.6.B因为sin ()y x x x =+∈R 可化为)6cos(2π-=x y (x ∈R ),将它向左平移π6个单位得x x y cos 26)6(cos 2=⎥⎦⎤⎢⎣⎡-+=ππ,其图像关于y 轴对称.7.A AB =(2,1),=(5,5),则向量AB 在向量方向上的射影为22325515255)5,5()1,2(cos 22=⨯+⨯=+⋅==θ. 8.D 函数()[]f x x x =-表示实数x 的小数部分,有)(][]1[1)1(x f x x x x x f =-=+-+=+ ,所以函数()[]f x x x =-是以1为周期的周期函数.9.C 根据已知,设需要A 型车x 辆,B 型车y 辆,则根据题设,有⎪⎪⎩⎪⎪⎨⎧=+>>≤-≤+,9006036,0,0,7,21y x y x x y y x 画出可行域,求出三个顶点的坐标分别为A(7,14),B(5,12),C(15,6),目标函数(租金)为y x k 24001600+=,如图所示.将点B 的坐标代入其中,即得租金的最小值为: 3680012240051600=⨯+⨯=k (元).10.B ax x x f 21ln )('-+=,由()(ln )f x x x ax =-由两个极值点,得0)('=x f 有两个不等的实数解,即12ln -=ax x 有两个实数解,从而直线12-=ax y 与曲线x y ln =有两个交点. 过点(0,-1)作x y ln =的切线,设切点为(x 0,y 0),则切线的斜率01x k=,切线方程为11-=x x y . 切点在切线上,则0100=-=x x y ,又切点在曲线x y ln =上,则10ln 00=⇒=x x ,即切点为(1,0).切线方程为1-=x y . 再由直线12-=ax y 与曲线x y ln =有两个交点.,知直线12-=ax y 位于两直线0=y 和1-=x y 之间,如图所示,其斜率2a 满足:0<2a <1,解得0<a <21.二、填空题:11. 23i -+ 复数123i z =-在复平面内的对应点Z 1(2,-3),它关于原点的对称点Z 2为(-2,3),所对应的复数为322+-=z i. 12. (Ⅰ)7 (Ⅱ)2 (Ⅰ)7()747109459787101=+++++++++; (Ⅱ)2 []222222)74(2)75()77(3)78()79(2)710(101-+-+-+-+-+-=s =21040=. 13. 4 初始值m =2,A =1,B=1,i =0,第一次执行程序,得 i=1,A=2,B=1,因为A <B 不成立,则第二次执行程序,得i=2,A =2×2=4,B =1×2=2,还是A <B 不成立,第三次执行程序,得 i=3,A=4×2=8,B=2×3=6,仍是A<B 不成立,第四次执行程序,得i =4,A =8×2=16,B =×4=24,有A <B 成立,输出i=4. 14. 4 这圆的圆心在原点,半径为5,圆心到直线l 的距离为1sin cos 122=+θθ,所以圆O 上到直线l的距离等于1的点有4个,如图A 、B 、C 、D 所示.15. 3 因为区间[2,4]-的长度为6,不等式||x m ≤的解区间为[-m ,m ] ,其区间长度为2m. 那么在区间[2,4]-上随机地取一个数x ,要使x 满足||x m ≤的概率为56,m 将区间 [2,4]-分为[-2,m]和[m ,4] ,且两区间的长度比为5:1,所以m =3.16. 3 如图示天池盆的半轴截面,那么盆中积水的体积为()ππ19631061069322⨯=⨯++⨯=V (立方寸),盆口面积S =196π(平方寸),所以,平地降雨量为=⨯)(寸寸23196)(19633(寸).17. (Ⅰ)3, 1, 6 (Ⅱ)79(Ⅰ)3, 1, 6 S=S △DFG +S △DEF =1+2=3 ,N=1,L =6;(Ⅱ)79 根据题设△ABC 是格点三角形,对应的1S =,0N =,4L =,有 14=+c b , ○1 由(Ⅰ)有36=++c b a , ○2再由格点△DEF 中,S=2,N=0,L=6,得26=+c b , ○3 联立○1○2○3,解得.1,1,21=-==a cb 所以当71N =,18L =时, S =791182171=-⨯+. 三、解答题:18.(Ⅰ)由cos23cos()1A B C -+=,得22cos 3cos 20A A +-=,即(2cos 1)(cos 2)0A A -+=,解得1cos 2A = 或cos 2A =-(舍去).因为0πA <<,所以π3A =. (Ⅱ)由1133sin 53,22S bc A bc ===得20bc =. 又5b =,知4c =.由余弦定理得2222cos 25162021,a b c bc A =+-=+-=故a =.又由正弦定理得222035sin sin sin sin sin 2147b c bc B C A A A a a a =⋅==⨯=.19. (Ⅰ)设数列{}n a 的公比为q ,则10a ≠,0q ≠. 由题意得 2432234,18,S S S S a a a -=-⎧⎨++=-⎩ 即23211121,(1)18,a q a q a q a q q q ⎧--=⎪⎨++=-⎪⎩ 解得13,2.a q =⎧⎨=-⎩故数列{}n a 的通项公式为13(2)n n a -=-.(Ⅱ)由(Ⅰ)有 3[1(2)]1(2)1(2)n n n S ⋅--==----.若存在n ,使得2013n S ≥,则1(2)2013n --≥,即(2)2012.n -≤- 当n 为偶数时,(2)0n ->, 上式不成立;当n 为奇数时,(2)22012n n -=-≤-,即22012n ≥,则11n ≥.综上,存在符合条件的正整数n ,且所有这样的n 的集合为{21,,5}n n k k k =+∈≥N . 20. (Ⅰ)依题意12A A ⊥平面ABC ,12B B ⊥平面ABC ,12C C ⊥平面ABC ,所以A 1A 2∥B 1B 2∥C 1C 2. 又121A A d =,122B B d =,123C C d =,且123d d d << . 因此四边形1221A A B B 、1221A A C C 均是梯形.由2AA ∥平面MEFN ,2AA ⊂平面22AA B B ,且平面22AA B B 平面MEFN ME =,可得AA 2∥ME ,即A 1A 2∥DE . 同理可证A 1A 2∥FG ,所以DE ∥FG .又M 、N 分别为AB 、AC 的中点,则D 、E 、F 、G 分别为11A B 、22A B 、22A C 、11A C 的中点, 即DE 、FG 分别为梯形1221A A B B 、1221A A C C 的中位线.因此 12121211()()22DE A A B B d d =+=+,12121311()()22FG A A C C d d =+=+,而123d d d <<,故DE FG <,所以中截面DEFG 是梯形. (Ⅱ)V V <估. 证明如下:由12A A ⊥平面ABC ,MN ⊂平面ABC ,可得12A A MN ⊥. 而EM ∥A 1A 2,所以EM MN ⊥,同理可得FN MN ⊥. 由MN 是△ABC 的中位线,可得1122MN BC a ==即为梯形DEFG 的高, 因此13121231()(2)22228DEFG d d d d a a S S d d d ++==+⋅=++中梯形, 即123(2)8ahV S h d d d =⋅=++估中. 又12S ah =,所以1231231()()36ahV d d d S d d d =++=++.于是1231232131()(2)[()()]6824ah ah ahV V d d d d d d d d d d -=++-++=-+-估.由123d d d <<,得210d d ->,310d d ->,故V V <估.21. (Ⅰ)()f x 的定义域为(,1)(1,)-∞--+∞,22(1)()()(1)(1)a x ax b a bf x x x +-+-'==++. 当a b >时,()0f x '>,函数()f x 在(,1)-∞-,(1,)-+∞上单调递增; 当a b <时,()0f x '<,函数()f x 在(,1)-∞-,(1,)-+∞上单调递减. (Ⅱ)(i )计算得(1)02a b f +=>,2()0b abf a a b=>+,0f =.故22(1)()[2b a b ab f f ab f a a b +=⋅==+, 即2(1)()[b f f f a =. ①所以(1),()bf f f a成等比数列.因2a b +≥(1)f f ≥.由①得()b f f a ≤. (ii )由(i )知()bf H a =,f G =.故由()H f x G ≤≤,得()()b f f x f a ≤≤. ②当a b =时,()()b f f x f a a ===.这时,x 的取值范围为(0,)+∞; 当a b >时,01ba<<,从而b a <,由()f x 在(0,)+∞上单调递增与②式,得b x a ≤x的取值范围为,b a ⎡⎢⎣; 当a b <时,1ba>,从而b a >()f x 在(0,)+∞上单调递减与②式,bx a ≤,即x的取值范围为b a ⎤⎥⎦. 22. 依题意可设椭圆1C 和2C 的方程分别为1C :22221x y a m +=,2C :22221x y a n +=. 其中0a m n >>>, 1.mn λ=>(Ⅰ)解法1:如图1,若直线l 与y 轴重合,即直线l 的方程为0x =,则111||||||22S BD OM a BD =⋅=,211||||||22S AB ON a AB =⋅=,所以12||||S BD S AB =. 在C 1和C 2的方程中分别令0x =,可得A y m =,B y n =,D y m =-, 于是||||1||||1B D A B y y BD m n AB y y m n λλ-++===---. 若12S S λ=,则11λλλ+=-,化简得2210λλ--=. 由1λ>,可解得1λ=. 故当直线l 与y 轴重合时,若12S S λ=,则1λ.解法2:如图1,若直线l 与y 轴重合,则||||||BD OB OD m n =+=+,||||||AB OA OB m n =-=-;111||||||22S BD OM a BD =⋅=,211||||||22S AB ON a AB =⋅=. 所以12||1||1S BD m n S AB m n λλ++===--. 若12S S λ=,则11λλλ+=-,化简得2210λλ--=. 由1λ>,可解得1λ=. 故当直线l 与y 轴重合时,若12S S λ=,则1λ.(Ⅱ)解法1:如图2,若存在与坐标轴不重合的直线l ,使得12S S λ=. 根据对称性, 不妨设直线l :(0)y kx k =>,点(,0)M a -,(,0)N a 到直线l 的距离分别为1d ,2d ,则因为1d ==2d ==12d d =.又111||2S BD d =,221||2S AB d =,所以12||||S BD S AB λ==,即||||BD AB λ=. 由对称性可知||||AB CD =,所以||||||(1)||BC BD AB AB λ=-=-, ||||||(1)||AD BD AB AB λ=+=+,于是||1||1AD BC λλ+=-. ① 将l 的方程分别与C 1,C 2的方程联立,可求得A x =B x =根据对称性可知C B x x =-,D A x x =-,于是2||||2A Bx AD BC x = ② 从而由①和②式可得1(1)λλλ+-. ③令1(1)t λλλ+=-,则由m n >,可得1t ≠,于是由③可解得222222(1)(1)n t k a t λ-=-.因为0k ≠,所以20k >. 于是③式关于k 有解,当且仅当22222(1)0(1)n t a t λ->-,第22题解答图1第22题解答图2等价于2221(1)()0t t λ--<. 由1λ>,可解得11t λ<<,即111(1)λλλλ+<<-,由1λ>,解得1λ>当11λ<≤+l ,使得12S S λ=;当1λ>l 使得12S S λ=. 解法2:如图2,若存在与坐标轴不重合的直线l ,使得12S S λ=. 根据对称性, 不妨设直线l :(0)y kx k =>,点(,0)M a -,(,0)N a 到直线l 的距离分别为1d ,2d ,则因为1d ==2d ==12d d =.又111||2S BD d =,221||2S AB d =,所以12||||S BD S AB λ==.因为||||A B A Bx x BD AB x x λ+==-,所以11A B x x λλ+=-. 由点(,)A A A x kx ,(,)B B B x kx 分别在C 1,C 2上,可得222221A A x k x a m +=,222221B B x k x a n +=,两式相减可得22222222()0A B A B x x k x x a m λ--+=, 依题意0A B x x >>,所以22AB x x >. 所以由上式解得22222222()()A B B A m x x k a x x λ-=-.因为20k >,所以由2222222()0()A B B A m x x a x x λ->-,可解得1ABx x λ<<. 从而111λλλ+<<-,解得1λ>当11λ<≤+l ,使得12S S λ=;当1λ>l 使得12S S λ=.。

相关文档
最新文档