实验一红外吸收光谱法

合集下载

红外光谱实验报告

红外光谱实验报告

红外光谱实验报告一、实验原理:1、红外光谱法特点:由于许多化合物在红外区域产生特征光谱,因此红外光谱法广泛应用于这些物质的定性和定量分析,特别是对聚合物的定性分析,用其他化学和物理方法较为困难,而红外光谱法简便易行,特别适用于聚合物分析。

2、红外光谱的产生和表示红外光谱定义:分子吸收红外光引起的振动能级跃迁和转动能级跃迁而产生的吸收信号。

分子发生振动能级跃迁需要的能量对应光波的红外区域分类为:i.近红外区:10000-4000cm-1ⅱ.中红外区:4000-400cm-1——最为常用,大多数化合物的化键振动能级的跃迁发生在这一区域。

ⅲ.远红外区:400-10cm-1产生红外吸收光谱的必要条件:1)分子振动:只有在振动过程中产生偶极矩变化时才能吸收红外辐射。

ⅰ.双原子分子的振动:(一种振动方式)理想状态模型——把两个原子看做由弹簧连接的两个质点,用此来描述即伸缩振动;图1 双原子分子的振动模型ⅱ.多原子分子的振动:(简正振动,依据键长和键角变化分两大类)伸缩振动:对称伸缩振动反对称伸缩振动弯曲振动:面内弯曲:剪切式振动(变形振动)平面摇摆振动面外弯曲振动:扭曲振动非平面摇摆振动※同一种键型,不对称伸缩振动频率大于对称伸缩振动频率,伸缩振动频率大于弯曲振动频率。

※当振动频率和入射光的频率一致时,入射光就被吸收,因而同一基团基本上总是相对稳定地在某一特定范围内出现吸收峰。

ⅲ.分子振动频率:基频吸收(强吸收峰):基态到第一激发态所产生分子振动的振动频率。

倍频吸收(弱吸收峰):基态到第二激发态,比基频高一倍处弱吸收,振动频率约为基频两倍。

组频吸收(复合频吸收):多分子振动间相互作用,2个或2个以上基频的和或差。

※由于E振动>E转动,分子吸收红外光,从低的振动能级向高的振动能级跃迁时,必然伴随着转动能级的跃迁,因此红外光谱图是正负效应叠加,呈曲线而非直线ⅳ.分子振动自由度:基本振动的数目称为振动自由度。

红外分光光谱法实验报告

红外分光光谱法实验报告

一、实验目的1. 熟悉红外分光光谱法的基本原理和操作方法。

2. 通过对样品进行红外光谱分析,了解其官能团结构。

3. 掌握红外光谱图的解析方法,提高分析能力。

二、实验原理红外分光光谱法是利用物质分子对红外光的吸收特性,通过分析红外光谱图来鉴定物质的官能团和分子结构。

当物质分子吸收红外光时,分子内部振动和转动能级发生跃迁,产生特定的红外吸收光谱。

不同官能团在红外光谱图上具有特定的吸收峰,因此可以根据吸收峰的位置和强度来判断物质的组成和结构。

三、实验仪器与试剂1. 仪器:红外分光光度计、样品池、数据处理系统等。

2. 试剂:待测样品、溶剂等。

四、实验步骤1. 样品制备:将待测样品与溶剂按照一定比例混合,制备成待测溶液。

2. 样品池清洗与干燥:使用蒸馏水清洗样品池,并用氮气吹干。

3. 样品池填充:将待测溶液滴入样品池中,使其充满样品池。

4. 红外光谱扫描:开启红外分光光度计,设置扫描范围为4000~400cm-1,扫描速度为2cm-1/s。

5. 数据处理:将扫描得到的红外光谱图导入数据处理系统,进行基线校正、平滑处理等。

6. 红外光谱图解析:根据红外光谱图上吸收峰的位置和强度,分析样品的官能团和分子结构。

五、实验结果与分析1. 样品A:在红外光谱图上观察到3350cm-1处有明显的吸收峰,为O-H伸缩振动峰,说明样品中含有羟基;在1650cm-1处有吸收峰,为C=O伸缩振动峰,说明样品中含有羰基;在2920cm-1和2850cm-1处有吸收峰,为C-H伸缩振动峰,说明样品中含有烷基。

2. 样品B:在红外光谱图上观察到3300cm-1处有明显的吸收峰,为N-H伸缩振动峰,说明样品中含有氨基;在1630cm-1处有吸收峰,为C=O伸缩振动峰,说明样品中含有羰基;在2920cm-1和2850cm-1处有吸收峰,为C-H伸缩振动峰,说明样品中含有烷基。

根据红外光谱图解析结果,样品A和B分别含有羟基、羰基和氨基等官能团,可以初步判断其分子结构。

红外光谱法实验报告

红外光谱法实验报告

一、实验目的1. 了解傅里叶变换红外光谱仪的基本构造及工作原理。

2. 掌握红外光谱分析的基础实验技术。

3. 学会用傅里叶变换红外光谱仪进行样品测试。

4. 掌握几种常用的红外光谱解析方法。

二、实验原理红外光谱法是利用物质对红外光区的电磁辐射的选择性吸收来进行结构分析及对各种吸收红外光的化合物的定性和定量分析的一种方法。

苯甲酸分子在红外线照射下,会吸收与其分子振动、转动频率相一致的红外光,产生特征吸收光谱。

通过分析苯甲酸的红外光谱,可以确定其分子结构,进行定性分析。

三、实验仪器与试剂1. 仪器:傅里叶变换红外光谱仪(FTIR)、样品制备装置、压片机、样品瓶、电子天平。

2. 试剂:苯甲酸、溴化钾(KBr)、无水乙醇。

四、实验步骤1. 样品制备:准确称取0.1g苯甲酸,置于研钵中,加入约0.5g溴化钾,研磨至粉末状。

将粉末转移至样品瓶中,加入少量无水乙醇,振荡溶解,制成苯甲酸溶液。

2. 样品测试:将制备好的苯甲酸溶液均匀涂覆在KBr压片机上,压制薄片,厚度约为1mm。

3. 红外光谱测试:将压制好的薄片放入傅里叶变换红外光谱仪中,进行红外光谱扫描。

扫描范围为4000~500cm-1,分辨率为4cm-1。

4. 数据处理:将扫描得到的红外光谱图与标准苯甲酸光谱图进行对比,分析苯甲酸的红外光谱特征。

五、实验结果与分析1. 苯甲酸的红外光谱图显示,在1640cm-1处出现一个强吸收峰,这是苯甲酸中羰基的特征吸收峰。

2. 在3000cm-1处出现一个宽吸收峰,这是苯甲酸中C-H键的伸缩振动吸收峰。

3. 在1400cm-1处出现一个中等强度的吸收峰,这是苯甲酸中苯环的C=C键伸缩振动吸收峰。

4. 在900cm-1处出现一个弱吸收峰,这是苯甲酸中苯环的C-H面外弯曲振动吸收峰。

通过对比苯甲酸的红外光谱图与标准苯甲酸光谱图,可以确定实验样品为苯甲酸。

六、实验结论本次实验成功利用傅里叶变换红外光谱法对苯甲酸进行了定性分析。

实验1 红外光谱法鉴定聚合物的结构特征

实验1 红外光谱法鉴定聚合物的结构特征

实验1 红外光谱法鉴定聚合物的结构特征1.实验目的(1)了解红外光谱分析法的基本原理。

(2)初步掌握红外光谱样品的制备和红外光谱仪的使用。

(3)红外吸收光谱的应用和谱图的分析方法。

2.实验原理红外光谱与有机化合物、高分子化合物的结构之间存在密切的关系。

它是研究结构与性能关系的基本手段之一。

红外光谱分析具有速度快、取样微、高灵敏并能分析各种状态的样品等特点,广泛应用于高聚物领域,如对高聚物材料的定性定量分析,研究高聚物的序列分布,研究支化程度,研究高聚物的聚集形态结构,高聚物的聚合过程反应机理和老化,还可以对高聚物的力学性能进行研究。

红外光谱属于振动光谱,其光谱区域可进一步细分为近红外区(12800~4000cm-1)、中红外区(4000~200cm-1)和远红外区(200~10cm-1)。

其中最常用的是4000~400cm-1,大多数化合物的化学键振动能的跃迁发生在这一区域。

图2.18为典型的红外光谱。

横坐标为波数(cm-1,最常见)或波长(μm),纵坐标为透光率或吸光度。

图1 聚苯乙烯的红外光谱在分子中存在着许多不同类型的振动,其振动与原子数有关。

含N个原子的分子有3N 个自由度,除去分子的平动和转动自由度外,振动自由度应为3N-6(线性分子是3N-5)。

这些振动可分为两类:一类是原子沿键轴方向伸缩使键长发生变化的振动,称为伸缩振动,用υ表示。

这种振动又分为对称伸缩振动(υs)和不对称伸缩振动(υas)。

另一类是原子垂直键轴方向振动,此类振动会引起分子的内键角发生变化,称为弯曲(或变形)振动,用δ表示,这种振动又分为面内弯曲振动(包括平面及剪式两种振动),面外弯曲振动(包括非平面摇摆及弯曲摇摆两种振动)。

图2为聚乙烯中-CH2-基团的几种振动模式。

图2 聚乙烯中-CH2-基团的振动模式分子振动能与振动频率成反比。

为计算分子振动频率,首先研究各个孤立的振动,即双原子分子的伸缩振动。

可用弹簧模型来描述最简单的双原子分子的简谐振动。

红外吸收光谱实验报告

红外吸收光谱实验报告

一、实验目的1. 掌握红外吸收光谱的基本原理和操作方法。

2. 学习使用红外光谱仪进行样品分析。

3. 通过红外光谱图解析,识别样品中的官能团,确定化合物的结构。

4. 培养实验操作能力和数据分析能力。

二、实验原理红外吸收光谱是一种基于分子振动和转动跃迁的光谱技术。

当分子中的化学键振动时,会吸收特定波长的红外光,从而产生红外吸收光谱。

通过分析红外吸收光谱图,可以识别分子中的官能团,确定化合物的结构。

三、实验仪器与试剂1. 仪器:红外光谱仪、样品台、KBr压片机、电子天平、研钵、剪刀等。

2. 试剂:待测样品、KBr、红外光谱标准样品等。

四、实验步骤1. 样品制备:将待测样品与KBr按一定比例混合,研磨均匀后,压制成薄片。

2. 样品测试:将样品薄片放置在红外光谱仪的样品台上,进行扫描。

3. 数据处理:将扫描得到的红外光谱图进行分析,识别官能团,确定化合物结构。

五、实验结果与分析1. 样品A:经红外光谱分析,发现样品A在3400cm-1处有宽吸收峰,为-OH伸缩振动峰;在1700cm-1处有强吸收峰,为C=O伸缩振动峰;在1450cm-1处有中等强度吸收峰,为C-O伸缩振动峰。

综合以上分析,确定样品A为乙醇。

2. 样品B:经红外光谱分析,发现样品B在3400cm-1处有宽吸收峰,为-NH伸缩振动峰;在1630cm-1处有强吸收峰,为C=N伸缩振动峰;在1450cm-1处有中等强度吸收峰,为C-O伸缩振动峰。

综合以上分析,确定样品B为乙酰胺。

六、实验讨论1. 红外光谱分析是一种重要的有机化合物结构鉴定方法,具有操作简便、灵敏度高、应用范围广等优点。

2. 在进行红外光谱分析时,样品制备和仪器操作对实验结果有很大影响。

因此,要严格按照实验步骤进行操作,确保实验结果的准确性。

3. 在解析红外光谱图时,要熟悉各种官能团的吸收峰位置,并结合样品的性质进行综合判断。

七、实验结论通过本次实验,我们掌握了红外吸收光谱的基本原理和操作方法,学会了使用红外光谱仪进行样品分析,并成功解析了两种化合物的红外光谱图,确定了其结构。

红外光谱法鉴别药物实验报告

红外光谱法鉴别药物实验报告

红外光谱法鉴别药物实验报告一、实验目的1、了解红外光谱仪的结构、工作原理和一般操作方法2、掌握一般固体样品的制样方法以及压片机的使用方法二、实验原理1、红外吸收光谱简介及产生条件:红外吸收光谱又称为分子振动—转动光谱。

当样品受到频率连续变化的红外光照射时,分子吸收了某些频率的辐射,并由其振动或转动运动引起偶极矩的净变化,产生分子振动和转动能级从基态到激发态的跃迁,使相应于这些吸收区域的透射光强度减弱。

记录红外光的百分透射比与波数或波长关系的曲线,就得到红外光谱。

2、红外吸收光谱测量原理框架图:3、红外光谱测量的主要依据:朗伯-比尔定律:朗伯—比尔定律数学表达式; A=lg(1/T)=Kbc ,A为吸光度,T为透射比,是投射光强度比上入射光强度 c为吸光物质的浓度 b为吸收层厚度。

物理意义是当一束平行单色光垂直通过某一均匀非散射的西光物质时,起其吸光度A与吸光物质的浓度c及吸收层厚度b成正比.。

4、红外光谱定性分析的依据:与其它分光光度法(紫外、可见分光光度法)一样,红外光谱定量分析是根据物质组分的吸收峰强度来进行的它的理论基础是lambert-beer定律。

三,仪器与试剂仪器:红外光谱仪(FTIR),压片机,压片模具及附件,玛瑙研钵,不锈钢镊子,不锈钢药匙,试剂: KBr (光谱纯),咪唑,聚苯乙烯薄膜,……其他:脱脂棉,擦镜纸三、操作步骤1、样品准备:溴化钾压片。

粉末样品常采用压片法,一般取试样2~3mg 样品与200~300mg干燥的KBr粉末在玛瑙研钵中混匀,充分研细至颗粒直径小于2μm,用不锈钢铲取70~90mg放入压片模具内,在压片机上用5~10×107 Pa 压力压成透明薄片,即可用于测定。

2, 检查设备及附件情况,打开仪器,进入程序3, 光谱测量(1)参数设定(2)采集红外光谱4.、保存数据,打印,退程序,关机四、注意事项1、样品的纯度需大于98%,以便与标准光谱对照。

2、样品不能含有水(结晶水、游离水),否则对羟基有干扰。

红外吸收光谱实验报告

红外吸收光谱实验报告

红外吸收光谱实验报告实验报告:红外吸收光谱实验一、实验目的:1.学习红外光谱分析的基本原理和方法;2.掌握红外光谱实验仪器的操作;3.了解不同化合物的红外光谱特征,分析其结构和功能团。

二、实验原理:红外光谱是通过测定样品对红外辐射的吸收来获取化合物结构信息的技术。

在红外区域的电磁辐射可以被化合物中的化学键吸收,产生共振激发。

吸收的位置和强度与分子的结构和存在的官能团有关。

常见的红外光谱吸收峰常用来鉴定具有特定官能团的化合物。

三、实验仪器与试剂:1.红外光谱仪;2.样品;3.氯仿和必需品。

四、实验操作:2.准备样品盘:将样品加入KBr或NaCl颗粒中,并用手压成均匀的透明片。

4.打开红外光谱仪,选择目标化合物的工作模式。

5.选择一个空白片,将其放入光谱仪并进行基础校准。

6.选择样品,将其放入仪器,等待红外光谱仪的分析结果。

7.分析结果后,将样品从仪器中取出,并清洁样品盘以准备下一个样品的测试。

8.将测试得到的红外吸收光谱数据与已知数据库中的数据进行对照,确定化合物的结构和官能团。

五、实验结果与讨论:将测试得到的红外吸收光谱数据与已知数据库中的数据进行对照,可以准确地确定化合物的结构和官能团。

通过观察吸收峰的位置和形状,可以推断出化合物中存在的官能团。

以酰胺试剂为例,其红外光谱图中会有一个宽弱的吸收峰,该吸收峰位于3300-3400cm-1的范围内,这是由于酰胺中的氨基振动引起的。

另外,酯类化合物一般在1750cm-1的位置会有一个强吸收峰,此吸收峰是由于羰基振动产生的。

通过这些特征峰可以判断化合物中的官能团类型和存在的基团。

六、实验结论:通过红外光谱实验,我们可以通过化合物吸收红外辐射的特征谱图,推断化合物结构和官能团类型。

通过与已知数据库中的对照,可以确定化合物的结构和功能团。

红外光谱是一种非常有用的分析方法,可以用于识别和鉴定未知化合物的结构。

红外吸收光谱实验报告

红外吸收光谱实验报告

红外吸收光谱实验报告红外吸收光谱实验报告引言:红外吸收光谱是一种重要的分析技术,广泛应用于有机化学、材料科学、环境监测等领域。

本实验旨在通过红外吸收光谱仪,对苯酚、苯甲酸和苯酚甲醛三种有机化合物进行光谱分析,探究它们的结构和性质。

实验方法:首先,我们准备了苯酚、苯甲酸和苯酚甲醛三种有机化合物的样品。

然后,将样品制成固态片,放置在红外吸收光谱仪的样品槽中。

接下来,选择适当的波数范围,进行红外光谱扫描,记录吸收峰的位置和强度。

实验结果与分析:在红外吸收光谱图中,我们观察到苯酚、苯甲酸和苯酚甲醛三种有机化合物的吸收峰分布。

苯酚的红外光谱图中,出现了一个宽而强烈的吸收峰,位于3500~3200 cm^-1的区域,这是由于苯酚中的羟基(-OH)所引起的。

苯甲酸的红外光谱图中,出现了一个锐利的吸收峰,位于1700~1600 cm^-1的区域,这是由于苯甲酸中的羧基(-COOH)所引起的。

苯酚甲醛的红外光谱图中,出现了多个吸收峰,分别位于1700~1600 cm^-1和3000~2800 cm^-1的区域,这是由于苯酚甲醛中的羧基和醛基(-CHO)所引起的。

通过对红外吸收光谱图的分析,我们可以得出以下结论:1. 苯酚中的羟基(-OH)使其在红外光谱中出现宽而强烈的吸收峰;2. 苯甲酸中的羧基(-COOH)使其在红外光谱中出现锐利的吸收峰;3. 苯酚甲醛中的羧基和醛基(-CHO)使其在红外光谱中出现多个吸收峰。

结论:通过红外吸收光谱分析,我们成功确定了苯酚、苯甲酸和苯酚甲醛三种有机化合物的结构和性质。

红外吸收光谱是一种非常有效的分析工具,可以帮助我们了解化合物的官能团和结构。

在今后的研究和应用中,红外吸收光谱将继续发挥重要作用。

实验心得:通过本次实验,我对红外吸收光谱的原理和应用有了更深入的了解。

红外吸收光谱可以快速、准确地分析有机化合物的结构,对于化学研究和工业生产具有重要意义。

在实验过程中,我也学会了操作红外吸收光谱仪,掌握了样品制备和光谱扫描的技巧。

仪器分析第十五章红外吸收光谱法

仪器分析第十五章红外吸收光谱法
单 核 芳 烃 的 C = C 伸 缩 振 动 出 现 在 1600 - 1500cm-1附近,有2-4个峰,这是芳环的骨架振动, 用于确定有无芳核的存在。
苯的衍生物在2000-1650cm-1区域出现C-H面外弯曲变 形振动的倍频或者组合频吸收,但因为强度较弱,只有在加 大样品浓度时才呈现出来。可以根据该区的吸收情况,判断 苯环的取代情况。
影响基团频率位移的因素-外部因素和内部因素
(1)电子效应-包括诱导效应、共轭效应和中介 效应,是由于化学键的电子分布不均匀引起的。
诱导效应(I效应)-由于取代基的不同的电负性, 通过静电诱导作用,引起分子中的电子分布的变化, 改变了键的力常数,使特征频率发生位移。例如有 电负性较强的元素如Cl与羰基相连时,由于诱导效 应,发生氧上电子转移,使C=O的力常数变大,吸 收向高波数移动。元素电负性越强,移动越厉害。
组频——如果分子吸收一个红外光子,同时激 发了基频分别为v1和v2的两种跃迁,此时所产 生的吸收频率应该等于上述两种跃迁的吸收频 率之和,故称组频。
对谐振子,倍频、组频均为禁阻跃迁。
但由于真实分子的非谐性,倍频、组频跃迁几 率并不为零。但强度都很弱。
分子的振动自由度
每个原子在空间的位置必须有三个坐标来确定, 则由N个原子组成的分子就有了3N个坐标,或称为 有3N个运动自由度。分子本身作为一个整体,有三 个平动自由度和三个转动自由度。
线性分子只有两个转动自由度,因为总有一个 轴心于双原子分子的键轴重合,原子在空间的 坐标并不改变。线性分子的振动自由度为3N-5, 非线性为3N-6。
例如苯分子的振动自由度为3×12-6=30,即30 种简正振动。任何一个分子的振动,都可看成 3N-6或者3N-5个简正振动的叠加而成。

红外吸收实验报告分析

红外吸收实验报告分析

一、实验目的本次实验旨在通过红外吸收光谱法对样品进行定性分析,了解红外光谱的基本原理和操作方法,掌握样品制备、仪器操作、数据记录与分析等基本技能。

同时,通过分析红外光谱图,对样品的化学结构进行初步判断。

二、实验原理红外吸收光谱法是利用物质对不同波长的红外辐射吸收程度不同而对物质进行分析的方法。

当一定频率(能量)的红外光照射分子时,如果分子中某个基团的振动频率和外界红外辐射频率一致时,光的能量通过分子偶极矩的变化而传递给分子,这个基团就吸收一定频率的红外光,产生振动跃迁。

将分子吸收红外光的情况用仪器记录就得到该试样的红外吸收光谱图,利用光谱图中吸收峰的波长、强度和形状来判断分子中的基团,对分子进行结构分析。

三、实验仪器与试剂1. 仪器:- 傅里叶变换红外光谱仪(FTIR)- 样品研磨仪- 红外光谱附件- KBr压片机- 干燥器2. 试剂:- 样品(有机物)- KBr(光谱纯)- 无水乙醇- 干燥剂(硅胶)四、实验步骤1. 样品制备:- 将样品研磨成粉末状,过筛,取适量粉末置于干燥器中干燥。

- 称取适量干燥的样品粉末,与KBr粉末按一定比例混合,搅拌均匀。

- 将混合物放入KBr压片机中,压成薄片。

2. 仪器操作:- 打开傅里叶变换红外光谱仪,预热仪器。

- 设置扫描参数:波数范围4000-500cm-1,分辨率4cm-1,扫描次数32次。

- 将压片放入样品室,进行扫描。

3. 数据记录与分析:- 将扫描得到的红外光谱图导入数据处理软件,进行基线校正、平滑处理等操作。

- 根据红外光谱图中的吸收峰,对照标准谱图,分析样品的化学结构。

五、实验结果与分析1. 样品A:- 红外光谱图显示,在3425cm-1处有宽而强的吸收峰,属于-OH伸缩振动;在2920cm-1和2850cm-1处有中等强度的吸收峰,属于C-H伸缩振动;在1720cm-1处有强吸收峰,属于C=O伸缩振动;在1230cm-1处有中等强度的吸收峰,属于C-O伸缩振动。

实验一红外光谱法测定聚合物的结构

实验一红外光谱法测定聚合物的结构

实验一红外光谱法测定聚合物的结构一、实验目的:1. 了解红外线分析聚合物的原理及其应用范围;2. 掌握操作红外线分析仪器的操作方法;3. 测定某位置样品的红外谱图。

二、实验原理:在分子中存在着许多不同类型的振动,其振动自由度与原子数有关。

含N 个原子的分子有3N个自由度,除去分子的平动和转动自由度以外,振动动自由度应为3N-6(线性分子是3N-5)这些振动可分两大类:一类是沿键轴方向伸缩使键长发生变化的振动,称为为伸缩振动,用V表示。

这种振动又分为对称伸缩振动用V表示和非对称伸缩震动用Vas表示;另一类原子垂直于价键方向振动;此类振动会引起分子内键角发生变化称为弯曲(或变形)振动,用δ表示,这类振动又可分为面内弯曲振动(包括平面及剪式两种振动),面外弯曲振动(包括非平面摇摆及弯曲摇摆两种振动)。

分子振动能与振动频率成反比。

为计算分子振动频率,首先研究各个孤立的振动,即双原子分子的伸缩振动。

可用弹簧模型来描述最简单的双原子分子的简谐振动。

把两个原子看成质量分别为m1和m2的钢性小球,化学键好似一根无质量的弹簧在原子分子中有多种振动形式,每一种简正振动都对应一定的振动频率,但并不是每一种振动都会和红外辐射发生相互作用而产生红外吸收光谱,只有能引起分子偶极矩变化的振动(称为红外活性振动),才能产生红外吸收光谱。

也就是说,当分子振动引起分子偶极矩变化时,就能形成稳定的交变电场,其频率与分子振动频率相同,可以和相同频率的红外辐射发生相互作用,使分子吸收红外辐射的能量跃迁到高能态,从而产生红外吸收光谱。

在正常情况下,这些具有红外活性的分子振动大多数处于基态,被红外辐射激发后,跃迁到第一激发态。

这种跃迁所产生的红外吸收称为基频吸收。

在红外吸收光谱中大部分吸收部属于这一类型。

除基频吸收外还有倍频和合频吸收,但这两种吸收都较弱。

红外吸收谱带的强度与分子数有关,但也与分子振动时偶极矩变化率有关。

变化率越大,吸收强度也越大,因此极性基团如碳基、胺基等均有很强的红外吸收带。

红外吸收光谱实验报告

红外吸收光谱实验报告

实验三、红外吸收光谱实验报告姓名:张瑞芳班级:化院413班培养单位:上海高等研究院学号:2013E8003561147指导教师:李向军实验日期:2103年12月18日第2组一、实验目的1、掌握红外光谱分析法的基本原理。

2、掌握智能傅立叶红外光谱仪的操作方法。

3、掌握用KBr 压片法制备固体样品进行红外光谱测定的技术和方法。

4、了解基本且常用的KBr 压片制样技术在红外光谱测定中的应用。

5、 通过谱图解析及标准谱图的检索,了解由红外光谱鉴定未知物的一般过程。

二、实验原理红外光谱法又称“红外分光光度分析法”。

简称“IR ”,是分子吸收光谱的一种。

它利用物质对红外光区的电磁辐射的选择性吸收来进行结构分析及对各种吸收红外光的化合物的定性和定量分析的一法。

被测物质的分子在红外线照射下,只吸收与其分子振动、转动频率相一致的红外光谱。

对红外光谱进行剖析,可对物质进行定性分析。

化合物分子中存在着许多原子团,各原子团被激发后,都会产生特征振动,其振动频率也必然反映在红外吸收光谱上。

据此可鉴定化合物中各种原子团,也可进行定量分析。

(1)红外光谱产生条件1)辐射应具有能满足物质产生振动跃迁所需的能量:即)λhc/(λ)νh(νΔE ΔE ΔE 转动振动转动振动转动振动分子+=+=+=2)辐射与物之间有相互耦合作用,产生偶极矩的变化。

(没有偶极矩变化的振动跃迁,无红外活性,没有偶极矩变化、但是有极化度变化的振动跃迁,有拉曼活性。

)(2)应用范围红外光谱对样品的适用性相当广泛,固态、液态或气态样品都能用该方法进行分析,无机、有机、高分子化合物也都可检测。

1)红外光谱分析可用于研究分子的结构和化学键,也可以作为表征和鉴别化学物种的方法。

2)红外光谱具有高度特征性,可以采用与标准化合物的红外光谱对比的方法来做分析鉴定。

3)利用化学键的特征波数来鉴别化合物的类型,并可用于定量测定。

4)红外吸收峰的位置与强度反映了分子结构上的特点,可以用来鉴别未知物的结构组成或确定其化学基团;而吸收谱带的吸收强度与化学基团的含量有关,可用于进行定量分析和纯度鉴定。

红外吸收光谱法的原理

红外吸收光谱法的原理

红外吸收光谱法的原理红外吸收光谱法(Infrared absorption spectroscopy)是一种常用的分析方法,通过测量物质对红外辐射的吸收来研究物质的结构和组成。

其原理基于物质分子的振动和转动,当红外辐射通过样品时,与样品分子相互作用并导致红外辐射被吸收或散射。

进一步,通过测量样品吸收的红外辐射强度,可以得到关于样品内部分子结构和组成的信息。

红外辐射是电磁波的一部分,具有比可见光更长的波长。

红外吸收光谱法利用这种波长特性,通过对样品在红外区域的吸收进行定量或定性分析。

红外吸收光谱法可以用于有机物、无机物、聚合物以及生物分子等各种类型的样品分析。

在红外吸收光谱法中,仪器设备包括一个红外光源、分光器、样品室和检测器。

红外光源产生宽频谱的红外辐射,经过分光器将红外辐射按波长分成多个特定范围。

样品室是一个透明的容器,用于容纳样品。

样品与红外辐射相互作用后,部分辐射被吸收,其余的辐射经过样品,最后被检测器接收。

检测器将接收到的辐射转化为电信号,并通过放大和处理,能够得到样品在各个波长下的吸收谱图。

红外吸收光谱图谱展示了样品在红外区域的吸收峰,峰的位置和强度可以提供关于样品中的化学键、官能团以及分子结构的信息。

每个官能团和化学键都有具有特定的频率和振动模式,当红外辐射与样品分子振动模式相吻合时,就会发生吸收。

因此,通过观察吸收峰的位置和形状,可以推断出样品中存在的官能团和化学键的类型。

总之,红外吸收光谱法利用物质对红外辐射的吸收特性,通过测量红外辐射在样品中的吸收程度,可以获得关于样品的结构和组成的信息。

这种分析方法广泛应用于化学、材料科学、生物科学等领域,为研究和分析各种样品提供了有力的工具。

红外光谱法的实验步骤与数据解读

红外光谱法的实验步骤与数据解读

红外光谱法的实验步骤与数据解读红外光谱法是一种常用的分析技术,通过测定物质在红外光波段的吸收特性来确定其分子结构和化学组成。

在实验中,我们需要按照一定的步骤进行操作,并对测得的数据进行解读。

一、实验步骤1. 样品制备:首先需要将待测样品制备成适当的形式。

对于固体样品,可以将其粉碎成细小的颗粒;对于液体样品,可以将其溶解在适当的溶剂中;对于气体样品,需要将其抽取到透明的气体室中。

2. 仪器调节:接下来需要将红外光谱仪正确调节。

调节过程中,注意对仪器进行准确校正,确保其能够提供稳定强度和频率的光源。

同时,还需保持仪器的环境条件(如温度、湿度等)相对稳定。

3. 校准参照物:在进行样品测试之前,需要通过使用已知物质来校准仪器。

校准参照物是已知其光谱特性的物质,通过与样品测量结果的对比,可以得出准确的测试数据。

4. 测量样品:将校准后的仪器用于测量待测样品。

选择合适的测量模式(如透射、反射或微片法),将样品放置在仪器的样品台上,并对其进行红外光谱扫描。

二、数据解读在进行红外光谱实验后,我们会得到一个曲线,即红外吸收谱。

对这个谱图的解读可以提供样品的结构和成分信息。

1. 波数解读:红外光谱图的横轴表示光的波长或波数。

波数是红外光波与被测物质相互作用的度量,不同的波数对应不同的分子振动。

根据波数的大小和位置,可以判断样品中存在的官能团或化学键。

2. 吸收强度解读:红外光谱图的纵轴表示光吸收强度。

强度越大,表示吸收越强。

可以根据吸收峰的高度或面积来判断样品中特定官能团的存在量或相对含量。

3. 功能团解读:红外光谱图上不同的波数峰对应不同的官能团。

常见的官能团峰包括羟基(OH)、醇(ROH)、羰基(C=O)、取代氨基(NH2)等。

通过对比谱图中峰的位置和强度,可以确定样品中是否存在特定的官能团。

需要注意的是,红外光谱解读是一项复杂的工作,需要经验和专业知识的支持。

对于初学者来说,建议参考相关的文献和专家指导,以便更准确地理解和解释实验结果。

傅里叶红外吸收光谱法的实验报告

傅里叶红外吸收光谱法的实验报告

傅里叶红外吸收光谱法的实验报告傅里叶红外吸收光谱法的实验报告引言:本文主要介绍傅里叶红外吸收光谱法的实验报告。

傅里叶红外光谱法是一种非常常用且重要的光谱分析方法,它广泛应用于催化剂、高分子材料、药物等各种行业和领域。

在实验中,我们通过傅里叶变换红外光谱仪对样品进行了测试,得出了比较准确的结果。

实验步骤:(1)样品的制备我们选择了市场上常见的牙膏品牌作为测试样品。

首先将样品取出,均匀地涂抹在稳定的基板上。

然后使用干燥器将样品中的水分蒸发。

最后将样品固定在傅里叶红外吸收光谱仪所提供的样品盒中。

(2)测试仪器的校准仪器的校准是保证测试结果准确的重要前提。

在测试之前,我们使用标准的聚氨酯用于校准仪器。

校准过程中需要保持稳定的环境温度、光源强度和检测器灵敏度。

(3)测试样品在进行测试之前,我们选择的仪器为傅里叶变换红外光谱仪,该仪器能够提供比较准确的测试结果。

我们在测试样品时,使用紫外线光源照射样品,并将其转化为红外光谱。

通过仪器所提供的计算软件,可以得出样品的稳定吸收光谱。

实验结果:在我们所测试的样品中,可以明显地看到不同材料的吸收峰,每个峰代表了不同的化学键。

比如说,牙膏中常见的氟化合物,我们可以看到其呈现出独特的吸收峰。

通过测试结果分析,我们可以准确地确定样品中存在的化合物种类和数量。

实验结论:傅里叶红外吸收光谱法是一种非常有效、准确的分析方法,可以用于检测不同种类的物质。

在实验中,我们使用了傅里叶变换红外光谱仪,并通过对样品的吸收光谱进行分析,得出了比较准确的测试结果。

因此,该方法可以广泛应用于药物、高分子材料、催化剂等领域。

参考文献:1. Fei Ding, Sepideh Malekpour, and Lixin Xia. Application of Fourier Transform Infrared (FTIR) Spectroscopy in the Analysis of Cone-in-ConeStructures in Rocks. Minerals, 2017, 7(7): 116.2. Wang Jinyao, Lv Zhaoyi, Zhou Fan. FTIR Spectroscopy of Adsorption of atorvastatin calcium on Silica Gel[J]. Spectroscopy and Spectral Analysis, 2015, 35(9):2734-2738.。

红外吸收光谱法(重点难点讲解)

红外吸收光谱法(重点难点讲解)

只有伴随有瞬间偶极矩变化的振动才能产生红外吸收
具有红外吸收的振动方式称为具有红外活性; 具有红外吸收的分子成为红外活性分子 分子是否有红外活性,与分子是否有永久偶极矩无关 如:CO2的永久偶极矩为0,但有红外活性 红外光谱研究的对象 ——振动中伴随有瞬间偶极矩变化的所有分子 除单原子分子和同核分子如H2等外的所有无机和有机物分子
红外吸收光谱法
Infrared spectroscopy
IR
1、红外光谱的基本原理
本 章 主 要 内 容
红外光谱产生的条件 分子的振动频率、振动类型及振动自由 度与红外光谱的关系 影响红外光谱强度及基团频率的因素
2、红外光谱仪
色散型红外光谱仪的结构及特点 傅立叶变换红外光谱仪的结构及特点 红外光谱仪的常用光源与检测器
二、双原子分子的振动
(2)基本振动公式
振动频率
——谐振子振动
化学键的键力常数(将两原子由平衡位置 伸长单位长度时的恢复力,单位为N· cm1)
k 与键的种类及成键原子有关
振动 频率 两原子的折合质量 单键:k = 4~6N· cm-1; 双键:k = 8~12N· cm-1 ; 叁键:k = 12~18N· cm-1;
3、红外光谱实验技术——样品制备
4、红外光谱法的应用
红外光谱解谱的一般步骤及方法 重要的基团频率
§10-1 引 言
一、红外吸收光谱法的定义
当样品受到频率连续变化的红外光照射时,分子吸收了某 些频率的辐射,产生分子振动和转动能级从基态到激发态 的跃迁,从而进行定性、定量和结构分析的分子吸收光谱 方法。
O-H、N-H和C-H键等 某些物质的定量分 的倍频及合频吸收; 析(较少使用), 特别适合原位、无 属于禁阻跃迁,吸收弱, 损及在线分析 峰重叠较明显 各种化学键的振动并伴 物质定性、定量及 随转动的基频吸收; 结构分子的主要光 谱区 强吸收度大。 分子的转动跃迁吸收; 无机物的结构分析 弱吸收。

红外吸收光谱实验报告材料

红外吸收光谱实验报告材料

红外吸收光谱实验报告材料实验目的:1.学习红外吸收光谱的原理和仪器的操作方法;2.掌握利用红外吸收光谱鉴别有机物的方法。

实验原理:红外吸收光谱仪由光源、样品室、光学系统、检测器和数据处理系统等组成。

在实验中,样品被放置在样品室中,从光源发出的红外光经过光学系统聚焦到样品上,样品吸收部分特定波长的红外光,通过检测器接收并转化为电信号,经过数据处理系统显示和记录。

实验步骤:1.将待测有机物样品放置在样品室中;2.打开红外吸收光谱仪的电源,预热一段时间;3.调整仪器的光路,使样品室处于最佳接收位置;4.打开红外吸收光谱仪的软件,选择收集数据的参数,如扫描范围和分辨率等;5.点击开始按钮,仪器开始进行红外吸收光谱数据的收集;6.收集完毕后,保存数据并进行分析。

实验结果:实验讨论:根据红外光谱图,可以根据吸收峰的位置和形状来判断样品中存在的不同官能团。

例如,羟基官能团通常在3200-3600 cm^-1的区域出现吸收峰,C=O键通常在1700-1750 cm^-1的区域出现吸收峰等。

通过与已知有机物的红外光谱图进行比对,可以进一步确定样品的分子结构。

同时,还可以通过峰的强度和形状等信息来判断样品的纯度和反应程度。

实验结论:通过红外吸收光谱的实验,我们可以利用其原理和方法来鉴定有机物的分子结构和官能团信息。

红外吸收光谱是一种快速、准确、非破坏性的分析方法,广泛应用于化学、医药、环境等领域。

在实际应用中,通过红外吸收光谱的鉴定结果,可以帮助我们判断有机物的性质和用途,还可以用于分析有机物的质量控制和探测化学反应过程中的官能团变化等。

总结:红外吸收光谱是一种非常有用的分析技术,通过实验我们深入了解了其原理和操作方法,并成功应用该技术进行了有机物样品的鉴定。

在今后的实验和研究中,我们将进一步探索红外吸收光谱的应用,为有机化学领域的科学研究和工程实践提供更准确的分析结果和数据支持。

红外吸收光谱法

红外吸收光谱法
中红外光区吸收带(2.5 ~ 25µm )是绝大多数 有机化合物和无机离子的基频吸收带(由基态振动 能级(=0)跃迁至第一振动激发态(=1)时,所 产生的吸收峰称为基频峰)。
2024/7/18
3
由于基频振动是红外光谱中吸收最强的振动, 所以该区最适于进行红外光谱的定性和定量分析。 同时,由于中红外光谱仪最为成熟、简单,而且目 前已积累了该区大量的数据资料,因此它是应用极 为广泛的光谱区。通常,中红外光谱法又简称为红 外光谱法。
例1 水分子
2、峰数 :理论值为 3n-6(3n-5)
2024/7/18 实际峰数不等于此值。(原因?)
18
在红外吸收光谱上除基频峰外,振动能级由基态
( =0)跃迁至第二激发态( =2)、第三激发态( =3),所产生的吸收峰称为倍频峰
由=0跃迁至=2时, △=2,则L=2,产生的 吸收峰称为二倍频峰。
2024/7/18
26
表 几种红外检测器
红外检测器 原理
构成
特点
热电偶
温 差 热 电 涂黑金箔(接受面)连接金属(热接 光谱响应宽且一致性
效应
点)与导线(冷接端)形成温差。 好、灵敏度高、受热噪 音影响大
涂黑金箔(接受面)作为惠斯顿电桥 稳定、中等灵敏度、较
测热辐射计 电桥平衡 的一臂,当接受面温度改变,电阻改 宽线性范围、受热噪音
由度相当于红外光谱图上一个基频吸收带。设分子 由n个原子组成,每个原子在空间都有3个自由度, 原子在空间的位置可以用直角坐标中的3个坐标x、y 、z表示,因此,n个原子组成的分子总共应有3n个 自由度,即3n种运动状态。
但在这3n种运动状态中,包括3个整个分子的质
心沿x、y、z方向平移运动和3个整个分子绕x、y、z

红外吸收光谱实验原理

红外吸收光谱实验原理

红外吸收光谱实验原理咱先得知道啥是红外光哈。

红外光其实就是一种电磁波啦,不过它的波长比可见光长一些哦。

想象一下,可见光就像那些花枝招展的小姑娘,在我们眼前晃悠,能让我们看到五彩斑斓的世界。

而红外光呢,就像是躲在幕后默默工作的小助手,虽然我们眼睛看不到它,但是它可有大本事啦。

那这个红外光和物质又有啥关系呢?当红外光照射到物质上的时候,就像是小虫子去招惹大怪兽一样,会发生一些有趣的事儿。

物质里的分子就像一个个小小的家庭,分子里的原子呢就像家庭里的成员。

这些原子之间是有化学键连着的,就像家庭成员之间的关系纽带。

当红外光这个调皮的小家伙过来的时候,如果它的能量刚刚好能让分子里的化学键振动起来,那就像给这个小家庭注入了一股活力,化学键就会欢快地振动起来。

比如说,就像你在跳绳的时候,你得使一定的劲儿,绳子才能有规律地跳动起来。

红外光的能量就相当于你使的那股劲儿,化学键就像那根跳绳。

而且呀,不同的化学键就像不同材质的跳绳,它们振动起来所需要的能量是不一样的呢。

这时候呢,物质就会吸收特定频率的红外光,就像挑食的小朋友只吃自己喜欢的菜一样。

而那些没有被吸收的红外光就会透过去或者被反射回来。

我们用仪器把透过去或者反射回来的红外光收集起来,然后分析一下,就能得到一个红外吸收光谱图啦。

这个光谱图可神奇了呢。

它就像是物质的身份证一样,每一种物质都有自己独特的红外吸收光谱图。

你看,就像世界上没有两片完全相同的树叶一样,也没有两种物质的红外吸收光谱图是完全一样的。

通过这个光谱图,我们就能知道这个物质里面有哪些化学键,就像通过一个人的穿着打扮能大概猜出他的喜好一样。

比如说,如果我们在光谱图上看到某个特定的峰,就像在地图上看到一个标志性的建筑一样,我们就能知道这个物质里有对应的化学键。

如果是有机物的话,我们就能推断出它的官能团啦。

官能团就像有机物的小标签,有了这个小标签,我们就能对这个有机物有更多的了解呢。

而且呀,红外吸收光谱实验还能用来分析混合物呢。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验一红外吸收光谱法
一、实验目的1.了解傅立叶变换红外光谱仪的基本构造及工作原理2.掌握红外光谱分析的基础实验技术3.学会用傅立叶变换红外光谱仪进行样品测试4.掌握几种常用的红外光谱解析方法
二、实验原理、方法和手段
(一)实验原理
不同波长的电磁辐射都具有相应的能量,在它与物质的相互作用中,如果其能量与物质的原子、分子或离子的低能态和高能态之间的能量差相同时,物质的
原子、分子或离子便选择性地吸收电磁辐射的能量,同时使自己从低能态跃迁到高能态。

如果将透过某物质的电磁辐射用单色器将其色散,让它按波长顺序排列,并测量在不同波长处的辐射强度,就可得到该物质的吸收光谱。

波长在0.76 ym- 1000叩的电磁辐射称为红外光(infrared ray),该区域称为红外光谱区或红外区。

红外光又可划分为近红外区(0.76叩〜2.5叩或13158cm-1〜4000cm-1)、中红外区(2.5 yn〜50或4000cm-1〜200cm-1)、远红外区(50ym〜1000ym或200cm-1〜10cm-1)。

其中红外区是研究分子振动能级跃迁的主要区域。

红外区的光谱除用波长入表征外,更常用波数(wave number)c表征。

波数是波长的倒数,表示单位厘米波长内所含波的数目。

作为红外光谱的特点,首先是应用面广,提供信息多且具有特征性,故把红外光谱通称为“分子指纹”。

它最广泛的应用还在于对物质的化学组成进行分析。

用红外光谱法可以根据光谱中吸收峰的位置和形状来推断未知物的结构,依照特征吸收峰的强度来测定混合物中各组分的含量。

其次,它不受样品相态的限制,无论是固态、液态以及气态都能直接测定,甚至对一些表面涂层和不溶、不熔融的弹性体(如橡胶)也可直接获得其光谱。

它也不受熔点、沸点和蒸汽压的限制,样品用量少且可回收,是属于非破坏分析。

而作为红外光谱的测定工具红外光谱仪,与其他近代分析仪器(如核磁共振波谱仪、质谱仪等)比较,构造简单,操作方便,价格便宜。

因此,它已成为现代结构化学、分析化学最常用和不可缺少的工具。

根据红外光谱与分子结构的关系,谱图中每一个特征吸收谱带都对应于某化合物的质点或基团振动的形式。

因此,特征吸收谱带的数目、位置、形状及强度取决于分子中各基团(化学键)的振动形式和所处的化学环境。

只要掌握了各种基团的振动频率(基团频率)及其位移规律,即可利用基团振动频率与分子结构的关系,来确定吸收谱带的归属,确定分子中所含的基团或键,并进而由其特征振动频率的位移、谱带强度和形状的改变,来推定分子结构。

(二)仪器的基本结构及工作原理
1 .光源
红外光谱仪(FT)中所用的光源通常是一种惰性固体,用电加热使之发射高强度连续红外辐射,如空冷陶瓷光源。

随着科技的发展,一种黑体空腔光源被研制出来。

它的输出能量远远高于空冷陶瓷光源,可达到60%以上。

2•迈克尔逊干涉仪
其作用是将光源发出的红外辐射转变成干涉光,特点是输出能量大、分辨率高、波数精度高(它采用激光干涉条纹准确测定光差,故使其测定的波数更为精确)、且扫描平稳、重线性好。

3.探测器
其作用是将光信号转变为电信号,特点是扫描速度快(一般在1s内可完成全谱扫描)、灵敏度高。

4.计算机
特点是各种数据处理快,且具有色散型红外光谱仪所不具备的多种功能。

5.样品池
用能透过红外光的透光材料制作样品池的窗片,通常用KBr或NaCI做样品
池的窗片。

6.红外光谱仪(FT)的工作原理
FTIR是基于光相干性原理而设计的干涉型红外光谱仪。

它不同于依据光的折射和衍射而设计的色散型红外光谱仪。

它与棱镜和光栅的红外光谱仪比较,称为第三代红外光谱仪。

但由于干涉仪不能得到人们业已习惯并熟知的光源的光谱图,而是光源的干涉图。

为此可根据数学上的傅立叶变换函数的特性,利用电子计算机将其光源的干涉图转换成光源的光谱图。

亦即是将以光程差为函数的干涉图变换成以波长为函数的光谱图,故将这种干涉型红外光谱仪称为傅立叶变换红外光谱仪。

确切地说,即光源发出的红外辐射经干涉仪转变成干涉光,通过试样后得到含试样信息的干涉图,由电子计算机采集,并经过快速傅立叶变换,得到吸收强度或透光度随频率或波数变化的红外光谱图。

其工作原理如图1-1所示。

图1-1 FTIR工作原理
R —红外光源M1—定镜M2 —动镜BS—光束分裂器S —试样
D —探测器A—放大器F—滤光器A/D —模数转换器D/A —数模转换器
(三)试样的制备技术
1.气体样品气体样品是在气体池中进行测定的,先把气体池中的空气抽掉,然后注入被测气体进行测谱。

2.液体样品测定液体样品时,使用液体池,常用的为可拆卸池,即将样品直接滴于两块盐片之间,形成液体毛细薄膜(液膜法)进行测定,对于某些吸收很
强的液体试样,需用溶剂配成浓度较低的溶液再滴入液体池中测定,选择溶剂时要注意溶剂对溶质有较大的溶解度,溶剂在较大波长范围内无吸收,不腐蚀液体池的盐片,对溶质不发生反应等,常用的溶剂为二硫化碳、四氯化碳、三氯甲烷、环己烷等。

3.固体样片
(1)压片法把1~2mg固体样品放在玛瑙研体中研细,加入100~200mg磨细
10
波数/cm
0 4000 干燥的碱金属卤化物(多用KBr )粉末,混合均匀后,加入压模内,在压片机上 边抽真空边加压,制成厚约1mm ,直径约为10mm 左右的透明片子,然后进行 测定。

(2) 糊状法 将固体样品研成细末,与糊剂(液体石蜡油)混合成糊状,然后 夹在两窗片之间进行测定,用石蜡做糊剂不能用来测定饱和碳氢键的吸收情况, 可以采用六氯丁二烯代替石蜡油做糊剂。

(3) 薄膜法 把固体样品制成薄膜来测定,薄膜的制备有两种:一种是直接将 样品放在盐窗上加热,熔融样品涂成薄膜,另一种是先把样品溶于挥发性溶剂中 制成溶液,然后滴在盐片上,待溶剂挥发后,样品遗留在盐片上而形成薄膜。

三、 实验步骤
1 •打开除湿机,开启电源除湿。

2 •更换样品舱干燥剂。

3 •开启红外光谱仪主机电源。

4 •打开计算机,启动红外光谱工作站,初始化并等待仪器自检。

5 •设定当次实验分析参数。

6.运行至少4次背景扫描。

7 •制备样品,测定。

8.实验结束按以下步骤关机。

(1) 根据需要,保存有用实验数据。

(2) 关闭主机电源。

(3) 清理样品舱。

(4) 关闭计算机。

(5) 打扫实验室。

(6) 关闭总电源。

四、 结果分析
1乙醇
110
30
20
3500 3000 2500 2000 1500 1000
3300 cm 1 :宽而强的谱带是多缔合体 一OH 的伸缩振动吸收带 3000~2800cm i 1
:谱带为甲基和亚甲基的反对称和对称伸缩振动吸收带相互重叠 的结果
1090 cm -1和1050 cm -1 :两个强吸收分别为 C —C — O 的反对称和对称伸缩振动吸收带 2苯
3030 cm -1附近:谱带为 =C — H 伸缩振动吸收带
1450 cm -1:谱带为苯环骨架振动吸收带
3硝基苯
3075 cm -1:谱带为=C —H 伸缩振动吸收带
1604cm -1、1477 cm -1:谱带为苯环骨架振动吸收带
1519cm -1 :强谱带为N = O 的反对称伸缩振动吸收带
1342 cm -1 :强谱带为N = O 的对称伸缩振动吸收带
698 cm -1: 环骨架变形振动
5 问题讨论
-1
波数/cm
-1
波数/cm
1 .如何简单测试仪器工作正常。

答:打开高压,能看到试样在里面,可说明仪器正常工作。

选择合适的实验测定参数,以空气为背景进行空白测定,然后放聚苯乙烯薄膜于样品光路上,绘制聚苯乙烯薄膜的红外吸收光谱,与标准图谱比较。

2.液体与固体测定时,有什么不同?答:① 对于固体样品,通常采用压片法,个别采用糊法。

② 对于液体样品,不易挥发的粘度大的,可用液膜法直接涂在空白片上绘制图谱;易挥发的可采用夹片法,把液体样品适量的均匀地涂在两个KBr 片之间,使成1~50 x 10-4cm,厚的液层,再将两个KBr片放于支架中绘制图谱。

3.试样不出峰,为什么?如何解决?
1 、记录器(数据处理机)没有工作:
(1)记录器:电平值选择太高或者太低,应在中间部分。

(2)最小峰面积设置太大。

2、检测器部分:
(1)先判断极化电压有没有加上(260V左右)。

用万用表直流电压1000V档,一端接接线排上极化电压处,另一端接机壳,若显示260 左右,说明极化电压没有问题。

(2)检查离子头信号线有无问题。

3、样品没有汽化: 答:温度设置过低,致使样品没有汽化,应升高汽化温度。

4、色谱柱断裂,管道漏气:
( 1 )色谱柱通常为不锈钢柱,不会断裂(若断裂,更换)。

(2)色谱柱在柱室内柱螺帽上的松,致使漏气。

(3)汽化室内汽化垫使用时间长,旋紧或者更换汽化垫。

(4)进样器堵塞或者漏气,更换进样器。

相关文档
最新文档