实验一 X射线衍射技术及物相分析

合集下载

x射线物相分析实验报告

x射线物相分析实验报告

x射线物相分析实验报告X射线物相分析实验报告引言:X射线物相分析是一种常用的实验方法,用于研究材料的晶体结构和组成。

通过观察和分析X射线的衍射图案,我们可以得到材料的晶体结构、晶格参数以及晶体中原子的排列方式等重要信息。

本实验旨在通过X射线物相分析技术,对给定的材料样品进行结构分析,并探索其性质和应用。

实验方法:1. 样品制备:首先,我们选择了一种具有特定晶体结构的材料作为研究对象。

然后,将样品制备成粉末状,以便于进行X射线衍射实验。

制备过程中需要注意避免杂质的混入,以保证实验结果的准确性。

2. X射线衍射实验:将制备好的样品放置在X射线衍射仪器中,调整仪器参数,如入射角度、扫描范围等。

通过控制X射线的入射角度和扫描范围,我们可以获取不同角度下的衍射图案。

实验过程中需要保证仪器的稳定性和准确性,以获得可靠的实验结果。

结果与讨论:通过X射线衍射实验,我们获得了样品在不同角度下的衍射图案。

根据这些衍射图案,我们可以进行结构分析和晶格参数计算。

1. 结构分析:通过对衍射图案的观察和分析,我们可以确定样品的晶体结构。

根据布拉格方程和衍射峰的位置、强度等信息,我们可以推断出晶体中原子的排列方式和晶胞结构。

这对于研究材料的性质和应用具有重要意义。

2. 晶格参数计算:通过测量衍射图案中的衍射角度和计算相关的几何参数,我们可以得到样品的晶格参数。

晶格参数是描述晶体结构的重要参数,它们的大小和比例关系直接影响材料的性质和行为。

通过计算晶格参数,我们可以进一步了解样品的结构特征和晶体生长方式。

结论:通过X射线物相分析实验,我们成功地对给定的材料样品进行了结构分析和晶格参数计算。

通过观察和分析衍射图案,我们得到了样品的晶体结构和晶格参数等重要信息。

这些结果对于研究材料的性质和应用具有重要意义,为进一步深入研究和应用提供了基础。

总结:X射线物相分析是一种重要的实验方法,通过观察和分析X射线的衍射图案,可以获得材料的晶体结构和组成等关键信息。

X射线衍射仪实验报告(范文模版)

X射线衍射仪实验报告(范文模版)

X射线衍射仪实验报告(范文模版)第一篇:X射线衍射仪实验报告(范文模版)基本构造:(1)高稳定度X射线源提供测量所需的X射线, 改变X射线管阳极靶材质可改变X射线的波长, 调节阳极电压可控制X射线源的强度。

(2)样品及样品位置取向的调整机构系统样品须是单晶、粉末、多晶或微晶的固体块。

(3)射线检测器检测衍射强度或同时检测衍射方向, 通过仪器测量记录系统或计算机处理系统可以得到多晶衍射图谱数据。

(4)衍射图的处理分析系统现代X射线衍射仪都附带安装有专用衍射图处理分析软件的计算机系统, 它们的特点是自动化和智能化。

操作:第一步:检查真空灯是否正常,左“黄”右“绿”为正常状态,如果“绿”灯闪或者灭的状态表明真空不正常;第二步:冷却水系统箱,打开其开关(冷却水的温度低于26℃为正常)。

如果“延时关机”为开的状态要关闭。

“曲轴加热”一般在寒冬才用,打开预热10min 后即可继续以下操作。

(此外,测试实验完成后,打开“延时关机”按钮,而冷却水的“关闭”按钮不关,30min后冷却水会自动关闭)第三步:打开机器后面“右下角”的“测角仪”(上开下关),而“左下角”的开关一般为“开”的状态,除有允许不要动;第四步:电脑操作,桌面“右下角”有“蓝色标示”说明电脑和机器已经连接,否则“左击”该标示选择“初始化”即可;第五步:装样品,载物台一般用“多功能”的,粉体或者块体装上后,使其平面与载物台面相平。

如果是粉体还要在滑道上铺层纸,避免掉料污染滑道;第六步:在机器中放样品前,按“Door”按键,听到“嘀嘀”声时,方可打开机器门;第七步:点击“standard measurement”中的运行按钮即可运行机器进行测试中。

第八步:实验完成后,先降电流后降电压,20mA/5min至10mA,5kV/5min至20kV;关闭各个软件,关闭“测角仪”开关。

冷却水箱上的开关可以直接打开“延时关机”开关,而冷却水“关闭”按钮不关,30min后自动关闭冷却水。

X射线物相分析实验报告

X射线物相分析实验报告

X射线物相分析实验报告
X射线物相分析实验采用X射线衍射技术,旨在确定物质的组成成分以及各组分含量。

这种技术还可用以确定物种位阶和特有结构,以及研究物质的相变等。

X射线物相分析实验通常采用X射线衍射技术,采用冷冻酶法或热解法分离试样的组分,使用X射线衍射仪收集组成组分的衍射曲线,分析曲线变化来确定物质的组成结构。

当用热解法处理时,可以在较高的温度条件下,将混合物分解成其原子构型中的各组分,
从而取得较为准确的衍射曲线。

X射线衍射实验可以测定非晶态以及晶态结构物质的晶粒
尺寸,探究物质受温度、时间、温度变化等影响的程度。

X射线物相分析实验是X射线晶体衍射技术的一个重要应用,在无损检验、材料结构
分析、塑料成型分析等领域都有广泛的应用。

这种技术可以用于分析各种有机物及它们的
混合物,也可以用于分析金属材料的组成、结构和晶体尺寸等特性。

实验步骤:
(1)准备试样。

(2)将试样放入探测器,使用冷冻酶法或热解法将其分离开来,获取组分的衍射曲线。

(3)根据衍射曲线对各组分的拟合度进行评估,确定各成份在物质中的构成比例。

(4)计算其他统计值,如晶粒尺寸、晶体指数、相变温度等。

以上就是X射线物相分析实验的基本步骤,此技术是一种非毁性的分析技术,可以为
检验、分析研究者提供重要的参考,也是一种有效确定物质成分及结构的实验方法。

X射线衍射技术之四-物相分析

X射线衍射技术之四-物相分析
一.原理与方法
什么是物相?
物相是从结构角度对某一物质种类的描述. 化学组成相同但结构类型不同的物质视为不 同的物相,如方解石和文石.化学组成不同但结 构类似的物质也属不同的物相,因为二者在结 构参数方面存在差别.
物相分析分为定性分析和定量分析。定性分 析目的是确定待测物质成分及结构类型;定 量分析不仅确定物质成分及结构类型,而且 确定各物相质量分数。因此定性分析是定量 分析的基础和前提。
1.粉末衍射卡
粉未衍射卡(Power Diffraction File, 简称 PDF卡)是1941年美国道氏化学(Dow Chemical)公司从1938年起由哈那瓦尔物(J. D. Hanawalt)等人首创的标准衍射数据,在 美国材料试验协会(ASTM)的赞助下,以3 inch×5 inch (76.2 mm×127 mm)的卡片形 式发行,故也称ASTM卡。
I j Cj
Vj

Cj
fj

式中Cj──样品中与第j相有关的常数; μ ──混合样品的线吸收系数.
fj W j m m m Ij C 将 代入 V x j 变换为以xj和µ m表示的形式如下
fj
j

Ij
Cj xj
j m
Cj
'
xj
m
此式是X射线物相定量分析的基本公式。µm不是j相 的质量吸收系数,而是整个待测试样总的质量吸收 系数. n
第2节 XRD物相定量分析
一.定量分析法原理
X射线定量相分析方法是在完成了样品 的物相定性分析工作的基础上,利用衍射 花样中待测相衍射强度,分析每个相在样 品中的重量百分含量的技术。
XRD粉末衍射强度公式:
3 4 2 I e 1 c o s 2 1 2 2 2 M 0 I ( 2 ) ( ) ( F P N ) (2 ) ( e) () V h k l h k l h k l 4 3 2 m c R s i n c o s 2

X射线衍射应用-物相分析

X射线衍射应用-物相分析

复合样中各峰的强度,IM(120)=922, IC(101)=6660, 计算公式:
I Q (10 ) 8604
11
WM
M KA (
I M (120 )
M KA
I M (120 ) 922 17.3% I Q (1011) I C (101) 922 8604 6660 2 . 47 ) Q C 2.47 8.08 9.16 KA KA
WM (%)
IM
IM (%) IT I C
(7)
通常通过配制一系列不同比例的混合试样制作标定曲 线(强度比与含量的关系曲线),应用时根据强度比按此 曲线即可查出含量。此法也适用于吸收系数不同的两项混 合物的定量分析。
(2)被检测向与基体吸收系数不同: 1、内标法:
待测样为n(≥2)相的混合物,各项的质量吸收系数不 相等时,采用内标法作定量分析。
2)、粒径大的粉末(几十μm以上)衍射强度重现性差,强度的变化可达百 分之几十。 3)、试样中固溶体其它物质或试样加热膨胀时衍射线移向低角位臵(高角位 臵衍射线偏移量较大)。 4)测角仪偏心时,衍射线产生偏移(低角偏差大) 5)测角仪扫描速度快,计数率仪的时间常数大时因仪器反应滞后,衍射线向 扫描方向移动。 6)测角仪零位位移,导致全谱位移。
采用Hanawalt法定性相分析的要点:
采用Hanawalt 法作定性相分析时,由于试样制备方法、测定条件以及JCPDS 卡的数据本身的可靠性问题,使得JCPDS卡的数据与试样衍射线的d值或 I/I1值有些差别。
1)、粘土矿物或石墨粉末等易产生择优取向的试样以及具有择优位向的金属 箔,其衍射强度会发生变化,甚至出现倒臵的情况。
第五章、X射线衍射分析应用

仪器分析实验 X射线衍射物相分析

仪器分析实验 X射线衍射物相分析

X射线衍射物相分析开课实验室:环境资源楼105【实验目的】(1)了解Philips射线衍射仪的基本结构和工作原理;(2)基本掌握样品测试过程;(3)掌握利用衍射图进行物相分析的方法。

【基本原理】•原理概述:晶体晶面间距约为10-10m量级,与X射线波长范围(0.1-10埃)相符合,因此X射线在遇到晶体时,可能发生衍射现象,从而推测出其结构信息;•X射线与特征(或标识)X射线:X射线是一种波长很短的电磁波,穿透能力强;在用电子束轰击金属靶,如铜,产生的X射线中,包含与靶中各种元素对应的具有特定波长的X射线。

对铜靶来说,其中包含Kα1、Kα2及Kβ三种特征X射线;•X射线衍射:将具有一定波长的X射线照射到结晶性物质上时,X射线因在结晶内遇到规则排列的原子或离子而发生散射,散射的X射线在某些方向上相位得到加强,从而显示与结晶结构相对应的特有的衍射现象。

但并不是所有情况下X射线都发生衍射,其必须满足的条件是布拉格方程:2d sin θ=nλ即当λ确定且n=1(一次衍射)时,则只有当θ角满足:θ=arcsin!!!"时才可发生衍射。

故根据布拉格方程,通过合理地转动样品、X光管和接收器,调整θ角,扫描一张谱图,则可以得到这一晶体样品的结构信息;•晶体X射线衍射图谱:由于每种晶体其X光衍射都有一组特定的d值,粉末线的分布是一定的;每种晶体内原子排列也是一定的,因此衍射线的相对强度也是一定的,每一个晶体都有一套特征的粉末衍射数据d-I 值,并可把它作为定性鉴定物质和物相的依据。

对晶体微观结构精细的形象变换,每种晶体结构与其X射线衍射图之间有着一一对应的关系,任何一种晶态物质都有自己独特的X射线衍射图,而且不会因为与其它物质混合在一起而发生变化,是X射线衍射法进行物相分析的依据。

规模最庞大的多晶衍射数据库是由JCPDS编篡的《粉末衍射卡片集》(PDF)。

•粉末衍射卡片索引:包括:粉末衍射卡片哈氏索引(Hanawalt),芬克索引(Fink Index)和戴维字母索引(Alphabetical Index);1、哈氏数值索引:每一种的数据在索引中占一横行,依次有:八条强谱线晶面间距数值,化学式卡片顺序号,查阅时把晶体面间距按衍射峰强弱排列成d1,d2,d3----,找到d1再找d2值,一直顺序找到第八值,从而可查的对应八强线的卡片顺序号,但也可用前三强的d值,按下列排列方式查找:d1d2d3,d2d3d1, d3d1d2,在哈氏数值索引中出现三次;2、芬克索引:也属于数值索引,不过它是以每种物质的八条强线晶面间距d作为该物质特征,芬克索引的编制是按各种物质八条强线中第一个d值的递减次序划分成组。

x射线物相分析实验报告

x射线物相分析实验报告

x射线物相分析实验报告
X射线物相分析实验报告
摘要:
本实验利用X射线衍射技术对样品进行了物相分析。

通过对不同晶体结构的样品进行X射线衍射实验,得到了样品的晶格常数和晶体结构信息。

实验结果表明,X射线衍射技术是一种有效的物相分析方法,能够准确地确定样品的晶体结构和晶格常数。

引言:
X射线衍射技术是一种常用的物相分析方法,通过对样品的X射线衍射图谱进行分析,可以得到样品的晶体结构和晶格常数等信息。

本实验旨在通过X射线衍射实验,对不同晶体结构的样品进行物相分析,验证X射线衍射技术在物相分析中的应用价值。

实验方法:
1. 准备不同晶体结构的样品,包括金属、陶瓷和晶体材料。

2. 将样品固定在X射线衍射仪上,调整仪器参数,使得X射线能够与样品发生衍射。

3. 收集样品的X射线衍射图谱,记录衍射峰的位置和强度。

4. 通过对X射线衍射图谱的分析,得到样品的晶格常数和晶体结构信息。

实验结果:
通过对不同样品的X射线衍射图谱进行分析,得到了样品的晶格常数和晶体结构信息。

实验结果表明,X射线衍射技术能够准确地确定样品的晶体结构和晶格常数,为物相分析提供了重要的信息。

结论:
本实验通过X射线衍射技术对不同晶体结构的样品进行了物相分析,验证了X
射线衍射技术在物相分析中的应用价值。

实验结果表明,X射线衍射技术是一
种有效的物相分析方法,能够准确地确定样品的晶体结构和晶格常数,为材料
研究提供了重要的实验手段。

希望本实验结果对相关领域的研究工作有所帮助。

实验一X射线衍射物相分析

实验一X射线衍射物相分析

《现代材料微观分析方法》
实验一:X射线衍射物相分析
一、实验目的:
1. 熟悉PDF卡片和三种索引。

2.根据衍射图谱或数据,学会单物相鉴定的方法。

二、实验原理:
物相分析的原理:X射线衍射及其衍射花样
三、实验步骤:
七步法进行单物相分析
四、实验结果与分析
根据衍射图谱,进行相应的计算,得到相关的数据,然后进行标定,得到最终的标定结果(物相、卡片号、干涉面指数)。

五、实验小结
总结实验中的一些注意事项和心得体会。

X射线源为CuKα: 波长λ=0.15406 nm
α
α
α
α
α
X射线源为CuKα: 波长λ=0.15406 nm
X射线源为CuKα: 波长λ=0.15406 nm。

XRD实验报告

XRD实验报告

XRD实验报告《先进材料表征技术》课程学⽣实验报告实验名称:X-Ray衍射原理及物性分析姓名:孙四五实验时间:2012 年11 ⽉19 ⽇哈尔滨⼯业⼤学深圳研究⽣院1.实验⽬的1.了解X射线衍射仪的基本结构及⼯作原理;2.了解X射线衍射仪的测试分析范围及样品制备要求。

3.了解X射线衍射数据处理的程序与⽅法。

4.掌握依据X射线衍射进⾏物相鉴定的原理与⽅法。

2.实验原理2.1 X射线衍射基本原理当⼀束单⾊X射线照射到某⼀结晶物质上,由于晶体中原⼦的排列具有周期性,当某⼀层原⼦⾯的晶⾯间距d与X射线⼊射⾓之间满⾜布拉格(Bragg)⽅程:2dsinθ=nλ(λ为⼊射X射线的波长)时,就会产⽣衍射现象,如图 2.1 所⽰。

X射线物相分析就是指通过⽐较结晶物质的X射线衍射花样来分析待测试样中含有何种或哪⼏种结晶物质(物相)。

任何⼀种结晶物质都有⾃⼰特定的结构参数,即点阵类型、晶胞⼤⼩、晶胞中原⼦或离⼦的数⽬、位置等等。

这些结构参数与X 射线的衍射⾓θ和衍射强度I 有着对应关系,结构参数不同则X射线衍射花样也各不相同。

因此,当X射线被晶体衍射时,每⼀种结晶物质都有⾃⼰独特的衍射花样,不存在两种衍射花样完全相同的物质。

通常⽤表征衍射线位置的晶⾯间距d(或衍射⾓θ)和衍射线相对强度I 的数据来代表衍射花样,即以晶⾯间距d 为横坐标,衍射相对强度I 为纵坐标绘制X射线衍射图谱。

⽬前已知的结晶物质有成千上万种。

事先在⼀定的规范条件下对所有已知的结晶物质进⾏X 射线衍射,获得⼀套所有结晶物质的标准X射线衍射图谱(即d-I 数据),建⽴成数据库。

当对某种材料进⾏物相分析时,只需要将其X射线衍射图谱与数据库中的标准X射线衍射图谱进⾏⽐对,就可以确定材料的物相。

图2.1 Bragg⽅程⽰意图2.2 测⾓仪的⼯作原理测⾓仪是X 射线衍射仪的核⼼组成部分。

试样台位于测⾓仪中⼼,试样台的中⼼轴与测⾓仪的中⼼轴(垂直图⾯) 垂直。

X射线粉末衍射物相分析

X射线粉末衍射物相分析
四、思考题
1、布拉格方程并未对衍射级数n和晶面间距d作 任何限制,但实际应用中为何只用数量非常有限的 一些衍射线?
2、X射线对人体有什么危害?应如何防护?
结束
6LGi2ksOHxKBxX0og16WDLD D3t0er!8tcRz W4H W3N7M RO%QDPII6r$-0pqw(gNLCN xiuop#hX0aIU 2PeJtk#VOf)F N**nR Wbtfe-ey xU3%-% mY7QqKcIFNG% koO+#(HgSF1zo(M$)jd4jddJ!nnhwngC!M(oz2FThICH yUbfG% XAC7EkJ+PdUYS$Il dzPAz mG*1wZ#8hFXlr vY(bW k( mbOFtYz ++6* k3c2+uOcgh**#r6KMU WHtGCF8B9a) wg *eKC W0z KWrQl nyrM-* k9wG* YWLX( MHqXxq$unC UEzf7* 5&Xbe$3ki!FMAy*gMAr$Q0PhCh3Drj!iTWTHX3CspT x+ )-MSU hyHM YR wdmco!E1EL6k6x13flLWTnnLzepVi5MqA1Z9-* FhakdQaXp3r y+NL2+!xsnx1G5MkFq%&TR(VH R!A!527ipbzihp1(bS5WfLJM QaFOl %ESLaC m1PrPef6aO6l*#QLTuAKl XS6bw! y-)ebt+8B5b) %J87N NA&g%(S!&r+ vp$- x#v4kupWC#1s KoLUIds$hM m+E) yr DOn1PPq)GDl)CU$aqsI2ypSeszESgIy*qGGZoa8r Gb(!12yRFDnGZJ

实验一-X射线衍射技术及物相分析

实验一-X射线衍射技术及物相分析

实验一-X射线衍射技术及物相分析(总4页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--实验一 X射线衍射技术及物相分析一、实验目的与要求1.学习了解X射线衍射仪的结构和工作原理;2.掌握X射线衍射物相定性分析的方法和步骤;3.给定实验样品,设计实验方案,做出正确分析鉴定结果。

二、实验仪器本实验使用的仪器是Rigaku UltimaⅣX射线衍射仪。

主要由冷却循环水系统、X射线衍射仪和计算机控制处理系统三部分组成。

X射线衍射仪主要由X射线发生器即X射线管、测角仪、X射线探测器等构成。

射线管X射线管主要分密闭式和可拆卸式两种。

广泛使用的是密闭式,由阴极灯丝、阳极、聚焦罩等组成,功率大部分在1~2千瓦。

可拆卸式X射线管又称旋转阳极靶,其功率比密闭式大许多倍,一般为12~60千瓦。

常用的X射线靶材有W、Ag、Mo、Ni、Co、Fe、Cr、Cu等。

X射线管线焦点为1×10平方毫米,取出角为3~6度。

此X射线管为密闭式,功率为2千瓦。

X射线靶材为Cu。

选择阳极靶的基本要求:尽可能避免靶材产生的特征X射线激发样品的荧光辐射,以降低衍射花样的背底,使图样清晰。

2.测角仪测角仪是粉末X射线衍射仪的核心部件,主要由索拉光阑、发散狭缝、接收狭缝、防散射狭缝、样品座及闪烁探测器等组成。

(1)衍射仪一般利用线焦点作为X射线源S。

如果采用焦斑尺寸为1×10平方毫米的常规X射线管,出射角6°时,实际有效焦宽为毫米,成为×10平方毫米的线状X射线源。

(2)从S发射的X射线,其水平方向的发散角被第一个狭缝限制之后,照射试样。

这个狭缝称为发散狭缝(DS),生产厂供给1/6°、1/2°、1°、2°、4°的发散狭缝和测角仪调整用0.05毫米宽的狭缝。

(3)从试样上衍射的X射线束,在F处聚焦,放在这个位置的第二个狭缝,称为接收狭缝(RS).生产厂供给毫米、毫米、毫米宽的接收狭缝。

实验1 X射线衍射技术及单物相定性分析

实验1 X射线衍射技术及单物相定性分析

实验1 X 射线衍射技术及单物相定性分析一、实验目的要求1.了解衍射仪的结构与原理。

2.学习样品的制备方法和实验参量的选择等衍射实验技术。

3.熟悉JCPDS 卡片及其检索方法。

4.根据衍射图谱或数据,学会单物相鉴定方法。

二、衍射仪的结构及原理衍射仪是进行X 射线分析的重要设备,主要由X 射线发生器、测角仪、记录仪和水冷却系统组成。

新型的衍射仪还带有条件输入和数据处理系统。

图1示出了X 射线衍射仪框图。

X 射线发生器主要由高压控制系统和X 光管组成,它是产生X 射线的装置,由X 光管发射出的X 射线包括连续X 射线光谱和特征X 射线光谱。

测角仪是衍射仪的重要部分,其光路图如图2。

X 射线源焦点与计数管窗口分别位于测角仪圆周上,样品位于测角仪圆的正中心。

在入射光路上有固定式梭拉狭缝和可调式发射狭缝,在反射光路上也有固定式梭拉狭缝和可调式防散射狭缝与接收狭 缝。

在计数管前装有单色器。

当给X 光管加以高压,产生的X 射线经由发射狭缝射到样品上时,晶体中与样品表面平行的面网,在符合布拉格条件时即可产生衍射而被计数管接收。

当计数管在测角仪圆所在平面内扫射时,在某些角位置能满足布拉格条件的面网所产生的衍射线将被计数管依次记录并转换成电脉冲信号,经放大处理后通过记录仪描绘成衍射图。

图1 X 射线衍射仪框图 图2 测角仪光路示意图1、测角仪圆2、试样3、滤波片S 光源S 1、S 2梭拉狭缝K 发散狭缝L 防散射狭缝F 接收狭缝 C 计数管定性相分析的原理根据晶体对X射线的衍射特征——衍射线的方向及强度来鉴定结晶物质的物相的方法,就是X射线物相分析法。

每一种结晶物质都有各自独特的化学组成和晶体结构。

没有任何两种物质,它们的晶胞大小、质点种类及其在晶胞中的排列方式是完全一致的。

因此,当X 射线被晶体衍射时,每一种结晶物质都有自己独特的衍射花样,它们的特征可以用各个反射面网的间距d和反射线的相对强度I/I0来表征。

其中面网间距d与晶胞的形状和大小有关,相对强度则与质点的种类及其在晶胞中的位置有关。

XRD物相分析实验报告

XRD物相分析实验报告

XRD物相分析实验报告X射线衍射(XRD)是一种常用的物相分析技术,通过分析物质的衍射图谱,可以确定样品的晶体结构、晶粒尺寸、晶体取向等信息。

本实验旨在利用XRD技术对一系列样品进行物相分析,并对实验结果进行分析和讨论。

实验仪器及试剂:1.X射线衍射仪:用于测量样品的XRD图谱。

2.样品:包括无定形材料、多晶材料和单晶材料等。

实验步骤:1.准备样品:将样品制备成均匀颗粒,并保持表面平整。

2.调节仪器参数:根据实际需要,选择适当的X射线波长和扫描范围,并调节其他参数如扫描速度、脉冲时间等。

3.测量样品的XRD图谱:将样品放置在X射线衍射仪的样品台上,通过扫描仪器开始测量。

4.数据处理:将测得的强度-2θ数据转换为曲线图,并对图谱进行标定和解析。

实验结果:[插入XRD图谱]通过比对已知标准样品的XRD图谱数据库,确定了样品的物相成分。

同时,可以利用XRD图谱确定样品的相对晶胞参数和晶体取向信息。

实验讨论:根据实验结果,我们可以得出如下结论:1.样品A的XRD图谱显示出峰位集中、峰型尖锐的特点,表明样品A是单晶材料。

进一步分析发现,样品A的晶体结构为立方晶系,晶胞参数为a=5Å。

2.样品B的XRD图谱呈现出多个峰位的广谱特征,表明样品B是多晶材料。

进一步分析发现,样品B的晶体结构为正交晶系,晶胞参数为a=4Å,b=6Å。

3.样品C的XRD图谱呈现出连续且平坦的背景特征,表明样品C为无定形材料。

由于无定形材料不具备明确的晶胞参数和晶体结构,因此无法进一步分析。

实验总结:XRD技术是一种广泛应用于物相分析的方法,在材料科学、地球科学、化学等领域均有重要应用。

通过XRD实验,我们能够确定样品的晶体结构和成分,为进一步的材料研究提供重要信息。

在实验中,我们需要合理选择X射线波长和仪器参数,确保获得准确可靠的实验结果。

在实验结果的分析中,还需要参考已知标准样品库,结合实验条件和样品特性,进行准确的物相分析。

X射线衍射实验报告

X射线衍射实验报告

X射线衍射实验报告第一篇:X射线衍射实验报告X射线衍射实验报告一、实验目的(1)掌握X射线衍射仪的工作原理、操作方法;(2)掌握X射线衍射实验的样品制备方法;(3)掌握运用X射线衍射分析软件进行物相分析的原理和实验方法;(4)熟悉PDF卡片的查找方法和物相检索方法。

二、实验仪器X射线衍射仪,PDF卡。

X射线衍射仪,主要由X射线发生器、X射线测角仪、辐射探测器、辐射探测电路、计算机系统等组成。

(1)X射线发生器X射线管工作时阴极接负高压,阳极接地。

灯丝附近装有控制栅,使灯丝发出的热电子在电场的作用下聚焦轰击到靶面上。

阳极靶面上受电子束轰击的焦点便成为X射线源,向四周发射X射线。

在阳极一端的金属管壁上一般开有四个射线出射窗口。

转靶X射线管采用机械泵+分子泵二级真空泵系统保持管内真空度,阳极以极快的速度转动,使电子轰击面不断改变,即不断改变发热点,从而达到提高功率的目的,如下图1。

图1 X射线管(2)测角仪测角仪圆中心是样品台,样品台可以绕中心轴转动,平板状粉末多晶样品安放在样品台上,样品台可围绕垂直于图面的中心轴旋转;测角仪圆周上安装有X射线辐射探测器,探测器亦可以绕中心轴线转动;工作时,一般情况下试样台与探测器保持固定的转动关系(即θ-2θ连动),在特殊情况下也可分别转动;有的仪器中样品台不动,而X射线发生器与探测器连动,如下图2。

图2 测角仪(3)PDF卡的组成如下3图所示图3 PDF卡三、实验原理1、X射线的产生实验中通常使用X光管来产生X射线。

在抽成真空的X光管内,当由热阴极发出的电子经高压电场加速后,高速运动的电子轰击由金属做成的阳极靶时,靶就发射X射线。

发射出的X射线分为两类:(1)如果被靶阻挡的电子的能量不越过一定限度时,发射的是连续光谱的辐射。

这种辐射叫做轫致辐射;(2)当电子的能量超过一定的限度时,可以发射一种不连续的、只有几条特殊的谱线组成的线状光谱,这种发射线状光谱的辐射叫做特征辐射。

XRD物相分析范文

XRD物相分析范文

XRD物相分析范文X射线衍射(XRD)是一种常用的物相分析技术,可用于确定材料的结晶结构和组成。

以下是一个关于XRD物相分析的范文,你可以根据需要进行调整和修改。

X射线衍射(XRD)是一种重要的物相分析技术,广泛用于材料科学、地质学和化学等领域。

本实验旨在通过XRD分析,确定给定样品的物相组成和晶体结构。

首先,我们选择了一个含有未知物质的样品进行分析。

样品是由粉末状的材料制备而成,可以通过X射线照射来观察其衍射模式。

样品被装入一个X射线衍射仪器,我们使用的仪器是一台高分辨率的X射线衍射仪。

我们首先进行了仪器的校准,调整了X射线的入射角度和检测器的位置,以确保获得准确的衍射数据。

然后,我们进行了X射线照射,记录了样品的衍射图谱。

通过分析衍射图谱,我们可以确定样品中存在的晶体结构和物质组成。

在分析过程中,我们首先使用布拉格公式计算了每个衍射峰的衍射角度。

然后,我们将这些衍射角度与标准衍射图谱进行比较,以确定样品中存在的物质。

在我们的研究中,我们发现了主要的两个衍射峰,分别对应于晶体A和晶体B。

通过与标准衍射图谱的比较,我们确定晶体A是一种常见的矿物质,已有详尽的研究和分析结果可供参考。

晶体B是一种未知物质,我们无法通过比较来确定其物质组成。

为了进一步确定晶体B的物质组成,我们将进行其他分析技术的辅助实验。

我们计划使用扫描电子显微镜(SEM)来观察样品的形貌和微观结构,以及能谱分析(EDS)来分析样品的元素组成。

通过综合分析XRD、SEM和EDS的结果,我们可以准确地确定晶体B的物质组成和结构。

这将为我们理解样品的特性和潜在应用提供重要信息。

总结起来,XRD是一种常用的物相分析技术,可以用于确定材料的结晶结构和组成。

通过X射线照射样品并记录衍射图谱,我们可以通过比较与标准衍射图谱来确定样品中存在的物质。

然而,在一些情况下,辅助实验技术可能需要用于进一步的分析和确定。

通过多种分析技术的综合应用,我们可以获得更全面、准确的样品特性分析结果。

X射线衍射技术及物相定性分析

X射线衍射技术及物相定性分析

材 组成与结构相同的同一种物相。因此,当一未知物相的样品的衍射谱上的 d-I/I1的数值与某
大学 一已知物相M的数据相合时,即可认为未知物即是M相。由此看来,物相定学性院分析就是将未 中南 知物的衍射实验所得的结果,考虑各种偶然因素的影响,经过去伪存真工获程得一套可靠的d-I/I1
数据后与已知物相的I/I1 相对照,再依照晶体和衍射的理论对所学属与物相进行肯定与否定。目
样品衍射谱最匹配的 100 种 PDF 卡片并列表显示。
3
③在检索结果列表中,根据谱线角度匹配情况并参考强度匹配情况,选择最匹配的 PDF
卡片作为物相鉴定结果。
④重复②-③的步骤,直到全部衍射线都有相应的物相归属,物相鉴定完毕。
⑤选择 Report-Phase ID Report 命令,打印输出物相鉴定结果。
实验 1 X 射线衍射技术及物相定性分析
一、实验目的
1.了解 X 射线衍射原理和衍射仪的操作规程。
2.掌握 X 射线衍射物相定性分析的原理和实验方法。
3.熟悉 PDF 卡片的查找方法和物相检索方法。
二、实验原理概述
1.X 射线衍射仪的工作原院理

图 1 是X射线衍射工仪程光路图,它是由高压发生器提供一个给定的高压到X射线管的两极,
已被淘汰。第二代是通过一定的检索程序,按给定的检索窗口条件对光盘卡片库进行检索(如
PCPDFWin 程序)。现代 X 射线衍射系统都配备有自动检索系统,通过图形对比方式检索多
物相样品中的物相(如 MDI Jade,EVA 软件等)。
三、实验设备及材料
本实验所采用的仪器为日本理学公司 Rigaku D/max 2500 型 X 射线衍射仪,如图 3 所示。
决定 X 射线衍射谱中衍射方向院和衍射强度的一套 d 和 I 的数值是与一个确定的晶体结构相

X射线衍射技术的原理与物相分析

X射线衍射技术的原理与物相分析

X射线衍射技术的原理与物相分析摘要:现代多晶体X光线衍射解析法最通常使用的基础仪器设备是X光线粉状衍射仪,它也是许多研究所、试验室、高等院校和国家质量监督检查机关的必要设施,本篇主要阐述了X光线粉状衍射仪的基础原理,及其采用此仪器设备的现代多晶体X光线衍射物相稳定性解析法和定量分析。

关键词:X光线;布拉格衍射方程;物相解析;粉末衍射卡片集1 基本原理1.1 X射线衍射介绍多晶X射线衍射解析法也被叫做粉状X射线衍射解析法,在使用本法时要首先将试样做成非常细小的粉状,然后再对粉状进行压块制样。

它有许多好处,比如粉状X射线衍射解析法就是一个非破坏性的实验分析,尤其有利于:可以做物相研究;也能够计算一些晶态化合物的分子结构参数和晶体结构;同样也能够计算非晶体物,所以,它是化学物理学中一个十分重要的实验法。

使用的衍射性仪为BDX系统半自动粉末式X射线衍射仪,它是把传统衍射仪技术与计算机二者融合起来的一个先进的智能化和自动化的实验仪器设备,能够借助应用程序,直接在计算机上操控衍射仪,进行数据的收集、处理与分析,缩短了操作者与仪器设备之间的接触时间,也因而降低了X辐射对人体的损伤。

1.2 X射线衍射仪的基本原理X射线衍射分析方法是指运用晶格中形成的X光线衍射现象,对物体实现内部分子在空间分布状态下的结构解析。

当形成于特定波段的X辐射光照在结晶性物体上时,X辐射会因在晶体内出现规律顺序的原子或电离而形成散射,发散的X辐射光在特定方向上相位受到了强化。

该方法的主要优点,就是能够掌握元素中存在的物质态、以及原子间相互作用组合的方法,从而可开展价态分析,并进行对环境固体污染物质的物相鉴别,如大气颗粒物中的风沙和泥土成分、工业生产废气的金属及其物质(粉尘)、工业车辆排放中卤化铅的成分、土壤和水域沉积物,以及海洋悬浮液中金属存在的状况等。

因为X射线波长短,以及光子能力大的这二种特点,当X光线照射到物体上产生的效果,与当可见光照射到物体上所产生的效果,是完全不同的。

XRD物相分析范文

XRD物相分析范文

XRD物相分析范文X射线衍射(XRD)是一种常用的物相分析技术,通过测量物质对入射X射线的衍射图样,以获取样品中的晶体结构和晶体学信息。

本文将对XRD物相分析技术进行详细介绍,包括原理、仪器设备、样品制备和数据分析方法等方面,旨在帮助读者更好地理解和应用该技术。

XRD物相分析的原理基于入射X射线与样品晶体结构的相互作用。

入射X射线与样品中的原子核和电子发生弹性散射,通过布拉格法则可以得到衍射条件,即2dsinθ=nλ,其中d为晶面间距,θ为衍射角,n为整数,λ为入射X射线的波长。

当入射X射线满足衍射条件时,会在检测器上形成衍射峰,每个衍射峰的位置和强度反映了晶体结构参数和相对含量。

XRD物相分析的主要仪器设备是X射线衍射仪,包括X射线发生器、样品支架、应变计等。

X射线发生器产生高能量X射线,可以选择不同波长和强度的入射源。

样品支架用于放置样品,并保持其稳定性和定位精度。

应变计可以检测样品在衍射过程中的微小应变,从而得到更多的晶体学信息。

在进行XRD物相分析前,样品需要进行适当的制备。

对于固体样品,通常是将其粉碎成细粉或制备成片状。

对于液体样品,可以将其涂覆在玻璃片上制备成薄膜样品。

此外,还需要对样品进行热处理、化学处理或其他特殊处理,以改变其晶体结构或表面形貌,以获得更详细的信息。

在实际的XRD物相分析中,需要进行数据采集和分析。

数据采集包括样品旋转、扫描角度和测量时间等参数的选择。

通过连续收集一系列的衍射数据,可以得到全衍射图样。

之后,通过峰形分析和峰位测量等方法,可以确定衍射峰的位置和强度,进一步推导出晶体结构和晶体学参数。

数据分析还需要进行归一化、去背景等预处理步骤,以提高数据质量和准确性。

XRD物相分析在材料科学、地球科学、环境科学等领域具有广泛的应用。

通过物相分析,可以确定样品中存在的晶体结构、晶体学相、杂质相等信息,从而研究材料的结构性质、相变行为、相对含量等。

此外,XRD 物相分析还可以进行材料的定性和定量分析,判断样品中的相对含量和晶体结构的变化。

2017X射线衍射及物相分析实验报告写法

2017X射线衍射及物相分析实验报告写法

请将以下内容手写或打印在中原工学院实验报告纸上。

实验报告内容:文中红体字部分请删除后补上自己写的内容班级学号姓名综合实验X射线衍射仪的使用及物相分析实验时间,地点一、实验目的1.了解x射线衍射仪的构造及使用方法;2.熟悉x射线衍射仪对样品制备的要求;3.学会对x射线衍射仪的衍射结果进行简单物相分析。

二、实验原理(X射线衍射及物相分析原理分别见《材料现代分析方法》第一、二、三、五章。

)三、实验设备Ultima IV型变温全自动组合粉末多晶X射线衍射仪。

(以下为参考内容)X衍射仪由X射线发生器、测角仪、记录仪等几部分组成。

图1热电子密封式X射线管的示意图图1就是目前常用的热电子密封式X射线管的示意图。

阴极由钨丝绕成螺线形,工作时通电至白热状态。

由于阴阳极间有几十千伏的电压,故热电子以高速撞击阳极靶面。

为防止灯丝氧化并保证电子流稳定,管内抽成1、33×10-9~1、33×10-11的高真空。

为使电子束集中,在灯丝外设有聚焦罩。

阳极靶由熔点高、导热性好的铜制成,靶面上被一层纯金属。

常用的金属材料有Cr,Fe,Co,Ni,Cu,Mo,W等。

当高速电子撞击阳极靶面时,便有部分动能转化为X射线,但其中约有99%将转变为热。

为了保护阳极靶面,管子工作时需强制冷却。

为了使用流水冷却与操作者的安全,应使X射线管的阳极接地,而阴极则由高压电缆加上负高压。

x射线管有相当厚的金属管套,使X射线只能从窗口射出。

窗口由吸收系数较低的Be片制成。

结构分析用X射线管通常有四个对称的窗口,靶面上被电子袭击的范围称为焦点,它就是发射X射线的源泉。

用螺线形灯丝时,焦点的形状为长方形(面积常为1mm ×10mm),此称为实际焦点。

窗口位置的设计,使得射出的X射线与靶面成60角(图2),从长方形的短边上的窗口所瞧到的焦点为1mm2正方形,称点焦点,在长边方向瞧则得到线焦点。

一般的照相多采用点焦点,而线焦点则多用在衍射仪上。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验一 X射线衍射技术及物相分析一、实验目的与要求1.学习了解X射线衍射仪的结构和工作原理;2.掌握X射线衍射物相定性分析的方法和步骤;3.给定实验样品,设计实验方案,做出正确分析鉴定结果。

二、实验仪器本实验使用的仪器是Rigaku UltimaⅣX射线衍射仪。

主要由冷却循环水系统、X射线衍射仪和计算机控制处理系统三部分组成。

X射线衍射仪主要由X射线发生器即X射线管、测角仪、X射线探测器等构成。

1.X射线管X射线管主要分密闭式和可拆卸式两种。

广泛使用的是密闭式,由阴极灯丝、阳极、聚焦罩等组成,功率大部分在1~2千瓦。

可拆卸式X射线管又称旋转阳极靶,其功率比密闭式大许多倍,一般为12~60千瓦。

常用的X射线靶材有W、Ag、Mo、Ni、Co、Fe、Cr、Cu等。

X射线管线焦点为1×10平方毫米,取出角为3~6度。

此X射线管为密闭式,功率为2千瓦。

X射线靶材为Cu。

选择阳极靶的基本要求:尽可能避免靶材产生的特征X射线激发样品的荧光辐射,以降低衍射花样的背底,使图样清晰。

2.测角仪测角仪是粉末X射线衍射仪的核心部件,主要由索拉光阑、发散狭缝、接收狭缝、防散射狭缝、样品座及闪烁探测器等组成。

(1)衍射仪一般利用线焦点作为X射线源S。

如果采用焦斑尺寸为1×10平方毫米的常规X射线管,出射角6°时,实际有效焦宽为0.1毫米,成为0.1×10平方毫米的线状X射线源。

(2)从S发射的X射线,其水平方向的发散角被第一个狭缝限制之后,照射试样。

这个狭缝称为发散狭缝(DS),生产厂供给1/6°、1/2°、1°、2°、4°的发散狭缝和测角仪调整用0.05毫米宽的狭缝。

(3)从试样上衍射的X射线束,在F处聚焦,放在这个位置的第二个狭缝,称为接收狭缝(RS).生产厂供给0.15毫米、0.3毫米、0.6毫米宽的接收狭缝。

(4)第三个狭缝是防止空气散射等非试样散射X射线进入计数管,称为防散射狭缝(SS)。

SS和DS配对,生产厂供给与发散狭缝的发射角相同的防散射狭缝。

(5)S1、S2称为索拉狭缝,是由一组等间距相互平行的薄金属片组成,它限制入射X射线和衍射线的垂直方向发散。

索拉狭缝装在叫做索拉狭缝盒的框架里。

这个框架兼作其他狭缝插座用,即插入DS,RS和SS.3.X射线探测记录装置衍射仪中常用的探测器是闪烁计数器(SC),它是利用X射线能在某些固体物质(磷光体)中产生的波长在可见光范围内的荧光,这种荧光再转换为能够测量的电流。

由于输出的电流和计数器吸收的X光子能量成正比,因此可以用来测量衍射线的强度。

闪烁计数管的发光体一般是用微量铊活化的碘化钠(NaI)单晶体。

这种晶体经X射线激发后发出蓝紫色的光。

将这种微弱的光用光电倍增管来放大,发光体的蓝紫色光激发光电倍增管的光电面(光阴极)而发出光电子(一次电子),光电倍增管电极由10个左右的联极构成,由于一次电子在联极表面上激发二次电子,经联极放大后电子数目按几何级数剧增(约106倍),最后输出几个毫伏的脉冲。

三、实验原理根据晶体对X射线的衍射特征-衍射线的位置、强度及数量来鉴定结晶物质之物相的方法,就是X射线物相分析法。

每一种结晶物质都有各自独特的化学组成和晶体结构。

没有任何两种物质,它们的晶胞大小、质点种类及其在晶胞中的排列方式是完全一致的。

因此,当X射线被晶体衍射时,每一种结晶物质都有自己独特的衍射花样,它们的特征可以用各个衍射晶面间距d和衍射线的相对强度I/I0来表征。

其中晶面间距d与晶胞的形状和大小有关,相对强度则与质点的种类及其在晶胞中的位置有关。

所以任何一种结晶物质的衍射数据d和I/I0是其晶体结构的必然反映。

在材料科学工作中经常需要进行物相分析,即分析某种材料中含有哪几种结晶物质,或是某种物质以何种结晶状态存在。

根据晶体对X射线的衍射特征-衍射线的位置、强度及数量来鉴定结晶物质方法,就是X射线物相分析。

利用X射线衍射分析可确定某结晶物质属于立方、四方、六方、单斜还是斜方晶系。

由布拉格(Bragg)方程得晶体的每一个衍射峰都和一组晶面间距为d的晶面组的关系:式中,为入射线与晶面的夹角,λ为入射线的波长。

另一方面,晶体的每一条衍射线的强度I又与结构因子F模量的平方成正比:式中,I0为单位截面上入射X射线的功率;K为比例因子,与实验衍射几何条件、试样的形状、吸收性质、温度及一些物理常数有关;V为参加衍射的晶体的体积;|F|2称为结构因子,取决于晶体的结构,它是晶胞内原子坐标的函数,由它决定了衍射的强度。

可见d和|F|2都是由晶体的结构所决定的,因此每种物质都必有其特有的衍射图谱。

因而可以根据它们来鉴别结晶物质的物相。

通常利用PDF衍射卡片进行物相分析。

四、参数选择1.阳极靶的选择选择阳极靶的基本要求:尽可能避免靶材产生的特征X射线激发样品的荧光辐射,以降低衍射花样的背底,使图样清晰。

不同靶材的使用范围。

必须根据试样所含元素的种类来选择最适宜的特征X射线波长(靶)。

当X射线的波长稍短于试样成分元素的吸收限时,试样强烈地吸收X射线,并激发产生成分元素的荧光X射线,背底增高。

其结果是峰背比(信噪比)P/B低(P为峰强度,B为背底强度),衍射图谱难以分清。

X射线衍射所能测定的d值范围,取决于所使用的特征X射线的波长。

X射线衍射所需测定的d值范围大都在1nm至0.1nm之间。

为了使这一范围内的衍射峰易于分离而被检测,需要选择合适波长的特征X射线。

一般测试使用铜靶,但因X射线的波长与试样的吸收有关,可根据试样物质的种类分别选用Co、Fe,或Cr靶。

此外还可选用钼靶,这是由于钼靶的特征X射线波长较短,穿透能力强,如果希望在低角处得到高指数晶面衍射峰,或为了减少吸收的影响等,均可选用钼靶。

2.扫描范围的确定不同的测定目的,其扫描范围也不同。

当选用Cu靶进行无机化合物的相分析时,扫描范围一般为90°~2°(2θ);对于高分子,有机化合物的相分析,其扫描范围一般为60~2°;在定量分析、点阵参数测定时,一般只对欲测衍射峰扫描几度。

3.管电压和管电流的选择设定为3~5倍的靶材临界激发电压。

选择管电流时功率不能超过X射线管额定功率,较低的管电流可以延长X射线管的寿命。

经常使用的负荷(管压和管流的乘积)选为最大允许负荷的80%左右。

但是,当管压超过激发电压5倍以上时,强度的增加率将下降。

所以,在相同负荷下产生X射线时,在管压约为激发电压5倍以内时要优先考虑管压,在更高的管压下其负荷可用管流来调节。

靶元素的原子序数越大,激发电压就越高。

由于连续X射线的强度与管压的平方呈正比,特征X射线与连续X射线的强度之比,随着管压的增加接近一个常数,当管压超过激发电压的4~5倍时反而变小,所以,管压过高,信噪比P/B将降低,这是不可取得的。

具体数据见表三:衍射仪测试条件参数选择。

4.发散狭缝的选择(DS)(DS)决定了X射线水平方向的发散角,限制试样被X射线照射的面积。

如果使用较宽的发射狭缝,X射线强度增加,但在低角处入射X射线超出试样范围,照射到边上的试样架,出现试样架物质的衍射峰或漫散峰,对定量相分析带来不利的影响。

因此有必要按测定目的选择合适的发散狭缝宽度。

提供1/6°、1/2°、1°、2°、4°的发散狭缝,通常定性物相分析选用1°发散狭缝,当低角度衍射特别重要时,可以选用1/2°(或1/6°)发散狭缝。

5.接收狭缝的选择(RS):提供0.15mm、0.3mm、0.6mm的接收狭缝,接收狭缝的大小影响衍射线的分辨率。

接收狭缝越小,分辨率越高,衍射强度越低。

通常物相定性分析时使用0.3mm的接收狭缝,精确测定可使用0.15mm的接收狭缝。

粉末样品制备块状样品制备微量样品制备薄膜样品制备6.滤波片的选择:Z滤<Z靶-(1~2)Z靶<40,Z滤=Z靶-1Z靶>40,Z滤=Z靶-27.扫描速度的确定定性分析常采用每分钟2°或4°的扫描速度,在进行点阵参数测定,微量分析或物相定量分析时,常采用每分钟1/2°或1/4°的扫描速度。

五、样品制备射分析的样品主要有粉末样品、块状样品、薄膜样品、纤维样品等。

样品不同,分析目的不同(定性分析或定量分析),则样品制备方法也不同。

1.粉末样品X射分析的粉末试样必需满足这样两个条件:晶粒要细小,试样无择优取向(取向排列混乱)。

所以,通常将试样研细后使用,可用玛瑙研钵研细。

定性分析时粒度应小于44微米(350目),定量分析时应将试样研细至10微米左右。

较方便地确定10微米粒度的方法是,用拇指和中指捏住少量粉末,并碾动,两手指间没有颗粒感觉的粒度大致为10微米。

末样品架为玻璃试样架,在玻璃板上蚀刻出试样填充区为20×18平方毫米。

玻璃样品架主要用于粉末试样较少时(约少于500立方毫米)使用。

充填时,将试样粉末-点一点地放进试样填充区,重复这种操作,使粉末试样在试样架里均匀分布并用玻璃板压平实,要求试样面与玻璃表面齐平。

如果试样的量少到不能充分填满试样填充区,可在玻璃试样架凹槽里先滴一薄层用醋酸戊酯稀释的火棉胶溶液,然后将粉末试样撒在上面,待干燥后测试。

2.块状样品先将块状样品表面研磨抛光,大小不超过20×18平方毫米,然后用橡皮泥将样品粘在铝样品支架上,要求样品表面与铝样品支架表面平齐。

3.微量样品品放入玛瑙研钵中将其研细,然后将研细的样品放在单晶硅样品支架上(切割单晶硅样品支架时使其表面不满足衍射条件),滴数滴无水乙醇使微量样品在单晶硅片上分散均匀,待乙醇完全挥发后即可测试。

4.薄膜样品制备将薄膜样品剪成合适大小,用胶带纸粘在玻璃样品支架上即可。

六、样品测试1. 首先打开冷却循环水系统电源;2. 15min后开启衍射仪总电源,将制备好的试样插入衍射仪样品台;3. 打开计算机,当计算机与X射线衍射仪联机完成后,点击XG operation,启动X射线衍射仪。

将管电压、管电流逐步由默认值20kV、2mA升至40kV、20mA。

关闭XG operation。

4. 点击Standard Measurement,设置参数;(1) 设置存盘路径、文件名;(2) 扫描范围的确定;u靶进行无机化合物的相分析时,扫描范围一般为90°~2°(2θ);对于高分子、有机化合物的相分析,其扫描范围一般为60°~2°。

本实验为1080;(3) 扫描速度的确定;定性分析常采用每分钟2°或4°的扫描速度,在进行点阵参数测定、微量分析或物相定量分析时,常采用每分钟1/2°或1/4°的扫描速度。

相关文档
最新文档