不等式知识点总结

合集下载

不等式知识点详解

不等式知识点详解

不等式知识点详解不等式是数学中的一种重要的表示关系的方式,它利用不等号(大于号、小于号、大于等于号、小于等于号等)来表示数之间的大小关系。

不等式在数学中的运用广泛,特别在代数、几何、经济学等领域中起到了重要的作用。

下面将详细介绍一些有关不等式的基本知识点。

一、不等式的基本形式1. 一元一次不等式:形如ax+b>0(或<0)、ax+b≥0(或≤0)的不等式,其中a、b为已知的实数,x为未知数。

2. 一元二次不等式:形如ax^2+bx+c>0(或<0)、ax^2+bx+c≥0(或≤0)的不等式,其中a、b、c为已知的实数,x为未知数。

3.绝对值不等式:形如,f(x),>g(x)(或,f(x),<g(x),f(x),≥g(x),f(x),≤g(x))的不等式,其中f(x)和g(x)均为含有x的函数。

4.分式不等式:形如f(x)/g(x)>0(或<0、≥0、≤0)的不等式,其中f(x)和g(x)均为含有x的函数。

二、不等式的性质1.基本性质:不等式在数轴上表示一组数,一般情况下是一个区间或它的余区间。

对于不等式来说,如果它的一个解是真解,则它关于这个解的两边均成立。

2.四则运算性质:对于不等式,可以进行加减乘除等四则运算,但需要注意乘除以负数时不等号的方向要翻转。

3.取绝对值性质:对于不等式中的绝对值,可以将其加上取非的表示方式,即,a,>b等价于a>b或a<-b。

4.平方性质:对于一元不等式中的平方项,当平方项为正时,等号成立时解可能为空集;当平方项为负时,等号成立时解为全集;当平方项与常数同号时,等号成立时解由其他项决定。

三、不等式的求解方法1.绝对值不等式的求解方法:-对于,f(x),>g(x)的不等式,可以考虑f(x)>g(x)和f(x)<-g(x)两个不等式,然后求解得出解集。

-对于,f(x),<g(x)的不等式,可以考虑-f(x)<g(x)和f(x)<g(x)两个不等式,然后求解得出解集。

高中不等式全套知识点总结

高中不等式全套知识点总结

高中不等式全套知识点总结一、不等式的基本概念1. 不等式定义不等式是指两个数量在大小上的关系,包含大于、小于、大于等于、小于等于四种关系。

一般用符号“>”表示大于,“<”表示小于,“≥”表示大于等于,“≤”表示小于等于。

2. 不等式的解不等式的解是指满足不等式关系的所有实数集合,解集可以是一个区间、一个集合或者一个无穷集合。

3. 不等式的性质(1)两个不等式如果左右两边分别相等,那么其关系也相等;(2)两个不等式如果相互交换左右两边,那么关系会相反;(3)不等式两边同时加或减同一个数,不等式关系不变;(4)不等式两边同时乘或除同一个正数,不等式关系不变;(5)不等式两边同时乘或除同一个负数,不等式关系反转。

二、一元一次不等式1. 线性不等式线性不等式的一般形式为 ax+b>c 或者ax+b≥c,其中a≠0。

2. 一次不等式的解法(1)基本不等式直接解法:按照不等式的性质逐步解题;(2)图像法:将不等式转化为直线或者直线段的图像,然后通过图像解题;(3)分情况讨论法:根据不等式的取值范围分情况进行讨论,再分别求解。

3. 一次不等式的应用(1)生活中常见的线性不等式问题,比如买苹果不超过20元;(2)工程建设中的线性不等式问题,比如某公式里的参数要求取值范围。

三、一元二次不等式1. 二次不等式定义二次不等式的一般形式为 ax²+bx+c>0 或者ax²+bx+c≥0,其中a≠0。

2. 一元二次不等式解法(1)解法一:配方法、图像法;(2)解法二:利用一元二次不等式的图像特点;3. 一元二次不等式的应用(1)生活中常见的二次不等式问题,比如某项业务的收入和支出之间的关系;(2)工程建设中的二次不等式问题,比如求最大值、最小值。

四、多项式不等式1. 多项式不等式的定义多项式不等式是指由多项式构成的不等式,一般形式为 f(x)>0 或者f(x)≥0。

2. 多项式不等式的解法(1)概念法:直接按照多项式不等式的定义和性质进行解题;(2)函数法:将多项式在坐标系中的图像出发,进行解题。

高考不等式知识点总结

高考不等式知识点总结

高考不等式知识点总结高考数学中不等式是一个非常重要的知识点,占据着较大的比重。

下面是对高考数学中不等式知识点的完整总结:一、基本概念和性质1.不等关系:对于实数a和b,如果a=b,则称a等于b;如果a≠b,则称a不等于b。

当a不等于b时,可以断定a大于b(记作a>b),或者a小于b(记作a<b)。

2.不等式:不等式是由不等关系得到的等式,包括大于等于不等式(a≥b)和小于等于不等式(a≤b)。

3.基本性质:(1)若a>b且b>c,则a>c;(2) 若a>b且c>0,则ac>bc;(3) 若a>b且c<0,则ac<bc;(4)若a>b且c≥0,则a+c>b+c;(5)若a>b且c≤0,则a+c>b+c。

4.解不等式:与解方程类似,解不等式是指寻找满足不等式的解的过程。

5.不等式的性质:对于不等式两边同时加减一个相同的数,不等号方向不变;对于不等式两边同时乘除一个同号的数,不等号方向不变;对于不等式两边同时乘除一个异号的数,不等号方向改变。

二、一元一次不等式1.解一元一次不等式:求解一元一次不等式的关键是确定x的取值范围。

在解过程中,可以通过加减法、乘除法保持不等式不变。

2.不等式组:由多个不等式组成的方程组,称为不等式组。

求解不等式组的关键是确定每个不等式的集合和并集。

三、一元二次不等式1.解一元二次不等式:求解一元二次不等式的关键是确定不等式的根及开口方向。

可以根据系数的正负、零点的位置和变号法等来确定解的范围。

2.二次函数与一元二次不等式:通过对一元二次不等式的解法,可以进一步理解和应用二次函数的性质。

四、绝对值不等式1.绝对值不等式的性质:对于绝对值不等式,可以利用绝对值的性质将其拆分为多个实数的不等式。

2.解绝对值不等式的关键是分情况讨论。

将绝对值不等式中的绝对值拆分出来,分别讨论绝对值内外的情况,从而得到解的范围。

不等式知识点大全

不等式知识点大全

不等式知识点大全一、不等式的基本概念:1.不等式的定义:不等式是一个包含不等号(>,<,≥,≤)的数学语句。

2.不等式的解集:解集是满足不等式的所有实数的集合。

3.不等式的求解方法:解不等式的方法主要有代入法、分析法、图像法和区间法等。

二、一元一次不等式:1.一元一次不等式的定义:一元一次不等式是指只含有一个未知数的一次函数与一个实数的大小关系。

2.一元一次不等式的解集:一元一次不等式的解集可以用一个开区间或闭区间表示。

三、二次不等式:1.二次不等式的定义:二次不等式是指含有一个未知数的二次函数与一个实数的大小关系。

2.二次不等式的解集:二次不等式的解集可以用一个开区间、闭区间、半开半闭区间或不等式组表示。

四、绝对值不等式:1.绝对值不等式的定义:绝对值不等式是指含有绝对值符号的不等式。

2.绝对值不等式的解集:绝对值不等式的解集可以用一个开区间、闭区间、半开半闭区间或不等式组表示。

五、分式不等式:1.分式不等式的定义:分式不等式是指含有一个未知数的分式与一个实数的大小关系。

2.分式不等式的解集:分式不等式的解集可以用一个开区间、闭区间、半开半闭区间或不等式组表示。

六、三角不等式:1.三角不等式的定义:三角不等式是指三角函数与一个实数之间的大小关系。

2.三角不等式的解集:三角不等式的解集可以用一个开区间、闭区间、半开半闭区间或不等式组表示。

七、复合不等式:1.复合不等式的定义:复合不等式是由两个或多个不等式通过与或或连接构成的不等式。

2.复合不等式的解集:复合不等式的解集是满足所有不等式的实数的交集或并集。

八、常用的不等式:1.平均不等式:包括算术平均不等式、几何平均不等式、加权平均不等式等。

2.布尔不等式:包括与或非不等式和限制条件不等式等。

3.等价不等式:等式两边取绝对值后变为不等式。

4.单调性不等式:利用函数单调性性质证明不等式。

5.导数不等式:利用函数的导数性质证明不等式。

6.积分不等式:利用积分性质及定积分的性质来推导不等式。

不等式知识点总结

不等式知识点总结

不等式知识点总结不等式是数学中的一个重要概念,它在解决各种数学问题和实际生活中的优化问题中都有着广泛的应用。

下面我们来对不等式的相关知识点进行一个全面的总结。

一、不等式的定义用不等号(大于>、小于<、大于等于≥、小于等于≤)连接两个数或代数表达式的式子,叫做不等式。

例如:3x + 2 > 5 ,y 1 ≤ 4 等都是不等式。

二、不等式的基本性质1、对称性:如果 a > b ,那么 b < a ;如果 a < b ,那么 b > a 。

例如:若 5 > 3 ,则 3 < 5 。

2、传递性:如果 a > b 且 b > c ,那么 a > c ;如果 a < b 且 b< c ,那么 a < c 。

比如:已知 7 > 5 ,5 > 3 ,则 7 > 3 ;若 2 < 4 ,4 < 6 ,则 2< 6 。

3、加法性质:如果 a > b ,那么 a + c > b + c ;如果 a < b ,那么 a + c < b + c 。

例如:因为 8 > 5 ,所以 8 + 2 > 5 + 2 ,即 10 > 7 。

4、乘法性质:如果 a > b 且 c > 0 ,那么 ac > bc ;如果 a < b 且 c > 0 ,那么ac < bc 。

如果 a > b 且 c < 0 ,那么 ac < bc ;如果 a < b 且 c < 0 ,那么ac > bc 。

例如:若 3 > 1 ,且 2 > 0 ,则 3×2 > 1×2 ,即 6 > 2 ;若 3 > 1 ,但-2 < 0 ,则 3×(-2) < 1×(-2) ,即-6 <-2 。

三、一元一次不等式1、定义:含有一个未知数,且未知数的次数是 1 的不等式叫做一元一次不等式。

例如:2x 5 > 0 。

2、解法:去分母(若有分母)。

去括号。

移项:将含有未知数的项移到一边,常数项移到另一边。

合并同类项。

系数化为 1 :注意当系数为负数时,不等号方向要改变。

高中不等式知识点总结

高中不等式知识点总结

高中不等式知识点总结摘要:一、不等式的基本概念1.不等式的定义2.不等式的符号表示二、不等式的基本性质1.对称性2.传递性3.可加性4.乘法原则三、常见不等式的解法1.作差比较法2.作商比较法3.韦达定理四、实际应用1.生活中的应用2.数学中的应用正文:一、不等式的基本概念不等式是数学中的一种基本概念,用于表示两个数的大小关系。

不等式的定义很简单,就是一个比较式,用符号">"或"<"来表示大小关系。

例如,x > y表示x大于y,x < y表示x小于y。

二、不等式的基本性质不等式有许多基本性质,这里我们介绍四个常见的性质。

1.对称性:如果x > y,则y < x。

这就是说,不等式两边同时改变符号,不等式的方向不会改变。

2.传递性:如果x > y,且y > z,则x > z。

这就是说,如果一个数大于另一个数,而另一个数又大于第三个数,那么第一个数一定大于第三个数。

3.可加性:如果x > y,且a > 0,则x + a > y + a。

这就是说,如果一个数大于另一个数,而加上的一个正数,那么第一个数一定大于第二个数。

4.乘法原则:如果x > y,且m > 0,则x * m > y * m。

这就是说,如果一个数大于另一个数,而乘上的一个正数,那么第一个数一定大于第二个数。

三、常见不等式的解法有许多方法可以解不等式,这里我们介绍三种常用的方法。

1.作差比较法:如果x > y,则x - y > 0。

我们可以通过作差来比较两个数的大小。

2.作商比较法:如果x > y,则x / y > 1。

我们可以通过作商来比较两个数的大小。

3.韦达定理:如果x > y,则(x + y) / 2 > (x - y) / 2。

我们可以通过韦达定理来比较两个数的大小。

初中数学不等式知识点大全

初中数学不等式知识点大全

初中数学不等式知识点大全一、不等式的基本概念1.不等式的定义:不等式是数学中表示两个数的大小关系的一种数学符号表示法。

2.不等式符号的意义:"<"表示小于、">"表示大于、"<="表示小于等于、">="表示大于等于。

3.一元一次不等式、二元一次不等式和多变量不等式的定义和性质。

4.不等式的解集:表示满足不等式的全部解的集合,可以用数轴表示。

二、不等式的性质1.不等式的传递性:如果a<b,b<c,则a<c。

2.不等式两边加减同一个数,不影响不等关系的大小。

3.不等式两边乘除同一个正数,不影响不等关系的大小。

4.不等式两边乘除同一个负数,不等关系会发生改变。

5.不等式两边取倒数时,要注意变号问题。

6.乘以不等式时,要考虑所乘以的数的正负情况。

三、不等式的解法1.第一类不等式(一元一次不等式)的解法:根据不等式的性质,将不等式中的未知数移到一边,得到关于未知数的集合表示的解,进而求解交集、并集或全集。

2.第二类不等式(一元二次不等式)的解法:将不等式变形为一元二次函数的图像问题,通过观察函数图像,确定不等式的解集。

3.系统不等式的解法:将多个不等式作为一个整体进行考虑,得到多个不等式的交集或并集形式,再求解。

四、一些常见的数学不等式1.加减法不等式:例如2x+3>7,根据性质将未知数移到一边,得到解集x>22.乘除法不等式:例如3x/5>=6,根据性质将未知数移到一边,得到解集x>=10。

3.绝对值不等式:例如,3x+5,<7,根据绝对值的性质进行分段讨论,得到解集-4<x<24.开方不等式:例如√(x-1)>3,根据开方的定义和性质进行讨论,得到解集x>10。

5.取整不等式:例如[x]>2,根据整数函数的定义和性质进行讨论,得到解集x>3五、不等式的应用1.不等式在图像问题中的应用:例如求一元一次不等式的解集时,可以将不等式表示的区间在数轴上进行标注,直观地表示解集。

完整版)高中数学不等式知识点总结

完整版)高中数学不等式知识点总结

完整版)高中数学不等式知识点总结1、不等式的基本性质不等式有以下基本性质:①对称性:a>b等价于b<a。

②传递性:a>b。

b>c则a>c。

③可加性:a>b等价于a+c>b+c,其中c为任意实数。

同向可加性:a>b,c>d,则a+c>b+d。

异向可减性:a>b,cb-d。

④可积性:a>b,c>0则ac>bc,a>b,c<0则ac<bc。

⑤同向正数可乘性:a>b>0,c>d>0则ac>bd。

异向正数可除性:a>b>0,0bc。

a>b>0,则a^n>b^n,其中n为正整数且n>1.⑦开方法则:a>b>0,则√a>√b。

⑧倒数法则:a>b>0,则1/a<1/b。

2、几个重要不等式以下是几个重要的不等式:a/b+b/a>=2,当且仅当a=b时取等号。

a^2+b^2>=2ab,当且仅当a=b时取等号。

a+b/2>=√ab,当且仅当a=b时取等号。

a+b+c/3>=∛abc,当且仅当a=b=c时取等号。

a^2+b^2+c^2>=ab+bc+ca,当且仅当a=b=c时取等号。

a+b+c>=3√abc,当且仅当a=b=c时取等号。

a/b+b/c+c/a>=3,当且仅当a=b=c时取等号。

a-b|<=|a-c|+|c-b|,对任意实数a,b,c成立。

3、几个著名不等式以下是几个著名的不等式:a-b|<=√(a^2+b^2),对任意实数a,b成立。

a+b)/2<=√(a^2+b^2),对任意实数a,b成立。

a+b/2<=√(a^2+1)√(b^2+1),对任意实数a,b成立。

a+b)/2<=√(a^2-ab+b^2),对任意实数a,b成立。

a+b)/2>=√ab,对任意正实数a,b成立。

不等式知识点总结

不等式知识点总结

不等式知识点总结一、不等式的基本概念。

1. 不等式的定义。

- 用不等号(>、≥、<、≤、≠)表示不等关系的式子叫做不等式。

例如:3x + 2>5,x - 1≤slant2x等。

2. 不等式的解与解集。

- 不等式的解:使不等式成立的未知数的值叫做不等式的解。

例如对于不等式x+1 > 0,x = 1是它的一个解,因为1 + 1>0成立。

- 不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集。

例如不等式x - 2>0的解集是x>2,这表示所有大于2的数都是这个不等式的解。

3. 解不等式。

- 求不等式解集的过程叫做解不等式。

例如解不等式2x+3 < 7,通过移项可得2x<7 - 3,即2x<4,再两边同时除以2得到x < 2,这个过程就是解不等式。

二、不等式的基本性质。

1. 性质1(对称性)- 如果a>b,那么b < a;如果b < a,那么a>b。

例如5>3,那么3 < 5。

2. 性质2(传递性)- 如果a>b,b>c,那么a>c。

例如7>5,5>3,那么7>3。

3. 性质3(加法法则)- 如果a>b,那么a + c>b + c。

例如3>1,那么3+2>1 + 2,即5>3。

- 推论:如果a>b,c>d,那么a + c>b + d。

例如4>2,3>1,那么4 + 3>2+1,即7>3。

4. 性质4(乘法法则)- 如果a>b,c>0,那么ac>bc;如果a>b,c < 0,那么ac < bc。

例如2>1,当c = 3时,2×3>1×3,即6>3;当c=-1时,2×(-1)<1×(-1),即-2 < - 1。

高中不等式知识点归纳总结

高中不等式知识点归纳总结

高中不等式知识点总结1. 不等式的定义和基本性质不等式是数学中用来表示大小关系的符号。

一般地,设a、b是实数,可以有以下四种不等式关系:•$ a < b $ :表示a小于b,即a严格小于b;•$ a > b $ :表示a大于b,即a严格大于b;•$ a b $ :表示a小于等于b,即a小于或等于b;•$ a b $ :表示a大于等于b,即a大于或等于b。

基本性质:•对于不等式的加减运算:若a小于等于b,则a+c小于等于b+c,a-c小于等于b-c(c为实数);•对于不等式的乘法运算:若a小于等于b且c大于0,则ac小于等于bc,若c小于0,则ac大于等于bc;•对于不等式的除法运算:若a小于等于b且c大于0,则a/c小于等于b/c,若c小于0,则a/c大于等于b/c(c不等于0)。

2. 一元一次不等式2.1 不等式的解集表示一元一次不等式的解集可以用数轴上的区间表示。

对于形如ax+b>0或ax+b<0的一元一次不等式,可以先求出方程的零点x=-b/a,再根据a的正负判断不等式的解集:•当a>0时,不等式的解集为x<−b/a或x>−b/a;•当a<0时,不等式的解集为x>−b/a或x<−b/a。

2.2 一元一次不等式的性质•当且仅当不等式两边同时加上(或减去)同一个正数时,不等号的方向不变;•当且仅当不等式两边同时乘以(或除以)同一个正数时,不等号的方向不变;•当且仅当不等式两边同时乘以(或除以)同一个负数时,不等号的方向改变。

3.1 不等式的解集表示一元二次不等式的解集可以用数轴上的区间表示。

对于形如ax2+bx+c>0或ax2+bx+c<0的一元二次不等式,可以先求出抛物线的顶点和判别式D的值,再根据D的正负判断不等式的解集。

•当a>0时,不等式的解集为抛物线顶点的左右两侧;•当a<0时,不等式的解集为抛物线顶点的外侧。

不等式知识点

不等式知识点

不等式知识点不等式,作为高中数学中一项重要的内容,贯穿着整个数学学习的过程。

它不仅在数学中有重要的地位,也在实际生活中应用广泛。

了解不等式的各种性质和解题方法,不仅可以帮助我们在数学考试中取得好成绩,更能在解决实际问题时发挥巨大的作用。

1. 不等式的基本概念不等式是用不等号连接的两个数或含有变量的代数式。

其中,大于号表示大于关系,小于号表示小于关系。

例如:3 > 2,x + 1 < 5等。

在不等式中,大于号和小于号都可以加上等于号,分别表示大于等于和小于等于的关系。

2. 不等式的性质(1)等价不等式性质:如果两个不等式左右两边互相相等,那么两个不等式的解集也相等。

例如:若a + b < c,则a + b + d < c + d。

(2)加减法性质:在不等式两边同时加或减相同的数,不等关系不变。

例如:若a < b,则a + c < b + c。

(3)乘除法性质:当不等号的一边为正数,另一边为负数时,改变不等关系。

例如:若a < b,则-a > -b。

但需注意,当两边同时乘或除以负数时,不等关系反转。

例如:若a < b,则-a > -b;若a > 0,则2a < a。

(4)倒置性质:如果不等式两边互相交换位置,不等关系也要交换。

例如:若a < b,则b > a。

3. 不等式的解法(1)图像法:将不等式等号两边的代数式分别画成函数图像,在坐标系中找出它们的共同区域,即为不等式的解集。

(2)试值法:根据不等式的性质,用一组特定的数值代替不等式中的变量,判断不等式是否成立。

(3)整理法:通过移动项的位置,使不等式看起来更简单。

例如:对于不等式a + b > c,可以移项为a + b - c > 0,更容易处理。

(4)分析法:对不等式进行逐步分析,通过推理和推导,得到不等式的解集。

4. 不等式在实际问题中的应用不等式在现实生活中有着广泛的应用。

高一数学不等式知识点总结及例题

高一数学不等式知识点总结及例题

高一数学不等式知识点总结及例题一、不等式知识点总结。

(一)不等式的基本性质。

1. 对称性:如果a > b,那么b < a;如果b < a,那么a > b。

2. 传递性:如果a > b,b > c,那么a > c。

3. 加法单调性:如果a > b,那么a + c>b + c。

- 推论1:移项法则,如果a + b>c,那么a>c - b。

- 推论2:同向不等式可加性,如果a > b,c > d,那么a + c>b + d。

4. 乘法单调性:如果a > b,c>0,那么ac > bc;如果a > b,c < 0,那么ac < bc。

- 推论1:同向正数不等式可乘性,如果a > b>0,c > d>0,那么ac > bd。

- 推论2:乘方法则,如果a > b>0,那么a^n>b^n(n∈ N,n≥slant1)。

- 推论3:开方法则,如果a > b>0,那么sqrt[n]{a}>sqrt[n]{b}(n∈N,n≥slant2)。

(二)一元二次不等式及其解法。

1. 一元二次不等式的一般形式。

- ax^2+bx + c>0(a≠0)或ax^2+bx + c < 0(a≠0)。

2. 一元二次函数y = ax^2+bx + c(a≠0)的图象与一元二次不等式的解集关系。

- 当a>0时,Δ=b^2-4ac:- 若Δ>0,方程ax^2+bx + c = 0有两个不同的实根x_1,x_2(x_1,则不等式ax^2+bx + c>0的解集为{xx < x_1或x>x_2},不等式ax^2+bx + c < 0的解集为{xx_1。

- 若Δ = 0,方程ax^2+bx + c = 0有两个相同的实根x_0=-(b)/(2a),则不等式ax^2+bx + c>0的解集为{xx≠-(b)/(2a)},不等式ax^2+bx + c < 0的解集为varnothing。

不等式知识点总结

不等式知识点总结

不等式知识点总结不等式知识点总结上学的时候,相信大家一定都接触过知识点吧!知识点是传递信息的基本单位,知识点对提高学习导航具有重要的作用。

你知道哪些知识点是真正对我们有帮助的吗?以下是小编收集整理的不等式知识点总结,仅供参考,欢迎大家阅读。

不等式知识点总结篇1不等式:①用符号〉,=,〈号连接的式子叫不等式。

②不等式的两边都加上或减去同一个整式,不等号的方向不变。

③不等式的两边都乘以或者除以一个正数,不等号方向不变。

④不等式的两边都乘以或除以同一个负数,不等号方向相反。

不等式的解集:①能使不等式成立的未知数的值,叫做不等式的解。

②一个含有未知数的不等式的所有解,组成这个不等式的解集。

③求不等式解集的过程叫做解不等式。

一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的最高次数是1的不等式叫一元一次不等式。

一元一次不等式组:①关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。

②一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。

③求不等式组解集的过程,叫做解不等式组。

一元一次不等式的符号方向:在一元一次不等式中,不像等式那样,等号是不变的,他是随着你加或乘的运算改变。

在不等式中,如果加上同一个数(或加上一个正数),不等式符号不改向;例如:AB,A+CB+C在不等式中,如果减去同一个数(或加上一个负数),不等式符号不改向;例如:AB,A-CB-C在不等式中,如果乘以同一个正数,不等号不改向;例如:AB,AxCBxC(C0)在不等式中,如果乘以同一个负数,不等号改向;例如:AB,AxC 如果不等式乘以0,那么不等号改为等号所以在题目中,要求出乘以的数,那么就要看看题中是否出现一元一次不等式,如果出现了,那么不等式乘以的数就不等为0,否则不等式不成立。

不等式知识点总结篇21.不等式性质比较大小方法:(1)作差比较法(2)作商比较法不等式的基本性质①对称性:a>bb>a②传递性:a>b,b>ca>c③可加性:a>ba+c>b+c④可积性:a>b,c>0ac>bc⑤加法法则:a>b,c>da+c>b+d⑥乘法法则:a>b>0,c>d>0ac>bd⑦乘方法则:a>b>0,an>bn(n∈N)⑧开方法则:a>b>02.算术平均数与几何平均数定理:(1)如果a、b∈R,那么a2+b2≥2ab(当且仅当a=b时等号)(2)如果a、b∈R+,那么(当且仅当a=b时等号)如果为实数,则重要结论(1)如果积xy是定值P,那么当x=y时,和x+y有最小值2;(2)如果和x+y是定值S,那么当x=y时,和xy有最大值S2/4。

高中不等式知识点大全总结

高中不等式知识点大全总结

高中不等式知识点大全总结一、基本不等式性质1. 两个数的比较:(1)当 a > b 时,a-b>0;(2)当 a < b 时,a-b<0;(3)当 a = b 时,a-b=0。

2. 不等式的四则运算:不等式有“加减乘除”运算律,即不等式两边都同时加减(乘除)同一个数,不等式依然成立。

3. 绝对值不等式:对于任何实数 a 和正实数 b,有|a| > b 的不等式解集是 a > b 或 a < -b。

4. 不等式的取反:若不等式 a > b 成立,则其取反 a < b 也成立;若不等式 a > b 不成立,则其取反 a < b 亦成立。

5. 不等式的合并:若不等式 a > b 和 c > d 同时成立,则其合并为 a + c > b + d 成立。

6. 不等式的分拆:若不等式 a + b > c + d 成立,则其分拆为 a > c - b + d 或 b > d - a + c 成立。

二、一元一次不等式一元一次不等式是指只含有一个未知数的一次函数不等式,通常具有形式 ax+b > 0 或ax+b < 0。

1. 解不等式的方法一元一次不等式的解法包括两种:一是化简法,即通过使用运算律化简不等式,然后求出不等式的解集;二是图解法,即将不等式用图形表示出来,然后求出不等式的解集。

2. 一元一次不等式组一元一次不等式组是由若干个一元一次不等式组成的系统。

解一元一次不等式组的方法同样包括化简法和图解法。

三、一元二次不等式一元二次不等式是指只含有一个未知数的二次函数不等式,通常具有形式 ax^2+bx+c > 0 或 ax^2+bx+c < 0。

1. 一元二次不等式的解法一元二次不等式的解法通常使用折线法和区间法。

折线法是利用二次函数的拐点和零点来求解不等式的解集;区间法是将一元二次不等式用图像表示出来,然后找出其零点和开口方向,从而求出解集。

完整版)不等式知识点归纳大全

完整版)不等式知识点归纳大全

完整版)不等式知识点归纳大全不等式》知识点总结一、解不等式1.解不等式时,最终需要用集合的形式表示解集。

不等式解集的端点值通常是不等式对应方程的根或不等式有意义范围的端点值。

2.解分式不等式f(x)。

a(a≠0)的一般思路是移项通分,分子分母分解因式,使x的系数变为正值,标根及奇穿过偶弹回。

3.含有两个绝对值的不等式需要分类讨论、平方转化或换元转化去绝对值。

4.解含参不等式时,常常需要分类等价转化。

按参数讨论时,最后需按参数取值分别说明其解集;按未知数讨论时,最后需要求并集。

二、利用重要不等式求函数的最值1.在利用重要不等式a+b≥2ab以及变式ab≤(a+b)²求函数的最值时,需要注意a、b∈R⁺(或a、b非负),且“等号成立”时的条件是积ab或和a+b其中之一应是定值(一正二定三等四同时)。

2.常用的不等式有:a、2(a²+b²+c²)≥ab+bc+ca(当且仅当a=b=c时,取等号);b、a+b+c≥√(3(ab+bc+ca))(当且仅当a=b=c时,取等号)。

三、含立方的几个重要不等式1.对于正数a、b、c,有a³+b³+c³≥3abc(当且仅当a=b=c 时,取等号)。

2.对于正数a、b、c,有(a+b+c)³≥27abc(当且仅当a=b=c 时,取等号)。

四、最值定理1.积定和最小:当x、y>0,且x+y≥2xy时,若积xy=P (定值),则当x=y时和x+y有最小值2P。

2.和定积最大:当x、y>0,且x+y≥2xy时,若和x+y=S (定值),则当x=y时积xy有最大值S²/4.3.已知a、b、x、y∈R,且ax+by=1,有x/y+y/x的最小值为(a+b+√(a²+b²))/2.4.对于已知x>0、y>0、x+2y+2xy=8的等式,x+2y的最小值为4,最大值为8.注:删除了一些明显有问题的段落,并对每段话进行了小幅度的改写。

不等式知识点总结

不等式知识点总结

不等式知识点总结不等式(Inequality)是数学中一个重要的概念,它描述的是两个数或两个式子之间大小关系的一种表示方式。

不等式可以用来解决许多实际问题,例如优化问题、利润问题、经济政策问题等。

下面将对不等式的基本概念、性质、解法以及应用进行总结。

一、不等式的基本概念不等式表示的是数或式之间的大小关系,它与等式相似,但不同的是不等式的结果为真时称为“成立”,结果为假时称为“不成立”。

不等式的基本形式有大于(>)、小于(<)、大于等于(≥)、小于等于(≤)四种形式。

二、不等式的性质1.相等性质:若两个不等式中的量相等,则两个不等式具有相同的大小关系。

2.传递性质:若a>b且b>c,则a>c。

也就是说,如果a大于b,而b大于c,则a大于c。

3.加减性质:若a>b,则a+c>b+c;若a>b,则a-c>b-c。

也就是说,如果a大于b,则a加上(或减去)相同的数c后仍然大于(或小于)b。

4. 正数性质:若 a>b 且 c>0,则 ac>bc。

也就是说,如果 a 大于b,而 c 大于 0,则 a 乘以 c 后仍然大于 b。

三、不等式的解法不等式的解法可以根据不等式的类型和条件的不同而有所不同,下面介绍几种常见的解法方法。

1.图解法:对于一元一次不等式,我们可以将其转化为坐标系中的图形表示,通过观察图形的位置判断不等式的解集。

例如,对于不等式x>3,我们可以在坐标系中画出一条过点(3,0)的直线,然后观察直线的右边区域即可确定不等式的解集。

2.代入法:对于一元一次不等式,我们可以根据不等式的条件逐个代入可能的解集,然后判断不等式的成立与否。

例如,对于不等式2x+1>5,我们可以依次代入x=2、x=3、x=4,然后判断不等式是否成立。

3.移项法:对于一元一次不等式,我们可以通过移项将不等式转化为等式,然后求解等式的根,再根据根的取值范围确定不等式的解集。

不等式知识点

不等式知识点

不等式知识点 一、不等式的主要性质:1)对称性:a b b a <⇔>2)传递性:c a c b b a >⇒>>,,d b c a d c b a +>+⇒>>,,bc ac c b a <⇒<>0, 3)加法法则:c b c a b a +>+⇒>;4)乘法法则:bc ac c b a >⇒>>0,;bd ac d c b a >⇒>>>>0,0. 5)倒数法则:ba ab b a 110,<⇒>> 6)乘方法则:)1*(0>∈>⇒>>n N n b a b a n n 且 7)开方法则:)1*(0>∈>⇒>>n N n b a b a n n 且注意: 1.同向不等式可以相加;异向不等式可以相减:若,a b c d >>,则a cb d +>+(若,a bcd ><,则a c b d ->-),但异向不等式不可以相加;同向不等式不可以相减;2.左右同正不等式:同向的不等式可以相乘,但不能相除;异向不等式可以相除,但不能相乘:若0,0a b c d >>>>,则a c b d >(若0,0a b c d >><<,则a b c d>); 3.左右同正不等式:两边可以同时乘方或开方:若0a b >>,则n n a b >或>易错点:多次应用不等式时,忽视不等号成立的条件2(1)(1)(1).(2).1(1)(1)(1)2:,(1)1(1)(1)2(2)422(1)2(1)(1)(1)(1)3(1)(1)(1)10(2)18.f px qx f f f p f f f p q f p q q f f f p q f f f f f f f f f ⎧⎡⎤⎣⎦⎪⎧⎪⎨⎨⎩⎪⎡⎤⎣⎦⎪⎩-≤-≤≤≤-=-+-=-=+=--+∴-=-=-++--=+-≤-≤≤≤∴≤-≤ 设=+,且24,46求的取值范围解由24,46 二.不等式大小比较的常用方法:1.作差:作差后通过分解因式、配方等手段判断差的符号得出结果; 2.作商(常用于分数指数幂的代数式); 3.分析法; 4.平方法;5.分子(或分母)有理化;6.利用函数的单调性; 7.寻找中间量或放缩法 ; 8.图象法。

基本不等式知识点

基本不等式知识点

基本不等式知识点1.不等式的性质:不等式具有与等式类似的运算性质,例如可以进行加减乘除运算,并且可以对不等式的两边同时进行相同的运算。

但需要注意的是,当不等式两边同时乘或除以负数时,不等号的方向会发生改变。

2.加法不等式:对于实数a、b和c,若a<b,则a+c<b+c。

即不等式两边同时加上相同的数,不等式的关系保持不变。

3.减法不等式:对于实数a、b和c,若a<b,则a-c<b-c。

即不等式两边同时减去相同的数,不等式的关系保持不变。

4.乘法不等式:对于实数a、b和正数c,若a<b且c>0,则a·c<b·c。

即不等式两边同时乘以正数,不等式的关系保持不变。

需要注意,当c为负数时,不等号的方向会发生改变。

5.除法不等式:对于实数a、b和正数c,若a<b且c>0,则a/c<b/c。

即不等式两边同时除以正数,不等式的关系保持不变。

需要注意,当c为负数时,不等号的方向会发生改变。

6.平方不等式:对于实数a和正实数b,若a>b,则a²>b²。

即不等式两边同时取平方,不等式的关系保持不变。

7.绝对值不等式:对于任意实数a和正实数b,若,a,<b,则-b<a<b。

即如果一个实数的绝对值小于一个正实数,则这个实数的取值范围在-b和b之间。

8.基本不等式的应用:基本不等式可以应用于各类数学问题的解决,例如求解方程组、解决最值问题等。

这些应用需要根据具体问题,结合基本不等式的性质,并运用合适的不等式进行推导。

以上是基本不等式的主要知识点。

通过掌握这些知识点,我们能够更好地理解不等式的性质,并有效地运用于解决实际问题。

在学习和应用过程中,我们可以通过大量的练习,加深对基本不等式的理解和掌握,提高解决问题的能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

不等式知识点总结1、不等式的基本性质①(对称性)a b b a >⇔> ②(传递性),a b b c a c >>⇒> ③(可加性)a b a c b c >⇔+>+(同向可加性)d b c a d c b a +>+⇒>>, (异向可减性)d b c a d c b a ->-⇒<>,④(可积性)bc ac c b a >⇒>>0, bc ac c b a <⇒<>0,⑤(同向正数可乘性)0,0a b c d ac bd >>>>⇒> (异向正数可除性)0,0a b a b c d cd>><<⇒>⑥(平方法则)0(,1)n n a b a b n N n >>⇒>∈>且 ⑦(开方法则)0,1)a b n N n >>⇒∈>且 ⑧(倒数法则)ba b a b a b a 110;110>⇒<<<⇒>> 2、几个重要不等式①()222a b ab a b R +≥∈,,(当且仅当a b =时取""=号). 变形公式:22.2a b ab +≤②(基本不等式)2a b+≥ ()a b R +∈,,(当且仅当a b =时取到等号).2.2a b ab +⎛⎫≤ ⎪⎝⎭用基本不等式求最值时(积定和最小,和定积最大),要注意满足三个条件“一正、二定、三相等”.③(三个正数的算术—几何平均不等式)3≥()a b c R +∈、、(当且仅当a b c ==时取到等号).④()222a b c ab bc ca a b R ++≥++∈,(当且仅当a b c ==时取到等号).⑤3333(0,0,0)a b c abc a b c ++≥>>>(当且仅当a b c ==时取到等号). ⑥0,2b a ab a b >+≥若则(当仅当a=b 时取等号)0,2b aab a b<+≤-若则(当仅当a=b 时取等号) ⑦ban b n a m a m b a b <++<<++<1其中(000)a b m n >>>>,,规律:小于1同加则变大,大于1同加则变小.⑧220;a x a x a x a x a >>⇔>⇔<->当时,或 22.x a x a a x a <⇔<⇔-<< ⑨绝对值三角不等式.a b a b a b -≤±≤+3、几个著名不等式①平均不等式:112a b a b --+≤≤+()a b R +∈,,(当且仅当a b =时取""=号).(即调和平均≤几何平均≤算术平均≤平方平均).变形公式:222;22a b a b ab ++⎛⎫≤≤ ⎪⎝⎭222().2a b a b ++≥ ②幂平均不等式:222212121...(...).n n a a a a a a n+++≥+++ ③二维形式的三角不等式:④二维形式的柯西不等式22222()()()(,,,).a b c d ac bd a b c d R ++≥+∈当且仅当ad bc =时,等号成立.⑤三维形式的柯西不等式:2222222123123112233()()().a a a b b b a b a b a b ++++≥++⑥一般形式的柯西不等式:2222221212(...)(...)n n a a a b b b ++++++21122(...).n n a b a b a b ≥+++⑦向量形式的柯西不等式:设,αβ是两个向量,则,αβαβ⋅≤当且仅当β是零向量,或存在实数k ,使k αβ=时,等号成立.⑧排序不等式(排序原理):设1212...,...n n a a a b b b ≤≤≤≤≤≤为两组实数.12,,...,n c c c 是12,,...,n b b b 的任一排列,则12111122......n n n n n a b a b a b a c a c a c -+++≤+++1122....n n a b a b a b ≤+++(反序和≤乱序和≤顺序和)当且仅当12...n a a a ===或12...n b b b ===时,反序和等于顺序和.⑨琴生不等式:(特例:凸函数、凹函数)若定义在某区间上的函数()f x ,对于定义域中任意两点1212,(),x x x x ≠有12121212()()()()()().2222x x f x f x x x f x f x f f ++++≤≥或则称f(x)为凸(或凹)函数.4、不等式证明的几种常用方法常用方法有:比较法(作差,作商法)、综合法、分析法;其它方法有:换元法、反证法、放缩法、构造法,函数单调性法,数学归纳法等. 常见不等式的放缩方法:①舍去或加上一些项,如22131()();242a a ++>+ ②将分子或分母放大(缩小),如211,(1)k k k <-211,(1)k k k >+==<*,1)k N k >∈>等.5、一元二次不等式的解法求一元二次不等式20(0)ax bx c ++><或2(0,40)a b ac ≠∆=->解集的步骤: 一化:化二次项前的系数为正数.二判:判断对应方程的根.三求:求对应方程的根.四画:画出对应函数的图象.五解集:根据图象写出不等式的解集. 规律:当二次项系数为正时,小于取中间,大于取两边.6、高次不等式的解法:穿根法.分解因式,把根标在数轴上,从右上方依次往下穿(奇穿偶切),结合原式不等号的方向,写出不等式的解集.7、分式不等式的解法:先移项通分标准化,则()0()()0()()()0()0()0()f x f x g x g x f x g x f x g x g x >⇔⋅>⋅≥⎧≥⇔⎨≠⎩ (<≤“或”时同理)规律:把分式不等式等价转化为整式不等式求解. 8、无理不等式的解法:转化为有理不等式求解2()0(0)()f x a a f x a ≥⎧>>⇔⎨>⎩2()0(0)()f x a a f x a≥⎧<>⇔⎨<⎩ 2()0()0()()0()0()[()]f x f x g x g x g x f x g x >⎧≥⎧⎪>⇔≥⎨⎨<⎩⎪>⎩或2()0()()0()[()]f x g x g x f x g x ≥⎧⎪⇔>⎨⎪<⎩()0()0()()f x g x f x g x ≥⎧⎪>⇔≥⎨⎪>⎩规律:把无理不等式等价转化为有理不等式,诀窍在于从“小”的一边分析求解. 9、指数不等式的解法: ⑴当1a >时,()()()()f x g x aa f x g x >⇔>⑵当01a <<时,()()()()f x g x a a f x g x >⇔<规律:根据指数函数的性质转化. 10、对数不等式的解法⑴当1a >时, ()0log ()log ()()0()()a af x f xg x g x f x g x >⎧⎪>⇔>⎨⎪>⎩⑵当01a <<时,()0log ()log ()()0.()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪<⎩规律:根据对数函数的性质转化.11、含绝对值不等式的解法:⑴定义法:(0).(0)a a a a a ≥⎧=⎨-<⎩⑵平方法:22()()()().f x g x f x g x ≤⇔≤⑶同解变形法,其同解定理有: ①(0);x a a x a a ≤⇔-≤≤≥ ②(0);x a x a x a a ≥⇔≥≤-≥或③()()()()()(()0)f x g x g x f x g x g x ≤⇔-≤≤≥ ④()()()()()()(()0)f x g x f x g x f x g x g x ≥⇔≥≤-≥或规律:关键是去掉绝对值的符号.12、含有两个(或两个以上)绝对值的不等式的解法:规律:找零点、划区间、分段讨论去绝对值、每段中取交集,最后取各段的并集. 13、含参数的不等式的解法解形如20ax bx c ++>且含参数的不等式时,要对参数进行分类讨论,分类讨论的标准有: ⑴讨论a 与0的大小;⑵讨论∆与0的大小;⑶讨论两根的大小. 14、恒成立问题⑴不等式20ax bx c ++>的解集是全体实数(或恒成立)的条件是:①当0a =时 0,0;b c ⇒=>②当0a ≠时00.a >⎧⇒⎨∆<⎩ ⑵不等式20ax bx c ++<的解集是全体实数(或恒成立)的条件是: ①当0a =时0,0;b c ⇒=<②当0a ≠时00.a <⎧⇒⎨∆<⎩⑶()f x a <恒成立max ();f x a ⇔<()f x a ≤恒成立max ();f x a ⇔≤ ⑷()f x a >恒成立min ();f x a ⇔>()f x a ≥恒成立min ().f x a ⇔≥。

相关文档
最新文档