高一下期中考试数学试卷及答案
2023-2024学年北京市北京第二外国语学院附属中学高一下学期期中考试数学试卷+答案解析
2023-2024学年北京市北京第二外国语学院附属中学高一下学期期中考试数学试卷一、单选题:本题共10小题,每小题5分,共50分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知向量且,则A.B.C.D.2.i 是虚数单位,若复数是纯虚数,则实数a 的值为()A.2B. C.D.3.已知一个圆锥和圆柱的底面半径和高分别相等,若圆锥的轴截面是等边三角形,则这个圆锥和圆柱的侧面积之比为()A.B.C.D.4.已知向量,则“”是“”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件5.在中,角的对边分别为,若,则一定是()A.正三角形B.直角三角形C.等腰或直角三角形D.等腰三角形6.如图,在正方体中,点P 是线段上的动点,下列与BP 始终异面的是()A. B.AC C.D.7.已知两条直线m ,n 和平面,那么下列命题中的真命题是()A.若,,则B.若,,则C.若,,则D.若,,则8.一船以的速度向东航行,船在点A处看到一个灯塔B在北偏东,行驶4h后,船到达点C处,看到这个灯塔在北偏东,这时船与灯塔的距离为()A. B. C. D.9.已知正方形ABCD的边长为1,点P是对角线BD上任意一点,则的取值范围为()A. B. C. D.10.如图,正方体的棱长为1,E、F分别为棱AD、BC的中点,则平面与底面ABCD所成的二面角的余弦值为()A. B. C. D.二、填空题:本题共6小题,每小题5分,共30分。
11.已知向量,满足,,,则与的夹角为__________.12.在中,,则__________13.在中,点D满足,若,则__________14.已知l,m是平面外的两条不同直线.给出下列三个论断:①;②;③以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:__________.15.如图,若正方体的棱长为1,则异面直线AC与所成的角的大小是__________;直线和底面ABCD所成的角的大小是__________.16.如图,正方体的棱长为2,线段上有两个动点E,F,且,给出下列三个结论:①三棱锥与的体积相等;②三棱锥的体积为定值;③三棱锥的高长为三棱锥的高长即点B到平面AEF的距离所有正确结论的序号有__________.三、解答题:本题共5小题,共60分。
人教版高一下学期期中考试数学试卷及答案解析(共五套)
人教版高一下学期期中考试数学试卷(一)注意事项:本试卷满分150分,考试时间120分钟,试题共22题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共8小题,每小题5分,共40分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.点C是线段AB靠近点B的三等分点,下列正确的是()A.B.C.D.2.已知复数z满足z(3+i)=3+i2020,其中i为虚数单位,则z的共轭复数的虚部为()A.B.C.D.3.如图,▱ABCD中,∠DAB=60°,AD=2AB=2,延长AB至点E,且AB=BE,则•的值为()A.﹣1 B.﹣3 C.1 D.4.设i是虚数单位,则2i+3i2+4i3+……+2020i2019的值为()A.﹣1010﹣1010i B.﹣1011﹣1010iC.﹣1011﹣1012i D.1011﹣1010i5.如图,在正方体ABCD﹣A1B1C1D1中,异面直线A1B与CD所成的角为()A.30°B.45°C.60°D.135°6.在△ABC中,角A,B,C所对的边分别为a,b,c,若(a﹣2b)cos C=c(2cos B﹣cos A),△ABC的面积为a2sin,则C=()A.B.C.D.7.在正方体ABCD﹣A1B1C1D1中,下列四个结论中错误的是()A.直线B1C与直线AC所成的角为60°B.直线B1C与平面AD1C所成的角为60°C.直线B1C与直线AD1所成的角为90°D.直线B1C与直线AB所成的角为90°8.如图,四边形ABCD为正方形,四边形EFBD为矩形,且平面ABCD与平面EFBD互相垂直.若多面体ABCDEF的体积为,则该多面体外接球表面积的最小值为()A.6πB.8πC.12πD.16π二、多选题(本大题共4小题,每小题5分,选对得分,选错、少选不得分)9.在△ABC中,角A,B,C的对边分别为a,b,c,若a2=b2+bc,则角A可为()A.B.C.D.10.如图,四边形ABCD为直角梯形,∠D=90°,AB∥CD,AB=2CD,M,N分别为AB,CD的中点,则下列结论正确的是()A.B.C.D.11.下列说法正确的有()A.任意两个复数都不能比大小B.若z=a+bi(a∈R,b∈R),则当且仅当a=b=0时,z=0C.若z1,z2∈C,且z12+z22=0,则z1=z2=0D.若复数z满足|z|=1,则|z+2i|的最大值为312.如图,已知ABCD﹣A1B1C1D1为正方体,E,F分别是BC,A1C的中点,则()A.B.C.向量与向量的夹角是60°D.异面直线EF与DD1所成的角为45°三、填空题(本大题共4小题,每小题5分,共20分.不需写出解答过程,请把答案直接填写在横线上)13.已知正方形ABCD的边长为2,点P满足=(+),则||=;•=.14.若虛数z1、z2是实系数一元二次方程x2+px+q=0的两个根,且,则pq=.15.已知平面四边形ABCD中,AB=AD=2,BC=CD=BD=2,将△ABD沿对角线BD折起,使点A到达点A'的位置,当A'C=时,三棱锥A﹣BCD的外接球的体积为.16.已知一圆锥底面圆的直径为3,圆锥的高为,在该圆锥内放置一个棱长为a 的正四面体,并且正四面体在该几何体内可以任意转动,则a的最大值为.四、解答题(本大题共6小题,共70分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.在四边形ABCD中,AB∥CD,AD=BD=CD=1.(1)若AB=,求BC;(2)若AB=2BC,求cos∠BDC.18.(1)已知z1=1﹣2i,z2=3+4i,求满足=+的复数z.(2)已知z,ω为复数,(1+3i)﹣z为纯虚数,ω=,且|ω|=5.求复数ω.19.如图,墙上有一壁画,最高点A离地面4米,最低点B离地面2米.观察者从距离墙x(x>1)米,离地面高a(1≤a≤2)米的C处观赏该壁画,设观赏视角∠ACB=θ.(1)若a=1.5,问:观察者离墙多远时,视角θ最大?(2)若tanθ=,当a变化时,求x的取值范围.20.如图,已知复平面内平行四边形ABCD中,点A对应的复数为﹣1,对应的复数为2+2i,对应的复数为4﹣4i.(Ⅰ)求D点对应的复数;(Ⅱ)求平行四边形ABCD的面积.21.如图所示,等腰梯形ABFE是由正方形ABCD和两个全等的Rt△FCB和Rt△EDA组成,AB=1,CF=2.现将Rt△FCB沿BC所在的直线折起,点F移至点G,使二面角E﹣BC﹣G的大小为60°.(1)求四棱锥G﹣ABCE的体积;(2)求异面直线AE与BG所成角的大小.22.如图,四边形MABC中,△ABC是等腰直角三角形,AC⊥BC,△MAC是边长为2的正三角形,以AC为折痕,将△MAC向上折叠到△DAC的位置,使点D在平面ABC内的射影在AB上,再将△MAC向下折叠到△EAC的位置,使平面EAC⊥平面ABC,形成几何体DABCE.(1)点F在BC上,若DF∥平面EAC,求点F的位置;(2)求直线AB与平面EBC所成角的余弦值.参考答案一、选择题(本大题共8小题,每小题5分,共40分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.点C是线段AB靠近点B的三等分点,下列正确的是()A.B.C.D.【答案】D【分析】根据共线向量的定义即可得结论.【解答】解:由题,点C是线段AB靠近点B的三等分点,=3=﹣3,所以选项A错误;=2=﹣2,所以选项B和选项C错误,选项D正确.故选:D.【知识点】平行向量(共线)、向量数乘和线性运算2.已知复数z满足z(3+i)=3+i2020,其中i为虚数单位,则z的共轭复数的虚部为()A.B.C.D.【答案】D【分析】直接利用复数代数形式的乘除运算化简,然后利用共轭复数的概念得答案.【解答】解:∵z(3+i)=3+i2020,i2020=(i2)1010=(﹣1)1010=1,∴z(3+i)=4,∴z=,∴=,∴共轭复数的虚部为,故选:D.【知识点】复数的运算3.如图,▱ABCD中,∠DAB=60°,AD=2AB=2,延长AB至点E,且AB=BE,则•的值为()A.﹣1 B.﹣3 C.1 D.【答案】C【分析】利用图形,求出数量积的向量,然后转化求解即可.【解答】解:由题意,▱ABCD中,∠DAB=60°,AD=2AB=2,延长AB至点E,且AB=BE,可知=+=,=﹣=﹣2,所以•=()•(﹣2)=﹣2﹣2=1.故选:C.【知识点】平面向量数量积的性质及其运算4.设i是虚数单位,则2i+3i2+4i3+……+2020i2019的值为()A.﹣1010﹣1010i B.﹣1011﹣1010iC.﹣1011﹣1012i D.1011﹣1010i【答案】B【分析】利用错位相减法、等比数列的求和公式及其复数的周期性即可得出.【解答】解:设S=2i+3i2+4i3+ (2020i2019)∴iS=2i2+3i3+ (2020i2020)则(1﹣i)S=i+i+i2+i3+……+i2019﹣2020i2020.==i+==﹣2021+i,∴S==.故选:B.【知识点】复数的运算5.如图,在正方体ABCD﹣A1B1C1D1中,异面直线A1B与CD所成的角为()A.30°B.45°C.60°D.135°【答案】B【分析】易知∠ABA1即为所求,再由△ABA1为等腰直角三角形,得解.【解答】解:因为AB∥CD,所以∠ABA1即为异面直线A1B与CD所成的角,因为△ABA1为等腰直角三角形,所以∠ABA1=45°.故选:B.【知识点】异面直线及其所成的角6.在△ABC中,角A,B,C所对的边分别为a,b,c,若(a﹣2b)cos C=c(2cos B﹣cos A),△ABC的面积为a2sin,则C=()A.B.C.D.【答案】C【分析】先利用正弦定理将已知等式中的边化角,再结合两角和公式与三角形的内角和定理,可推出sin B=2sin A;然后利用三角形的面积公式、正弦定理,即可得解.【解答】解:由正弦定理知,==,∵(a﹣2b)cos C=c(2cos B﹣cos A),∴(sin A﹣2sin B)cos C=sin C(2cos B﹣cos A),即sin A cos C+sin C cos A=2(sin B cos C+cos B sin C),∴sin(A+C)=2sin(B+C),即sin B=2sin A.∵△ABC的面积为a2sin,∴S=bc sin A=a2sin,根据正弦定理得,sin B•sin C•sin A=sin2A•sin,化简得,sin B•sin cos=sin A•cos,∵∈(0,),∴cos>0,∴sin==,∴=,即C=.故选:C.【知识点】正弦定理、余弦定理7.在正方体ABCD﹣A1B1C1D1中,下列四个结论中错误的是()A.直线B1C与直线AC所成的角为60°B.直线B1C与平面AD1C所成的角为60°C.直线B1C与直线AD1所成的角为90°D.直线B1C与直线AB所成的角为90°【答案】B【分析】连接AB1,求出∠ACB1可判断选项A;连接B1D1,找出点B1在平面AD1C上的投影O,设直线B1C与平面AD1C所成的角为θ,由cosθ=可判断选项B;利用平移法找出选项C和D涉及的异面直线夹角,再进行相关运算,即可得解.【解答】解:连接AB1,∵△AB1C为等边三角形,∴∠ACB1=60°,即直线B1C与AC所成的角为60°,故选项A正确;连接B1D1,∵AB1=B1C=CD1=AD1,∴四面体AB1CD1是正四面体,∴点B1在平面AD1C上的投影为△AD1C的中心,设为点O,连接B1O,OC,则OC=BC,设直线B1C与平面AD1C所成的角为θ,则cosθ===≠,故选项B错误;连接BC1,∵AD1∥BC1,且B1C⊥BC1,∴直线B1C与AD1所成的角为90°,故选项C正确;∵AB⊥平面BCC1B1,∴AB⊥B1C,即直线B1C与AB所成的角为90°,故选项D正确.故选:B.【知识点】直线与平面所成的角、异面直线及其所成的角8.如图,四边形ABCD为正方形,四边形EFBD为矩形,且平面ABCD与平面EFBD互相垂直.若多面体ABCDEF的体积为,则该多面体外接球表面积的最小值为()A.6πB.8πC.12πD.16π【答案】A【分析】由题意可得AC⊥面EFBD,可得V ABCDEF=V C﹣EFBD+V A﹣EFBD=2V A﹣EFBD,再由多面体ABCDEF 的体积为,可得矩形EFBD的高与正方形ABCD的边长之间的关系,再由题意可得矩形EFBD的对角线的交点为外接球的球心,进而求出外接球的半径,再由均值不等式可得外接球的半径的最小值,进而求出外接球的表面积的最小值.【解答】解:设正方形ABCD的边长为a,矩形BDEF的高为b,因为正方形ABCD,所以AC⊥BD,设AC∩BD=O',由因为平面ABCD与平面EFBD互相垂直,AC⊂面ABCD,平面ABCD∩平面EFBD=BD,所以AC⊥面EFBD,所以V ABCDEF=V C﹣EFBD+V A﹣EFBD=2V A﹣EFBD=2•S EFBD•CO'=•a•b•a =a2b,由题意可得V ABCDEF=,所以a2b=2;所以a2=,矩形EFBD的对角线的交点O,连接OO',可得OO'⊥BD,而OO'⊂面EFBD,而平面ABCD⊥平面EFBD,平面ABCD∩平面EFBD=BD,所以OO'⊥面EFBD,可得OA=OB=OE=OF都为外接球的半径R,所以R2=()2+(a)2=+=+=++≥3=3×,当且仅当=即b=时等号成立.所以外接球的表面积为S=4πR2≥4π•3×=6π.所以外接球的表面积最小值为6π.故选:A.【知识点】球的体积和表面积二、多选题(本大题共4小题,每小题5分,选对得分,选错、少选不得分)9.在△ABC中,角A,B,C的对边分别为a,b,c,若a2=b2+bc,则角A可为()A.B.C.D.【答案】BC【分析】由已知利用余弦定理整理可得cos A=,对于A,若A=,可得b=<0,错误;对于B,若A=,可得b=>0,对于C,若A=,可得b=>0,对于D,若A=,可得c=0,错误,即可得解.【解答】解:因为在△ABC中,a2=b2+bc,又由余弦定理可得:a2=b2+c2﹣2bc cos A,所以b2+bc=b2+c2﹣2bc cos A,整理可得:c=b(1+2cos A),可得:cos A=,对于A,若A=,可得:﹣=,整理可得:b=<0,错误;对于B,若A=,可得:=,整理可得:b=>0,对于C,若A=,可得:cos==,整理可得:b=>0,对于D,若A=,可得:cos=﹣=,整理可得:c=0,错误.故选:BC.【知识点】余弦定理10.如图,四边形ABCD为直角梯形,∠D=90°,AB∥CD,AB=2CD,M,N分别为AB,CD的中点,则下列结论正确的是()A.B.C.D.【答案】ABC【分析】由向量的加减法法则、平面向量基本定理解决【解答】解:由,知A正确;由知B正确;由知C正确;由N为线段DC的中点知知D错误;故选:ABC.【知识点】向量数乘和线性运算、平面向量的基本定理11.下列说法正确的有()A.任意两个复数都不能比大小B.若z=a+bi(a∈R,b∈R),则当且仅当a=b=0时,z=0C.若z1,z2∈C,且z12+z22=0,则z1=z2=0D.若复数z满足|z|=1,则|z+2i|的最大值为3【答案】BD【分析】通过复数的基本性质,结合反例,以及复数的模,判断命题的真假即可.【解答】解:当两个复数都是实数时,可以比较大小,所以A不正确;复数的实部与虚部都是0时,复数是0,所以B正确;反例z1=1,z2=i,满足z12+z22=0,所以C不正确;复数z满足|z|=1,则|z+2i|的几何意义,是复数的对应点到(0,﹣2)的距离,它的最大值为3,所以D正确;故选:BD.【知识点】复数的模、复数的运算、虚数单位i、复数、命题的真假判断与应用12.如图,已知ABCD﹣A1B1C1D1为正方体,E,F分别是BC,A1C的中点,则()A.B.C.向量与向量的夹角是60°D.异面直线EF与DD1所成的角为45°【答案】ABD【分析】在正方体ABCD﹣A1B1C1D1中,建立合适的空间直角坐标系,设正方体的棱长为2,根据空间向量的坐标运算,以及异面直线所成角的向量求法,逐项判断即可.【解答】解:在正方体ABCD﹣A1B1C1D1中,以点A为坐标原点,分别以AB,AD,AA1为x 轴、y轴、z轴建立空间直角坐标系,设正方体的棱长为2,则A(0,0,0),A1(0,0,2),B(2,0,0),B1(2,0,2),C (2,2,0),D(0,2,0),D1(0,2,2),所以,故,故选项A正确;又,又,所以,,则,故选项B正确;,所以,因此与的夹角为120°,故选项C错误;因为E,F分别是BC,A1C的中点,所以E(2,1,0),F(1,1,1),则,所以,又异面直线的夹角大于0°小于等于90°,所以异面直线EF与DD1所成的角为45°,故选项D正确;故选:ABD.【知识点】异面直线及其所成的角三、填空题(本大题共4小题,每小题5分,共20分.不需写出解答过程,请把答案直接填写在横线上)13.已知正方形ABCD的边长为2,点P满足=(+),则||=;•=.【分析】根据向量的几何意义可得P为BC的中点,再根据向量的数量积的运算和正方形的性质即可求出.【解答】解:由=(+),可得P为BC的中点,则|CP|=1,∴|PD|==,∴•=•(+)=﹣•(+)=﹣2﹣•=﹣1,故答案为:,﹣1.【知识点】平面向量数量积的性质及其运算14.若虛数z1、z2是实系数一元二次方程x2+px+q=0的两个根,且,则pq=.【答案】1【分析】设z1=a+bi,则z2=a﹣bi,(a,b∈R),根据两个复数相等的充要条件求出z1,z2,再由根与系数的关系求得p,q的值.【解答】解:由题意可知z1与z2为共轭复数,设z1=a+bi,则z2=a﹣bi,(a,b∈R 且b≠0),又,则a2﹣b2+2abi=a﹣bi,∴(2a+b)+(a+2b)i=1﹣i,∴,解得.∴z1=+i,z2=i,(或z2=+i,z1=i).由根与系数的关系,得p=﹣(z1+z2)=1,q=z1•z2=1,∴pq=1.故答案为:1.【知识点】复数的运算15.已知平面四边形ABCD中,AB=AD=2,BC=CD=BD=2,将△ABD沿对角线BD折起,使点A到达点A'的位置,当A'C=时,三棱锥A﹣BCD的外接球的体积为.【分析】由题意画出图形,找出三棱锥外接球的位置,求解三角形可得外接球的半径,再由棱锥体积公式求解.【解答】解:记BD的中点为M,连接A′M,CM,可得A′M2+CM2=A′C2,则∠A′MC=90°,则外接球的球心O在△A′MC的边A′C的中垂线上,且过正三角形BCD的中点F,且在与平面BCD垂直的直线m上,过点A′作A′E⊥m于点E,如图所示,设外接球的半径为R,则A′O=OC=R,,A′E=1,在Rt△A′EO中,A′O2=A′E2+OE2,解得R=.故三棱锥A﹣BCD的外接球的体积为.故答案为:.【知识点】球的体积和表面积16.已知一圆锥底面圆的直径为3,圆锥的高为,在该圆锥内放置一个棱长为a的正四面体,并且正四面体在该几何体内可以任意转动,则a的最大值为.【分析】根据题意,该四面体内接于圆锥的内切球,通过内切球即可得到a的最大值.【解答】解:依题意,四面体可以在圆锥内任意转动,故该四面体内接于圆锥的内切球,设球心为P,球的半径为r,下底面半径为R,轴截面上球与圆锥母线的切点为Q,圆锥的轴截面如图:则OA=OB=,因为SO=,故可得:SA=SB==3,所以:三角形SAB为等边三角形,故P是△SAB的中心,连接BP,则BP平分∠SBA,所以∠PBO=30°;所以tan30°=,即r=R=×=,即四面体的外接球的半径为r=.另正四面体可以从正方体中截得,如图:从图中可以得到,当正四面体的棱长为a时,截得它的正方体的棱长为a,而正四面体的四个顶点都在正方体上,故正四面体的外接球即为截得它的正方体的外接球,所以2r=AA1=a=a,所以a=.即a的最大值为.故答案为:.【知识点】旋转体(圆柱、圆锥、圆台)四、解答题(本大题共6小题,共70分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.在四边形ABCD中,AB∥CD,AD=BD=CD=1.(1)若AB=,求BC;(2)若AB=2BC,求cos∠BDC.【分析】(1)直接利用余弦定理的应用求出结果;(2)利用余弦定理的应用建立等量关系式,进一步求出结果.【解答】解:(1)在四边形ABCD中,AD=BD=CD=1.若AB=,所以:cos∠ADB==,由于AB∥CD,所以∠BDC=∠ABD,即cos∠BDC=cos∠ABD=,所以BC2=BD2+CD2﹣2•BD•CD•cos∠BDC==,所以BC=.(2)设BC=x,则AB=2BC=2x,由余弦定理得:cos∠ADB==,cos∠BDC===,故,解得或﹣(负值舍去).所以.【知识点】余弦定理18.(1)已知z1=1﹣2i,z2=3+4i,求满足=+的复数z.(2)已知z,ω为复数,(1+3i)﹣z为纯虚数,ω=,且|ω|=5.求复数ω.【分析】(1)把z1,z2代入=+,利用复数代数形式的乘除运算化简求出,进一步求出z;(2)设z=a+bi(a,b∈R),利用复数的运算及(1+3i)•z=(1+3i)(a+bi)=a﹣3b+(3a+b)i为纯虚数,可得,又ω==i,|ω|=5,可得,即可得出a,b,再代入可得ω.【解答】解:(1)由z1=1﹣2i,z2=3+4i,得=+==,则z=;(2)设z=a+bi(a,b∈R),∵(1+3i)•z=(1+3i)(a+bi)=a﹣3b+(3a+b)i为纯虚数,∴.又ω===i,|ω|=5,∴.把a=3b代入化为b2=25,解得b=±5,∴a=±15.∴ω=±(i)=±(7﹣i).【知识点】复数的运算19.如图,墙上有一壁画,最高点A离地面4米,最低点B离地面2米.观察者从距离墙x(x>1)米,离地面高a(1≤a≤2)米的C处观赏该壁画,设观赏视角∠ACB=θ.(1)若a=1.5,问:观察者离墙多远时,视角θ最大?(2)若tanθ=,当a变化时,求x的取值范围.【分析】(1)首项利用两角和的正切公式建立函数关系,进一步利用判别式确定函数的最大值;(2)利用两角和的正切公式建立函数关系,利用a的取值范围即可确定x的范围.【解答】解:(1)如图,作CD⊥AF于D,则CD=EF,设∠ACD=α,∠BCD=β,CD=x,则θ=α﹣β,在Rt△ACD和Rt△BCD中,tanα=,tanβ=,则tanθ=tan(α﹣β)==(x>0),令u=,则ux2﹣2x+1.25u=0,∵上述方程有大于0的实数根,∴△≥0,即4﹣4×1.25u2≥0,∴u≤,即(tanθ)max=,∵正切函数y=tan x在(0,)上是增函数,∴视角θ同时取得最大值,此时,x==,∴观察者离墙米远时,视角θ最大;(2)由(1)可知,tanθ===,即x2﹣4x+4=﹣a2+6a﹣4,∴(x﹣2)2=﹣(a﹣3)2+5,∵1≤a≤2,∴1≤(x﹣2)2≤4,化简得:0≤x≤1或3≤x≤4,又∵x>1,∴3≤x≤4.【知识点】解三角形20.如图,已知复平面内平行四边形ABCD中,点A对应的复数为﹣1,对应的复数为2+2i,对应的复数为4﹣4i.(Ⅰ)求D点对应的复数;(Ⅱ)求平行四边形ABCD的面积.【分析】(I)利用复数的几何意义、向量的坐标运算性质、平行四边形的性质即可得出.(II)利用向量垂直与数量积的关系、模的计算公式、矩形的面积计算公式即可得出.【解答】解:(Ⅰ)依题点A对应的复数为﹣1,对应的复数为2+2i,得A(﹣1,0),=(2,2),可得B(1,2).又对应的复数为4﹣4i,得=(4,﹣4),可得C(5,﹣2).设D点对应的复数为x+yi,x,y∈R.得=(x﹣5,y+2),=(﹣2,﹣2).∵ABCD为平行四边形,∴=,解得x=3,y=﹣4,故D点对应的复数为3﹣4i.(Ⅱ)=(2,2),=(4,﹣4),可得:=0,∴.又||=2,=4.故平行四边形ABCD的面积==16.【知识点】复数的代数表示法及其几何意义21.如图所示,等腰梯形ABFE是由正方形ABCD和两个全等的Rt△FCB和Rt△EDA组成,AB=1,CF=2.现将Rt△FCB沿BC所在的直线折起,点F移至点G,使二面角E﹣BC﹣G的大小为60°.(1)求四棱锥G﹣ABCE的体积;(2)求异面直线AE与BG所成角的大小.【分析】(1)推导出GC⊥BC,EC⊥BC,从而∠ECG=60°.连接DG,推导出DG⊥EF,由BC⊥EF,BC⊥CG,得BC⊥平面DEG,从而DG⊥BC,进而DG⊥平面ABCE,DG是四棱锥G ﹣ABCE的高,由此能求出四棱锥G﹣ABCE的体积.(2)取DE的中点H,连接BH、GH,则BH∥AE,∠GBH既是AE与BG所成角或其补角.由此能求出异面直线AE与BG所成角的大小.【解答】解:(1)由已知,有GC⊥BC,EC⊥BC,所以∠ECG=60°.连接DG,由CD=AB=1,CG=CF=2,∠ECG=60°,有DG⊥EF①,由BC⊥EF,BC⊥CG,有BC⊥平面DEG,所以,DG⊥BC②,由①②知,DG⊥平面ABCE,所以DG就是四棱锥G﹣ABCE的高,在Rt△CDG中,.故四棱锥G﹣ABCE的体积为:.(2)取DE的中点H,连接BH、GH,则BH∥AE,故∠GBH既是AE与BG所成角或其补角.在△BGH中,,,则.故异面直线AE与BG所成角的大小为.【知识点】异面直线及其所成的角、棱柱、棱锥、棱台的体积22.如图,四边形MABC中,△ABC是等腰直角三角形,AC⊥BC,△MAC是边长为2的正三角形,以AC为折痕,将△MAC向上折叠到△DAC的位置,使点D在平面ABC内的射影在AB上,再将△MAC向下折叠到△EAC的位置,使平面EAC⊥平面ABC,形成几何体DABCE.(1)点F在BC上,若DF∥平面EAC,求点F的位置;(2)求直线AB与平面EBC所成角的余弦值.【分析】(1)点F为BC的中点,设点D在平面ABC内的射影为O,连接OD,OC,取AC 的中点H,连接EH,由题意知EH⊥AC,EH⊥平面ABC,由题意知DO⊥平面ABC,得DO∥平面EAC,取BC的中点F,连接OF,则OF∥AC,从而OF∥平面EAC,平面DOF∥平面EAC,由此能证明DF∥平面EAC.(2)连接OH,由OF,OH,OD两两垂直,以O为坐标原点,OF,OH,OD所在直线分别为x,y,z轴,建立空间直角坐标系,利用向量法能求出直线AB与平面EBC所成角的余弦值.【解答】解:(1)点F为BC的中点,理由如下:设点D在平面ABC内的射影为O,连接OD,OC,∵AD=CD,∴OA=OC,∴在Rt△ABC中,O为AB的中点,取AC的中点H,连接EH,由题意知EH⊥AC,又平面EAC⊥平面ABC,平面EAC∩平面ABC=AC,∴EH⊥平面ABC,由题意知DO⊥平面ABC,∴DO∥EH,∴DO∥平面EAC,取BC的中点F,连接OF,则OF∥AC,又OF⊄平面EAC,AC⊂平面EAC,∴OF∥平面EAC,∵DO∩OF=O,∴平面DOF∥平面EAC,∵DF⊂平面DOF,∴DF∥平面EAC.(2)连接OH,由(1)可知OF,OH,OD两两垂直,以O为坐标原点,OF,OH,OD所在直线分别为x,y,z轴,建立如图所示空间直角坐标系,则B(1,﹣1,0),A(﹣1,1,0),E(0,1,﹣),C(1,1,0),∴=(2,﹣2,0),=(0,2,0),=(﹣1,2,﹣),设平面EBC的法向量=(a,b,c),则,取a=,则=(,0,﹣1),设直线与平面EBC所成的角为θ,则sinθ===.∴直线AB与平面EBC所成角的余弦值为cosθ==.【知识点】直线与平面平行、直线与平面所成的角人教版高一下学期期中考试数学试卷(二)注意事项:本试卷满分150分,考试时间120分钟,试题共22题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共8小题,每小题5分,共40分)在每小题所给出的四个选项中,只有一项是符合题目要求的.(2﹣i)z对应的点位于虚轴的正半轴上,则复数z对应的点位于()1.已知复平面内,A.第一象限B.第二象限C.第三象限D.第四象限2.平行四边形ABCD中,点E是DC的中点,点F是BC的一个三等分点(靠近B),则=()A.B.C.D.3.已知向量=(6t+3,9),=(4t+2,8),若(+)∥(﹣),则t=()A.﹣1 B.﹣C.D.14.已知矩形ABCD的一边AB的长为4,点M,N分别在边BC,DC上,当M,N分别是边BC,DC的中点时,有(+)•=0.若+=x+y,x+y=3,则线段MN的最短长度为()A.B.2 C.2D.25.若z∈C且|z+3+4i|≤2,则|z﹣1﹣i|的最大和最小值分别为M,m,则M﹣m的值等于()A.3 B.4 C.5 D.96.已知球的半径为R,一等边圆锥(圆锥母线长与圆锥底面直径相等)位于球内,圆锥顶点在球上,底面与球相接,则该圆锥的表面积为()A.R2B.R2C.R2D.R27.农历五月初五是端午节,民间有吃粽子的习惯,粽子又称粽籺,俗称“粽子”,古称“角黍”,是端午节大家都会品尝的食品,传说这是为了纪念战国时期楚国大臣、爱国主义诗人屈原.小明在和家人一起包粽子时,想将一丸子(近似为球)包入其中,如图,将粽叶展开后得到由六个边长为4的等边三角形所构成的平行四边形,将粽叶沿虚线折起来,可以得到如图所示的粽子形状的六面体,则放入丸子的体积最大值为()A.πB.πC.πD.π8.已知半球O与圆台OO'有公共的底面,圆台上底面圆周在半球面上,半球的半径为1,则圆台侧面积取最大值时,圆台母线与底面所成角的余弦值为()A.B.C.D.二、多选题(本大题共4小题,每小题5分,选对得分,选错、少选不得分)9.下列有关向量命题,不正确的是()A.若||=||,则=B.已知≠,且•=•,则=C.若=,=,则=D.若=,则||=||且∥10.若复数z满足,则()A.z=﹣1+i B.z的实部为1 C.=1+i D.z2=2i11.如图,在平行四边形ABCD中,E,F分别为线段AD,CD的中点,AF∩CE=G,则()A.B.C.D.12.已知正方体ABCD﹣A1B1C1D1,棱长为2,E为线段B1C上的动点,O为AC的中点,P 为棱CC1上的动点,Q为棱AA1的中点,则以下选项中正确的有()A.AE⊥B1CB.直线B1D⊥平面A1BC1C.异面直线AD1与OC1所成角为D.若直线m为平面BDP与平面B1D1P的交线,则m∥平面B1D1Q三、填空题(本大题共4小题,每小题5分,共20分.不需写出解答过程,请把答案直接填写在横线上)13.已知向量=(m,1),=(m﹣6,m﹣4),若∥,则m的值为.14.将表面积为36π的圆锥沿母线将其侧面展开,得到一个圆心角为的扇形,则该圆锥的轴截面的面积S=.15.如图,已知有两个以O为圆心的同心圆,小圆的半径为1,大圆的半径为2,点A 为小圆上的动点,点P,Q是大圆上的两个动点,且•=1,则||的最大值是.16.如图,在三棱锥A﹣BCD的平面展开图中,已知四边形BCED为菱形,BC=1,BF=,若二面角A﹣CD﹣B的余弦值为﹣,M为BD的中点,则CD=,直线AD与直线CM所成角的余弦值为.四、解答题(本大题共6小题,共70分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.已知,.(1)若与同向,求;(2)若与的夹角为120°,求.18.已知a、b、c是△ABC中∠A、∠B、∠C的对边,a=4,b=6,cos A=﹣.(1)求c;(2)求cos2B的值.19.已知:复数z1与z2在复平面上所对应的点关于y轴对称,且z1(1﹣i)=z2(1+i)(i为虚数单位),|z1|=.(Ⅰ)求z1的值;(Ⅱ)若z1的虚部大于零,且(m,n∈R),求m,n的值.20.(Ⅰ)在复数范围内解方程|z|2+(z+)i=(i为虚数单位)(Ⅱ)设z是虚数,ω=z+是实数,且﹣1<ω<2.(1)求|z|的值及z的实部的取值范围;(2)设,求证:μ为纯虚数;(3)在(2)的条件下求ω﹣μ2的最小值.21.如图,直三棱柱A1B1C1﹣ABC中,AB=AC=1,,A1A=4,点M为线段A1A 的中点.(1)求直三棱柱A1B1C1﹣ABC的体积;(2)求异面直线BM与B1C1所成的角的大小.(结果用反三角表示)22.如图所示,在正方体ABCD﹣A1B1C1D1中,点G在棱D1C1上,且D1G=D1C1,点E、F、M分别是棱AA1、AB、BC的中点,P为线段B1D上一点,AB=4.(Ⅰ)若平面EFP交平面DCC1D1于直线l,求证:l∥A1B;(Ⅱ)若直线B1D⊥平面EFP.(i)求三棱锥B1﹣EFP的表面积;(ii)试作出平面EGM与正方体ABCD﹣A1B1C1D1各个面的交线,并写出作图步骤,保留作图痕迹.设平面EGM与棱A1D1交于点Q,求三棱锥Q﹣EFP的体积.答案解析一、选择题(本大题共8小题,每小题5分,共40分)在每小题所给出的四个选项中,只有一项是符合题目要求的.(2﹣i)z对应的点位于虚轴的正半轴上,则复数z对应的点位于()1.已知复平面内,A.第一象限B.第二象限C.第三象限D.第四象限【答案】B【分析】直接利用复数的运算和几何意义的应用求出该点所表示的位置.【解答】解:设z=a+bi(a,b∈R),所以(2﹣i)(a+bi)=2a+b+(2b﹣a)i,由于对应的点在虚轴的正半轴上,所以,即,所以a<0,b>0.故该点在第二象限.故选:B.【知识点】复数的代数表示法及其几何意义2.平行四边形ABCD中,点E是DC的中点,点F是BC的一个三等分点(靠近B),则=()A.B.C.D.【答案】D【分析】利用平行四边形的性质以及向量相等的概念,再利用平面向量基本定理进行转化即可.【解答】解:因为ABCD为平行四边形,所以,故.故选:D.【知识点】平面向量的基本定理3.已知向量=(6t+3,9),=(4t+2,8),若(+)∥(﹣),则t=()A.﹣1 B.﹣C.D.1【答案】B【分析】根据平面向量的坐标表示和共线定理,列方程求出t的值.【解答】解:向量=(6t+3,9),=(4t+2,8),所以+=(6t+3,11),﹣=(4t+2,5).又(+)∥(﹣),所以5(6t+3)﹣11(4t+2)=0,解得t=﹣.故选:B.【知识点】平面向量共线(平行)的坐标表示4.已知矩形ABCD的一边AB的长为4,点M,N分别在边BC,DC上,当M,N分别是边BC,DC的中点时,有(+)•=0.若+=x+y,x+y=3,则线段MN的最短长度为()A.B.2 C.2D.2【答案】D【分析】先根据M,N满足的条件,将(+)•=0化成的表达式,从而判断出矩形ABCD为正方形;再将+=x+y,左边用表示出来,结合x+y =3,即可得NC+MC=4,最后借助于基本不等式求出MN的最小值.【解答】解:当M,N分别是边BC,DC的中点时,有(+)•===,所以AD=AB,则矩形ABCD为正方形,设,,则=.则x=2﹣λ,y=2﹣μ.又x+y=3,所以λ+μ=1.故NC+MC=4,则MN==(当且仅当MC=NC=2时取等号).故线段MN的最短长度为2.故选:D.【知识点】平面向量数量积的性质及其运算5.若z∈C且|z+3+4i|≤2,则|z﹣1﹣i|的最大和最小值分别为M,m,则M﹣m的值等于()A.3 B.4 C.5 D.9【答案】B【分析】由题意画出图形,再由复数模的几何意义,数形结合得答案.【解答】解:由|z+3+4i|≤2,得z在复平面内对应的点在以Q(﹣3,﹣4)为圆心,以2为半径的圆及其内部.如图:|z﹣1﹣i|的几何意义为区域内的动点与定点P得距离,则M=|PQ|+2,m=|PQ|﹣2,则M﹣m=4.故选:B.【知识点】复数的运算6.已知球的半径为R,一等边圆锥(圆锥母线长与圆锥底面直径相等)位于球内,圆锥顶点在球上,底面与球相接,则该圆锥的表面积为()A.R2B.R2C.R2D.R2【答案】B【分析】设圆锥的底面半径为r,求得圆锥的高,由球的截面性质,运用勾股定理可得r,由圆锥的表面积公式可得所求.【解答】解:如图,设圆锥的底面半径为r,则圆锥的高为r,则R2=r2+(r﹣R)2,解得r=R,则圆锥的表面积为S=πr2+πr•2r=3πr2=3π(R)2=πR2,故选:B.【知识点】球内接多面体、旋转体(圆柱、圆锥、圆台)7.农历五月初五是端午节,民间有吃粽子的习惯,粽子又称粽籺,俗称“粽子”,古称“角黍”,是端午节大家都会品尝的食品,传说这是为了纪念战国时期楚国大臣、爱国主义诗人屈原.小明在和家人一起包粽子时,想将一丸子(近似为球)包入其中,如图,将粽叶展开后得到由六个边长为4的等边三角形所构成的平行四边形,将粽叶沿虚线折起来,可以得到如图所示的粽子形状的六面体,则放入丸子的体积最大值为()A.πB.πC.πD.π【答案】A【分析】先根据题意求得正四面体的体积,进而得到六面体的体积,再由图形的对称性得,内部的丸子要是体积最大,就是丸子要和六个面相切,设丸子的半径为R,则,由此求得R,进而得到答案.【解答】解:由题意可得每个三角形面积为,由对称性可知该六面体是由两个正四面体合成的,可得该四面体的高为,故四面体的体积为,∵该六面体的体积是正四面体的2倍,。
青海海南藏族自治州第一民族高级中学2023-2024学年高一下学期期中考试数学试题(含解析)
海南州第一民族高级中学2023~2024学年度第二学期期中考试高一数学全卷满分150分,考试时间120分钟.注意事项:1.答题前,先将自己的姓名、准考证号填写在试卷和答题卡上,并将条形码粘贴在答题卡上的指定位置.2.请按题号顺序在答题卡上各题目的答题区域内作答,写在试卷、草稿纸和答题卡上的非答题区域均无效.3.选择题用2B 铅笔在答题卡上把所选答案的标号涂黑;非选择题用黑色签字笔在答题卡上作答;字体工整,笔迹清楚.4.考试结束后,请将试卷和答题卡一并上交.5.本卷主要考查内容:必修第二册第六章~第八章8.1—8.4.一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设点O 是正三角形的中心,则向量是( )A .相同的向量B .模相等的向量C .共线向量D .共起点的向量2.用一个平面截一个几何体,得到的截面是三角形,这个几何体不可能是()A .长方体B .圆锥C .棱锥D .圆台3.复平面内表示复数的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限4.已知为不共线向量,,则( )A .三点共线B .三点共线C .三点共线D .三点共线5.如图,在正方形中,分别是的中点,若,则()A .2B.C .D .6.在中,内角所对的边分别为,若)ABC ,,AO BO CO1iiz -=,a b 5,28,3()AB a b BC a b CD a b =+=-+=-,,A B D ,,A B C ,,A C D ,,B C D ABCD ,M N ,BC CD AC AM BN λμ=+λμ+=836585,,A B C ,,A B C ,,a b c ::1:2a b c =A.B .C .D .7.若水平放置的四边形按“斜二测画法”得到如图所示的直观图,四边形为等腰梯形,,则原四边形的面积为( )A .B .C .D .8.如图,是底部不可到达的一座建筑物,A 为建筑物的最高点,某同学选择地面作为水平基线,使得在同一条直线上,在两点用测角仪器测得A 点的仰角分别是和,则建筑物的高度为( )A .BC .D二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.以下关于平面向量的说法中,正确的是( )A .既有大小,又有方向的量叫作向量B .所有单位向量都相等C .零向量没有方向D .平行向量也叫作共线向量10.分别在两个相交平面内的两条直线间的位置关系是()A .平行B .相交C .异面D .以上皆不可能11.已知i 为虚数单位,复数,则( )A .与互为共轭复数B .C .为纯虚数D .12.在中,内角所对的边分别为,下列说法正确的是( )A .若,则B .若,则只有一解π3π22π35π6AOBC O A C B '''',4,8A C O B A C O B '''''''==∥AOBC AB CD ,,C D B ,C D 45︒75,10CD ︒=AB 5312312i,2i,i z z z =+=-=1z 2z 12z z =123z z z ++()1323i z z z +⋅=+ABC ,,A B C ,,a b c A B >sin sin A B>60,2, 1.74A c a =︒==ABCC .若,则为直角三角形D .三、填空题:本题共4小题,每小题5分,共20分.13.在复平面内,复数z 对应的点为,则_______.14.圆柱的底面圆周的半径为5,高为8,则该圆柱的表面积为_______.15.在中,,则的外接圆半径为_______.16.如图,一艘船以每小时的速度向东航行,船在A 处观测灯塔C 在北偏东方向,行驶后,船到达B 处,观测个灯塔C 在北偏东方向,此时船与灯塔C 的距离为_______.四、解答题:本题共6小题,共70分.解答应写出必要的文字说明、证明过程及演算步骤.17.(本小题满分10分)已知i 是虚数单位,复数.(1)当复数z 为实数时,求m 的值;(2)当复数z 为纯虚数时,求m 的值;18.(本小题满分12分)已知平面向量满足,其中.(1)若,求实数m 的值;(2)若,求向量与的夹角的大小.19.(本小题满分12分)在中,内角所对的边分别为,且.(1)求角C ;(2)若的面积为,求的值.20.(本小题满分12分)如图,某种水箱用的“浮球”是由两个半球和一个圆柱筒组成,已知球的直径是,圆柱筒长.tan aA b=ABC cos cos cos 0A B C ++>(2,1)-i 1z -=ABCπ,44A AB AC ===ABC 20km 45︒2h 15︒km ()()22562i,z m m m m m =-++-∈R ,a b (1,2),(4,1)a m b =--=-m ∈R a b∥a b ⊥ 2a b - bABC A B C 、、,,a b c 222ab c a b =--ABCc =a b 、8cm 3cm(1)这种“浮球”的体积是多少?(2)要在这样1000个“浮球”表面涂一层胶质,如果每平方厘米需要涂胶0.02克,共需胶多少克?21.(本小题满分12分)如图,在正方体中,分别是上的点,且.(1)证明:四点共面;(2)设,证明:三点共线.22.(本小题满分12分)在平面四边形中(在的两侧),.(1)若,求;(2)若,求四边形的面积的最大值.3cm 1111ABCD A B C D -,E F 1,AB AA 12,2A F FA BE AE ==1,,,E C D F 1D F CE O = ,,A O D ABCD ,B D AC 1,120AD CD ADC ==∠=︒90,DAB BC ∠=︒=ABC ∠2AB BC =ABCD海南州第一民族高级中学2023~2024学年度第二学期期中考试·高一数学参考答案、提示及评分细则1.B 是正的中心,向量分别是以三角形的中心和顶点为起点和终点的向量,到三个顶点的距离相等,但向量不是相同向量,也不是共线向量,也不是起点相同的向量.故选B .2.D 过长方体三个顶点的截面为三角形;圆锥轴截面为三角形;过棱锥底面不相邻两顶点和棱锥顶点的截面为三角形.3.C ,故对应的点在第三象限.4.A 因为,所以三点共线,故选A .5.D 取向量作为一组基底,则有,所以.又.所以,即.6.C 设,易知C 最大.7.D 在直观图中,四边形为等腰梯形,,而,则,由斜二测画法得原四边形是直角梯形,,如图.所以四边形的面积为.故选D .8.A 在中,,由正弦定理,得O ABC ,,OA OB OCO∴||||||AO BO CO == ∣,,AO BO CO1111ABCD A B C D -1A C B 、、221i (1i)i i i 1i i i 1z ---====---28335BD BC CD a b a b a b AB =+=-++-=+=,,A B D ,AB BC11,22AM AB BM AB BC BN BC CN BC AB =+=+=+=-112222AC AM BN AB BC BC AB AB BC μλλμλμλμ⎛⎫⎛⎫⎛⎫⎛⎫=+=++-=-++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭AC AB BC =+ 111,122λμμλ-=+=628,,555λμλμ==+=,2,(0)a k b k c k ===>22212πcos ,(0,π),223a b c C C C ab +-==-∈=A CB O ''''45A O B '''∠=︒4,8A C O B ''''==O A ''=AOBC ,90,AC OB AOB OA OB︒∠==∥28AC ==AOBC 4822AC OB OA ++⨯=⨯=ACD 754530CAD ADB ACD ∠=∠-∠=︒-︒=︒sin 30sin 45CD AD=︒︒,在中,,故选A .9.AD 根据给定条件结合平面向量的基本概念,逐项分析判断作答,由向量的定义知,既有大小,又有方向的量叫做向量,A 正确;单位向量是长度为1的向量,其方向是任意的,B 不正确;零向量有方向,其方向是任意的,C 不正确;由平行向量的定义知,平行向量也叫做共线向量,D 正确.故选AD .10.ABC 当两直线分别平行于交线时,这两条直线平行,A 正确;两条直线可以交于交线上一点,故可以相交,B 正确;一条直线和交线平行,另一条直线在另一个平面内过交线上一点和交线外一点时,两直线异面,C 正确.11.BD 因为的共轭复数为,所以A 不正确;因为,所以B 正确;因为,所以C 不正确;因为,所以,所以D 正确.12.AD 对于A选项,由,有,由正弦定理可得,故A 选项正确;对于B,可知有两解,可知B 选项错误;对于C 选项,由,得,有,可得或,可知C 选项错误;对于D 选项,若为锐角三角形或直角三角形,有;若为钝角三角形,不妨设C 为钝角,有,有,可知D 选项正确.故选AD .13. 因为复数z 对应的点为,所以,所以.因为圆柱的底面圆的半径为5、高为8,所以圆柱底面圆的周长为,所以该圆柱的表面积为.15根据余弦定理:.由正弦定理,AD =ABDsin 755AB AD =︒==+i z a b =+i z a b =-1z ===12312i 2i (i)3z z z ++=++-+-=131i z z +=+()132(1i)(2i)3i z z z +⋅=+-=+A B >a b >sin sin A B >1.742<<ABC tan a A b =sin sin tan A B A =cos sin A B =π2A B +=π2B A =+ABC cos cos cos 0A B C ++>ABC cos 0,cos 0,cos 0C A B <>>cos cos cos cos cos cos cos(A B C A C A A++>+=-)cos cos cos sin sin cos (1cos )0B A A B A B A B +=-+>->2i (2,1)-2i z =-i(2i)12i --=130π10π50π80π130π+=BC ===ABC.16.由图知,由正弦定理有17.(1)当复数z 为实数时,有或.5分(2)当复数z 为纯虚数时,有,解得.10分18.解:(1)因为,又,所以, 3分解得;…4分(2)因为,所以,解得,所以, 6分所以,7分所以,…9分,…10分所以向量与夹角的余弦值为11分又由,可得. 12分19.解:(1)由余弦定理有3分因为,可得; 6分(2)由题意有…8分=30,40C AB ∠=︒=sin 45sin 30AB BC ︒===︒220,0m m m -=∴=2m =2256020m m m m ⎧-+=⎨-≠⎩3m =(1,2),(4,1)a m b =--=-a b ∥12(4)m -=-⨯-9m =a b ⊥4(1)20a b m ⋅=---= 12m =1,22a ⎛⎫=-- ⎪⎝⎭122,2(4,1)(3,5)2a b ⎛⎫-=----=- ⎪⎝⎭|2||a b b -==== (2)3(4)(5)117a b b -⋅=⨯-+-⨯=-2a b - bθcos θ==0πθ<<3π4θ=2221cos 222a b c ab C ab ab +--===-0πC <<2π3C =12πsin 23ab =8ab =又由,可得 10分有联立方程,解得或故或.12分20.解:(1)该半球的直径,所以“浮球”的圆柱筒直径也是,得半径, 1分所以两个半球的体积之和为, 3分而,…5分该“浮球”的体积是; 6分(2)上下两个半球的表面积是, 7分而“浮球”的圆柱筒侧面积为, 8分所以1个“浮球”的表面积为,9分因此,1000个“浮球”的表面积的和为, 11分因为每平方厘米需要涂胶0.02克,所以总共需要胶的质量为(克). 12分21.(1)证明:如图,连接.在正方体中,,所以, 2分又,且,所以四边形是平行四边形,所以,4分,所以四点共面; 6分c =2228ab a b =--2220a b +=6a b +===68a b ab +=⎧⎨=⎩24a b =⎧⎨=⎩42a b =⎧⎨=⎩2,4a b ==4,2a b ==8cm d =8cm 4cm R ==3344256ππ64πcm 333V R ==⨯=球23ππ16348πcm V R h ==⨯⨯=圆柱3256π400π48πcm 33V V V =+=+=球圆柱224π4π1664πcm S R ==⨯=球表22π2π4324πcm S Rh ==⨯⨯=圆柱侧264π24π88πcm +=2100088π88000πcm ⨯=20.0288000πcm 1760π⨯=11,,EF A B D C 1111ABCD A B C D -12,2A F FA BE AE ==1EF A B ∥11BC A D ∥11BC A D =11BCD A 11A B D C ∥1EF D C ∴∥1,,,E C D F(2)证明:由,又平面平面, 8分同理平面,又平面平面,10分,即三点共线.12分22.解:(1)在中,由余弦定理得,即.因为,所以,又,所以. 2分在中,由正项定理得,所以4分又,所以,所以; 5分(2)设,所以.在中,由余弦定理得.所以的面积, 8分所以,此时, 9分又的面积,所以四边形的面积的最大值为. 12分11,D F CE O O D F =∴∈ 1D F ⊂11,ADDA O ∴∈11ADD A O ∈ABCD 11ADD A ABCD AD =O AD ∴∈,,A O D DAC 2222cos 3C DA DC DA DC ADC =+-⋅∠=AC =1,120AD CD ADC ==∠=︒30DAC ∠=︒90DAB ∠=︒60BAC BAD DAC ∠=∠-∠=︒ABC sin sin AC BCABC BAC=∠∠sin sin AC BACABC BC∠∠===BC AC =>=60ABC ∠<︒45ABC ∠=︒(0)BC m m =>2BA m =ABC 222222224353cos 244BA BC AC m m m ABC BA BC m m+-+--∠===⋅ABC 11sin 222S BA BC ABC m =⋅∠=⋅=max 1S =253m =DAC 1sin 2DAC S DA DC ADC =⋅∠=ABCD max 1DAC S S +=+。
广东省广州市广州中学2023-2024学年高一下学期期中考试数学试卷(含简单答案)
广州市广州中学2023-2024学年高一下学期期中考试数学试卷一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知向量,,则( )A. 2B. 3C. 4D. 52( )A. B. C. D. 3. 如图,四边形中,,则必有( )A. B. C. D. 4. 如图,在空间四边形中、点、分别是边、上的点,、分别是边、上的点,,,则下列关于直线,的位置关系判断正确的是( )A. 与互相平行;B. 与是异面直线;C. 与相交,其交点在直线上;D. 与相交,且交点在直线上.5.已知,,且与互相垂直,则与的夹角为( )A. B. C. D. .(2,1)a =(2,4)b =- ||a b -= ()i 13i 1i-=+2i +2i -2i-+2i--ABCD AB DC =AD CB=DO OB=AC DB=OA OC=ABCD E H AB AD F G BC CD EH FG ∥EH FG ≠EF GH EF GH EF GH EF GH BD EF GH AC a = 1b = a b - 2a b + a b30︒45︒60︒90︒6. 已知圆锥的底面圆周在球的球面上,顶点为球心,圆锥的高为3,且圆锥的侧面展开图是一个半圆,则球的表面积为( )A. B. C. D.7. 函数的部分图象如图所示,则函数的单调递减区间为( )A. B. C. D. 8. 如图的曲线就像横放的葫芦的轴截面的边缘线,我们叫葫芦曲线(也像湖面上高低起伏的小岛在水中的倒影与自身形成的图形,也可以形象地称它为倒影曲线),它每过相同的间隔振幅就变化一次,且过点,其对应的方程为(,其中为不超过的最大整数,).若该葫芦曲线上一点到轴的距离为,则点到轴的距离为( )A.B.C.D.二、选择题:本题共3个小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 如图,弹簧挂着的小球做上下运动,它在时相对于平衡位置的高度(单位:)由关系式O O O 12π16π48π96π()()πsin 1002f x A x A ωϕωϕ⎛⎫=++>>< ⎪⎝⎭,,()π16g x f x ⎛⎫=-- ⎪⎝⎭πππ,π,Z 66k k k ⎡⎤-+∈⎢⎥⎣⎦ππ2π,2π,Z 66k k k ⎡⎤-+∈⎢⎥⎣⎦π5ππ,π,Z 36k k k ⎡⎤++∈⎢⎥⎣⎦πππ,π,Z 63k k k ⎡⎤-+∈⎢⎥⎣⎦π,24P ⎛⎫⎪⎝⎭122sin 2πx y x ω⎛⎫⎡⎤=- ⎪⎢⎥⎣⎦⎝⎭0x ≥[]x x 05ω<<M y 4π3M x 1412s t h cm,确定,其中,,.小球从最高点出发,经过后,第一次回到最高点,则( )A B.C. 与时的相对于平衡位置的高度D. 与时的相对于平衡位置的高度之比为10. 下列说法正确的是( )A. 向量在向量上的投影向量可表示为B. 若,则与的夹角θ的范围是C. 若是等边三角形,则D 已知,,则11. 如图,在直三棱柱中,分别是棱上的点,,,则下列说法正确的是( )A. 直三棱柱的体积为..()sin h A t ωϕ=+[)0,t ∞∈+0A >0ω>(]0,πϕ∈2s π4ϕ=πω=3.75s t =10s t =h 3.75s t =10s t =h 12ab a b b b b⋅⋅0a b ⋅< a bπ,π2⎛⎤⎥⎝⎦ABC V π,3AB BC <>=(1,2)A -(1,1)B ()2AB =-,1111ABC A B C -,E F 11,B B C C 11111224AA A B A C ===111π3A CB ∠=111ABC A B C -B. 直三棱柱外接球的表面积为;C. 若分别是棱的中点,则直线;D. 当取得最小值时,有三、填空题:本小题共3小题,每小题5分,共15分12. 在复平面内,对应的复数是,对应的复数是,则点之间的距离是______.13. 已知不共线的三个单位向量满足与的夹角为,则实数____________.14. 将函数且的图象上各点的横坐标伸长为原来的2倍,再将所得图形向左平移个单位长度后,得到一个奇函数图象,则__________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. (1)将向量运算式化简最简形式.(2)已知,且复数,求实数的值.16. 如图所示,正六棱锥的底面周长为24,H 是的中点,O 为底面中心,,求:(1)正六棱锥的高;(2)正六棱锥斜高;(3)正六棱锥的侧棱长.17. (1)在三角形中,内角所对的边分别是,其中,,求.(2)热气球是利用加热的空气或某些气体,比如氢气或氦气的密度低于气球外的空气密度以产生浮力飞行.热气球主要通过自带的机载加热器来调整气囊中空气的温度,从而达到控制气球升降的目的.其工作的基本原理是热胀冷缩,当空气受热膨胀后,比重会变轻而向上升起,热气球可用于测量.如图,在离地为的111ABC A B C -64π3,E F 11,B B C C 1A F AE ∥1AE EF FA ++1A F EF=AB1i -AD 1i +,B D ,,a b c0,a b c a λ++=bπ3λ=()sin cos (,R f x a x b x a b =+∈0)b ≠π3ab =AB CB DC DE FA --++x ∈R ()222522i 0x x x x -++--=x BC 60SHO ∠=︒ABC ,,A B C ,,a b c 2c a =1sin sin sin 2b B a A a C -=cos B面高的热气球上,观测到山顶处的仰角为,山脚处的俯角为,已知,求山的高度.18. 如图,在梯形中,,,且,,,在平面内过点作,以为轴将四边形旋转一周.(1)求旋转体的表面积;(2)求旋转体的体积;(3)求图中所示圆锥的内切球体积.19. 如图,在的边上做匀速运动的点,当时分别从点,,出发,各以定速度向点前进,当时分别到达点.(1)记,点为三角形的重心,试用向量线性表示(注:三角形的重心为三角形三边中线的公共点)(2)若的面积为,求的面积的最小值.(3)试探求在运动过程中,的重心如何变化?并说明理由.800m M C 15︒A 45︒60BAC ∠=︒BC ABCD 90ABC ∠=︒AD BC ∥AD a =2BC a =60DCB ∠=︒ABCD C l CB ⊥l ABCD CO ABC V ,,D E F 0=t A B C ,,B C A 1t =,,B C A ,AB a AC b == G ABC ,a bBG ABC V S DEF V DEF V广州市广州中学2023-2024学年高一下学期期中考试数学试卷简要答案一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.【1题答案】【答案】D【2题答案】【答案】B【3题答案】【答案】B【4题答案】【答案】D【5题答案】【答案】D【6题答案】【答案】C【7题答案】【答案】C【8题答案】【答案】D二、选择题:本题共3个小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.【9题答案】【答案】BC【10题答案】【答案】AB【11题答案】【答案】ABD三、填空题:本小题共3小题,每小题5分,共15分【12题答案】【答案】2【13题答案】【答案】-1【14题答案】【答案】四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.【15题答案】【答案】(1);(2)2.【16题答案】【答案】(1)6;(2)3)【17题答案】【答案】(1);(2)【18题答案】【答案】(1)(2(3【19题答案】【答案】(1)(2)(3)的重心保持不变,理由略.FE341200m 2(9πa +3a 3πa 1233BG b a =-14S DEF V。
2023-2024学年广东省惠州中学高一(下)期中数学试卷(含答案)
2023-2024学年广东省惠州中学高一(下)期中数学试卷一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知集合A ={−2,−1,0,1,2},B ={x|lnx >0},则A ∩B =( )A. {1}B. {2}C. {−2,2}D. {−1,0,1}2.已知α,β是平行四边形的两个内角,则“α=β”是“sinα=sinβ”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件3.已知互相垂直的平面α,β交于直线l ,若直线m ,n 满足m//α,n ⊥β,则( )A. m//lB. m//nC. n ⊥lD. m ⊥n 4.如图,在△ABC 中,AN =12NC ,P 是BN 上的一点,若AP =(m +13)AB +19AC ,则实数m 的值为( )A. 19B. 29C. 23D. 135.若函数f(x)={x 2−2ax +1,x >1ax,x ≤1在其定义域内是一个单调递增函数,则实数a 的取值范围是( )A. (0,1]B. (0,23]C. [0,1]D. [0,23]6.已知一个圆锥的底面半径为3,其侧面积是底面积的2倍,则圆锥的体积为( )A. 6πB. 6 3πC. 9 3πD. 12π7.心理学家有时用函数L(t)=A(1−e −kt )测定在时间t(单位:min)内能够记忆的量L ,其中A 表示需要记忆的量,k 表示记忆率.假设一个学生需要记忆的量为200个单词,此时L 表示在时间t 内该生能够记忆的单词个数.已知该生在5min 内能够记忆20个单词,则k 的值约为( )(ln0.9≈−0.105,ln0.1≈−2.303)A. 0.021B. 0.221C. 0.461D. 0.6618.如图,O 是锐角三角形ABC 的外心,角A ,B ,C 所对的边分别为a ,b ,c ,且A =π3,若cosB sinCAB +cosCsinB AC =2m AO ,则m =( )A. 12 B. 22C. 32D. 1二、多选题:本题共3小题,共18分。
河南省郑州外国语学校2023-2024学年高一下学期期中考试数学试题(解析版)
郑州外国语学校2023-2024学年高一下期期中试卷数 学(120分钟 150分)一、单选题:本题共8小题,每小题5分,共40分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知复数(为虚数单位),则在复平面内对应的点位于( )A. 第一象限 B. 第二象限C. 第三象限D. 第四象限【答案】B 【解析】【分析】根据给定条件,利用复数乘法运算求出即可得解.【详解】复数,在复平面内对应的点位于第二象限.故选:B2. 下列说法正确的是( )A. 底面是正多边形的棱锥是正棱锥B. 长方体是平行六面体C. 用一个平面去截圆柱,所得截面一定是圆形或矩形D. 用一个平面去截圆锥,截面与底面之间的部分是圆台【答案】B 【解析】【分析】根据棱柱、棱锥、圆柱和圆锥的定义对选项一一判断即可得出答案.【详解】对于A , 底面是正多边形,侧棱均相等的棱锥是正棱锥,故A 错误;对于B ,平行六面体是各个面都为平行四边形的棱柱,而长方体是各面为矩形的棱柱,所以长方体是平行六面体,故B 正确;对于C ,用一个平面去截圆柱,所得截面可能为椭圆,故C 错误;对于D ,用一个平行于底面的平面截圆锥,底面与截面之间的部分叫做圆台,故D 错误.故选:B .3. 在中,角所对边分别为,若,则( )A.B. 2C. 1或2D. 2的()i 1i z =+i z z 1i z =-+z (1,1)-ABC ,,A B C ,,a b c π1,6a b B ===c =【解析】【分析】由余弦定理即可求.【详解】由余弦定理得,化简得,解出或2.故选:C.4. 已知直线、,平面、,满足且,则“”是“”的( )条件A. 充分非必要 B. 必要非充分条C. 充要D. 既非充分又非必要【答案】A 【解析】【分析】利用空间中的垂直关系和充分条件、必要条件的定义进行判定.【详解】因为,所以,又因为,所以,即“”是“”的充分条件;如图,在长方体中,设面为面、面为面,则,且与面不垂直,即“”不是“”的必要条件;所以“”是“”的充分不必要条件.故选:A.5. 埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为222cos 2a c b B ac +-==2320c c -+=1c =m n αβn αβ= αβ⊥m β⊥m n ⊥n αβ= n β⊂m β⊥m n ⊥m β⊥m n ⊥ABCD αBCEF βm n ⊥m βm β⊥m n ⊥m β⊥m n ⊥A.B.C.D.【答案】C 【解析】【分析】设,利用得到关于的方程,解方程即可得到答案.【详解】如图,设,则,由题意,即,化简得,解得.故选:C.【点晴】本题主要考查正四棱锥的概念及其有关计算,考查学生的数学计算能力,是一道容易题.6. 已知直角三角形ABC 中,,AB =2,AC =4,点P 在以A 为圆心且与边BC 相切的圆上,则的最大值为( ),CD a PE b ==212PO CD PE =⋅,a b ,CD a PE b ==PO ==212PO ab =22142a b ab -=24()210b b a a -⋅-=b a =90A ∠=︒PB PC ⋅A.B.C.D.【答案】D 【解析】【分析】建立如图所示的坐标系,根据可求其最大值.【详解】以为原点建系,,,即,故圆的半径为,∴圆,设中点为,,,∴,故选:D.16556525PB PC PD =- A ()()0,2,4,0BC :142x yBC +=240x y +-=r 2216:5A x y +=BC ()2,1D 22221120544PB PC PD BC PD PD =-=-⨯=- max PD AD r =+==()max8156555PB PC =-=7. 在中,内角A ,B ,C 所对的边分别为,,,将该三角形绕AC 边旋转得一个旋转体,则该旋转体体积为()A. B. C. D.【答案】B 【解析】【分析】根据题意利用余弦定理可得,进而可得该旋转体为大圆锥去掉小圆锥,结合圆锥的体积公式运算求解.【详解】因为,即,由余弦定理可得,且,可得,又因为,,即,解得或(舍去),如图,将该三角形绕AC 边旋转得一个旋转体,则该旋转体为大圆锥去掉小圆锥,可得,则,大圆锥的底面半径为3,高为,小圆锥的底面半径为3,所以该旋转体体积为.故选:B.8. 如图,透明塑料制成的长方体容器内灌进一些水,固定容器底面一边于地面上,再将容器倾斜.随着倾斜度的不同,有下面五个命题:①有水的部分始终呈棱柱形;ABC ,,a b c 222bc a b c =--a=b =360︒2π,3A c ==CO AO 222bc a b c =--222b c a bc +-=-2221cos 222b c a bc A bc bc +--===-()0,πA ∈2π3A =a =b =2213c =--2180c -=c =c =-360︒CO AO cos 60sin 603AO AB BO AB =︒==︒=CO CA AO =+=CO 119π3V =⨯⨯=AO 219π3V =⨯=12V V V =-=-=1111ABCD A B C D -BC②没有水的部分始终呈棱柱形;③水面所在四边形的面积为定值;④棱始终与水面所平面平行;⑤当容器倾斜如图3所示时,是定值.其中正确命题的个数为( )A. 2B. 3C. 4D. 5【答案】C 【解析】【分析】根据棱柱的定义判定①②,利用线面垂直的性质定理可得水面是矩形判定③,利用线面平行的判定定理判断④,利用等体积法判断⑤即可.【详解】根据棱柱的定义:有两个面是相互平行且是全等的多边形,其余没相邻两个面的交线也相互平行,而这些面都是平行四边形可知,由于边固定,所以在倾斜的过程中,始终有,且平面平面,所以在倾斜的过程中有水的部分始终呈棱柱形,同理没有水的部分始终呈棱柱形,①②正确;在倾斜的过程中,,长度不变,不断变化,又因为,所以始终垂直于平面,又平面,所以水面是矩形,所以水面所在四边形的面积不是定值,③说法错误;因为在倾斜的过程中,始终与平行,且水面,水面,所以棱始终与水面所在平面平行,④说法正确;因为水的体积是不变的,正三棱柱的高始终是也不变,所以底面面积也不会变,即是定值,⑤说法正确;综上正确的是:①②④⑤,在EFGH 11A D ·BE BF EFGH BC AD EH FG BC ∥∥∥AEFB DHGC ,EH FG ,EF HG FG BC ∥FG 11ABB A EF ⊆11ABB A EFGH EFGH 11A D FG 11A D ⊄FG ⊆11A D BEF CHG -BC ·BE BF故选:C二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9. 已知,,则下列结论正确的是( )A B. C. 与的夹角为D. 在【答案】AC 【解析】【分析】已知向量的坐标,证明向量垂直,求向量的模长、夹角、投影等都比较简单,根据公式求解即可.【详解】因为,,所以,则,所以,故A 正确;因为,所以,故B 错误;,所以,故C 正确;在方向上的投影向量是,故D 错误.故选:AC.10. 下列说法正确的是( )A. 若、互为共轭复数,则为实数B. 若为虚数单位,为正整数,则C. 已知是关于的方程的一个根,则D. 复数满足,则的最大值为【答案】ACD 【解析】【分析】利用复数乘法可判断A 选项;利用复数的乘方可判断B 选项;分析可知为方程.的(3,1)a =- (2,1)b =()a b b-⊥ 2a b +=a b4πa b()3,1a =- ()2,1b = ()1,2a b -=-()12(2)10a b b -⋅=⨯+-⨯= ()a b b -⊥2(71)a b +=,|2|a b +==cos ,||||a b a b a b ⋅==⋅<>,[π]a b ∈ <>0,π,4a b = <>a b cos ,a a b = 1z 2z 12z z i n 43i in +=1i +x ()220,ax bx a b ++=∈R 1a b +=-z 1z =1i z --11i ±的两根,利用韦达定理可求出、的值,可判断C 选项的正误;利用复数模的三角不等式可判断D 选项.【详解】对于A 选项,设,则,所以,为实数,A 对;对于B 选项,,B 错;对于C 选项,实系数的一元二次方程虚根成对(互为共轭复数),所以为方程的两根,则,所以,,解得,所以,,C 对;对于D 选项,利用复数模的三角不等式可得,当且仅当时,等号成立,D 对.故选:ACD.11.在三棱锥中,已知,点M ,N 分别是AD ,BC 的中点,则( )A.B. 异面直线AN ,CM所成的角的余弦值是C. 三棱锥D. 三棱锥的外接球的表面积为【答案】ABD 【解析】【分析】将三棱锥补形为长方体,向量法求直线的夹角判断A ,B ;利用体积公式求三棱锥的体积判断C ;确定三棱锥的外接球的半径,求表面积判断D.【详解】三棱锥中,已知,三棱锥补形为长方体,如图所示,()220,ax bx a b ++=∈R a b ()1i ,z a b a b =+∈R 2i z a b =-()()2212i i z z a b a b a b =+-=+433i i i n +==-1i ±()220,ax bx a b ++=∈R 0a ≠()()()()21i 1i 1i 1i ab a ⎧+-=⎪⎪⎨⎪++-=-⎪⎩12a b =⎧⎨=-⎩1a b +=-1i 1i 1z z --≤++=+z =A BCD -3,2AB AC BD CD AD BC ======MNAD ⊥78A BCD -A BCD -11πA BCD -3,2AB AC BD CD AD BC ======AHDG FCEB -则有,解得,以为原点,的方向为轴,轴,轴正方向,建立如图所示的空间直角坐标系,点M ,N 分别是AD ,BC 的中点,则有,,,,,,所以,A 选项正确;,,,所以异面直线AN ,CM 所成的角的余弦值是,B 选项正确; 三棱锥,三棱锥,三棱锥,三棱锥,体积都为三棱锥,C 选项错误;222222222949BF BG AB BFBE BC BG BE BD ⎧+==⎪+==⎨⎪+==⎩BF BE BG ===B ,,BF BE BGx y z ())(0,0,0,,,B CAD M N ⎫⎪⎪⎭(0,0,MN = ()AD = 0MN AD ⋅=MN AD ⊥AN ⎛= ⎝ CM ⎛= ⎝ 7cos ,8AN CM AN CM AN CM ⎛⎛++ ⋅-===⋅ 78E BCD -G ABD -F ABC -H ACD -1132⨯=A BCD -4-=的外接球,其表面积为,D 选项正确.故选:ABD.12. 在锐角中,角的对边分别为,且满足,,则下列说法正确的有( )A. 外接圆面积是 B. 面积最大值是C. 周长的取值可以是 D. 内切圆半径的取值范围是【答案】ABD 【解析】【分析】根据,结合正弦定理,可求,结合,可求角.根据三角形外接圆半径满足,可判断A 的真假;结合余弦定理和基本(均值)不等式,可判断B 的真假;利用为锐角三角形,求出角的取值范围,利用正弦定理表示出,可求周长的取值范围,判断C 的真假;根据BC 的结论,结合三角形的面积、三角形周长、三角形内切圆半径之间的关系,判断D 的真假.【详解】由,结合正弦定理,可得:.因为在锐角三角形中,,所以.由,又为锐角,所以.对A :设的外接圆半径为,由,所以,所以外接圆的=A BCD -24π11π⨯=ABC 、、A B C a b c 、、2cos cos )a b C c B =+cos 2)1A B C ++=ABC 4πABC ABC 9ABC 1,1]-2cos cos )a b C c B =+a cos 2)1A B C ++=A 2sin aR A=ABC B b c +)2cos cos a b C c B =+)sin sin cos cos sin a A B C B C =+()B C =+A =sin 0A ≠a =()cos 21A B C ++=⇒()1cos 2B C A +=-⇒22sin A A =⇒sin A =A π3A =ABC R 2sin a R A=⇒24R ==2R =ABC面积为:.故A 正确.对B :由余弦定理(当且仅当时取“”).所以.故B 正确;对C :因为为锐角三角形,所以,,,所以.由正弦定理:,所以,,所以,因为,所以,所以,所以周长的取值范围为.因为,故C 错误;对D :设内切圆半径为,则.又, ,,所以,由.故D 正确.故选:ABD 【点睛】思路点睛:(1)涉及三角形周长或面积的取值范围,可将问题转化为利用基本(均值)不等式求最值或转化为三角函数求值域的问题解决.(2)本题的关键是三角形式锐角三角形,由此确定三角形角的取值范围,是该题的一个关键点.2π4πR =2222cos a b c bc A =+-⇒2212b c bc bc +-=≥b c ==11sin 1222ABC S bc A =£´´=ABC π02B <<π02C <<2π3B C +>ππ62B <<4sin sin sin b c aB C A===4sin b B =4sin c C =()4sin sin b c B C +=+2π4sin sin 3B B ⎡⎤⎛⎫=+-⎪⎢⎥⎝⎭⎣⎦2π4sin sin 3B B ⎡⎤⎛⎫=+- ⎪⎢⎥⎝⎭⎣⎦π6B ⎛⎫=+ ⎪⎝⎭ππ2π,633B ⎛⎫+∈ ⎪⎝⎭πsin 6B ⎤⎛⎫+∈⎥ ⎪⎝⎭⎦(6,b c +∈ABC (6+(96∉+ABC r ()12ABC S a b c r =++△⇒2ABC S r a b c =++△a =()2312b c bc +-=1sin 2ABC S bc A =r ===6b c <+≤11r -<≤三、填空题:本题共4小题,每小题5分,共20分.13. 圆锥的底面半径为1,其侧面展开图是一个圆心角为的扇形,则此圆锥的母线长为______.【答案】3【解析】【分析】根据圆锥底面圆的半径为1得到侧面展开图扇形的弧长为,然后根据侧面展开图扇形的圆心角为列方程,解方程即可得到圆锥的母线长.【详解】因为圆锥底面圆的半径为1,所以侧面展开图扇形的弧长为,设圆锥的母线长为,因为侧面展开图扇形的圆心角为,所以,解得,所以此圆锥的母线长为3.故答案为:3.14. 已知向量和满足:,,与向量的夹角为______.【答案】【解析】【分析】设向量与向量的夹角为,根据得到,再利用向量的夹角公式计算得到答案.【详解】设向量与向量的夹角为,,故,故,,故.故答案为:15. 四棱锥的底面是边长为1的正方形,如图所示,点是棱上一点,,若且满足平面,则_________23π2π23π2πl 23π23222l ππππ=⨯3l =a b 1a = 2b = 2a b -= ab 2π3abθ()2212a b -=1a b ⋅=-abθ2a b -= ()22224444412a b a a b b a b -=-⋅+=-⋅+= 1a b ⋅=- 11cos 212a b a b θ⋅-===-⨯⋅ []0,πθ∈2π3θ=2π3P ABCD -E PD 35PE PD =PF PC λ=//BF ACE λ=【答案】【解析】【分析】连接BD ,交AC 于点O ,连接OE ,利用中位线性质和线面平行的判定证明平面ACE ,结合平面ACE ,则证明平面平面ACE ,再利用利用面面平行的性质则有,即可得到答案.【详解】如图,连接BD ,交AC 于点O ,连接OE ,由是正方形,得,在线段PE 取点G ,使得,由,得,连接BG ,FG ,则,由平面,平面,得平面,而平面,,平面,因此平面平面,又平面平面,平面平面,则,所以.故答案为:16. 在锐角中,角A ,B ,C 的对边分别为a ,b ,c ,S 为的面积,且,则的取值范围为______.13//BG //BF //BGF //GF EC ABCD BO OD =GE ED =35PE PD =13PG PE =//BG OE OE ⊂ACE BG ⊄ACE //BG ACE //BF ACE BG BF B ⋂=,BG BF ⊂BGF //BGF ACE PCD ACE EC =PCD BGF GF =//GF EC 13PF PG PC PE λ===13ABC ABC ()222S a b c =--22b c bc+【答案】【解析】【分析】利用三角形面积公式与余弦定理,可得,再根据同角关系式可得,然后利用正弦定理与三角恒等变换公式化简可得,结合条件可得取值范围,进而求得的取值范围,令,则,然后由对勾函数的单调性即可求出.【详解】在中,由余弦定理得,且的面积,由,得,化简得,又,,联立得,解得或(舍去),所以,因为为锐角三角形,所以,,所以,所以,所以,所以,设,其中,所以,由对勾函数单调性知在上单调递减,在上单调递增,当时,;当时,;当时,,所以,即的取值范围是.故答案为:.342,15⎡⎫⎪⎢⎣⎭sin 2cos 2A A +=sin A 435tan 5b c C =+tan C b cb tc =221b c t bc t+=+ABC 2222cos a b c bc A =+-ABC 1sin 2S bc A =()222S a b c =--sin 22cos bc A bc bc A =-sin 2cos 2A A +=0,2A π⎛⎫∈ ⎪⎝⎭22sin cos 1A A +=25sin 4sin 0A A -=4sin 5A =sin 0A =()sin sin sin cos cos sin 43sin sin sin 5tan 5A C bB AC A C c C C C C ++====+ABC 02C π<<2B AC ππ=--<22A C ππ-<<13tan tan 2tan 4C A A π⎛⎫>-== ⎪⎝⎭140,tan 3C ⎛⎫∈ ⎪⎝⎭35,53b c ⎛⎫∈ ⎪⎝⎭b t c=35,53t ⎛⎫∈ ⎪⎝⎭221b c b c t bc c b t +=+=+1y t t =+3,15⎛⎫ ⎪⎝⎭51,3⎛⎫ ⎪⎝⎭1t =2y =35t =3415y =53t =3415y =342,15y ∈⎡⎫⎪⎢⎣⎭22b c bc+342,15⎡⎫⎪⎢⎣⎭342,15⎡⎫⎪⎢⎣⎭【点睛】关键点点睛:本题关键在于利用正弦定理与三角恒等变换公式化简可得,进而可以求解.四、解答题:本题共5小题,共70分.其中第17题12分,第18, 19题每题13分,第20题15分,第21题17分,解答应写出文字说明、证明过程或演算步骤.17. 已知复数,,其中.(1)若,求的值;(2)若是纯虚数,求的值.【答案】(1)2 (2)或.【解析】【分析】(1)利用复数相等几何复数运算即可求出结果;(2)利用纯虚数定义即可求出结果.【小问1详解】∵,,,∴,从而,解得,所以的值为2.【小问2详解】依题意得:,因为是纯虚数,所以,解得或.435tan 5b c C =+()21i z a =+243i z =-R a ∈12i z z =a 12z z a 2a =12a =-()21i z a =+243i z =-12i z z =()22i 12i 34i a a a +=-+=+21324a a ⎧-=⎨=⎩2a =a ()()()()()2222122i 143i 464383i i 43i 2525a a a a a a a z z +-+--++-+===-12z z 2246403830a a a a ⎧--=⎨+-≠⎩2a =12a =-18. (1)已知向量,点,若向量,且的坐标;(2)已知向量,若与夹角为钝角,求的取值范围.【答案】(1)或;(2)且.【解析】【分析】(1)设,根据向量垂直和向量的模得到方程组,解出即可;(2)计算出与坐标形式,根据向量点乘小于0,并结合向量反向共线即可得到答案.【详解】(1)设,则因为向量,所以又,所以解得或,所以的坐标为或(2)因为,所以,因为与夹角为钝角,所以,即,解得又不反向共线,所以,解得综上,且.19. 如图,在三棱柱中,侧棱底面,,为的中点,,.(1)求三棱柱的表面积;()2,1a =()2,1A -AB a ⊥ AB = B ()()2,1,4,3a b ==- 2a b - a b λ+ λ()3,3-()1,19λ>-12λ≠-(),B m n 2a b -a b λ+(),B m n ()2,1AB m n =-+AB a ⊥()()2210m n -++=AB =22(2)(1)5m n -++=33m n =⎧⎨=-⎩11m n =⎧⎨=⎩B ()3,3-()1,1()()2,1,4,3a b ==-()()26,7,24,3a b a b λλλ-=-+=+-2a b -a b λ+()()20a b a b λ-⋅+<()()624730λλ-++-<9λ>-,a b()()63724,0λλλ--≠+<12λ≠-9λ>-12λ≠-111ABC A B C -1AA ⊥ABC AB BC ⊥D AC 12AA AB ==3BC =111ABC A B C -(2)求证:平面.【答案】(1) (2)证明见解析【解析】【分析】(1)分别求三棱柱每个面的面积相加即可;(2)利用线面平行的判定定理证明即可.【小问1详解】因为侧棱底面,所以三棱柱为直三棱柱,所以侧面,,均为矩形.因为,所以底面,均为直角三角形.因为,,所以.所以三棱柱的表面积为.【小问2详解】连接交于点,连接,因为四边形为矩形,所以为的中点.因为为的中点,所以.因为平面,平面,所以平面.20. 已知的内角的对边分别为,且,______(1)求的面积;(2)求角的平分线的长.1AB ∥1BCD 16+1AA ⊥ABC 111ABC A B C -11BCC B 11BAA B 11CAA C AB BC ⊥ABC 111A B C 12AA AB ==3BC=AC ===111ABC A B C -()(11122322231622AB BC AC AA AB BC ++⋅+⨯⋅=++⨯+⨯⨯⨯=+1B C 1BC O OD 11BCC B O 1B C D AC 1OD AB ∥1AB ⊄1BC D OD ⊂1BC D 1AB ∥1BC D ABC ,,A B C ,,a b c 7,3a b ==ABC S A AD在①;②;③.这三个条件中任选一个,补充在上面问题的横线中,并作答.【答案】(1(2)【解析】【分析】(1)选①:根据,求得角C ,再利用三角形面积公式求解;选②:利用正弦定理得到,化简求得边c ,再利用余弦定理求得角A ,再利用三角形面积公式求解;选③:根据,根据二倍角公式求得角A ,再利用余弦定理求得边c ,再利用三角形面积公式求解;(2)选①:先利用余弦定理求得边c 和角A ,再由解;选②:由(1)得到结论利用1)得到结论利用【小问1详解】解:选①:因为,所以,又,所以,所以,所以选②:因为,所以由正弦定理可得,所以,即,由正弦定理可得,所以,332AC CB ⋅=- 12cos 72cos 13A B -=-2sin 2A A =158332AC CB ⋅=- 12cos 7sin 2cos 13sin A a AB b B-===-2sin 2A A =11sin sin 2222ABC A A S b AD c AD =⋅⋅+⋅⋅=11sin sin 2222ABC A A S b AD c AD =⋅⋅+⋅⋅=11sin sin 2222ABC A A S b AD c AD =⋅⋅+⋅⋅=332AC CB ⋅=- ()33cos 2ab C π-=-7,3a b ==11cos 14C =sin C =1sin 2ABC S ab C ==7,3a b ==12cos 7sin 2cos 13sin A a AB b B-===-sin 2sin cos 2sin cos sin -=-B B A A B A sin sin 2sin cos 2sin cos 2sin +=+=A B B A A B C 2a b c +=5c =由余弦定理可得,,由,所以,所以选③:因为,所以,由,所以,由余弦定理可得,,所以,所以【小问2详解】选①:由余弦定理可得,,所以.所以,由,所以,因为所以.选②:由(1)知:,,所以解得.选③:由(1)知:,,2221cos 22b c a A bc +-==-()0,A π∈23A π=1sin 2ABC S bc A ==2sin 2AA =22sin cos 222A A A =()0,,cos 02A A π∈>2tan 23A A π==2221cos 22b c a A bc +-==-5c =1sin 2ABC S bc A ==2222cos 25c b a ab C =+-=5c =2221cos 22b c a A bc +-==-()0,A π∈23A π=11sin sin 2222ABC A A S b AD c AD =⋅⋅+⋅⋅=158AD =3,5b c ==23A π=11sin sin 2222ABC A A S b AD c AD =⋅⋅+⋅⋅=158AD =3,5b c ==23A π=所以解得.21. 如图,在三棱柱中,已知侧面,,(1)求证:平面;(2)是线段上的动点,当平面 平面时,求线段的长;(3)若为的中点,求二面角平面角的余弦值.【答案】(1)证明见解析; (2); (3.【解析】【分析】(1)由,,根据线面垂直的判定定理即可证结论;(2)先证面面,因此过作交线的垂线,可得到平面,即可求得=;(3)由上一问面,故过作交所在直线为点,则为所求平面的二面角,利用三角函数即可求值.【小问1详解】证明:侧面,侧面,得,由,知,即,11sin sin 2222ABC A A S b AD c AD =⋅⋅+⋅⋅=158AD =111ABC A B C -AB ⊥11BB C C 11π1,2,3BC AB BB BCC ===∠=1C B ⊥ABC P 1BB 1C AP ⊥11AA B B 1B P E 1BB 11C AE A --12AB ⊥1C B 1C B CB ⊥11ABB A ⊥11BB C C 1C 1C P 1C AP ⊥11AA B B 1B P 121C P ⊥11AA B B P PH AE ⊥AE H 1C HP ∠AB ⊥11BB C C 1C B ⊂11BB C C AB ⊥1C B 111π1,2,3BC CC BB BCC ===∠=190C CB ∠=︒1C B CB ⊥又交于点A ,且都在面内,故平面.【小问2详解】由已知侧面,面,知面面,过作于,面,面面,则面,因面,故平面平面,此时.【小问3详解】由(2):面,面,则过P 作交于,且都在面内,所以面,则二面角平面角为或其补角,由,则,且,所以, ,故.,CB BAABC 1C B ⊥ABC AB ⊥11BB C C AB ⊂11ABB A 11ABB A ⊥11BB C C 1C 11C P BB ⊥P 1C P ⊂11BB C C 11ABB A 111BB C C BB =1C P ⊥11AA B B 1C P ⊂1C AP 1C AP ⊥11AA B B 111ππcoscos 33B P B C BC ===121C P ⊥11AA B B AE ⊂11AA B B 1C P AE ⊥PH AE ⊥AE H 1C P PH P = 1C PH ⊥AE 1C PH 11C AE A --1C HP ∠PHE ABE PH PE AB AE =12,,2AB PE AE ===PH =1C P =11tan C P C HP PH ∠===1cos C HP ∠=。
2023年上海曹杨二中高一下期中数学试卷及答案
上海市曹杨二中2022学年度第二学期高一年级期中考试数学试卷一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分)1.已知点(2,1)A -在角α的终边上,则sin α=__________.2.函数cos(24y x π=-的最小正周期为____3.若复数z 满足2136i z -=+(其中i 是虚数单位),则z =______.4.已知(1,2)A ,(5,1)B -,则AB的单位向量是________.5.已知向量()2,1a =r,()3,4b =,则a 在b方向上的数量投影为______.6.若sin cos 2sin cos αααα+=-,则cot α=______.7.已知()0,πα∈,且π3sin 25α⎛⎫+=- ⎪⎝⎭,则πtan 4α⎛⎫+= ⎪⎝⎭______.8.已知a 、b 均为单位向量,且()()324a b a b +⊥-+ ,则,a b =______.9.已知公式3cos34cos 3cos θθθ=-,R θ∈,借助这个公式,我们可以求函数33()4320,2f x x x x ⎛⎫⎡=--∈ ⎪⎢ ⎪⎣⎦⎝⎭的值域,则该函数的值域是______.10.若()2sin sin 2ααβ=-,则()tan cot αββ-=______.11.设π6θ>-,若函数2cos 2sin y x x =+在区间π,6θ⎡⎤-⎢⎥⎣⎦上的最小值为14-,则θ的取值范围是______.12.已知e 是单位向量,向量a 满足2a e ⋅= .若不等式25a a te≤+ 对任意实数t 都成立,则ar 的取值范围是______.二、选择题(本大题共有4题,满分18分,第13~14题每题4分,第15~16题每题5分)13.设12e e 、是两个不平行的向量,则下列四组向量中,不能组成平面向量的一个基底的是()A.12e e + 和12e e -B.122e e + 和212e e +C.1232e e - 和2146e e - D.2e 和21e e + 14.设z C ∈且0z ≠,“z 是纯虚数”是“2z ∈R ”的A.充分非必要条件 B.必要非充分条件C.充要条件条件D.即非充分又非必要条件15.设()sin f x x =.若对任意1π0,2x ⎡⎤∈⎢⎥⎣⎦,都存在2π0,2x ⎡⎤∈⎢⎥⎣⎦,使得()()1221f x f x θ-+=-,则θ可以是()A.π5 B.2π5 C.3π5D.4π516.在ABC ∆中,若623AC AB AB BC BC CA ⋅=⋅=⋅,则角A 的大小为A.4π B.3πC.23π D.34π三、解答题(本大题共有5题,满分78分)17.设a ∈R ,()22cos f x x a x =+.(1)若函数()y f x =是定义在R 上的奇函数,求a 的值;(2)若π36f ⎛⎫=⎪⎝⎭,求函数()y f x =在区间π0,2⎡⎤⎢⎥⎣⎦上的取值范围.18.在ABC 中,角A 、B 、C 的对边分别为a 、b 、c .设向量()2,m b c a =+-,()cos ,cos n C A = ,且m n∥.(1)求角A 的大小;(2)若6a =,ABC 的面积为ABC 的周长.19.某公司要在一条笔直的道路边安装路灯,要求灯柱AB 与地面垂直,灯杆BC 与灯柱AB 所在的平面与道路垂直,路灯C 采用锥形灯罩,射出的光线与平面ABC 的部分截面如图中阴影部分所示.已知2π3ABC ∠=,π3ACD ∠=,路宽24AD =米,设ππ64BCA θθ⎛⎫∠=≤≤ ⎪⎝⎭.(1)求灯柱AB 的高h (用θ表示);(2)此公司应该如何设置θ的值,才能使制造路灯灯柱AB 与灯杆BC 所用材料的总长度最小?并求出此最小值.(精确到0.01米)20.如图,已知ABC 是边长为2的正三角形,点1P 、2P 、3P 是BC 边的四等分点.(1)求11AB AP AP AC⋅+⋅的值;(2)若Q 为线段1AP 上一点,且112AQ mAB AC =+,求实数m 的值;(3)若P 为线段3AP 上的动点,求PA PC ⋅ 的最小值,并指出当PA PC ⋅取最小值时点P 的位置.21.已知(]0,πω∈,[)0,2πϕ∈.设()()sin f x x ωϕ=+,并记(){},S y y f n n ==∈N .(1)若2π3ω=,0ϕ=,求集合S ;(2)若2ϕπ=,试求ω的值,使得集合S 恰有两个元素;(3)若集合S 恰有三个元素,且()()f n T f n +=对于任意的n ∈N 都成立,其中T 为不大于7的正整数,求T 的所有可能值.上海市曹杨二中2022学年度第二学期高一年级期中考试数学试卷一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分)1.已知点(2,1)A -在角α的终边上,则sin α=__________.【答案】55-【解析】【分析】根据三角函数的定义直接求解.【详解】已知点(2,1)A -在角α的终边上,所以5sin 5α==-故答案为:5-【点睛】本题主要考查三角函数的定义,还考查了运算求解的能力,属于基础题.2.函数cos(24y x π=-的最小正周期为____【答案】π【解析】【分析】根据余弦型函数的性质求最小正周期即可.【详解】由余弦函数的性质知:最小正周期22T ππ==.故答案为:π3.若复数z 满足2136i z -=+(其中i 是虚数单位),则z =______.【答案】23i -【解析】【分析】由已知求得z ,再由共轭复数的概念求得z .【详解】由2136i z -=+,得246i z =+,∴23i z =+,则23i z =-.故答案为:23i -.4.已知(1,2)A ,(5,1)B -,则AB的单位向量是________.【答案】43(,)55-【解析】【分析】写出AB 的坐标,求出AB 的模长,利用||AB AB 即可求出AB的单位向量.【详解】(1,2)(5,1)A B - ,(4,3)AB ∴=-即||5AB ==143(4,3),555||AB AB ⎛⎫=-=- ⎪⎝⎭故答案为43(,)55-【点睛】本题主要考查了向量的坐标运算,考查学生对模长和数量积的坐标表示,属于基础题.5.已知向量()2,1a =r ,()3,4b = ,则a 在b方向上的数量投影为______.【答案】2【解析】【分析】求出两向量的数量积,根据数量投影的意义即可求得答案.【详解】由题意向量()2,1a =r,()3,4b = ,得向量()()3,42314102,1a b ⋅=⋅=⨯+⨯=r r,||5b ==,故a 在b 方向上的数量投影为1025||a b b ==⋅,故答案为:26.若sin cos 2sin cos αααα+=-,则cot α=______.【答案】13【解析】【分析】分子、分母同除以sin α解方程即可.【详解】因为sin cos sin cos 1cot sin 2sin cos sin cos 1cot sin αααααααααααα+++===---,所以1cot 3α=.故答案为:13.7.已知()0,πα∈,且π3sin 25α⎛⎫+=- ⎪⎝⎭,则πtan 4α⎛⎫+= ⎪⎝⎭______.【答案】17-【解析】【分析】根据诱导公式结合同角的三角函数关系求得tan α,再根据两角和的正切公式即可求得答案.【详解】由π3sin 25α⎛⎫+=- ⎪⎝⎭可得3cos 5α=-,而()0,πα∈,故4sin 5α=,故sin tan s 43co ααα==-,则πtan 11tan 41tan 7411343ααα+⎛⎫+===- ⎪-⎝+-+⎭,故答案为:17-8.已知a 、b均为单位向量,且()()324a b a b +⊥-+ ,则,a b = ______.【答案】2π3【解析】【分析】根据向量垂直时数量积等于0,可求得a b ⋅,根据向量的夹角公式即可求得答案.【详解】由已知a 、b均为单位向量,且()()324a b a b +⊥-+ ,可得()()3240a b a b +⋅-+= ,即2238100a b a b -++⋅=,即15100,2a b a b +⋅=∴⋅=- ,故1cos ,2||||b b b a a a ==⋅-⋅,由于,[0,π]a b ∈ ,故2π,3a b = ,故答案为:2π39.已知公式3cos34cos 3cos θθθ=-,R θ∈,借助这个公式,我们可以求函数33()4320,2f x x x x ⎛⎫⎡=--∈ ⎪⎢ ⎪⎣⎦⎝⎭的值域,则该函数的值域是______.【答案】[]3,2--【解析】【分析】根据题意,可令cos 62x ππθθ⎡⎤=∈⎢⎥⎣⎦,,,结合3cos34cos 3cos θθθ=-,再进行整体代换即可求解【详解】令cos 62x ππθθ⎡⎤=∈⎢⎥⎣⎦,,,则30,2x ⎡∈⎢⎣⎦,()33()432cos 4cos 3cos 2cos32f x x x f θθθθ=--⇔=--=-,62ππθ⎡⎤∈⎢⎥⎣⎦,,则3322ππθ⎡⎤∈⎢⎥⎣⎦,,[]cos31,0θ∈-,[]cos323,2θ-∈--,则函数值域为[]3,2--故答案为:[]3,2--【点睛】本题考查3倍角公式的使用,函数的转化思想,属于中档题10.若()2sin sin 2ααβ=-,则()tan cot αββ-=______.【答案】3-【解析】【分析】将()2sin sin 2ααβ=-,转化为()()2sin sin αββαββ-+=--,再利用两角和与差的正弦函数求解.【详解】解:因为()2sin sin 2ααβ=-,所以()()2sin sin αββαββ-+=--,展开整理得()()sin cos 3cos sin αββαββ-=--,两边同除以()cos cos αββ-,得()tan cot 3αββ-=-,故答案为:-311.设π6θ>-,若函数2cos 2sin y x x =+在区间π,6θ⎡⎤-⎢⎥⎣⎦上的最小值为14-,则θ的取值范围是______.【答案】π7π(,]66-【解析】【分析】恒等变形,使原式变成2(sin 1)2y x =--+,根据题目条件,求得sin x 的最小值为12-,结合sin y x =的函数图象,即可求得θ的取值范围.【详解】解:222cos 2sin 1sin 2sin (sin 1)2y x x x x x =+=-+=--+,因为函数2cos 2sin y x x =+在区间π[,]6θ-上的最小值为14-,所以2(sin 1)x --的最小值为94-,即2(sin 1)x -的最大值为94,则sin x 的最小值为12-,因为π[,]6x θ∈-,所以π7π(,]66θ∈-.故答案为:π7π(,]66-12.已知e 是单位向量,向量a满足2a e ⋅= .若不等式25a a te ≤+ 对任意实数t 都成立,则a r的取值范围是______.【答案】【解析】【分析】结合题目条件,设(1,0)e =,(2,)a s = ,则不等式25a a te ≤+ 对任意实数t 都成立,可转化为245s s +≤,由此求出2[1,16]s ∈,即可得到a r的取值范围.【详解】不妨设(1,0)e =,由2a e ⋅= ,可设(2,)a s =,则对任意实数t ,有2245s a a te +=≤+=等价于245s s +≤,解得[1,4]s ∈,所以2[1,16]s ∈,于是a = .故答案为:二、选择题(本大题共有4题,满分18分,第13~14题每题4分,第15~16题每题5分)13.设12e e、是两个不平行的向量,则下列四组向量中,不能组成平面向量的一个基底的是()A.12e e + 和12e e -B.122e e + 和212e e + C.1232e e - 和2146e e - D.2e 和21e e + 【答案】C 【解析】【分析】根据基底的知识确定正确答案.【详解】依题意,12e e、不共线,A 选项,不存在R λ∈使()1212e e e e λ+=-,所以12e e + 和12e e -可以组成基底.B 选项,不存在R λ∈使()122122e e e e λ=++,所以122e e + 和212e e +可以组成基底.C 选项,()211246223e e e e =--- ,所以1232e e - 和2146e e -不能构成基底.D 选项,不存在R λ∈使()221e e e λ+=,所以2e 和21e e +可以组成基底.故选:C14.设z C ∈且0z ≠,“z 是纯虚数”是“2z ∈R ”的A.充分非必要条件 B.必要非充分条件C.充要条件条件D.即非充分又非必要条件【答案】A 【解析】【分析】根据充分、必要条件的定义,结合“z 是纯虚数”“2z ∈R ”二者关系,即可求解.【详解】z 是纯虚数,则2z ∈R 成立,当z R ∈时,2z ∈R ,即2z ∈R ,z 不一定是纯虚数,“z 是纯虚数”是“2z ∈R ”的充分不必要条件.故选:A.【点睛】本题考查充分不必要条件的判断,考查纯虚数的特征,属于基础题.15.设()sin f x x =.若对任意1π0,2x ⎡⎤∈⎢⎥⎣⎦,都存在2π0,2x ⎡⎤∈⎢⎥⎣⎦,使得()()1221f x f x θ-+=-,则θ可以是()A.π5B.2π5 C.3π5D.4π5【答案】B 【解析】【分析】由题意可知,()()21112f x f x θ⎡⎤+=+⎣⎦,若对任意1π0,2x ⎡⎤∈⎢⎥⎣⎦,都存在2π0,2x ⎡⎤∈⎢⎥⎣⎦,使得()()1221f x f x θ-+=-成立,得()21,1sin 2x θ⎡⎤⊆+⎢⎥⎣⎦,只需()2min 1sin 2x θ+≤,()2max sin 1x θ+≥即可,进而将选项中的角,依次代入验证,即可求解.【详解】因为对任意1π0,2x ⎡⎤∈⎢⎥⎣⎦,都存在2π0,2x ⎡⎤∈⎢⎥⎣⎦,使得()()1221f x f x θ-+=-成立,所以()()2121f x f x θ+=+,即()()21112f x f x θ⎡⎤+=+⎣⎦,因为()sin f x x =,1π0,2x ⎡⎤∈⎢⎥⎣⎦,所以()[]10,1f x ∈,若对任意1π0,2x ⎡⎤∈⎢⎥⎣⎦,都存在2π0,2x ⎡⎤∈⎢⎥⎣⎦,使得()()1221f x f x θ-+=-成立,得()21,12f x θ⎡⎤⊆+⎢⎥⎣⎦,只需()2min 1sin 2x θ+≤,()2max sin 1x θ+≥即可,因为2π0,2x ⎡⎤∈⎢⎥⎣⎦,则2π,2x θθθ⎡⎤+∈+⎢⎥⎣⎦,对于A :当π5θ=时,2π7π,510x θ⎡⎤+∈⎢⎥⎣⎦,则()2πsin sin ,15x θ⎡⎤+∈⎢⎥⎣⎦,因为ππ1sin sin 562>=,所以()2sin x θ+的取值不符合条件,故A 错误;对于B :当2π5θ=时,22π9π,510x θ⎡⎤+∈⎢⎥⎣⎦,则()29πsin sin ,110x θ⎡⎤+∈⎢⎥⎣⎦,因为9π5π1sin sin 1062<=,()2sin x θ+的取值符合条件,故B 正确;对于C :当3π5θ=时,23π11π,510x θ⎡⎤+∈⎢⎥⎣⎦,则()211π3πsin sin ,sin 105x θ⎡⎤+∈⎢⎥⎣⎦,因为3πsin 15<,()2sin x θ+的取值不符合条件,故C 错误;对于D :当4π5θ=时,24π13π,510x θ⎡⎤+∈⎢⎥⎣⎦,则()213π4πsin sin ,sin 105x θ⎡⎤+∈⎢⎥⎣⎦,因为4πsin15<,()2sin x θ+的取值不符合条件,故D 错误;故选:B 16.在ABC ∆中,若623AC AB AB BC BC CA ⋅=⋅=⋅,则角A 的大小为A.4π B.3π C.23π D.34π【答案】D【解析】【分析】由平面向量数量积的定义得出tan B 、tan C 与tan A 的等量关系,再由()tan tan A B C =-+并代入tan B 、tan C 与tan A 的等量关系式求出tan A 的值,从而得出A 的大小.【详解】623AC AB AB BC BC CA ⋅=⋅=⋅uuu r uu u r uu u r uu u r uu u r uu rQ ,6cos 2cos 3cos bc A ca B ab C ∴=-=-,cos 3cos a B b A ∴=-,由正弦定理边角互化思想得sin cos 3cos sin A B A B =-,tan 3tan A B ∴=-,1tan tan 3B A ∴=-,同理得1tan tan 2C A =-,()11tan tan tan tan 32tan tan 111tan tan 1tan tan 32A A B C A B C B C A A --+∴=-+=-=--⎛⎫⎛⎫--⋅- ⎪ ⎪⎝⎭⎝⎭225tan 5tan 616tan 1tan 6A A A A ==--,0A π<< ,则tan 0A ≠,解得tan 1A =±,ABC ∆ 中至少有两个锐角,且1tan tan 3B A =-,1tan tan 2C A =-,所以,tan 1A =-,0A π<< ,因此,34A π=,故选D.【点睛】本题考查平面向量的数量积的计算,考查利用正弦定理、两角和的正切公式求角的值,解题的关键就是利用三角恒等变换思想将问题转化为正切来进行计算,属于中等题.三、解答题(本大题共有5题,满分78分)17.设a ∈R ,()22cos f x x a x =+.(1)若函数()y f x =是定义在R 上的奇函数,求a 的值;(2)若π36f ⎛⎫= ⎪⎝⎭,求函数()y f x =在区间π0,2⎡⎤⎢⎥⎣⎦上的取值范围.【答案】(1)0(2)[]0,3【解析】【分析】(1)由奇函数的定义,列出等式,即可解出a 的值;(2)由π36f ⎛⎫= ⎪⎝⎭,可得a 的取值,然后对()222cos f x x x =+恒等变形得π()2sin 216f x x ⎛⎫=++ ⎪⎝⎭,由条件得π26x +的取值范围是π7π,66⎡⎤⎢⎥⎣⎦,由此即可求得()y f x =的取值范围.【小问1详解】由题意知,对于任意给定的实数x ,有()()f x f x -=-,()()222cos 2cos x a x x a x -+-=-,移项整理得22cos 0a x =,因此0a =.【小问2详解】由题意知π333624f a ⎛⎫=+⋅=⎪⎝⎭,解得2a =.故()2π22cos 2cos 212sin 216f x x x x x x ⎛⎫=+=++=++ ⎪⎝⎭.当π0,2x ⎡⎤∈⎢⎥⎣⎦时,π26x +的取值范围是π7π,66⎡⎤⎢⎥⎣⎦,πsin 26⎛⎫+ ⎪⎝⎭x 的取值范围是1,12⎡⎤-⎢⎥⎣⎦,因此函数()y f x =在区间π0,2⎡⎤⎢⎥⎣⎦上的取值范围是[]0,3.18.在ABC 中,角A 、B 、C 的对边分别为a 、b 、c .设向量()2,m b c a =+- ,()cos ,cos n C A = ,且m n ∥.(1)求角A 的大小;(2)若6a =,ABC 的面积为ABC 的周长.【答案】(1)2π3(2)6+【解析】【分析】(1)由题,得()2cos cos b c A a C +=-,利用正弦定理以及和差公式,诱导公式,逐步化简,即可求解;(2)由题目条件,结合余弦定理和面积公式,得2236b c bc ++=,12bc =,然后两式相加即可求得本题答案.【小问1详解】由于m n ∥,故()2cos cos b c A a C +=-,利用正弦定理,有()2sin cos sin cos sin cos sin B A A C C A A C -=+=+,又πA B C ++=,故2sin cos sin B A B -=,由于B 为三角形内角,故sin 0B >,因此1cos 2A =-,进而2π3A =;【小问2详解】由(1)知2π3A =,由余弦定理知2222cos a b c bc A =+-,即2236b c bc ++=.由1sin 2ABC S bc A = 知4bc =12bc =.将上面两式相加得()248b c +=,故b c +=ABC 的周长为6+.19.某公司要在一条笔直的道路边安装路灯,要求灯柱AB 与地面垂直,灯杆BC 与灯柱AB 所在的平面与道路垂直,路灯C 采用锥形灯罩,射出的光线与平面ABC 的部分截面如图中阴影部分所示.已知2π3ABC ∠=,π3ACD ∠=,路宽24AD =米,设ππ64BCA θθ⎛⎫∠=≤≤ ⎪⎝⎭.(1)求灯柱AB 的高h (用θ表示);(2)此公司应该如何设置θ的值,才能使制造路灯灯柱AB 与灯杆BC 所用材料的总长度最小?并求出此最小值.(精确到0.01米)【答案】(1)32cos sin h θθ=,ππ64θ≤≤(2)当π4θ=时,AB BC +取得最小值21.86米【解析】【分析】(1)在ACD 中先用正弦定理表示出AC ,然后在ABC 中利用正弦定理表示出AB ;(2)在ABC 中利用正弦定理表示出BC ,从而得到AB BC +的表达式,再利用三角函数的性质求解最小值即可.【小问1详解】由题意知,在ACD 中,π2CDA θ∠=-,由正弦定理,得sin sin AD AC CDA ACDθ=⋅∠=∠.在ABC 中,由正弦定理,得sin 32cos sin sin AC AB h ACB ABC θθ==⋅∠=∠,ππ64θ≤≤.【小问2详解】在ABC 中,由正弦定理,得πsin 32cos sin sin 3AC BC BAC ABC θθ⎛⎫=⋅∠=- ⎪∠⎝⎭,故ππ32cos sin 32cos sin 16cos 236AB BC θθθθθ⎛⎫⎛⎫+=+-=-+⎪ ⎪⎝⎭⎝⎭,由于ππ64θ≤≤,故πππ2663θ≤-≤,所以当π4θ=时,AB BC +取得最小值821.86+≈米.20.如图,已知ABC 是边长为2的正三角形,点1P 、2P 、3P 是BC 边的四等分点.(1)求11AB AP AP AC ⋅+⋅ 的值;(2)若Q 为线段1AP 上一点,且112AQ mAB AC =+ ,求实数m 的值;(3)若P 为线段3AP 上的动点,求PA PC ⋅ 的最小值,并指出当PA PC ⋅ 取最小值时点P 的位置.【答案】(1)6(2)14(3)3713AP AP = 时,PA PC ⋅ 取最小值4952-【解析】【分析】(1)利用平行四边形法则化简表达式,然后利用已知条件及向量数量积公式计算即可;(2)利用三点共线定理建立等式,得出方程组求出参数即可;(3)记AB a =,AC b = ,设3AP t AP = ,其中01t ≤≤,表示出向量PA ,PC ,然后表示出PA PC ⋅的结果,转化为二次函数求最值即可.【小问1详解】由于2P 为BC 边的中点,所以22AB AC AP += ,故()111122AB AP AP AC AP AB AC AP AP ⋅+⋅=⋅+=⋅ .由于2AP BC ⊥,故()212221222226AP AP AP P P AP AP ⋅=+⋅== .因此116AB AP AP AC ⋅+⋅= .【小问2详解】由于114BP BC = ,故13144AP AB AC =+ .由于Q 为线段1AP 上一点,设()101AQ t AP t =≤≤ ,有314412t t AQ AB AC mAB AC =+=+ .由向量基本定理得341412t m t ⎧=⎪⎪⎨⎪=⎪⎩,解得1314t m ⎧=⎪⎪⎨⎪=⎪⎩,因此14m =.【小问3详解】记AB a =,AC b = ,由334BP BC = 得31344AP a b =+ .设3AP t AP = ,其中01t ≤≤,则344t t PA a =-- ,3144t t PC a b ⎛⎫=-+- ⎪⎝⎭ .进而有3314444t t t t PA PC a b a b ⎡⎤⎛⎫⎛⎫⋅=--⋅-+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ ()()()2221643341314164t ta t a b t b t t ⎡⎤=+-⋅+-=-⎢⎥⎣⎦ ,[]0,1t ∈.当且仅当713t =即3713AP AP = 时,PA PC ⋅ 取最小值4952-.21.已知(]0,πω∈,[)0,2πϕ∈.设()()sin f x x ωϕ=+,并记(){},S y y f n n ==∈N .(1)若2π3ω=,0ϕ=,求集合S ;(2)若2ϕπ=,试求ω的值,使得集合S 恰有两个元素;(3)若集合S 恰有三个元素,且()()f n T f n +=对于任意的n ∈N 都成立,其中T 为不大于7的正整数,求T 的所有可能值.【答案】(1)33,0,22⎧⎪-⎨⎪⎪⎩⎭(2)π或2π3(3)3、4、5、6【解析】【分析】(1)当2π3ω=,0ϕ=时,()2πsin 3x f x =找出周期计算即可;(2)若2ϕπ=,则()πsin cos 2f x x x ωω⎛⎫=+= ⎪⎝⎭,然后根据已知所给条件进行分析讨论即可;(3)根据定义以及结合所给条件进行计算,然后讨论分析即可;【小问1详解】当2π3ω=,0ϕ=时,()2πsin 3x f x =.函数()y f x =是以2π32π3T ==为周期的周期函数,故()()()3f n f n n +=∈N .由于()00f =,()12f =,()22f =-,得3322S ⎧⎪=⎨⎪⎪⎩⎭.【小问2详解】若2ϕπ=,则()πsin cos 2f x x x ωω⎛⎫=+= ⎪⎝⎭.由题意知()01f S =∈,又(]0,πω∈,得()1cos 1f ω=≠,知cos S ω∈.由于S 恰有两个元素,故()()20f f =或()()21f f =,即cos 21ω=或cos2cos ωω=.若cos 21ω=,由于(]0,πω∈,解得πω=.此时{}1,1S =-,满足题目要求.若cos2cos ωω=,即22cos cos 10ωω--=,所以cos 1ω=或1cos 2ω=-由于(]0,πω∈,解得2π3ω=.此时1,12S ⎧⎫=-⎨⎬⎩⎭,满足题目要求.综上可知,πω=或2π3ω=.【小问3详解】由于S 中恰有3个元素,显见3T ≥.首先说明3T =、4、5、6都是可能的.当3T =时,取2π3ω=,0ϕ=,由(1)知22S ⎧⎪=⎨⎪⎪⎩⎭,满足要求.当4T =时,取π2=ω,0ϕ=,()πsin 2x f x =,此时周期为2π4π2T ==,且有:()0sin 00f ==,()π1sin12f ==,()sin π02f ==,()3πsin 123f ==-,所以{}1,0,1S =-,满足要求.当5T =时,取2π5ω=,2ϕπ=,()2π2c πs πos 55in 2f x x x ⎛⎫= ⎝⎭=+⎪,此时周期为2π52π5T ==,()0cos 01f ==,()2πcos51f =,()4πcos 52f =,()6π4πcoscos 553f ==,()8π2πcos cos 554f ==,()cos 2π15f ==,所以2π4π1,cos ,cos 55S ⎧⎫=⎨⎬⎩⎭,满足要求.当6T =时,取π3ω=,0ϕ=,()πsin 3f x x =,此时周期为2π6π3T ==,所以()00f =,()π31sin 32f ==,()22π2sin 3f ==,()3sin π0f ==,()24π4sin3f ==-,()25π5sin 3f ==-,所以3322S ⎧⎪=-⎨⎪⎪⎩⎭,满足要求.下面证明7T =不成立.假设存在ω、ϕ,使得()()()7f n f n n +=∈N ,且S 恰有3个元素.注意(){}0,1,2,,6S f n n == ,故()0f ,()1f ,()2f ,…,()6f 这7个数恰好取3个不同的值,知其中至少有3个数相等.不妨设()()()f i f j f k ==,其中06i j k ≤<<≤,即()()()sin sin i j k ωϕωϕωϕ+=+=+,知i ωϕ+、j ωϕ+、k ωϕ+中必有两个角的终边重合.不妨设()()()2π,1j i m m m ωϕωϕ+-+=∈≥N ,则2πm j i ω=-,进而有()()()()f n j i f n n +-=∈N ,结合()()()7f n f n n +=∈N 知()()()1f n f n n +=∈N ,与S 恰有3个元素矛盾.综上可知,T 的所有可能值为3、4、5、6.【点睛】方法点睛:对于此类题型属于新题型难度很大,解决问题是需要注意:①注意所给的条件,尤其是定义②注意分类讨论分析的思想③对所有可能性的值都不能漏掉.。
北京市2023-2024学年高一下学期期中考试数学试题含答案
北京2023—2024学年第二学期期中练习高一数学(答案在最后)2024.04说明:本试卷共4页,共120分.考试时长90分钟.一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.sin120︒的值等于()A.12-B.12C.2D.2【答案】D 【解析】【分析】根据特殊角的三角函数值得到2,从而可求解.【详解】由题意可得sin1202︒=,故D 正确.故选:D.2.若角α的终边过点()4,3,则πsin 2α⎛⎫+= ⎪⎝⎭()A.45B.45-C.35D.35-【答案】A 【解析】【分析】根据余弦函数定义结合诱导公式计算求解即可.【详解】因为角α的终边过点()4,3,所以4cos 5α==,所以π4sin cos 25αα⎛⎫+== ⎪⎝⎭.故选:A3.已知扇形的弧长为4cm ,圆心角为2rad ,则此扇形的面积是()A.22cmB.24cm C.26cm D.28cm 【答案】B【解析】【分析】由条件结合弧长公式l R α=求出圆的半径,然后结合扇形的面积公式12S lR =可得答案.【详解】因为扇形的圆心角2rad α=,它所对的弧长4cm l =,所以根据弧长公式l R α=可得,圆的半径2R =,所以扇形的面积211424cm 22S lR ==⨯⨯=;故选:B .4.向量a ,b ,c在正方形网格中的位置如图所示,若向量c a b λ=+,则实数λ=()A.2-B.1-C.1D.2【答案】D 【解析】【分析】将3个向量的起点归于原点,根据题设得到它们的坐标,从而可求λ的值.【详解】如图,将,,a b c的起点平移到原点,则()()()1,1,0,1,2,1a b c ==-= ,由c a b λ=+可得()()()2,11,10,1λ=+-,解得2λ=,故选:D.5.下列四个函数中以π为最小正周期且为奇函数的是()A.()cos2f x x =B.()tan2x f x =C.()()tan f x x =- D.()sin f x x=【答案】C 【解析】【分析】根据三角函数的周期性和奇偶性对选项逐一分析,由此确定正确选项.【详解】对于A ,函数()cos2f x x =的最小正周期为π,因为()()()cos 2cos 2f x x x f x -=-==,所以()cos2f x x =为偶函数,A 错误,对于B ,函数()tan 2xf x =的最小正周期为2π,因为()()tan tan 22x x f x f x ⎛⎫-=-=-=- ⎪⎝⎭,所以函数()tan 2x f x =为奇函数,B 错误,对于C ,函数()()tan f x x =-的最小正周期为π,因为()()()tan tan f x x x f x -==--=-,所以函数()()tan f x x =-为奇函数,C 正确,对于D ,函数()sin f x x =的图象如下:所以函数()sin f x x =不是周期函数,且函数()sin f x x =为偶函数,D 错误,6.在ABC 中,4AB =,3AC =,且AB AC AB AC +=- ,则AB BC ⋅= ()A.16B.16- C.20D.20-【答案】B 【解析】【分析】将AB AC AB AC +=- 两边平方,即可得到0AB AC ⋅=,再由数量积的运算律计算可得.【详解】因为AB AC AB AC +=- ,所以()()22AB ACAB AC +=-,即222222AB AB AC AC AB AB AC AC +⋅+=-⋅+uu u r uu u r uuu r uuu r uu u r uu u r uuu r uuu r ,所以0AB AC ⋅= ,即AB AC ⊥ ,所以()220416AB BC AB AC AB AB AC AB ⋅=⋅-=⋅-=-=- .故选:B7.函数cos tan y x x =⋅在区间3,22ππ⎛⎫⎪⎝⎭上的图像为()A.B.C.D.【答案】C 【解析】【分析】分别讨论x 在3,,[,)22ππππ⎛⎫⎪⎝⎭上tan x 的符号,然后切化弦将函数化简,作出图像即可.【详解】因为3,22x ππ⎛⎫∈ ⎪⎝⎭,所以sin ,,23sin ,.2x x y x x πππ⎧-<<⎪⎪=⎨⎪≤<⎪⎩故选:C.8.已知函数()sin 24f x x π⎛⎫=+ ⎪⎝⎭,则“()ππ8k k α=+∈Z ”是“()f x α+是偶函数,且()f x α-是奇函数”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【解析】【分析】首先求出()f x α+、()f x α-的解析式,再根据正弦函数的性质求出使()f x α+是偶函数且()f x α-是奇函数时α的取值,再根据充分条件、必要条件的定义判断即可.【详解】因为()sin 24f x x π⎛⎫=+⎪⎝⎭,则()sin 224f x x ααπ⎛⎫+=++ ⎪⎝⎭,()sin 224f x x ααπ⎛⎫-=-+ ⎪⎝⎭,若()f x α-是奇函数,则112π,Z 4k k απ-+=∈,解得11π,Z 82k k απ=-∈,若()f x α+是偶函数,则222π,Z 42k k αππ+=+∈,解得22π,Z 82k k απ=+∈,所以若()f x α+是偶函数且()f x α-是奇函数,则π,Z 82k k απ=+∈,所以由()ππ8k k α=+∈Z 推得出()f x α+是偶函数,且()f x α-是奇函数,故充分性成立;由()f x α+是偶函数,且()f x α-是奇函数推不出()ππ8k k α=+∈Z ,故必要性不成立,所以“()ππ8k k α=+∈Z ”是“()f x α+是偶函数,且()f x α-是奇函数”的充分不必要条件.故选:A9.已知向量,,a b c 共面,且均为单位向量,0a b ⋅= ,则a b c ++ 的最大值是()A.1+ B.C.D.1-【答案】A 【解析】【分析】根据题意,可设出向量,,a b c 的坐标,由于这三个向量都是单位向量,则向量,,a b c的终点都落在以坐标原点为圆心的单位圆上,作出示意图,由向量的性质可知,只有当c 与a b +同向时,a b c ++ 有最大值,求解即可.【详解】因为向量,,a b c 共面,且均为单位向量,0a b ⋅= ,可设()1,0a =,()0,1b = ,(),c x y = ,如图,所以2a b += ,当c 与a b +同向时,此时a b c ++ 有最大值,为21+.故选:A .10.窗花是贴在窗户玻璃上的贴纸,它是中国古老的传统民间艺术之一在2022年虎年新春来临之际,人们设计了一种由外围四个大小相等的半圆和中间正方形所构成的剪纸窗花(如图1).已知正方形ABCD 的边长为2,中心为O ,四个半圆的圆心均为正方形ABCD 各边的中点(如图2),若P 为 BC 的中点,则()PO PA PB ⋅+=()A .4B.6C.8D.10【答案】C 【解析】【分析】根据平面向量的线性运算将()PO PA PB ⋅+ 化为OA 、OB 、OP表示,再根据平面向量数量积的运算律可求出结果.【详解】依题意得||||2OA OB ==,||2OP =,3π4AOP =Ð,π4BOP =Ð,所以3π2||||cos 22(242OA OP OA OP ⋅=⋅=⨯-=- ,π2||||cos 22242OB OP OB OP ⋅=⋅=⨯= ,所以()PO PA PB ⋅+= ()OP OA OP OB OP -⋅-+- 22||OA OP OB OP OP =-⋅-⋅+ 222228=-+⨯=.故选:C二、填空题(本大题共5小题,每小题4分,共20分,把答案填在题中横线上)11.写出一个与向量()3,4a =-共线的单位向量_____________.【答案】34,55⎛⎫- ⎪⎝⎭(答案不唯一)【解析】【分析】先求出a r ,则aa±即为所求.【详解】5a ==所以与向量()3,4a =- 共线的单位向量为34,55⎛⎫- ⎪⎝⎭或34,55⎛⎫- ⎪⎝⎭.故答案为:34,55⎛⎫- ⎪⎝⎭(答案不唯一)12.已知函数()()sin 0,0,2πf x A x A ωϕωϕ⎛⎫=+>><⎪⎝⎭的部分图象如图,则π3f ⎛⎫= ⎪⎝⎭__________.【解析】【分析】根据图象可得函数()f x 的最大值,最小值,周期,由此可求,A ω,再由5π212f ⎛⎫=⎪⎝⎭求ϕ,由此求得的解析式,然后求得π3f ⎛⎫⎪⎝⎭.【详解】由图可知,函数()f x 的最大值为2,最小值为2-,35ππ3π41234T =+=,当5π12x =时,函数()f x 取最大值2,又()()sin 0,0,2πf x A x A ωϕωϕ⎛⎫=+>>< ⎪⎝⎭所以2A =,32π3π44ω⨯=,所以2ω=,所以()()2sin 2f x x ϕ=+,又5π212f ⎛⎫=⎪⎝⎭,所以5π5π2sin 2126f ϕ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,由于πππ5π4π,22363ϕϕ-<<<+<,所以5πππ,623ϕϕ+==-,所以()π2sin 23f x x ⎛⎫=- ⎪⎝⎭,ππ2sin 33f ⎛⎫== ⎪⎝⎭.13.已知函数()()πsin 0,2f x x ωϕωϕ⎛⎫=+>< ⎪⎝⎭的图象过点10,2⎛⎫ ⎪⎝⎭,则ϕ=__________.,若将函数()f x 图象仅向左平移π4个单位长度和仅向右平移π2个单位长度都能得到同一个函数的图象,则ω的最小值为__________.【答案】①.π6##1π6②.83##223【解析】【分析】由条件列方程求ϕ,再利用平移变换分别得到变换后的函数解析式,并根据相位差为2π,Z k k ∈求解;【详解】因为函数()()sin f x x ωϕ=+的图象过点10,2⎛⎫ ⎪⎝⎭,所以1sin 2ϕ=,又π2ϕ<,所以π6ϕ=,函数()πsin 6f x x ω⎛⎫=+⎪⎝⎭(0ω>)的图象仅向左平移π4个单位长度得到函数ππππsin sin 4646y x x ωωω⎡⎛⎫⎤⎛⎫=++=++ ⎪ ⎢⎥⎝⎭⎦⎝⎭⎣的图象,函数()πsin 6f x x ω⎛⎫=+⎪⎝⎭(0ω>)的图象仅向右平移π2个单位长度得到ππππsin sin 2626y x x ωωω⎡⎤⎛⎫⎛⎫=-+=-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦的图象,则ππππ2π4626k ωω⎛⎫⎛⎫+--+=⎪ ⎪⎝⎭⎝⎭(Z k ∈),化简得3π2π4k ω=(Z k ∈),解得83k ω=(Z k ∈),由于0ω>,所以当1k =时,ω取得最小值83,故答案为:π8,63.14.已知边长为2的菱形ABCD 中,π3DAB ∠=,点E 满足3BE EC = ,点F 为线段BD 上一动点,则AF BE ⋅的最大值为______.【答案】3【解析】【分析】建立如图平面直角坐标系,设BF BD λ= ,利用平面向量线性运算与数量积的坐标表示可得AF BE⋅关于λ的表达式,从而得解.【详解】如图,以A为原点建立平面直角坐标系,则(0,0),(2,0),A B C D ,因为3BE EC =,所以(33333,4444BE BC ⎛⎫=== ⎪ ⎪⎝⎭,由题意,设()01BF BD λλ=≤≤,则(()BF λλ=-=- ,则()()()2,02,AF AB BF λλ=+=+-=-,所以()3333324422AF BE λλ⋅=-+=+,因为01λ≤≤,所以当1λ=时,AF BE ⋅的最大值为3.故答案为:3.15.声音是由物体振动产生的声波.我们听到的每个音都是由纯音合成的,纯音的数学模型是函数sin y A t ω=.音有四要素,音调、响度、音长和音色.它们都与函数sin y A t ω=及其参数有关,比如:响度与振幅有关,振幅越大响度越大,振幅越小响度越小;音调与频率有关,频率低的声音低沉,频率高的声音尖锐.我们平时听到的乐音不只是一个音在响,而是许多音的结合,称为复合音.我们听到的声音对应的函数是111sin sin 2sin 3sin 4234y x x x x =++++⋯..给出下列四个结论:①函数1111sin sin 2sin 3sin 4sin1023410y x x x x x =++++⋯+不具有奇偶性;②函数()111sin sin2sin3sin4234f x x x x x =+++在区间ππ,88⎡⎤-⎢⎥⎣⎦上单调递增;③若某声音甲对应的函数近似为()11sin sin 2sin 323g x x x x =++,则声音甲的响度一定比纯音()1sin22h x x =的响度小;④若某声音乙对应的函数近似为()1sin sin 22x x x ϕ=+,则声音乙一定比纯音()1sin22h x x =更低沉.其中所有正确结论的序号是__________.【答案】②④【解析】【分析】对①,结合奇偶性的定义判断即可;对②,利用正弦型函数的单调性作出判断;对③,分别判断()(),g x h x 的振幅大小可得;对④,求出周期,可得频率,即可得出结论.【详解】对于①,令()1111sin sin2sin3sin4sin1023410F x x x x x x =++++⋯+,所以()()()()()()1111sin sin 2sin 3sin 4sin 1023410F x x x x x x -=-+-+-+-+⋯+-,所以()1111sin sin2sin3sin4sin1023410F x x x x x x -=-----⋅⋅⋅-,所以()()F x F x -=-,所以()F x 是奇函数,①错误;对于②,由ππ88x -≤≤可得,ππ244x -≤≤,3π3π388x -≤≤,ππ422x -≤≤,所以111sin ,sin2,sin3,234x x x x 都在ππ,88⎡⎤-⎢⎥⎣⎦上单调递增,所以()111sin sin2sin3sin4234f x x x x x =+++在ππ,88⎡⎤-⎢⎥⎣⎦上单调递增,所以函数()f x 在区间ππ,88⎡⎤-⎢⎥⎣⎦上单调递增,②正确;对于③.因为()11sin sin 2sin 323g x x x x =++,所以π223g ⎛⎫= ⎪⎝⎭,所以()max 23g x ≥,即()g x 的振幅比()1sin22h x x =的振幅大,所以声音甲的响度一定比纯音()1sin22h x x =的响度大,所以③错误;对于④,因为()()()()112πsin 2πsin 24πsin sin 222x x x x x x ϕϕ+=+++=+=,所以函数()x ϕ为周期函数,2π为其周期,若存在02πα<<,使()()x x ϕϕα=+恒成立,则必有()()0ϕϕα=,()()110sin 0sin 00sin sin 222ϕϕααα∴=+===+,()sin 1cos 0αα∴+=,因为02πα<<,πα∴=,又()()()11πsin πsin 2πsin sin 222x x x x x ϕ+=+++=-+与()1sin sin 22x x x ϕ=+不恒相等,所以函数()1sin sin22x x x ϕ=+的最小正周期是2π,所以频率1112πf T ==而()h x 的周期为π,频率21πf =,12f f <,所以声音乙一定比纯音()1sin22h x x =更低沉,所以④正确.故答案为:②④.三、解答题(本大题共5小题,共60分.解答应写出文字说明,证明过程或演算步骤)16.如图,在ABC 中,2BD DC = ,E 是AD 的中点,设AB a = ,AC b = .(1)试用a ,b 表示AD ,BE ;(2)若1a b == ,a 与b 的夹角为60︒,求AD BE ⋅ .【答案】(1)1233AD a b =+ ,5163BE a b =-+ (2)518-【解析】【分析】(1)利用向量加法减法的三角形法则及数乘运算即可求解;(2)根据(1)的结论,利用向量的数量积运算法则即可求解.【小问1详解】因为2BD DC = ,所以23BD BC = ,所以221)212(333333AB AC AB AB AC a b AD AB BD AB BC +-=+=+=+=+= .因为E 是AD 的中点,所以()11211()22323BE BA BD AB BC AB AC AB ⎛⎫=+=-+=-+- ⎪⎝⎭ 51516363AB AC a b =-+=-+ .【小问2详解】因为1a b == ,a 与b 的夹角为60︒,所以11cos ,1122a b a b a b ⋅==⨯⨯= ,由(1)知,1233AD a b =+ ,5163BE a b =-+ ,所以22125154233631899AD BE a b a b a a b b ⎛⎫⎛⎫⋅=+⋅-+=--⋅+ ⎪ ⎪⎝⎭⎝⎭541251892918=--⨯+=-.17.已知函数()π3sin 24f x x ⎛⎫=+⎪⎝⎭(1)求()f x 的最小正周期;(2)求函数()f x 的单调递增区间;(3)若函数()f x 在区间[]0,a 内只有一个零点,直接写出实数a 的取值范围.【答案】(1)()f x 的最小正周期为π,(2)函数()f x 的单调递增区间是3πππ,π88k k ⎡⎤-+⎢⎥⎣⎦()k ∈Z ;(3)a 的取值范围为3π7π,88⎡⎫⎪⎢⎣⎭.【解析】【分析】(1)根据正弦型函数的周期公式求解即可;(2)利用正弦函数的单调区间结论求解;(3)求出()0f x =的解后可得a 的范围.【小问1详解】因为()π3sin 24f x x ⎛⎫=+ ⎪⎝⎭,所以函数()f x 的最小正周期2ππ2T ==;【小问2详解】由πππ2π22π242k x k -≤+≤+,Z k ∈,可得3ππππ88k x k -≤≤+,Z k ∈,所以函数()f x 的单调递增区间是3πππ,π88k k ⎡⎤-+⎢⎥⎣⎦()k ∈Z ;【小问3详解】由π()3sin(204f x x =+=可得,π2π4x k +=,Z k ∈所以ππ28k x =-,Z k ∈,因为函数()f x 在区间[]0,a 上有且只有一个零点,所以3π7π88a ≤<,所以实数a 的取值范围为3π7π,88⎡⎫⎪⎢⎣⎭.18.已知()()()4,0,0,4,cos ,sin ,(0π)A B C ααα<<.(1)若OA OC += (O 为坐标原点),求OB 与OC 的夹角;(2)若⊥ AC BC ,求sin cos αα-的值.【答案】(1)OB 与OC 的夹角为π6,(2)sin cos 4αα-=【解析】【分析】(1)根据向量模长以及夹角的坐标公式计算即可;(2)由向量垂直得到数量积为0,进而得到1sin cos 4αα+=,通过平方得到2sin cos αα,进而可得()2sin cos αα-,再根据α的范围确定正负,开方得解.【小问1详解】因为()()()4,0,0,4,cos ,sin A B C αα,所以()()()4,0,0,4,cos ,sin OA OB OC αα=== ,所以()4cos ,sin OA OC αα+=+ ,由OA OC += ()224+cos sin 21αα+=,所以1cos 2α=,又0πα<<,,所以π3α=,13,22C ⎛⎫ ⎪ ⎪⎝⎭,设OB 与OC 的夹角为β()0πβ≤≤,则cos OB OC OB OC β⋅= 23342==,又0πβ≤≤,故OB 与OC 的夹角为π6,【小问2详解】由⊥ AC BC 得0AC BC ⋅= ,又()cos 4,sin AC αα=- ,()cos ,sin 4BC αα=- ,所以()()cos 4cos sin sin 40αααα-+-=,所以1sin cos 4αα+=,所以152sin cos 016αα-=<,又0πα<<,所以ππ2α<<,所以()21531sin cos 11616αα--=-=,所以sin cos 4αα-=.19.已知函数()()πsin 0,0,2f x A x A ωϕωϕ⎛⎫=+>><⎪⎝⎭,且()f x 图像的相邻两条对称轴之间的距离为π2,再从条件①、条件②、条件③中选择两个作为一组已知条件.(1)确定()f x 的解析式;(2)设函数()π24g x x ⎛⎫=+ ⎪⎝⎭,则是否存在实数m ,使得对于任意1π0,2x ⎡⎤∈⎢⎥⎣⎦,存在2π0,2x ⎡⎤∈⎢⎥⎣⎦,()()12m g x f x =-成立?若存在,求实数m 的取值范围:若不存在,请说明理由.条件①:()f x 的最小值为2-;条件②:()f x 图像的一个对称中心为5π,012⎛⎫ ⎪⎝⎭;条件③:()f x 的图像经过点5π,16⎛⎫- ⎪⎝⎭.注:如果选择多组条件分别解答,按第一个解答计分.【答案】(1)选①②,②③,①③答案都为()2sin(2)6f x x π=+,(2)存在m 满足条件,m 的取值范围为2,0⎤⎦.【解析】【分析】(1)先根据已知求出()f x 的最小正周期,即可求解ω,选条件①②:可得()f x 的最小值为A -,可求A .根据对称中心可求ϕ,即可得解函数解析式;选条件①③:可得()f x 的最小值为A -,可求A .根据函数()f x 的图象过点5π,16⎛⎫⎪⎝⎭,可求ϕ,可得函数解析式;选条件②③:根据对称中心可求ϕ,再根据函数()f x 的图象过点5π,16⎛⎫⎪⎝⎭,可求A 的值,即可得解函数解析式.(2)求出函数()f x ,()g x 在π0,2⎡⎤⎢⎥⎣⎦上的值域,再结合恒成立、能成立列式求解作答.【小问1详解】由于函数()f x 图像上两相邻对称轴之间的距离为π2,所以()f x 的最小正周期π2π2T =⨯=,所以2π2T ω==,此时()()sin 2f x A x ϕ=+.选条件①②:因为()f x 的最小值为A -,所以2A =.因为()f x 图象的一个对称中心为5π,012⎛⎫⎪⎝⎭,所以5π2π(Z)12k k ϕ⨯+=∈,所以56k ϕπ=π-,()k ∈Z ,因为||2ϕπ<,所以π6ϕ=,此时1k =,所以()2sin(2)6f x x π=+.选条件①③:因为()f x 的最小值为A -,所以2A =.因为函数()f x 的图象过点5π,16⎛⎫-⎪⎝⎭,则5π()16f =-,所以5π2sin()13ϕ+=-,即5π1sin()32ϕ+=-.因为||2ϕπ<,所以7π5π13π636ϕ<+<,所以5π11π36ϕ+=,所以π6ϕ=,所以()2sin(2)6f x x π=+.选条件②③:因为函数()f x 的一个对称中心为5π,012⎛⎫⎪⎝⎭,所以5π2π(Z)12k k ϕ⨯+=∈,所以5ππ(Z)6k k ϕ=-∈.因为||2ϕπ<,所以π6ϕ=,此时1k =.所以π()sin(26f x A x =+.因为函数()f x 的图象过点5π,16⎛⎫-⎪⎝⎭,所以5π(16f =-,所以5ππsin 136A ⎛⎫+=-⎪⎝⎭,11πsin 16A =-,所以2A =,所以()2sin(2)6f x x π=+.综上,不论选哪两个条件,()2sin(2)6f x x π=+.【小问2详解】由(1)知,()2sin(2)6f x x π=+,由20,2x π⎡⎤∈⎢⎥⎣⎦得:2ππ7π2,666x ⎡⎤+∈⎢⎥⎣⎦,2π1sin 2,162x ⎛⎫⎡⎤+∈- ⎪⎢⎥⎝⎭⎣⎦,因此[]2()1,2f x ∈-,由10,2x π⎡⎤∈⎢⎥⎣⎦得:1ππ5π2,444x ⎡⎤+∈⎢⎥⎣⎦,1πsin 2,142x ⎡⎤⎛⎫+∈-⎢⎥ ⎪⎝⎭⎣⎦,因此1()g x ⎡∈-⎣,从而1()1,g x m m m ⎡-∈---+⎣,由()()12m g x f x =-得:()()21f x g x m =-,假定存在实数m ,使得对1π0,2x ⎡⎤∀∈⎢⎥⎣⎦,2π0,2x ⎡⎤∃∈⎢⎥⎣⎦,()()12m g x f x =-成立,即存在实数m ,使得对1π0,2x ⎡⎤∀∈⎢⎥⎣⎦,2π0,2x ⎡⎤∃∈⎢⎥⎣⎦,()()21f x g x m =-成立,则[]1,1,2m m ⎡---+⊆-⎣,于是得112m m --≥-⎧⎪⎨-+≤⎪⎩,解得20m -≤≤,因此存在实数m ,使得对1π0,2x ⎡⎤∀∈⎢⎥⎣⎦,2π0,2x ⎡⎤∃∈⎢⎥⎣⎦,()()12m g x f x =-成立,所以实数m的取值范围是2,0⎤⎦.20.对于定义在R 上的函数()f x 和正实数T 若对任意x ∈R ,有()()f x T f x T +-=,则()f x 为T -阶梯函数.(1)分别判断下列函数是否为1-阶梯函数(直接写出结论):①()2f x x =;②()1f x x =+.(2)若()sin f x x x =+为T -阶梯函数,求T 的所有可能取值;(3)已知()f x 为T -阶梯函数,满足:()f x 在,2T T ⎡⎤⎢⎥⎣⎦上单调递减,且对任意x ∈R ,有()()2f T x f x T x --=-.若函数()()F x f x ax b =--有无穷多个零点,记其中正的零点从小到大依次为123,,,x x x ⋅⋅⋅;若1a =时,证明:存在b ∈R ,使得()F x 在[]0,2023T 上有4046个零点,且213240464045x x x x x x -=-=⋅⋅⋅=-.【答案】(1)①否;②是(2)2πT k =,*k ∈N (3)证明见解析【解析】【分析】(1)利用T -阶梯函数的定义进行检验即可判断;(2)利用T -阶梯函数的定义,结合正弦函数的性质即可得解;(3)根据题意得到()()F x T F x +=,()()F T x F x -=,从而取3344TT b f ⎛⎫=- ⎪⎝⎭,结合零点存在定理可知()F x 在(),1mT m T +⎡⎤⎣⎦上有且仅有两个零点:4T mT +,34T mT +,从而得解.【小问1详解】()2f x x =,则22(1)()(1)211f x f x x x x +-=+-=+≠;()1f x x =+,则(1)()11f x f x x x +-=+-=,故①否;②是.【小问2详解】因为()f x 为T -阶梯函数,所以对任意x ∈R 有:()()()()()sin sin sin sin f x T f x x T x T x x x T x T T +-=+++-+=+-+=⎡⎤⎣⎦.所以对任意x ∈R ,()sin sin x T x +=,因为sin y x =是最小正周期为2π的周期函数,又因为0T >,所以2πT k =,*k ∈N .【小问3详解】因为1a =,所以函数()()F x f x x b =--,则()()()()()()()F x T f x T x T b f x T x T b f x x b F x +=+-+-=+-+-=--=,()()()()()()()2F T x f T x T x b f x T x T x b f x x b F x -=----=+----=--=.取3344TT b f ⎛⎫=- ⎪⎝⎭,则有3330444TT T F f b ⎛⎫⎛⎫=--= ⎪ ⎪⎝⎭⎝⎭,30444T T T F F T F ⎛⎫⎛⎫⎛⎫=-== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,由于()f x 在,2T T ⎡⎤⎢⎥⎣⎦上单调递减,因此()()F x f x x b =--在,2T T ⎡⎤⎢⎥⎣⎦上单调递减,结合()()F T x F x -=,则有()F x 在0,2T ⎡⎤⎢⎥⎣⎦上有唯一零点4T ,在,2T T ⎡⎤⎢⎥⎣⎦上有唯一零点34T .又由于()()F x T F x +=,则对任意k ∈Ζ,有044T T F kT F ⎛⎫⎛⎫+== ⎪ ⎪⎝⎭⎝⎭,33044T T F kT F ⎛⎫⎛⎫+== ⎪ ⎪⎝⎭⎝⎭,因此,对任意m ∈Z ,()F x 在(),1mT m T +⎡⎤⎣⎦上有且仅有两个零点:4T mT +,34T mT +.综上所述,存在3344TT b f ⎛⎫=- ⎪⎝⎭,使得()F x 在[]0,2023T 上有4046个零点,且14T x =,234T x =,354T x =,474T x =,L ,404580894T x =,404680914T x =,其中,2132404640452T x x x x x x -=-=⋅⋅⋅=-=.【点睛】关键点睛:本题解决的关键是充分理解新定义T -阶梯函数,从而在第3小问推得()()F x T F x +=,()()F T x F x -=,由此得解.。
高一下学期期中数学试卷-(解析版)
高一下学期期中数学试卷一、填空题(共12小题).1.2021°角是第象限角.2.已知扇形的面积为2,扇形圆心角的弧度数是2,则扇形的弧长为.3.已知tanθ=2,则=.4.函数y=arcsin(2x﹣1)的定义域为.5.S n为数列{a n}的前n项的和,,则a n=.6.已知角α的顶点在坐标原点,始边与x轴的正半轴重合,为其终边上一点,则=.7.已知,若,则sinα=.8.如图所示,有一电视塔DC,在地面上一点A测得电视塔尖C的仰角是45°,再向塔底方向前进100米到达点B,此时测得电视塔尖C的仰角为60°,则此时电视塔的高度是米.(精确到0.1米)9.已知数列{a n}与{b n}都是等差数列,且a1=1,b1=4,a25+b25=149,则数列{a n+b n}的前25项和等于.10.“中国剩余定理”又称“孙子定理”.1852年英国来华传教伟烈亚利将《孙子算经》中“物不知数”问题的解法传至欧洲1874年,英国数学家马西森指出此法符合1801年由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将2至2017这2016个数中能被3除余1且被5除余1的数按由小到大的顺序排成一列,构成数列{a n},则此数列的项数为.11.已知公式cos3θ=4cos3θ﹣3cosθ,θ∈R,借助这个公式,我们可以求函数f(x)=4x3﹣3x﹣2(x∈[0,])的值域.则该函数的值域是.12.函数f(x)=sin(ωx)(其中ω>0)的图象与其对称轴在y轴右侧的交点从左到右依次记为A1,A2,A3,…,A n,…,在点列{A n}中存在四个不同的点成为某菱形的四个顶点,将满足上述条件的ω值从小到大组成的数列记为{ωn},则ω2020=.二.选择题13.“tan x=1”是“”成立的()条件A.充分非必要B.必要非充分C.充要D.既非充分又非必要14.要得到函数y=2sin(2x+)的图象,只需要将函数y=2sin(2x﹣)的图象()A.向右平移π个长度单位B.向左平移π个长度单位C.向右平移个长度单位D.向左平移个长度单位15.设等差数列{a n}的前n项和为S n,且满足S15>0,S16>0,则中最大项为()A.B.C.D.16.函数f(x)=sin x在区间(0,10π)上可找到n个不同数x1,x2,…,x n,使得==…=,则n的最大值等于()A.8 B.9 C.10 D.11三.解答题17.已知,,,求:(1)tanα和tanβ的值;(2)tan(α﹣2β)的值.18.已知函数f(x)=sin n x+cos x(x∈R).(1)当n=1时,判断函数f(x)的奇偶性,并说明理由;(2)当n=2时,求f(x)的最值并指出此时x的取值集合.19.在△ABC中,4sin B sin2(+)+cos2B=1+.(1)求角B的度数;(2)若a=4,S△=5,求边b的值.20.在等差数列{a n}中,a3+a4=﹣2,a5+a7=8.(1)求{a n}的通项公式;(2)求{a n}的前n项和S n的最小值;(3)设,求数列{b n}的前10项和,其中[x]表示不超过x的最大整数.21.已知函数f(x)=cos2x+2sin x cos x+l,x∈R.(1)把f(x)表示为A sin(ωx+φ)+B(A>0,ω>0,0<φ<π)的形式,并写出函数f(x)的最小正周期、值域;(2)求函数f(x)的单调递增区间;(3)定义:对下任意实数x1、x2,max{x1、x2}=.设g(x)=max{a sin x,a cos x}.x ∈R(常数a>0),若对于任意x1∈R,总存在x2∈R,使得g(x1)=f(x2)恒成立,求实数a的取值范围.参考答案一.填空题1.2021°角是第三象限角.解:2021°=360°×5+221°,是第三象限角.故答案为:三.2.已知扇形的面积为2,扇形圆心角的弧度数是2,则扇形的弧长为2.解:设扇形的半径为r,则×2×r8=2,∴扇形的弧长=2×=4.故答案为:2.3.已知tanθ=2,则=.解:∵tanθ=2,∴==.故答案为:.4.函数y=arcsin(2x﹣1)的定义域为[0,1] .解:设t=2x﹣1,∵反正弦函数y=arcsin t的定义域为[﹣1,1],所以函数的定义域为:[0,7].故答案为:[0,1].5.S n为数列{a n}的前n项的和,,则a n=.解:因为,所以a3=S1=2﹣3+1=0,当n≥7时a n=S n﹣S n﹣1=(2n6﹣3n+1)﹣[2(n﹣1)2﹣3(n﹣5)+1]=4n﹣5,∴a n=.故答案为:.6.已知角α的顶点在坐标原点,始边与x轴的正半轴重合,为其终边上一点,则=.解:由题意可得cosα=,则sin()=cosα=.故答案为:﹣7.已知,若,则sinα=.解:,所以α+∈(,),又,所以sin(α+)==;=sin(α+)cos﹣cos(α+)sin=.故答案为:.8.如图所示,有一电视塔DC,在地面上一点A测得电视塔尖C的仰角是45°,再向塔底方向前进100米到达点B,此时测得电视塔尖C的仰角为60°,则此时电视塔的高度是236.6 米.(精确到0.1米)解:设电视塔的高度为x,则在Rt△BCD中,∠CBD=60°,则,解得.由于,整理得,解得x≈236.5.故答案为:236.69.已知数列{a n}与{b n}都是等差数列,且a1=1,b1=4,a25+b25=149,则数列{a n+b n}的前25项和等于1925 .解:∵等差数列{a n}、{b n}满足a1=1,b6=4,a25+b25=149,∴数列{a n+b n}的前25项和=+=+(a25+b25)=+×149=1925.故答案为:1925.10.“中国剩余定理”又称“孙子定理”.1852年英国来华传教伟烈亚利将《孙子算经》中“物不知数”问题的解法传至欧洲1874年,英国数学家马西森指出此法符合1801年由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将2至2017这2016个数中能被3除余1且被5除余1的数按由小到大的顺序排成一列,构成数列{a n},则此数列的项数为134 .解:由能被3除余1且被5除余1的数就是能被15整除余7的数,故a n=15n﹣14.得n≤135,故此数列的项数为135﹣1=134.故答案为:13411.已知公式cos3θ=4cos3θ﹣3cosθ,θ∈R,借助这个公式,我们可以求函数f(x)=4x3﹣3x﹣2(x∈[0,])的值域.则该函数的值域是[﹣3,﹣2] .解:设x=cosθ,.则f(x)=4x4﹣3x﹣2=4cos6θ﹣3cosθ﹣2=cos3θ﹣2.∴cos3θ﹣5.∈[﹣3,﹣2]故答案为:[﹣3,﹣2]12.函数f(x)=sin(ωx)(其中ω>0)的图象与其对称轴在y轴右侧的交点从左到右依次记为A1,A2,A3,…,A n,…,在点列{A n}中存在四个不同的点成为某菱形的四个顶点,将满足上述条件的ω值从小到大组成的数列记为{ωn},则ω2020=.解:根据题意作出图象如下,设f(x)=sin(ωx)的最小正周期为,所以,即,解得;若A1A4A5A7为菱形,则若A1A k﹣1A k A m为菱形,则,解得,故答案为:.二.选择题13.“tan x=1”是“”成立的()条件A.充分非必要B.必要非充分C.充要D.既非充分又非必要解:tan x=1⇔x=kπ+,k∈Z.∴“tan x=1”是“”成立的必要不充分条件.故选:B.14.要得到函数y=2sin(2x+)的图象,只需要将函数y=2sin(2x﹣)的图象()A.向右平移π个长度单位B.向左平移π个长度单位C.向右平移个长度单位D.向左平移个长度单位解:只需要将函数y=2sin(2x﹣)的图象向左平移个长度单位,可得函数y=3sin[2(x+)﹣]=2sin(2x+)的图象,故选:D.15.设等差数列{a n}的前n项和为S n,且满足S15>0,S16>0,则中最大项为()A.B.C.D.解:∵等差数列前n项和S n=•n2+(a1﹣)n,由S15=15a8>0,S16=16×<0可得:故Sn最大值为S8.故S n最大且a n取最小正值时,有最大值,故选:D.16.函数f(x)=sin x在区间(0,10π)上可找到n个不同数x1,x2,…,x n,使得==…=,则n的最大值等于()A.8 B.9 C.10 D.11解:设==…==k,则条件等价为f(x)=kx,的根的个数,由图象可知y=kx与函数f(x)最多有10个交点,故选:C.三.解答题17.已知,,,求:(1)tanα和tanβ的值;(2)tan(α﹣2β)的值.解:(1)∵,,∴cosα=﹣=﹣,∵,∴.∴tan(α﹣2β)===.18.已知函数f(x)=sin n x+cos x(x∈R).(1)当n=1时,判断函数f(x)的奇偶性,并说明理由;(2)当n=2时,求f(x)的最值并指出此时x的取值集合.解:(1)当n=1时,f(x)=sin x+cos x=(sin x+cos x)=cos(x).∴f(x)≠f(﹣x)≠﹣f(﹣x),∴f(x)为非奇非偶函数;当时,,此时x的取值集合是;当cos x=﹣1时,f(x)min=﹣1,此时x的取值集合是{x|x=2kπ+π,k∈Z}.19.在△ABC中,4sin B sin2(+)+cos2B=1+.(1)求角B的度数;(2)若a=4,S△=5,求边b的值.解:(1)由4sin B•sin2(+)+cos2B=1+,得:2sin B•[7﹣cos(+B)]+1﹣2sin2B=1+,可得sin B=,∴B=,或B=;∴ac sin B=×4×c×=5,解之得c=6,∴当B=时,b==;即边b的值等于或.20.在等差数列{a n}中,a3+a4=﹣2,a5+a7=8.(1)求{a n}的通项公式;(2)求{a n}的前n项和S n的最小值;(3)设,求数列{b n}的前10项和,其中[x]表示不超过x的最大整数.解:(1)设等差数列{a n}的公差为d,∵a3+a4=﹣2,a5+a7=8.∴2a1+5d=﹣2,2a1+10d=8,∴a n=﹣6+2(n﹣1)=2n﹣8.∴当n=2或4时,S n取得最小值,(3),∴数列{b n}的前10项和=﹣2﹣1﹣1+8+0+0+0+1+2+8=2.21.已知函数f(x)=cos2x+2sin x cos x+l,x∈R.(1)把f(x)表示为A sin(ωx+φ)+B(A>0,ω>0,0<φ<π)的形式,并写出函数f(x)的最小正周期、值域;(2)求函数f(x)的单调递增区间;(3)定义:对下任意实数x1、x2,max{x1、x2}=.设g(x)=max{a sin x,a cos x}.x ∈R(常数a>0),若对于任意x1∈R,总存在x2∈R,使得g(x1)=f(x2)恒成立,求实数a的取值范围.解:(1)函数f(x)=cos2x+2sin x cos x+l=cos2x+sin2x+1=2sin(2x+)+6,x∈R;∴f(x)的最小正周期为T==π,值域为[﹣1,3];解得﹣+kπ≤x≤+kπ,k∈Z,(3)若对于任意x1∈R,总存在x2∈R,使得g(x2)=f(x2)恒成立,由g(x)的值域为[﹣a,a],f(x)的值域为[﹣1,8],解得0<a≤;所以实数a的取值范围是(0,].。
山东省德州市2023-2024学年高一下学期期中考试 数学含答案
高一数学试题(答案在最后)2024.4本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1-2页,第Ⅱ卷3-4页,共150分,测试时间120分钟.注意事项:选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案,不能答在测试卷上.第Ⅰ卷选择题(共58分)一、选择题(本题共8个小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合要求的.)1.设x ∈R ,向量(1,)a x =r ,(2,1)b =r,若a b ⊥r r ,则x =()A .2B .12C .12-D .2-2.已知复数z 满足(14z +=(i 是虚数单位),则||z =()A .2B .4C .8D .163.已知02παβ<<<,且5cos()13αβ-=,4cos 25β=,则cos()αβ+=()A .3365-B .1665-C .5665D .63654.在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,若3a =,3A π=,sin 2sin C B =,则ABC △的面积是()A .32B .2C .94D .45.若23||||||3a b a b b +=-=r r r r r ,则a b -r r 与b r 的夹角是()A .6πB .3πC .23πD .56π6.在Rt ABC △中,2AB AC ==,,BC AC 边上的两条中线AM ,BN 相交于点P ,则MPN ∠的余弦值是()A .105-B .1010-C .1010D .1057,数学家欧拉在1765年提出定理:三角形的外心,重心,垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半,这条直线被后人称为三角形的欧拉线,该定理被称为欧拉线定理,设点O ,G ,H 分别为三角形ABC 的外心,重心,垂心,则()A .1233AG AO AH=-uuu r uuu r uuu r B .1233AG AO AH=+uuu r uuu r uuu rC .2133AG AO AH=-uuu r uuu r uuu r D .2133AG AO AH=+uuu r uuu r uuu r 8.在锐角ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,若3B π=,sin sin sin B C b A ac =2取值范围是()A .21,52⎛⎫⎪⎝⎭B .21,52⎡⎫⎪⎢⎣⎭C .22,53⎡⎫⎪⎢⎣⎭D .22,53⎛⎫⎪⎝⎭二、选择题(本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.)9.设z 为非零复数(i 是虚数单位),下列命题正确的是()A .若||z z =,则z 为正实数B .若2z ∈R ,则z ∈R C .若210z +=,则iz =±D .若0z z +=,则z 为纯虚数10.下列命题中正确的是()A .若,a b r r是单位向量,则a b=r r B .若(0)a b b ≠∥r r r,则存在唯一的实数λ,使得a b λ=r rC .若向量a r 和b r ,满足||1a =r ,||||2b a b =+=r r r ,则||a b -=r rD .若向量(1,3)a =-r ,(3,0)b =r ,则a r 在b r 方向上投影的数量是10-11.在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,以下命题中正确的是()A .若9a =,10b =,3A π=,则符合条件的三角形有两个B .若22tan tan a b A B=,则ABC △为等腰或直角三角形C .若2sin ABC S b B =△,则cos B 的最小值为54D .若3A π=,BC =BC 边上的高为1,则符合条件的三角形有两个第Ⅱ卷非选择题(共92分)三、填空题(本题共3小题,每小题5分,共15分)12.已知,2παπ⎛⎫∈⎪⎝⎭,2sin 2cos 21αα=-,则tan 2α=___________.13.若O 为ABC △的外心,且2BO BA BC =+uu u r uu r uu u r ,则AB BC ⋅=uu u r uu u r___________.14.在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,满足(1cos )(2cos )a B b A +=-,sin cos sin B A C =,且16AB AC ⋅=uu u r uuu r ,则b =___________;若在线段AB 上存在动点P 使得2||||CA CBCP x y CA CB =+uu r uu ruu r uu r uu r ,则xy 的最大值为___________.(第一空2分,第二空3分)四、解答题(本题共5小题,共77分,解答应写出必要的文字说明、证明过程或演算步骤.)15.(本小题满分13分)已知θ为三角形的一个内角,i 为虚数单位,复数cos isin z θθ=+,且2z z +在复平面上对应的点在实轴上.(1)求θ;(2)设2,i z z ,21z z ++在复平面上对应的点分别为A ,B ,C ,求ABC △的面积.16.(本小题满分15分)已知平面上三点A ,B ,C ,且(0,4)A ,(,3)B k -,(2,0)C .(1)若A ,B ,C 不构成三角形,求实数k 应满足的条件;(2)若ABC △为针角三角形,求k 的取值范围.17.(本小题满分15分)已知函数()sin (sin )1f x x x x =+-,x ∈R .(1)若31(),0,222f πθθ⎛⎫=-∈ ⎪⎝⎭,求tan θ的值;(2)若存在0,2x π⎡⎤∈⎢⎥⎣⎦,使等式2[()]()0f x f x m ++=成立,求实数m 的取值范围.18.(本小题满分17分)如图所示,在扇形AOB 中,AOB ∠为锐角,四边形OMPN 是平行四边形,点P 在弧»AB 上,点M ,N分别在线段OA ,OB 上,OP =,6OA OB ⋅=uu r uu u r,记POB θ∠=.(1)当6πθ=时,求OP NB ⋅uu u r uu u r ;(2)请写出阴影部分的面积S 关于θ的函数关系式,并求当θ为何值时,S 取得最小值.19.(本小题满分17分)在ABC △中,角A ,B ,C 的对边分别为,,a b c ,sin sin cos cos cos cos sin C B B AB A C--=+.(1)若236ABC S c =△,求证:23c b =;(2)若2DC BD =uuu r uu u r ,求||||AD BD uuu ruu u r 的最大值.高一数学试题参考答案一、选择题(本题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合要求的.)1.D2.A3.C4.B5.D6.B7.D8.A二、选择题(本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.)9.ACD10.BC11.ABD三、填空题(本题共3小题,每小题5分,共15分)12.4313.014.4,32四、解答题(本题共5小题,共77分,解答应写出必要的文字说明、证明过程或演算步骤.)15.解:(1)22(cos sin )cos 2sin 2z i i θθθθ=+=+Q ,2(cos 2cos )(sin 2sin )z z i θθθθ+=+++,因为2z z +在复平面上对应的点在实轴上,所以sin 2sin 2sin cos sin 0,(0,)θθθθθθπ+=+=∈,所以1cos 2θ=-,2;3πθ=(2)由(1)知:sin 2θ=,21z =-+,所以11i i i 2222z ⎛⎫=-+=-- ⎪⎝⎭,213313i i 44222z =--=--所以2131311i i 02222z z ++=-+--=.在复平面上对应的点分别为(A -,31,22B ⎛⎫-- ⎪⎝⎭,(0,0)C ,所以2AC =,1BC =,1(022CA CB ⎛⎫⋅=-⋅-= ⎪⎝⎭uu r uu r 所以,CA CB ⊥uu r uu r ,所以,12112ABC S =⨯⨯=△.16.解:(1)由题可知,(2,3)BC k =-uu u r ,(2,4)AC =-uuu r,三点A ,B ,C 不构成三角形,得A ,B ,C 三点共线,所以4(2)230k ---⨯=,解得72k =.(注:利用AB uu u r求解,同样得分)(2)当C 为钝角时,0AC BC ⋅<uuu r uu u r,所以2(2)3(4)0k ⨯-+⨯-<,解得4k >-且72k ≠,当A 为钝角时,(,7)AB k =-uu u r ,(2,4)AC =-uuu r,0AB AC ⋅<uu u r uuu r,即(,7)(2,4)0k -⋅-<,2280k +<,所以14k <-.当B 为钝角时,(,7)BA k =-uu r ,(2,3)BC k =-uu u r,(,7)(2,3)0BA BC k k ⋅=-⋅-<uu r uu u r,22210k k -+<,无解.所以14k <-或4k >-且72k ≠.17.解:(1)()sin (sin )1f x x x x =+-2sin cos 1x x x =+-1cos 2212xx -=+-1sin 262x π⎛⎫=--⎪⎝⎭131()sin 26222f πθθ⎛⎫=--=- ⎪⎝⎭,sin 262πθ⎛⎫-= ⎪⎝⎭,02πθ<<,52666πππθ-<-<,所以263ππθ-=或23π,即4πθ=或512π,当4πθ=时,tan tan 14πθ==,当512πθ=时,tan tan46tan tan 2461tan tan 46ππππθππ+⎛⎫=+==+ ⎪⎝⎭-(2)当0,2x π⎡⎤∈⎢⎥⎣⎦时,52666x πππ-≤-≤,则111sin 2622x π⎛⎫-≤--≤ ⎪⎝⎭,即11()2f x -≤≤,令()t f x =,112t -≤≤,关于t 的方程20t t m ++=在11,2⎡⎤-⎢⎥⎣⎦上有解,即2m t t -=+在11,2⎡⎤-⎢⎥⎣⎦上有解,当112t -≤≤时,21344t t -≤+≤,由1344m -≤-≤,得3144m -≤≤,即实数m 的取值范围是31,44⎡⎤-⎢⎥⎣⎦.18.解:(1)根据题意,||||cos cos 6OA OB OA OB AOB AOB ⋅=∠=∠=uur uu u r uur uu u r,1cos 2AOB ∠=因为AOB ∠为锐角,所以,3AOB π∠=,6πθ=,四边形OMPN 是平行四边形,所以,OPM △为等腰三角形,OP =2OM ON ==,||||cos 2)662OP NB OP NB π⋅=⋅=-⨯=uu u r uu u r uu u r uu u r .(2)由题可知,在PMO △中,OP =23PMO π∠=,MPO θ∠=,3MOP πθ∠=-,则由正弦定理sin sin sin OP OM PMPMO MPO MOP==∠∠∠,sin sin 3OM PMπθθ==⎛⎫- ⎪⎝⎭,故可得4sin OM θ=,4sin 3PM πθ⎛⎫=-⎪⎝⎭,1sin 2PMO S OM MP PMO =⨯⨯⨯∠△14sin 4sin 232πθθ⎛⎫=⨯⨯-⨯ ⎪⎝⎭sin 3πθθ⎛⎫=- ⎪⎝⎭sin cos cos sin 33ππθθθ⎛⎫=- ⎪⎝⎭26πθ⎛⎫=+- ⎪⎝⎭,03πθ⎛⎫<< ⎪⎝⎭,所以,AOB OMPNS S S =-扇形平行四边形226ππθ⎛⎫=-++ ⎪⎝⎭,03πθ⎛⎫<< ⎪⎝⎭,当6πθ=时,sin 216πθ⎛⎫+= ⎪⎝⎭,此时S取得最小值2π-.19.解:(1)sin sin cos cos cos cos sin C B B AB A C--=+(sin sin )sin (cos cos )(cos cos )C B C B A B A -=+-222sin sin sin cos cos C B C B A-=-()222sin sin sin 1sin 1sin C B C B A-=---由正弦定理得222c b a bc +-=,2221cos 22c b a A bc +-==,0A π<<,所以3A π=,21sin 26ABC S bc A c ==△,所以23c b =.(2)2DC BD =uuu r uuu r ,11()33BD BC AC AB ==-uu ur uu u r uuu r uu u r ,又2133AD AB BD AB AC =+=+uuu r uu u r uu u r uu u r uuu r ,所以1|2|||31||||3AB AC AD BD AC AB +==-uu u r uuu ruuu r uu u r uuu r uu u r ,令0bt c=>,所以||||AD BD ===uuu r uu u r ,1=≤==+.当且仅当1t =取等号,所以||||AD BD uuu r uu u r1+.。
2024-2025学年度广西壮族自治区防城港市秋季高一期中考试数学试卷(含答案)
2024-2025学年度广西壮族自治区防城港市秋季高一期中考试数学试卷一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知集合A={x|y=x+1},B={x|14<2x<4},则A∩B=( )A. (−1,2)B. [−1,2)C. (−2,−1)D. (−2,−1]2.命题“∃x∈R,x2+x−1=0”的否定为( )A. ∃x∉R,x2+x−1=0B. ∃x∈R,x2+x−1≠0C. ∀x∈R,x2+x−1≠0D. ∀x∉R,x2+x−1=03.对于函数y=f(x),x∈R“y=|f(x)|的图象关于y轴对称”是“f(x)是偶函数”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件4.已知实数a,b,c,若a>b>c,则下列不等式一定成立的是( )A. a−b>b−cB. ac>b2C. a(a−c)>b(b−c)D. 1b−c >1a−c5.若13<(13)b<(13)a<1,则( )A. a a<a b<b aB. a a<b a<a bC. a b<a a<b aD. a b<b a<a a6.函数f(x)=x22|e x−1|的图象大致是( )A. B.C. D.7.若正实数x,y满足2x+y=1,则下列说法错误的是( )A. xy有最大值为18B. 1x+4y有最小值为6+42C. 4x2+y2有最小值为12D. x(y+1)有最大值为128.自“CℎatGPT”横空出世,全球科技企业抓起一场研发AI大模型的热潮,随着AI算力等硬件底座逐步搭建完善,AI大规模应用成为可能,尤其在图文创意、虚拟数字人以及工业软件领域已出现较为成熟的落地应用.Sigmoid函数和Tanℎ函数是研究人工智能被广泛使用的2种用作神经网络的激活函数,Tanℎ函数的解析式为tanh x=e x−e−xe x+e−x ,经过某次测试得知tanh x0=45,则当把变量减半时,tanhx02=( )A. 12B. 13C. 25D. 23二、多选题:本题共3小题,共18分。
浙江省余姚2023-2024学年高一下学期期中考试数学试题含答案
余姚2023学年第二学期期中检测高一数学试卷(答案在最后)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知1i22i z -=+,则z z -=()A .i- B.iC.0D.1【答案】A 【解析】【分析】根据复数的除法运算求出z ,再由共轭复数的概念得到z ,从而解出.【详解】因为()()()()1i 1i 1i 2i 1i 22i 21i 1i 42z ----====-++-,所以1i 2z =,即i z z -=-.故选:A .2.如图,一个水平放置的平面图形的斜二测直观图是直角梯形O A B C '''',且//O A B C '''',242O A B C A B '''''='==,,则该平面图形的高为()A. B.2C.D.【答案】C 【解析】【分析】由题意计算可得O C '',还原图形后可得原图形中各边长,即可得其高.【详解】在直角梯形O A B C ''''中,//O A B C '''',24,2O A B C A B ''''='==',则O C ==''直角梯形O A B C ''''对应的原平面图形为如图中直角梯形OABC ,则有//,,24,242BC OA OC OA OA BC OC O C ''⊥====,所以该平面图形的高为42.故选:C.3.在平行四边形ABCD 中,,AC BD 相交于点O ,点E 在线段BD 上,且3BE ED = ,则AE =()A.1142AD AC + B.1124AD AC +C.3144AD AC +D.1344AD AC +【答案】B 【解析】【分析】利用平面向量基本定理即可得到答案.【详解】因为O 是AC 的中点,12AO AC ∴= ,又由3BE ED =可得E 是DO 的中点,11112224AE AD AO AD AC ∴=+=+ .故选:B.4.某小组有2名男生和3名女生,从中任选2名学生去参加唱歌比赛,在下列各组事件中,是互斥事件的是()A.恰有1名女生和恰有2名女生B.至少有1名男生和至少有1名女生C.至少有1名女生和全是女生D.至少有1名女生和至多有1名男生【答案】A 【解析】【分析】根据互斥事件的定义判断即可.【详解】依题意可能出现2名男生、1名男生1名女生、2名女生;对于A :恰有1名女生即选出的两名学生中有一名男生一名女生和恰有2名女生,他们不可能同时发生,故是互斥事件,故A 正确;对于B :当选出的两名学生中有一名男生一名女生,则至少有1名男生和至少有1名女生都发生了,故不是互斥事件,故B 错误;对于C :至少有1名女生包含有一名男生一名女生与全是女生,所以当全是女生时,至少有1名女生和全是女生都发生了,故不是互斥事件,故C 错误;对于D :至少有1名女生包含有一名男生一名女生与全是女生,至多有1名男生包含有一名男生一名女生与全是女生,故至少有1名女生和至多有1名男生是相等事件,故D 错误.故选:A5.已知点()1,1A ,()0,2B ,()1,1C --.则AB 在BC上的投影向量为()A.10310,55⎛ ⎝⎭B.10310,55⎛⎫-- ⎪ ⎪⎝⎭C.13,55⎛⎫⎪⎝⎭ D.13,55⎛⎫-- ⎪⎝⎭【答案】C 【解析】【分析】根据向量的坐标公式,结合投影向量的定义进行求解即可.【详解】因为()1,1A ,()0,2B ,()1,1C --.所以()1,1AB =-uu u r,()1,3BC =--,5cos ,5AB BC AB BC AB BC⋅〈〉==-⋅,所以向量AB 与BC的夹角为钝角,因此量AB 在BC上的投影向量与BC 方向相反,而cos ,55AB AB BC ⋅〈〉==,155BC == ,所以AB 在BC 上的投影向量为()11131,3,5555BC ⎛⎫-⋅=-⋅--= ⎪⎝⎭,故选:C6.秦九韶是我国南宋时期的著名数学家,他在著作《数书九章》中提出,已知三角形三边长计算三角形面积的一种方法“三斜求积术”,即在ABC 中,,,a b c 分别为内角,,A B C 所对应的边,其公式为:ABCS ==若22sin sin C c A =,3cos 5B =,a b c >>,则利用“三斜求积术”求ABC 的面积为()A.54B.34 C.35D.45【答案】D 【解析】【分析】由正弦定理可得2ac =,由余弦定理可得222625a cb +-=,在结合已知“三斜求积术”即可求ABC 的面积.【详解】解:因为22sin sin C c A =,由正弦定理sin sin a c A C=得:22c c a =,则2ac =又由余弦定理2223cos 25a cb B ac +-==得:22236255a c b ac +-==则由“三斜求积术”得45ABC S == .故选:D.7.已知某样本的容量为50,平均数为36,方差为48,现发现在收集这些数据时,其中的两个数据记录有误,一个错将24记录为34,另一个错将48记录为38.在对错误的数据进行更正后,重新求得样本的平均数为x ,方差为2s ,则()A.236,48s x =<B.236,48s x =>C.236,48s x ><D.236,48s x <>【答案】B 【解析】【分析】根据数据总和不变,则平均数不变,根据方差的定义得()()()2221248148363636850x x x ⎡⎤=-+-++-+⎣⎦ ,而()()()4221222813628843668035s x x x +⎡-⎤=-+>⎣⎦-+ .【详解】设收集的48个准确数据为1248,,x x x ,所以124834383650x x x +++++= ,所以12481728x x x +++= ,所以124824483650x x x x +++++== ,又()()()222221248148363636(3436)(3836)50x x x ⎡⎤=-+-++-+-+-⎣⎦ ()()()22212481363636850x x x ⎡⎤=-+-++-+⎣⎦ ,()()()42222222183636(2436)(48136536)0s x x x ⎡⎤=-+⎣⎦-++-+-+- ()()()222281413628848365360x x x ⎡⎤=+-+-+->⎣⎦ ,故选:B.8.在ABC 中,π6A =,π2B =,1BC =,D 为AC 中点,若将BCD △沿着直线BD 翻折至BC D '△,使得四面体C ABD '-的外接球半径为1,则直线BC '与平面ABD 所成角的正弦值是()A.3B.23C.3D.3【答案】D 【解析】【分析】由直角三角形性质和翻折关系可确定BC D '△为等边三角形,利用正弦定理可确定ABD △外接圆半径,由此可知ABD △外接圆圆心O 即为四面体C ABD '-外接球球心,由球的性质可知OG ⊥平面BC D ',利用C OBD O C BD V V ''--=可求得点C '到平面ABD 的距离,由此可求得线面角的正弦值.【详解】π6A =,π2B =,1BC =,2AC ∴=,又D 为AC 中点,1AD CD BD ∴===,则1BC C D BD ''===,即BC D '△为等边三角形,设BC D '△的外接圆圆心为G ,ABD △的外接圆圆心为O ,取BD 中点H ,连接,,,,,C H OH OG OB OC OD '',π6A =,1BD =,112sin BDOB A∴=⋅=,即ABD △外接圆半径为1,又四面体C ABD '-的外接球半径为1,O ∴为四面体C ABD '-外接球的球心,由球的性质可知:OG ⊥平面BC D ',又C H '⊂平面BC D ',OG C H '∴⊥,22333C G CH '===,1OC '=,3OG ∴=;设点C '到平面ABD 的距离为d ,由C OBD O C BD V V ''--=得:1133OBD C BD S d S OG '⋅=⋅ ,又OBD 与C BD ' 均为边长为1的等边三角形,3d OG ∴==,直线BC '与平面ABD 所成角的正弦值为3d BC ='.故选:D.【点睛】关键点点睛;本题考查几何体的外接球、线面角问题的求解;本题求解线面角的关键是能够确定外接球球心的位置,结合球的性质,利用体积桥的方式构造方程求得点到面的距离,进而得到线面角的正弦值.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列说法正确的是()A.数据1,2,3,3,4,5的平均数和中位数相同B.数据6,5,4,3,3,3,2,2,1的众数为3C.有甲、乙、丙三种个体按3:1:2的比例分层抽样调查,如果抽取的甲个体数为9,则样本容量为30D.甲组数据的方差为4,乙组数据为5,6,9,10,5,则这两组数据中较稳定的是乙组【答案】AB 【解析】【分析】根据已知条件,结合平均数、方差公式,众数、中位数的定义,以及分层抽样的定义,即可求解.【详解】对于A ,平均数为12334536+++++=,将数据从小到大排列为1,2,3,3,4,5,所以中位数为3332+=,A 正确;对于B ,数据6,5,4,3,3,3,2,2,1的众数为3,B 正确;对于C ,根据样本的抽样比等于各层的抽样比知,样本容量为3918312÷=++,C 错误;对于D ,乙数据的平均数为56910575++++=,乙数据的方差为()()()()()22222157679710757 4.445⎡⎤-+-+-+-+-=>⎣⎦,所以这两组数据中较稳定的是甲组,D 错误.故选:AB.10.在ABC 中,内角A 、B 、C 所对的边分别a 、b 、c ,22sin a bc A =,下列说法正确的是()A.若1a =,则14ABC S =△B.ABC 外接圆的半径为bc aC.c b b c+取得最小值时,π3A =D.π4A =时,c b b c+值为【答案】ABD 【解析】【分析】对A ,由正弦定理化简2sin a b C =可得1sin 2C b=,再根据三角形面积公式判断即可;对B ,根据2sin a b C =结合正弦定理判断即可;对C ,根据正弦定理与余弦定理化简sin 2sin sin A B C =可得π4b c A c b ⎛⎫+=+ ⎪⎝⎭,再根据基本不等式与三角函数性质判断即可;对D ,根据三角函数值域求解即可.【详解】对A ,因为22sin a bc A =,由正弦定理可得sin 2sin sin a A b A C =,因为()0,πA ∈,则sin 0A >,则2sin a b C =,又因为1a =,故1sin 2C b =,故三角形面积为1111sin 12224ABC S ab C b b ==⨯⨯⨯=△,故A 正确;对B ,2sin a b C =,则sin 2aC b=,设ABC 外接圆的半径为R ,则2sin cR C=,故22c bc R a a b==⨯,故B 正确;对C ,因为22sin a bc A =,由余弦定理222sin 2cos b c c A b bc A =+-,即()222sin cos bc A A b c +=+,化简可得π4b c A c b⎛⎫+=+ ⎪⎝⎭,由基本不等式得2b c c b +≥=,当且仅当b c =时取等号,此时πsin 42A ⎛⎫+= ⎪⎝⎭,故当π2A =,π4B C ==时,b c c b +取得最小值2,故C 错误;对D ,由C,π4b c A c b ⎛⎫+=+ ⎪⎝⎭,当π4A =时,b c c b+的值为,故D 正确;故选:ABD.11.如图,在棱长为4的正方体1111ABCD A B C D -中,E ,F ,G 分别为棱,,AD AB BC 的中点,点P 为线段1D F 上的动点(包含端点),则()A.存在点P ,使得1//C G 平面BEPB.对任意点P ,平面1FCC ⊥平面BEPC.两条异面直线1D C 和1BC 所成的角为45︒D.点1B 到直线1D F 的距离为4【答案】ABD 【解析】【分析】A 选项当P 与1D 重合时,用线面平行可得出11//C G D E ,进而可得;B 选项证明BE ⊥平面1FCC 即可得出;选项C 由正方体的性质和画图直接得出;选项D 由余弦定理确定1145B D F ∠=︒,之后求距离即可.【详解】A :当P 与1D 重合时,由题可知,11111111//,,//,,//,EG DC EG DC D C DC D C DC EG D C EG D C ==∴=,四边形11EGC D 为平行四边形,故11//C G D E ,又1C G ⊄平面BEP ,1D E ⊂平面BEP ,则1//C G 平面BEP ,故A 正确;B :连接CF ,1CC ⊥ 平面ABCD ,BE ⊂平面ABCD ,1CC BE ∴⊥,又,,,AE BF AB BC A CBF BAF CBF ==∠=∠∴ ≌,故90,AEB BFC EBA BFC CF BE ∠=∠⇒∠+∠=︒∴⊥,又11,,CF CC C CF CC =⊂ 平面1FCC ,BE ∴⊥平面1FCC ,又BE ⊂平面BEP ,故对任意点P ,平面1FCC ⊥平面BEP ,故B 正确;C:由正方体的结构特征可知11//BC AD ,异面直线1D C 和1BC 所成的角即为1AD 和1D C 所成的角,由图可知为60︒,故C 错误;D :由正方体的特征可得1111B D FD B F =====,222222111111111116cos ,4522B D FD B FB D F B D F B D FD +-+-∴∠===∴∠=︒⋅,所以点1B 到直线1D F 的距离1111sin 42d B D B D F =∠==,故D 正确;故选:ABD.三、填空题:本题共3小题,每小题5分,共15分.12.为培养学生“爱读书、读好书、普读书”的良好习惯,某校创建了人文社科类、文学类、自然科学类三个读书社团.甲、乙、丙三位同学各自参加其中一个社团,每位同学参加各个社团的可能性相同,则三人恰好参加同一个社团的概率为______.【答案】19【解析】【分析】根据题意,得到基本事件的总数为27n =,以及所求事件中包含的基本事件个数为3m =,结合古典摡型的概率计算公式,即可求解.【详解】由人文社科类、文学类、自然科学类三个读书社团,甲、乙、丙三位同学各自参加其中一个社团,每位同学参加各个社团的可能性相同,基本事件的总数为3327n ==,三人恰好参加同一个社团包含的基本事件个数为3m =,则三人恰好参加同一个社团的概率为31279m P n ===.故答案为:19.13.如图,在ABC 中,π3BAC ∠=,2AD DB =,P 为CD 上一点,且满足()12AP mAC AB m =+∈R ,若2AC =,4AB =,则AP CD ⋅的值为______.【答案】3【解析】【分析】利用//CP CD ,结合已知条件可把m 求出,由平面向量基本定理把AP 、CD 用已知向量AB 、AC表示,再利用数量积的运算法则可求数量积.【详解】 2AD DB =,∴23AD AB = ,//CP CD,∴存在实数k ,使得CP kCD = ,即()AP AC k AD AC -=- ,又 12AP mAC AB =+ ,则()12123m AC AB k AB AC ⎛⎫-+=- ⎪⎝⎭,∴11223m kk -=-⎧⎪⎨=⎪⎩,34k ∴=,14m =,则()112423AP CD AP AD AC AC AB AB AC ⎛⎫⎛⎫⋅=⋅-=+⋅- ⎪⎪⎝⎭⎝⎭2221111611π242cos 33433433AB AC AB AC =--⋅=--⨯⨯ ,故答案为:3.14.已知正方体1111ABCD A B C D -的棱长为3,动点P 在1AB C V 内,满足1D P =,则点P 的轨迹长度为______.【解析】【分析】确定正方体1111ABCD A B C D -对角线1BD 与1AB C V 的交点E ,求出EP 确定轨迹形状,再求出轨迹长度作答.【详解】在正方体1111ABCD A B C D -中,如图,1DD ⊥平面ABCD ,AC ⊂平面ABCD ,则1DD AC ⊥,而BD AC ⊥,1DD BD D =I ,1DD ,BD ⊂平面1BDD ,于是AC ⊥平面1BDD ,又1BD ⊂平面1BDD ,则1AC BD ⊥,同理11⊥AB BD ,而1AC AB A ⋂=,AC ,1AB ⊂平面1AB C ,因此1BD ⊥平面1AB C ,令1BD 交平面1AB C 于点E ,由11B AB C B ABC V V --=,得111133AB C ABC S BE S BB ⋅=⋅ ,即)23142BE AB ⋅⋅=,解得BE AB ==而1BD ==1D E =,因为点P 在1AB C V 内,满足1D P =,则EP ==因此点P 的轨迹是以点E 为半径的圆在1AB C V 内的圆弧,而1AB C V 为正三角形,则三棱锥1B AB C -必为正三棱锥,E 为正1AB C V 的中心,于是正1AB C V 的内切圆半径111323232EH AB =⨯⨯=⨯=,则cos 2HEF ∠=,即π6HEF ∠=,π3FEG ∠=,所以圆在1AB C V 内的圆弧为圆周长的12,即点P 的轨迹长度为12π2⋅=【点睛】方法点睛:涉及立体图形中的轨迹问题,若动点在某个平面内,利用给定条件,借助线面、面面平行、垂直等性质,确定动点与所在平面内的定点或定直线关系,结合有关平面轨迹定义判断求解.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知z 为复数,2i z +为实数,且(12i)z -为纯虚数,其中i 是虚数单位.(1)求||z ;(2)若复数2(i)z m +在复平面上对应的点在第一象限,求实数m 的取值范围.【答案】(1)(2)()2,2-【解析】【分析】(1)设=+i ,R z a b a b ∈,,根据复数代数形式的乘法法则化简2i z +与(12i)z -,根据复数为实数和纯虚数的条件,即可求出a b ,,利用复数模长公式,即可求得到复数的模长;(2)由(1)知,求出复数的共轭复数,再根据复数代数形式的除法与乘方运算化简复数,再根据复数的几何意义得到不等式组,解得即可.【小问1详解】设=+i ,R z a b a b ∈,,()2i=2i z a b +++,因为2i z +为实数,所以20b +=,即2b =-所以(12i)(2i)(12i)42(1)i z a a a -=--=--+,又因为(12i)z -为纯虚数,所以40a -=即4a =,所以42z i =-,所以z ==.【小问2详解】由(1)知,42iz =+所以222(i)(42i i)16(2)8(2)i m m z m m +=++=-+++,又因为2(i)z m +在复平面上所对应的点在第一象限,所以216(2)08(2)0m m ⎧-+>⎨+>⎩,解得:22m -<<所以,实数m 的取值范围为()2,2-.16.某校为了提高学生对数学学习的兴趣,举办了一场数学趣味知识答题比赛活动,共有1000名学生参加了此次答题活动.为了解本次比赛的成绩,从中抽取100名学生的得分(得分均为整数,满分为100分)进行统计.所有学生的得分都不低于60分,将这100名学生的得分进行分组,第一组[)60,70,第二组[)70,80,第三组[)80,90,第四组[]90,100(单位:分),得到如下的频率分布直方图.(1)求图中m 的值,并估计此次答题活动学生得分的中位数;(2)根据频率分布直方图,估计此次答题活动得分的平均值.若对得分不低于平均值的同学进行奖励,请估计参赛的学生中有多少名学生获奖.(以每组中点作为该组数据的代表)【答案】(1)0.01m =,中位数为82.5.(2)82x =,有520名学生获奖.【解析】【分析】(1)利用频率分布直方图中所有频率之和等于1和中位数左边和右边的直方图的面积应该相等即可求解;(2)利用频率分布直方图中平均数等于每个小矩形底边的中点的横坐标与小矩形的面积的乘积之和及不低于平均值的学生人数为总数500乘以不低于平均值的频率即可.【小问1详解】由频率分布直方图知:()0.030.040.02101m ++++⨯=,解得0.01m =,设此次竞赛活动学生得分的中位数为0x ,因数据落在[)60,80内的频率为0.4,落在[)60,90内的频率为0.8,从而可得08090x <<,由()0800.040.1x -⨯=,得082.5x =,所以估计此次竞赛活动学生得分的中位数为82.5.【小问2详解】由频率分布直方图及(1)知:数据落在[)60,70,[)70,80,[)80,90,[]90,100的频率分别为0.1,0.3,0.4,0.2,650.1750.3850.4950.282x =⨯+⨯+⨯+⨯=,此次竞赛活动学生得分不低于82的频率为90820.20.40.5210-+⨯=,则10000.52520⨯=,所以估计此次竞赛活动得分的平均值为82,在参赛的1000名学生中估计有520名学生获奖17.在①()(sin sin )(sin sin )a c A C b A B +-=-;②2cos 0cos b a A c C--=;③向量()m c = 与(cos ,sin )n C B = 平行,这三个条件中任选一个,补充在下面题干中,然后解答问题.已知ABC 内角,,A B C 的对边分别为,,a b c ,且满足______.(1)求角C ;(2)若ABC 为锐角三角形,且2c =,求ABC 周长的取值范围;(3)在(2)条件下,若AB 边中点为D ,求中线CD 的取值范围.(注:如果选择多个条件分别解答,按第一个解答计分)【答案】(1)条件选择见解析,3π(2)2,6]+(3)3CD <≤【解析】【分析】(1)选①根据正弦定理化简,然后转化成余弦值即可;选②根据正弦定理化简即可求到余弦值,然后求出角度;选③先根据向量条件得到等式,然后根据正弦定理即可求到正切值,最后求出角度.(2)根据(1)中结果和2c =,把ABC 周长转化成π4sin 26A ⎛⎫++ ⎪⎝⎭,然后再求解范围.(3)根据中线公式和正弦定理,把CD 转化成三角函数求解即可.【小问1详解】选①:因为()(sin sin )(sin sin )a c A C b A B +-=-,()()()a c a c b a b ∴+-=-,即222c a b ab =+-,1cos 2C ∴=,()0,πC ∈ ,π3C ∴=.选②:2cos 0cos b a A c C--=,2sin sin cos sin cos B A A C C-∴=,2sin cos sin cos sin cos B C A C C A ∴-=,1cos 2C ∴=,()0,πC ∈ ,π3C ∴=.选③:向量()m c = 与(cos ,sin )n C B =平行,sin cos c B C ∴=,sin sin cos C B B C ∴=,tan C ∴=()0,πC ∈ ,π3C ∴=.【小问2详解】π,23C c == ,sin sin sin a b c A B C==,23sin )2sin())2sin )232a b c A B A A A A π∴++=++=+-+=+4sin(26A π=++. ABC 为锐角三角形,π022ππ032A B A ⎧<<⎪⎪∴⎨⎪<=-<⎪⎩,ππ62A ∴<<,πsin ,162A ⎛⎤⎛⎫∴+∈ ⎥ ⎪ ⎝⎭⎝⎦.ABC ∴周长的取值范围为2,6]+.【小问3详解】224a b ab =+- ,又由中线公式可得222(2)42()2(4)CD a b ab +=+=+,21624442·sin sin 33CD B A A π⎛⎫∴=+=+- ⎪⎝⎭2161161142·sin cos sin 42·sin 23223426A A A A π⎛⎫⎡⎤⎛⎫=++=++- ⎪ ⎪⎢⎥ ⎪⎝⎭⎣⎦⎝⎭.即254πsin 2336CD A ⎛⎫=+- ⎪⎝⎭, ABC 为锐角三角形,π022ππ032A B A ⎧<<⎪⎪∴⎨⎪<=-<⎪⎩,ππ62A ∴<<,ππ5π2666A ∴<-<.3CD <≤.18.三棱台111ABC A B C -中,若1A A ⊥面ABC ,ABAC ⊥,12AB AC AA ===,111A C =,M ,N 分别是BC ,BA 中点.(1)求1A N 与1CC 所成角的余弦值;(2)求平面1C MA 与平面11ACC A 所成成角的余弦值;(3)求1CC 与平面1C MA 所成角的正弦值.【答案】(1)45(2)23(3)15【解析】【分析】(1)根据题意,证得11//MN A C 和11//A N MC ,得到1CC M ∠为1A N 与1CC 所成角,在1CC M △中,利用余弦定理,即可求解;(2)过M 作ME AC ⊥,过E 作1EF AC ⊥,连接1,MF C E ,证得ME ⊥平面11ACC A ,进而证得1AC ⊥平面MEF ,得到平面1C MA 与11ACC A 所成角即MFE ∠,在直角MEF 中,即可求解;(3)过1C 作1C P AC ⊥,作1C Q AM ⊥,连接,PQ PM ,由1C P ⊥平面AMC ,得到1C P AM ⊥和1C Q AM ⊥,得到AM ⊥平面1C PQ 和PR ⊥平面1C MA ,在直角1C PQ 中,求得23PR =,求得C 到平面1C MA 的距离是43,进而求得1CC 与平面1C MA 所成角.【小问1详解】解:连接1,MN C A .由,M N 分别是,BC BA 的中点,根据中位线性质,得//MN AC ,且12AC MN ==,在三棱台111ABC A B C -中,可得11//A C AC ,所以11//MN A C ,由111MN A C ==,可得四边形11MNAC 是平行四边形,则11//A N MC ,所以1CC M ∠为1A N 与1CC 所成角,在1CC M △中,由111CC A N C M CM ====,可得14cos5CC M ∠=.【小问2详解】解:过M 作ME AC ⊥,垂足为E ,过E 作1EF AC ⊥,垂足为F ,连接1,MF C E .由ME ⊂面ABC ,1A A ⊥面ABC ,故1AA ME ⊥,又因为ME AC ⊥,1AC AA A =∩,1,AC AA ⊂平面11ACC A ,则ME ⊥平面11ACC A .由1AC ⊂平面11ACC A ,故1ME AC ⊥,因为1EF AC ⊥,ME EF E ⋂=,且,ME EF ⊂平面MEF ,于是1AC ⊥平面MEF ,由MF ⊂平面MEF ,可得1AC MF ⊥,所以平面1C MA 与平面11ACC A 所成角即MFE ∠,又因为12AB ME ==,1cos CAC ∠=,则1sin CAC ∠=所以11sin EF CAC =⨯∠=,在直角MEF 中,90MEF ∠=,则MF ==2cos 3EF MFE MF ∠==.【小问3详解】解:过1C 作1C P AC ⊥,垂足为P ,作1C Q AM ⊥,垂足为Q ,连接,PQ PM ,过P 作1PR C Q ⊥,垂足为R ,由11C A C C ==,1C M ==12C Q ==,由1C P ⊥平面AMC ,AM ⊂平面AMC ,则1C P AM ⊥,因为1C Q AM ⊥,111C Q C P C = ,11,C Q C P ⊂平面1C PQ ,于是AM ⊥平面1C PQ ,又因为PR ⊂平面1C PQ ,则PR AM ⊥,因为1PR C Q ⊥,1C Q AM Q = ,1,C Q AM ⊂平面1C MA ,所以PR ⊥平面1C MA ,在直角1C PQ 中,1122223322PC PQ PR QC ⋅⋅==,因为2CA PA =,故点C 到平面1C MA 的距离是P 到平面1C MA 的距离的两倍,即点C 到平面1C MA 的距离是43,设所求角为θ,则43sin 15θ==.19.如图①,在矩形ABCD 中,2AB AD ==E 为CD 的中点,如图②,将AED △沿AE 折起,点M 在线段CD 上.(1)若2DM MC =,求证AD ∥平面MEB ;(2)若平面AED ⊥平面BCEA ,是否存在点M ,使得平面DEB 与平面MEB 垂直?若存在,求此时三棱锥B DEM -的体积,若不存在,说明理由.【答案】(1)证明见解析(2)存在,169【解析】【分析】(1)根据已知条件及平行线分线段成比例定理,结合线面平行的判定定理即可求解;(2)根据(1)的结论及矩形的性质,利用面面垂直的性质定理及线面垂直的性质定理,结合线面垂直的判定定理及面面垂直的判定定理,再利用等体积法及棱锥的体积公式即可求解.【小问1详解】如图,连AC ,交EB 于G ,在矩形ABCD 中,E 为DC 中点,AB EC ∴∥,且2AB EC =,2AG GC ∴=,又2DM MC =,AD MG ∴∥,又MG ⊂平面MEB ,AD ⊄平面MEB ,AD ∴∥平面MEB .【小问2详解】存在点M ,使得平面DEB 与平面MEB 垂直.在矩形ABCD 中,12DE DA AB ==,45DEA BEC ∴∠=∠=︒,90AEB ∴∠=︒,即AE EB ⊥,已知平面AED ⊥平面BCEA ,又平面AED 平面BCEA AE =,BE ∴⊥平面AED ,DE ⊂平面AED ,BE DE ∴⊥.①取AE 中点O ,则DO AE ⊥,平面AED ⊥平面BCEA ,平面AED 平面BCEA AE =,DO ∴⊥平面BCEA ,由(1)知当2DM MC =时,AD MG ∥,AD DE ⊥ ,MG DE ∴⊥.②而BE MG G ⋂=,,⊂BE MG 平面MEB ,DE ∴⊥平面MEB ,又DE ⊂平面DEB ,∴平面DEB ⊥平面MEB .即当2DM MC =时,平面DEB 与平面MEB 垂直.依题意有DE AD ==4AE =,2DO =,(2222121116233333329B DEM B DEC D BEC BEC V V V DO S ---∴===⨯⨯⨯=⨯⨯⨯⨯=△.。
北京市2023-2024学年高一下学期期中考试数学试卷含答案
北京市2023-2024学年高一(下)期中数学试卷一、选择题(每题5分,共50分)(答案在最后)1.若复数2i z =-+,则复数z 在复平面内对应的点位于()A .第一象限B.第二象限C.第三象限D.第四象限【答案】B 【解析】【分析】运用复数的几何意义求解即可.【详解】复数2i z =-+,则复数z 在复平面内对应的点(2,1)-位于第二象限.故选:B .2.已知向量(2,1)a = ,(4,)b x = ,且a b∥,则x 的值为()A.-2B.2C.-8D.8【答案】B 【解析】【分析】运用平面向量共线的坐标公式计算即可.【详解】(2,1)a =rQ ,(4,)b x =,且a b∥,240x ∴-=,即2x =.故选:B .3.在三角形ABC 中,角,,A B C 对应的边分别为,,a b c ,若0120A ∠=,2a =,3b =,则B =()A.3πB.56π C.566ππ或 D.6π【答案】D 【解析】【详解】试题分析:由于0120A ∠=为钝角,所以只有一解.由正弦定理得:21sin sin1203sin 2B B =⇒=,选D.考点:解三角形.4.已知圆锥的轴截面是一个边长为2的等边三角形,则该圆锥的体积为()A.B.πC.D.2π【答案】A 【解析】【分析】根据圆锥轴截面的定义结合正三角形的性质,可得圆锥底面半径长和高的大小,由此结合圆锥的体积公式,即可求解.【详解】由题知,如图,PAB 为圆锥的轴截面,边长均为2,则圆锥的高322PO =⨯=底面半径1212r =⨯=,故圆锥体积2211ππ1π333V r PO =⋅=⨯=.故选:A5.已知P 为ABC 所在平面内一点,2BC CP =uu u r uur,则()A.1322AP AB AC =-+uu u r uu u r uuu r B.1233AP AB AC=+C.3122AP AB AC=-uu u r uu u r uuu r D.2133AP AB AC=+uu u r uu u r uuu r【答案】A 【解析】【分析】根据题意作出图形,利用向量线性运算即可得到答案.【详解】由题意作出图形,如图,则11()22AP AC CP AC BC AC AC AB =+=+=+- 1322AB AC =-+,故选:A.6.已知非零向量a ,b,则“a b b -= ”是“20a b -= ”成立的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】B 【解析】【分析】根据充分条件和必要条件的定义,结合向量的模的定义,数量积的性质和运算律判断.【详解】若20a b -= ,则a b b -=,a b b -= ,所以“a b b -= ”是“20a b -=”成立的必要条件,若a b b -= ,则220a a b -⋅=,()20a a b ⋅-= ,当()1,0a = ,11,22b ⎛⎫=- ⎪⎝⎭时,()20,1a b -= ,()20a a b ⋅-= 成立,但20a b -≠.所以,“a b b -= ”不是“20a b -=”成立的充分条件,所以“a b b -= ”是“20a b -= ”成立的必要不充分条件,故选:B.7.在ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,且2cos a B c =,则ABC 的形状一定是()A.等边三角形B.等腰三角形C.等腰直角三角形D.直角三角形【答案】B 【解析】【分析】由正弦定理可得2sin cos sin A B C =,再由()C A B π=-+,可得2sin cos sin()sin cos cos sin A B A B A B A B =+=+,从而可得in 0()s A B -=,进而可得结论【详解】解:因为2cos a B c =,所以由正弦定理可得2sin cos sin A B C =,因为A B C π++=,所以()C A B π=-+,所以()()sin sin sin C A B A B π⎡⎤=-+=+⎣⎦,所以2sin cos sin()sin cos cos sin A B A B A B A B =+=+,所以sin cos cos sin 0A B A B -=,所以in 0()s A B -=,因为A B ππ-<-<,所以0A B -=,所以A B =,所以ABC 为等腰三角形,故选:B8.对于非零向量,m n ,定义运算“⨯”:sin m n m n θ⨯=,其中θ为,m n 的夹角.设,,a b c 为非零向量,则下列说法错误..的是A.a b b a⨯=⨯ B.()a b c a c b c+⨯=⨯+⨯C.若0a b ⨯=,则//a bD.()a b a b⨯=-⨯【答案】B 【解析】【详解】由运算定义,sin ,sin a b a b b a b a θθ⨯=⨯=,所以a b b a⨯=⨯正确;()sin ,sin sin a b c a b c a c b c a c b c θαβ+⨯=+⨯+⨯=+ ,所以()a b c a c b c +⨯≠⨯+⨯,故B错误;C 、sin 0a b a b θ⨯== ,则0,θπ=,所以//a b 正确;D 、()()sin ,sin sin a b a b a b a b a b θπθθ⨯=-⨯=--= ,所以()a b a b ⨯=-⨯正确.故选B .点睛:本题考查向量的新定义运算,关键就是理解新定义.本题采取排除法,通过逐个验证,我们可以发现A 、C 、D 都是正确的,所以错误的就是B .9.如图,直三棱柱111ABC A B C -中,1,,AB BC AA AB P ⊥=为棱11A B 的中点,Q 为线段1AC 上的动点.以下结论中正确的是()A.存在点Q ,使BQ AC ∥B.不存在点Q ,使11BQ B C ⊥C.对任意点Q ,都有1BQ AB ⊥D.存在点Q ,使BQ 平面1PCC 【答案】C 【解析】【分析】A 选项,根据异面直线的定义可以判断;B 选项,容易发现1,A Q 重合时符合题意;C 选项,利用线面垂直得到线面垂直;D 选项,先找出平面1PCC 的一条垂线,问题转化为判断这条垂线是否和BQ 垂直的问题.【详解】A 选项,由于BQ ⋂平面ABCB =,B AC ∉,AC ⊂平面ABC ,则,BQ AC 一定异面,A 选项错误;B 选项,根据直三棱柱性质,1BB ⊥平面ABC ,BC ⊂平面ABC ,故1BB BC ⊥,又AB BC ⊥,1AB BB B Ç=,1,AB BB ⊂平面11ABB A ,故BC ⊥平面11ABB A ,又1BA ⊂平面11ABB A ,故1BC BA ⊥,显然11BC B C ∥,即111B C BA ⊥,故1,A Q 重合时,11BQ B C ⊥,B 选项错误;C 选项,直棱柱的侧面11ABB A 必是矩形,而1AA AB =,故矩形11ABB A 成为正方形,则11AB BA ⊥,B 选项已经分析过,BC ⊥平面11ABB A ,由1AB ⊂平面11ABB A ,故1AB BC ⊥,又1BC BA B ⋂=,1,BC BA ⊂平面1BCA ,故1AB ⊥平面1BCA ,又BQ ⊂平面1BCA ,则1BQ AB ⊥必然成立,C 选项正确;D 选项,取AB 中点M ,连接,CM PM ,根据棱柱性质可知,CM 和1C P 平行且相等,故平面1PCC 可扩展成平面1CMPC ,过B 作BN CM ⊥,垂足为N ,根据1BB ⊥平面ABC ,BN ⊂平面ABC ,故1BB BN ⊥,显然11BB CC ∥,故1BN CC ⊥,由BN CM ⊥,1CC CM C = ,1,CC CM ⊂平面1CMPC ,故BN ⊥平面1CMPC ,若BQ 平面1PCC ,则BQ BN ⊥,过Q 作QO //1BB ,交11A C 于O ,连接1B O ,于是1BQOB 共面,又1BQ BB B = ,1,BQ BB ⊂平面1BQOB ,故BN ⊥平面1BQOB ,由于1B O ⊂平面1BQOB ,故1BN B O ⊥,延长OQ 交AC 于J ,易得1B O //BJ ,则BJ BN ⊥,而J 在线段AC 上,这是不可能的,D 选项错误.故选:C10.圭表(如图1)是我国古代一种通过测量正午日影长度来推定节气的天文仪器,它包括一根直立的标竿(称为“表”)和一把呈南北方向水平固定摆放的与标竿垂直的长尺(称为“圭”).当正午太阳照射在表上时,日影便会投影在圭面上,圭面上日影长度最长的那一天定为冬至,日影长度最短的那一天定为夏至.图2是一个根据北京的地理位置设计的圭表的示意图,已知北京冬至正午太阳高度角(即ABC ∠)为26.5 ,夏至正午太阳高度角(即ADC ∠)为73.5 ,圭面上冬至线与夏至线之间的距离(即DB 的长)为a ,则表高(即AC 的长)为()A.sin532sin 47a ︒︒B.2sin 47sin53a ︒︒C.tan 26.5tan 73.5tan 47a ︒︒︒D.sin 26.5sin 73.5sin 47a ︒︒︒【答案】D 【解析】【分析】先求BAD ∠,在BAD 中利用正弦定理求AD ,在Rt ACD 中即可求AC .【详解】73.526.547BAD ∠=-= ,在BAD 中由正弦定理得:sin sin BD AD BAD ABD=∠∠,即sin 47sin 26.5a AD= ,所以sin 26.5sin 47a AD =,又因为在Rt ACD 中,sin sin 73.5ACADC AD=∠= ,所以sin 26.5sin 73.5sin 73.5sin 47a AC AD =⨯=,故选:D【点睛】本题主要考查了解三角形应用举例,考查了正弦定理,属于中档题.二、填空题(每题5分,共30分)11.已知复数i(1i)z =+,则z =________;||z =________.【答案】①.1i--②.【解析】【分析】运用共轭复数、复数乘法及复数的模的公式计算即可.【详解】因为i(1i)1i z =+=-+,则1i z =--,||z ==.故答案为:1i --.12.已知向量(1,1)a =-r ,(2,1)b =- ,则2a b += ________;向量a 在b上的投影向量的坐标为________.【答案】①.(0,1)-②.63(,)55-【解析】【分析】运用平面向量加法、向量数量积、向量的模、投影向量公式计算即可.【详解】解:(1,1)a =-r,(2,1)b =-,则2(2,2)(2,1)(0,1)a b +=-+-=-;()()12113a b ⋅=⨯-+-⨯=-,||b == 故向量a 在b上的投影向量的坐标为:363,555a b b b b b⋅⎛⎫⨯=-=- ⎪⎝⎭ .故答案为:(0,1)-;63(,55-.13.在正四面体A -BCD 中,二面角A -BC -D 的余弦值是_______.【答案】13【解析】【分析】根据二面角平面角的定义,结合正四面体的性质,找出该角,由余弦定理,可得答案.【详解】如图,取BC 的中点F ,连接AF,DF,则AF BC ⊥,DF BC ⊥,即AFD ∠为二面角A BC D --的平面角,设正四面体D ABC -的棱长为6,在正ABC中,sin 60AF AB ==sin 60DF BD ==由余弦定理2221cos 23FD FA AD AFD FD FA +-∠===⋅⋅.故答案为:13.14.已知点(0,0)O ,(1,2)A ,(,0)(0)B m m >,则cos ,OA OB <>=___________;若B 是以OA 为边的矩形的顶点,则m =___________.【答案】①.②.5【解析】【分析】①根据向量的夹角公式,直接求解即可;②根据已知可得0OA AB ⋅=,求出相应的坐标代入即可求出m 的值.【详解】①因为(0,0)O ,(1,2)A ,(,0)(0)B m m >,所以(1,2)OA = ,(,0)OB m =,所以5cos ,5||||OA OB OA OB OA OB ⋅<>===;②(1,2)AB m =-- ,若B 是以OA 为边的矩形的顶点,则0OA AB ⋅=,即140OA AB m ⋅=--=,所以5m =.故答案为:5;515.若ABC 的面积为2223()4a cb +-,且∠C 为钝角,则∠B =_________;c a 的取值范围是_________.【答案】①.60②.(2,)+∞【解析】【分析】根据题干结合三角形面积公式及余弦定理可得tan B =,可求得3B π∠=;再利用()sin sin C A B =+,将问题转化为求函数()f A 的取值范围问题.【详解】()2221sin 42ABC S a c b ac B ∆=+-=,2222a c b ac +-∴=,即cos B =,sin cos 3B B B π∴=∠=,则21sin cos sin sin 11322sin sin sin 2tan 2A A Ac C a A A A A π⎛⎫⎛⎫-⋅--⋅ ⎪ ⎪⎝⎭⎝⎭====⋅+,C ∴∠为钝角,,036B A ππ∠=∴<∠<,)1tan 0,,3tan A A ⎛∴∈∈+∞ ⎝⎭,故()2,ca∈+∞.故答案为3π,()2,∞+.【点睛】此题考查解三角形的综合应用,能够根据题干给出的信息选用合适的余弦定理公式是解题的第一个关键;根据三角形内角A B C π++=的隐含条件,结合诱导公式及正弦定理,将问题转化为求解含A ∠的表达式的最值问题是解题的第二个关键.16.如图矩形ABCD 中,22AB BC ==,E 为边AB 的中点,将ADE V 沿直线DE 翻转成1A DE △.若M 为线段1AC 的中点,则在ADE V 翻转过程中,下列叙述正确的有________(写出所有序号).①BM 是定值;②一定存在某个位置,使1CE DA ⊥;③一定存在某个位置,使1DE A C ⊥;④一定存在某个位置,使1MB A DE 平面∥.【答案】①②④【解析】【分析】运用等角定理及余弦定理可判断①;运用勾股定理证得1A E CE ⊥、DE EC ⊥,结合线面垂直的判定定理及性质可判断②;运用反证法证及线面垂直判定定理证得DE ⊥平面1A EC ,结合线面垂直性质可得1DE A E ⊥得出矛盾可判断③;运用面面平行判定定理证得平面//MBF 平面1A DE ,结合面面平行性质可判断④.【详解】对于①,取CD 中点F ,连接MF ,BF ,如图所示,则1MF DA ∥,BF DE ,11122MF A D ==,FB DE ==由等角定理知,1π4A DE MFB ∠=∠=,所以由余弦定理可得22252cos 4MB MF FB MF FB MFB =+-⋅⋅∠=,所以52MB =是定值,故①正确;对于④,由①知,1MF DA ∥,BF DE ,又FB 、MF ⊄平面1A DE ,1DA 、DE ⊂平面1A DE ,所以//FB 平面1A DE ,//MF 平面1A DE ,又FB MF F = ,FB 、MF ⊂平面MBF ,所以平面//MBF 平面1A DE ,又因为MB ⊂平面MBF ,所以//MB 平面1A DE ,故④正确,对于②,连接EC ,如图所示,当1A C =时,因为11A E =,CE =22211A C A E CE =+,所以1A E CE ⊥,因为矩形ABCD 中,D E C E ==,2DC =,所以222DE CE DC +=,即DE EC ⊥,又因为1A E DE E ⋂=,1A E 、DE ⊂平面1A DE ,所以CE ⊥平面1A DE ,又1A D ⊂平面1A DE ,所以1CE DA ⊥,故②正确;对于③,假设③正确,即在某个位置,使1DE A C ⊥,又因为矩形ABCD 中,D E C E ==2DC =,所以222DE CE DC +=,即DE EC ⊥,又因为1A C EC C ⋂=,1AC 、EC ⊂平面1A EC ,所以DE ⊥平面1A EC ,又1A E ⊂平面1A EC ,所以1DE A E ⊥,这与1π4DEA ∠=矛盾,所以不存在某个位置,使1DE A C ⊥,故③错误.故答案为:①②④.三、解答题(每题14分,共70分)17.如图,在四棱锥P ABCD -中,PD ⊥平面ABCD ,底面ABCD 为正方形,E ,F 分别是AB ,PB 的中点.(1)求证://EF 平面PAD ;(2)求证:EF CD ⊥.【答案】(1)证明见解析(2)证明见解析【解析】【分析】(1)由三角形中位线证得EF PA ∥,结合线面平行的判定定理证明即可.(2)由线面垂直性质可得PD CD ⊥,结合线面垂直判定定理可得CD ⊥平面PAD ,再结合线面垂直性质、线线垂直性质证明即可.【小问1详解】因为E ,F 分别是AB ,PB 的中点,所以EF PA ∥,又EF ⊄平面PAD ,PA ⊂平面PAD ,所以//EF 平面PAD ;【小问2详解】因为PD ⊥平面ABCD ,CD ⊂平面ABCD ,所以PD CD ⊥,又因为底面ABCD 为正方形,CD AD ⊥,=PD AD D ⋂,PD 、AD ⊂平面PAD ,所以CD ⊥平面PAD ,又PA ⊂平面PAD ,所以CD PA ⊥,由(1)知,EF PA ∥,所以EF CD ⊥.18.已知2()22cos f x x x =+.(1)求()f x 的最小正周期及单调递减区间;(2)求函数()f x 在区间π[0,]2上的最大值和最小值.【答案】(1)π,π2π[π,π]63k k ++,Z k ∈(2)max ()3f x =,min ()0f x =【解析】【分析】(1)结合二倍角公式及辅助角公式化简函数()f x ,结合sin y t =图象与性质求解即可.(2)先求出π26x +的范围,结合sin y t =图象与性质即可求得最值.【小问1详解】因为2π()22cos 2cos 212sin(216f x x x x x x =+=++=++,所以()f x 的最小正周期2ππ2T ==,令ππ3π2π22π262k x k +≤+≤,Z k ∈,解得π2πππ63k x k +≤≤+,Z k ∈,所以()f x 单调递减区间为π2π[π,π]63k k ++,Z k ∈.【小问2详解】因为π[0,]2x ∈,所以ππ7π2[,]666x +∈,所以由函数图象性质知,当ππ262x +=,即π6x =时,max ()3f x =;当π7π266x +=,即π2x =时,min ()0f x =.19.如图,四边形ABCD 是菱形,DE ⊥平面ABCD ,//AF DE ,3DE AF =.(1)求证:平面//BAF 平面CDE ;(2)求证:平面EAC ⊥平面EBD ;(3)设点M 是线段BD 上一个动点,试确定点M 的位置,使得//AM 平面BEF ,并证明你的结论.【答案】(1)证明见解析(2)证明见解析(3)13BM BD =,证明见解析【解析】【分析】(1)利用线面平行的判定定理得到//AF 平面CDE ,//AB 平面CDE ,再利用面面平行的判定定理,即可证明结果;(2)根据条件得到AC ⊥平面EBD ,再由面面垂直的判定定理,即可证明结果;(3)构造平行四边形,利用线面平行的判定定理,即可证明结果.【小问1详解】因为//AF DE ,AF ⊄面CDE ,DE ⊂面CDE ,所以//AF 平面CDE ,同理,//AB 平面CDE ,又AF AB A ⋂=,,AF AB ⊂面BAF ,所以平面//BAF 平面CDE .【小问2详解】因为四边形ABCD 是菱形,所以AC BD ⊥,DE ⊥ 平面ABCD ,AC ⊂平面ABCD ,AC DE ∴⊥,BD DE D = ,,BD DE ⊂平面EBD ,AC ∴⊥平面EBD ,AC ⊂ 平面EAC ,所以平面EAC ⊥平面EBD .【小问3详解】当13BM BD =时,//AM 平面BEF ,理由如下:作MN ED ∥,则MN 平行且等于13BD ,//AF DE ,3DE AF =,∴AF 平行且等于MN ,∴AMNF 是平行四边形,//AM FN ∴,AM ⊄ 平面BEF ,FN ⊂平面BEF ,//AM ∴平面BEF .20.在ABC ∆中,2sin sin sin A B C =.(Ⅰ)若π3A ∠=,求B ∠的大小;(Ⅱ)若1bc =,求ABC ∆的面积的最大值.【答案】(1)π3B ∠=,(2).【解析】【详解】【分析】试题分析:(Ⅰ)因为2sin sin sin ,A B C =由正弦定理可得2a bc =,再利用余弦定理得所以22222122a b c bc b c bc =+-⨯=+-即b c =,所以为等边三角形.所以π3B ∠=(注:当然也可用化角来处理);(Ⅱ)由已知可得21a bc ==.所以222221cos 22b c a b c A bc +-+-==21122bc -≥=,又sin (0,]2A ∈.所以11sin sin 224ABC S bc A A ∆==≤11sin sin 224ABC S bc A A ∆==≤试题解析:(Ⅰ)方法一:因为2sin sin sin ,A B C =且,所以2a bc =.又因为π3A ∠=,所以22222122a b c bc b c bc =+-⨯=+-.所以2()0b c -=.所以b c =.因为π3A ∠=,所以为等边三角形.所以π3B ∠=.方法二:因为πA BC ++=,所以sin sin()C A B =+.因为2sin sin sin B C A =,π3A ∠=,所以2ππsin sin()sin 33B B +=.所以13sin cos sin )224B B B +=.所以11cos 23sin 24224B B -+⨯=.所以12cos 2122B B -=.所以πsin(2)16B -=.因为(0,π)B ∈,所以ππ112(,π)666B -∈-.所以ππ262B -=,即π3B ∠=.(Ⅱ)因为2sin sin sin ,A B C =1bc =,且,所以21a bc ==.所以222221cos 22b c a b c A bc +-+-==21122bc -≥=(当且仅当时,等号成立).因为(0,π)A ∈,所以π(0,]3A ∈.所以sin (0,]2A ∈.所以11sin sin 224ABC S bc A A ∆==≤.所以当是边长为1的等边三角形时,其面积取得最大值.考点:三角函数的性质与解三角形21.对于数集{}12,,1,n X x x x =- ,其中120n x x x <<<⋅⋅⋅<,2n ≥,定义向量集(){},,,Y a a s t s X t X ==∈∈ ,若对任意1a Y ∈ ,存在2a Y ∈ 使得120a a ⋅= ,则称X 具有性质P .(1)判断{}1,1,2-是否具有性质P ;(2)若2x >,且{}1,1,2,X x =-具有性质P ,求x 的值;(3)若X 具有性质P ,求证:1X ∈且当1n x >时,11x =.【答案】(1)具有性质P(2)4(3)证明见解析【解析】【分析】(1)根据集合新定义判断即可;(2)在Y 中取()1,2a x = ,根据数量积的坐标表示,求出可能的2a ,再根据2x >求出符合条件的值即可;(3)取()111,a x x Y =∈ ,()2,a s t Y =∈ ,由120a a ⋅= ,化简可得0s t +=,所以,s t 异号,而1-是X 中的唯一的负数,所以,s t 中之一为1-,另一个为1,从而得到1X ∈,最后通过反证法得出1n x >时,11x =.【小问1详解】{}1,1,2-具有性质P .因为{}1,1,2X =-,所以()()()()()()()()(){}1,1,1,1,1,2,1,1,1,1,1,2,2,1,2,1,2,2Y =------,若对任意1a Y ∈ ,存在2a Y ∈ 使得120a a ⋅= ,所以X 具有性质P .【小问2详解】因为2x >,且{}1,1,2,X x =-具有性质P ,所以可取()1,2a x = ,又Y 中与()1,2a x = 垂直的元素必有形式()()()1,1,1,2,1,x ---中的一个,当()21,1a =- 时,由120a a ⋅= ,可得202x x -+=Þ=,不符合题意;当()21,2a =- 时,由120a a ⋅= ,可得404x x -+=Þ=,符合题意;当()21,a x =- 时,由120a a ⋅= ,可得200x x x -+=Þ=,不符合题意;所以4x =.【小问3详解】证明:取()111,a x x Y =∈ ,设()2,a s t Y =∈ ,满足120a a ⋅= ,所以()100s t x s t +=⇒+=,所以,s t 异号,因为1-是X 中的唯一的负数,所以,s t 中之一为1-,另一个为1,所以1X ∈,假设1k x =,其中1k n <<,则101n x x <<<,选取()11,n b x x = ,并设()2,b p q = ,满足120b b ⋅= ,所以10n px qx +=,则,p q 异号,从而,p q 之中恰有一个为1-,若1p =-,则1n x qx =,显然矛盾;若1q =-,则1n n x px p x =<<,矛盾,所以当1n x >时,11x =,综上,得证.【点睛】关键点点睛:本题的关键在于理解集合的新定义,并用向量的数量积为零时坐标表示出所求的参数值.。
2024高一数学期中试卷及答案
2024高一数学期中试卷及答案一、选择题(每题5分,共25分)1. 设集合A = {x | x = 2k, k ∈ Z},B = {x | x = 3k, k ∈ Z},则A∩B =____。
A. {x | x = 6k, k ∈ Z}B. {x | x = 2k, k ∈ Z}C. {x | x = 3k, k ∈Z}D. ∅2. 若f(x) = x² - 4x + 3,则f(2 - x) =____。
A. x² - 4x + 3B. 4 - xC. x² + 4x - 3D. 4 - x²3. 已知等差数列{an}的前5项和为25,第5项为15,则该数列的首项为____。
A. 1B. 3C. 5D. 94. 设函数f(x) = 2x + 1,若f(a) + f(b) = 3,则a + b =____。
A. 0B. 1C. -1D. 25. 下列函数在区间(-∞, 1)上单调递减的是____。
A. y = x²B. y = -x²C. y = 2xD. y = 1/x二、填空题(每题5分,共25分)6. 若|x - 2| ≤ 3,则____ ≤ x ≤ ____。
7. 已知log₂(x - 1) = 3,则x - 1 =____,x =____。
8. 函数f(x) = 2x + 1的反函数为____。
9. 若向量a = (1, 2),向量b = (-2, 3),则向量a + b =____,向量a - b =____。
10. 若矩阵A = \(\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}\),矩阵B = \(\begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix}\),则矩阵A + B =____。
三、解答题(共50分)11. (10分)已知函数f(x) = 2x + 1,求f(f(x))的表达式。
2023-2024学年福建省三明市六校高一下学期期中联考数学试卷(解析版)
三明市2023—2024学年高一下期中六校联考数学试卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若复数满足,则在复平面内的共轭复数对应的点位于A. 第一象限 B. 第二象限C. 第三象限 D. 第四象限【答案】A 【解析】【分析】先求出复数z和,再求出在复平面内的共轭复数对应的点的位置得解.【详解】由题得,所以,所以在复平面内的共轭复数对应的点为,在第一象限.故选:A.【点睛】本题主要考查复数的模和复数的除法,意在考查学生对这些知识的理解掌握水平和分析推理能力.2. 已知向量,,若,则( )A.B.C. D. 【答案】D 【解析】【分析】根据向量的平行的坐标表示,即可求解.【详解】因为,则,得.故选:D3. 已知a 、b 为两条不同的直线,为两个不同的平面,则下列说法正确的是( )A. 若,,则B. 若,,,则C. 若,,则z (1i)|1|z +=z z z 22(1)11(1)(1)i z i i i i -===-++-1z i =+z ()1,1()3,2a =- ()1,b x = a b∥x =322332-23-a b ∥32x -=23x =-αβ、//a b b α⊂//a αa α⊂b β⊂//a b //αβ//αβa α⊂//a βD. 若,,,则【答案】C 【解析】【分析】根据直线与平面,平面与平面的位置关系,对四个选项逐一判断即可.【详解】对于A :若,,则或,故A 错误;对于B :若,,则或与相交,故B 错误;对于C :若,,则,故C 正确;对于D :若,,,则或与异面,故D 错误.故选:C.4. 在中,内角,,所对的边为,,,若,,,则角的大小为( )A.B.或 C.D.【答案】B 【解析】【分析】由正弦定理及三角形内角和性质求角的大小.【详解】由,则,而,故或,显然,所得角均满足.故选:B5. 若一个正方体的八个顶点都在同一个球面上,则正方体与这个球的表面积之比为( )A.B.C.D.【答案】C【解析】【分析】设正方体的棱长为,则外接球的直径为正方体的体对角线,从而可得球的半径,利用公式求出两者的表面积后可得它们的比值.【详解】设正方体的棱长为,外接球的半径为,则,//αβa α⊂b β⊂//a b //a b bα⊂//a αa α⊂a α⊂b β⊂//,a b //αβαβ//αβa α⊂//a β//αβa α⊂b β⊂//a b a b ABC A B C a b c 4a =b =π6A =B π3π32π32π3π6B sin sin a b A B =sin sin b A B a ==(0,π)B ∈B =π32π3B 0πA B <+<2π2πa a R 2R =故球的表面积为,而正方体的表面积为,故正方体与这个球表面积之比为.故选:C .【点睛】本题考查正方体和其外接球的表面积的计算,注意弄清楚球的半径与正方体的棱长的关系,本题属于基础题.6. 在中,已知,则的形状是( )A. 等腰三角形 B. 直角三角形C. 等边三角形 D. 等腰或直角三角形【答案】D 【解析】【分析】由余弦定理化角为边,然后通过代数式的变形可得.【详解】因为,所以,,,所以或,所以为等腰三角形或直角三角形.故选:D .7. 《九章算术》是我国古代内容极为丰富的数学名著,它将正四棱台体(棱台的上下底面均为正方形)称为方亭.如图,现有一方亭,其中上底面与下底面的面积之比为,方亭的高,,方亭的四个侧面均为全等的等腰梯形,已知方亭的体积为,则该方亭的表面积为( )A. B. C.D.的()222423R R a πππ=⨯=26a 22623a a ππ=ABC cos cos a c A b c B +=+ABC cos cos a c A b c B +=+22222222b c a a c b a b b a +-+-+=+222222222()2()a b a b c a ab b a c a ++-=++-222()()0a b c a b ---=a b =222c a b =+ABC ABCD EFHG -1:4h EF =BF EF =56320+20+5+【答案】A 【解析】【分析】先由棱台的体积求出,再由棱台的表面积公式求解即可.【详解】由题意得,,则方亭的体积为,解得,则,画出的平面图,作于,,则,,则该方亭的表面积为.故选:A.8. 设是内一点,且,定义,其中分别是的面积,若,则的最小值是( )A. B. 18 C. 16D. 9【答案】B 【解析】【分析】由,利用向量数量积公式得,面积公式求得,由定义得,结合基本不等式求的最小值.5+2EF =22,4EFHG ABCD S EF S EF ==(22156433EF EF EF ⋅⋅++=2EF =4,16EFHG ABCD S S ==ABFE EM AB ⊥M BF EF ==4212AM -==EM ==()1242ABFE S =⨯+=420EFHG ABCD ABFE S S S ++=+M ABC 30AB AC BAC ⋅=∠=()(),,f M m n p =,,m n p ,,MBC MCA MAB ()1,,2f M x y ⎛⎫= ⎪⎝⎭14x y +)91+30AB AC BAC ⋅=∠=4bc =1ABC S =△()f M 12x y +=14x y+【详解】设中,角的对边分别为,,由,得,,若,则,,有,得,,当且仅当,即时等号成立,则的最小值是18.故选:B二、多项选择题:(本大题共3小题,每小题6分,共18分,在每题给出的四个选项中,有多项是符合题意的,全部选对得6分,部分选对得部分分,有错选的得0分)9. 已知为虚数单位,则下面命题正确的是( )A. 若复数,则.B. 复数满足在复平面内对应的点为,则.C. 复数的虚部是3.D. 复数满足,则最小值为1【答案】ABD 【解析】【分析】通过复数的运算和轨迹方程化简求解判断即可.【详解】对于A ,,故A 正确;对于B ,,即,故B 正确;ABC ,,A BC ,,a b c 30BAC ∠=cos AB AC bc BAC ⋅=∠==4bc =1sin 12ABC S bc BAC =∠= ()1,,2f M x y ⎛⎫= ⎪⎝⎭0x >0y >112ABC MBC MCA MAB S S S S x y =++=++= 12x y +=()()14144221425252218y x x y x y x y x y ⎛⎛⎫⎛⎫+=++=+++≥+=+⨯= ⎪ ⎪ ⎝⎭⎝⎭⎝4y x x y =11,63x y ==14x y+i 3i z =+13i 1010z =-z 2i 1,z z -=(),x y 22(2)1x y +-=13i z =-z i 3i z z -=+z ()()3i 3i 3i 3i 1131i 1010z ===--++-()2i 2i 1z x y -=+-==22(2)1x y +-=对于C ,复数的虚部为-3,故C 错误;对于D ,因为,所以,所以,则,所以,所以最小值为1,故D 正确.故选:ABD.10. 已知平面向量,,则下列说法正确的是( )A. 与B. 在C. 与垂直的单位向量的坐标为D. 若向量与向量共线,则【答案】AD 【解析】【分析】根据夹角公式的坐标运算判断A ;根据投影向量的计算公式判断B ;设与垂直的单位向量的坐标为,根据平面向量的模及垂直向量的坐标运算判断C ;根据共线定理判断D.【详解】设与夹角为,则A 正确;在方向上的投影向量为,故B 错误;设与垂直的单位向量的坐标为,则,解得或,的13i z =-i 3i z z -=+()()1i 3i x y x y +-=++()()222213x y x y +-=++1y =-1z ==≥z (1,1)a =-(3,4)b = a b bab43,55⎛⎫⎪⎝⎭a b λ+a b λ+1λ=±b(),x y a b θcos a b a bθ⋅===b a1cos 52a b a aθ⋅==b (),x y 221340x y x y ⎧+=⎨+=⎩4535x y ⎧=⎪⎪⎨⎪=-⎪⎩4535x y ⎧=-⎪⎪⎨⎪=⎪⎩所以与垂直的单位向量的坐标为或,故C 错误;若向量与向量共线,设,因为不共线,所以,解得,故D 正确.故选:AD.11. 已知中,在上,为的角平分线,为中点,连接,使交于点,下列结论正确的是( )A. B. C. D. 在的外接圆上,则的最大值为【答案】ACD 【解析】【分析】利用余弦定理计算,利用余弦定理计算即可判断A ;计算每个角的大小,根据正弦定理得,再通过向量三角形法则计算即可判断B ;在中利用余弦定理得, 在中通过正弦定理即可判断C ;设,用表示出,得出关于的三角函数,从而得到的最大值即可判断D.【详解】对于A ,在中,由余弦定理得,又因为,所以.在中,由余弦定理得,所以,所以A 正确;b 43,55⎛⎫- ⎪⎝⎭43,55⎛⎫- ⎪⎝⎭a b λ+ a b λ+ ()a b k a b k a kb λλλ+=+=+ ,a b 1k k λλ=⎧⎨=⎩1λ=±ABC 1,4,AB AC BC D ===BC AD BAC ∠E AC BE BE AD G BE =1132AG AB AC=+AD =P ABE 2PB PE +π3BAC ∠=||BE AGE 2||||3GE BE =ABC cos C ADC △PBE α∠=α,PB PE 2PB PE +α2PB PE +ABC 222||||||116131cos 2||||2142AB AC BC BAC AB AC +-+-∠===⋅⨯⨯(0,π)BAC ∠∈π3BAC ∠=ABD △222||||||2||||cos BE AB AE AB AE BAC =+-⋅∠21||1421232BE =+-⨯⨯⨯=||BE =对于B ,因为,所以,所以.因为平分,所以,,在中,由正弦定理得,所以,故.所以,故B 错误;对于C ,在中,由余弦定理得,所以在中,,所以,所以由正弦定理得,,所以C 正确;对于D ,由B 选项可知,即为外接圆的直径,故外接圆的半径,,故当取得最大值时,在优弧上.设,则,,||BE =||2,||1AE AB ==222||||||BE AB AE +=AB BE ⊥AD BAC ∠π6BAD CAD BEA ∠=∠=∠=2π3AGE ∠=AGE ||||sin sin AE GE AGE CAD=∠∠||GE =2||||3GE BE =22()33AG AE EG AE EB AE AB AE =+=+=+- 12112213332336AE AB AC AB AB AC =+=⋅+=+ABC 222||||||cos 2||||AC BC AB C AC BC +-===⋅sin C =ADC △ππsin sin(π)sin()66ADC C C ∠=--=+ππ1sin sincos cos sin 662ADC C C ∠=+==||||sin sin AD AC C ADC =∠sin sin AC C AD ADC===∠AB BE ⊥AE ABE ||12AE R ==π3BPE BAE ∠=∠=2PB PE +P BAEPBE α∠=2π3PEB α∠=-2π(0,)3α∈所以在中由正弦定理得,所以,所以,其中,所以当时,最大值为,故D 正确.故选:ACD.三、填空题(本题共3小题,每小题5分,共15分)12. 如图所示,等腰直角三角形是水平放置的一个平面图形的直观图,其中,则原图形的周长为__________.【答案】##【解析】【分析】根据斜二测画法可得原图形三边长,进而可得周长.【详解】由题意,,则,故原图形中,,周长为.PBE △||||||2πsin sin sin 3PB PE BE PEB PBE ===∠∠2π||2sin()sin ,||2sin 3PB PE αααα=-=+=||2||5sin )PB PE αααθ+=+=+sin cos θθ==π2αθ+=||2||PB PE +O A B '''2O B ''=8+8+2O B ''=O A ''=OA =2OB =6AB ==8+故答案为:13. 已知圆锥的底面半径为2,且它的侧面展开图是一个半圆,则这个圆锥的体积为___________.【解析】【分析】先计算圆锥的底面周长,即为侧面展开图的弧长,进而求得侧面展开图的半径,即为圆锥的母线长,再求得圆锥的高,从而求得体积即可【详解】设圆锥的母线长为,底面半径为,高为,因为圆锥的侧面展开图是一个半圆,所以,又,所以圆锥的母线长,所以圆锥的高所以圆锥的体积,.14. 如图,在平面四边形中,.若点为边上的动点,则的取值范围为______.8+l r h r l 2π=π2r =24l r ==h ==213V r h π==ABCD ,,120,1AB BC AD CD BAD AB AD ∠⊥⊥=== E CD EA EB ⋅【答案】【解析】【分析】以D 为原点,的方向分别为x 轴,y 轴的正方向建立平面直角坐标系,利用向量坐标运算,结合二次函数性质可得.【详解】连接AC ,因为,,,,所以,又,所以,所以过点B 作AD 的垂线BF ,垂足为F ,易知,在中,,,所以,以D 为原点,的方向分别为x 轴,y 轴的正方向建立平面直角坐标系,则,设,则,,,21,316⎡⎤⎢⎥⎣⎦,DA DCAB BC ⊥AD CD ⊥AB AD=AC AC =Rt Rt ACD ACB ≅ 120BAD ∠= 60DAC ∠= tan60DC AD == Rt ABF 60BAF ∠= 1AB =BF=12AF =,DA DC()31,0,2A B ⎛ ⎝()0,,E m m ⎡∈⎣()1,EA m =- 32EB m ⎛⎫=- ⎪ ⎪⎝⎭ 23322EA EB m m m ⎫⋅=--=-+⎪⎪⎭函数在上单调递减,在上单调递增,,,,当时,有最小值;当时,有最大值,所以的取值范围为.故答案为:.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. 的内角的对边分别为,已知.(1)求角;(2)若,,求的面积.【答案】(1)(2)【解析】【分析】(1)利用正弦定理和两角和差正弦公式可化简边角关系式,求得,结合可得结果;(2)利用三角形周长得到;利用余弦定理构造出关于的方程,解出的值;代入三角形面积公式可求得结果.【详解】(1)由正弦定理可得:即: ,由得:(2),由余弦定理可得:()232f x x x =+⎡⎢⎣()302f =2116f =3f =m =EA EB ⋅ 2116m =EA EB ⋅ 3EA EB ⋅ 21,316⎡⎤⎢⎥⎣⎦21,316⎡⎤⎢⎥⎣⎦ABC ∆,,A B C ,,a b c ()2cos cos cos A b C c B +=A 1a =ABC ∆1ABC ∆6A π=2cos A ()0,A π∈b c +=bcbc ()2cos sin cos sin cos A B C C B A+=()2cos sin 2cos sin A B C A A A+==sin 0A ≠ cos A ∴=()0,A π∈6A π=1a = ABC ∆1+b c ∴+=的面积:【点睛】本题考查解三角形的相关知识,涉及到正弦定理化简边角关系式、余弦定理和三角形面积公式的应用,还涉及到两角和差正弦公式的知识,考查学生对于三角恒等变换和解三角形部分的公式的掌握程度,属于常考题型.16. 如图,四棱锥中,分别为线段,中点,与交于点,是线段上一点.求证:(1)平面;(2)平面平面.【答案】(1)证明见解析 (2)证明见解析【解析】【分析】(1)根据中位线可得线线平行,利用线面平行的判定定理得证;(2)证明线面平行,再由面面平行的判定定理证明.【小问1详解】连接,因为,,所以,,所以四边形是平行四边形, 所以为的中点.的()2222225212cos 222b c bc a b c a bc bc A bc bc bc bc +--+----=====8bc ∴==-ABC ∆∴(111sin 82222S bc A ==⨯-⨯=-P ABCD -1//,,,,2AD BC AB BC AD E F H ==AD ,PC CD AC BE O G OF //AP BEF //OHF PAD EC //AD BC 12BC AD =//BC AE BC AE =ABCE O AC又因为是的中点,所以,..因为平面,平面,所以平面.【小问2详解】连接,,因为,分别是,的中点,所以,又平面, 平面,所以平面. .同理 平面,又,平面所以平面平面.17. 在中,角A ,B ,C 所对的边分别为a ,b ,c ,点D 满足,且.(1)若b =c ,求A 的值;(2)求B 的最大值.【答案】(1) (2)【解析】【分析】(1)根据,结合,得到,再由b =c 求解;(2)由,利用余弦定理得到 ,再利用余弦定理,结合基本不等式求解.【小问1详解】解:因为,F PC //FO AP FO ⊂BEF AP ⊄BEF //AP BEF FH OH F H PC CD //FH PD PD ⊂PAD FH ⊄PAD //FH PAD //OH PAD FH OH H ⋂=FH OH ⊂、FOH //OHF PAD ABC 3BD BC =0AD AC ⋅=23A π=6π0AD AC ⋅= 3BD BC =221cos 033bc A b +=221cos 033bc A b +=22220b c a +-=0AD AC ⋅=所以,即,所以,因为b =c ,所以,因为,所以.【小问2详解】因为,由余弦定理得,,即,所以当且仅当时,即时,取等号.因为,所以B的最大值为.18. 如图,正三棱柱的底面边长为2的截面与上底面交于,且点是棱的中点,点在棱上.103AB BC AC ⎛⎫⋅ ⎪⎭+⎝=21033AB AC AC ⎛⎫⋅ ⎪⎝⎭+=2212121cos 0333333AB AC AC AB AC AC AC bc A b +=⋅⎛⎫⋅ ⎪+⋅=+⎝⎭= 1cos 2A =-0A π<<23A π=2212121cos 0333333AD AC AB AC AC AB AC AC AC bc A b ⋅=+=⋅⎛⎫⋅ ⎪⎝⎭+⋅=+= 222222121cos 033323b c a bc A b bc b bc +-+=+=22220b c a +-=2222222223222cos 222a c a c a c a c b B ac ac ac -+-++-===≥22322a c =a =0B π<<6π111ABC A B C -AB PQ P 11A C Q 11B C(1)试在棱上找一点,使得平面,并加以证明;(2)求四棱锥的体积.【答案】(1)点为棱的中点,证明见解析;(2).【解析】【分析】(1)证法1:取的中点,连接,,可得平面,再由线面平行的性质可得,则可得是棱的中点,由三角形中位线定理结合已知可得四边形是平行四边形,可得,然后由线面平行的判定定理可证得结论;证法2:由已知条件可证得平面,从而得是平行四边形,,由线面平行的判定可得面,从而得面面,再由面面平行的性质可得结论;(2)解法一:连接,四棱锥可视为三棱锥和组合而成,然后分别求出两个三棱锥的体积即可;解法二:分别取和的中点,,连接,,连接交于点,连接,,可证得平面平面,则平面,然后结合已知条件求出等腰梯形的面积,从而可求得四棱锥的体积【详解】(1)证法1:点为棱中点,证明如下:取的中点,连接,.∵,平面,平面,∴平面,∵平面,平面平面,∴.的AC D //QD 11ABB A C ABQP -D AC 34AB M DM 1B M 11//A B ABQP 11//PQ A B Q 11B C 1DMB Q 1//QD B M //PQ 11ABB A 1PDAA 1//PD AA //PD 11ABB A //PDQ 11ABB A BP C ABQP -C BPQ -C ABP -AB 11A B M N MN CM 1C N PQ G MG CG ABQP ⊥1CMNC CG ⊥ABQP ABQP D AC AB M DM 1B M 11//AB A B AB ⊂ABQP 11A B ⊄ABQP 11//A B ABQP 11A B ⊂111A B C ABQP 111A B C PQ =11//PQ A B又是棱中点,∴是棱的中点,∴∥,∵,分别为棱,的中点,∴∥,∴∥,∴四边形是平行四边形,∴,∵平面,平面,∴平面.证法2:为的中点时,平面.证明如下:∵平面,平面,平面平面,∴,平面,平面,所以平面,又∵为的中点,为的中点,∴是平行四边形,∴,又∵平面,平面,∴面,又∵与在平面内相交,∴面面,又∵面,∴平面.(2)解法一:连接,四棱锥可视为三棱锥和组合而成,三棱锥可视为,底面积,设,体积为.三棱锥与等高,体积比为底面积之比,的P 11A C Q 11B C 1QB BC 112QB BC =D M AC AB DM BC 12DM BC =1QB DM 1QB DM=1DMB Q 1//QD B M 1B M ⊂11ABB A OD ⊄11ABB A //QD 11ABB A D AC //QD 11ABB A //AB 111A B C AB ⊂ABQP ABQP 111A B C PQ =//PQ AB PQ ⊄11ABB A AB ⊂11ABB A //PQ 11ABB A D AC P 11A C 1PDAA 1//PD AA PD ⊄11ABB A 1AA ⊂11ABB A //PD 11ABB A PD PQ PDQ //PDQ 11ABB A QD ⊂PDQ //DQ 11ABB A BP C ABQP -C BPQ -C ABP -C ABP --P ABC 2ABC S == 1C BAP V V -=11132V ==C BPQ -C ABP -设,则,故,因此,,即为所求.解法二:分别取和的中点,,连接,,连接交于点,连接,.∵和是正三角形,且,分别是和的中点,∴,且∥,,则,,,四点共面.∵平面,平面,∴,又平面,平面,,∴平面,∵平面,∴平面平面.在矩形中,,,∴,∴,且∴,即.又平面平面,平面平面,平面,∴平面.在等腰梯形中,,,,∴等腰梯形的高∴四棱锥的体积2C BPQ V V -=21:::1:2BPQ BAP V V S S PQ AB ===△△211124V V ==1234C ABPQ V V V -=+=AB 11A B M N MN CM 1C N PQ G MG CG ABC 111A B C △M N AB 11A B C M A B ⊥CM 1C N 1CM C N =C M N 1C 1CC ⊥ABC AB ⊂ABC 1CC AB ⊥CM ⊂1CMNC 1CC ⊂1CMNC 1CM CC C ⋂=AB ⊥1CMNC AB ⊂ABQP ABQP ⊥1CMNC 1CMNC 1MN CC ==1CN CM AB ===11C G NG CC MN ===145C GC NGM ∠=∠=︒1CG ==90CGM ∠=︒CG MG ⊥ABQP ⊥1CMNC ABQP 1CMNC MG =CG ⊂1CMNC CG ⊥ABQP ABQP 11112PQ A B ==2AB =BQ AP ===ABQP h ==C ABQP -.19. 如图,海上有A ,B 两个小岛相距,船O 将保持观望A 岛和B 岛所成的视角为,现从船O 上泥下一只小艇沿BO 方向驶至C 处进行作业,且,设.(1)用x 分别表示和,并求出x 的取值范围;(2)晚上小艇在C 处发出一道强烈的光线照射A 岛,B 岛至光线CA 的距离为BD ,求BD 的最大值.【答案】(1),,(2)10【解析】【分析】(1)应用余弦定理结合基本不等式求出范围即可;(2)根据面积公式列式表示成函数,根据函数单调性求出最值即得.【小问1详解】在中,,由余弦定理得,又,所以①,在,中,,由余弦定理得②,①+②得,()111332ABQP V CG S CG PQ AB h =⋅=⨯+⨯梯形()11312324=+=10km 60 OC BO =km AC x =22OA OB +OA OB ⋅2221002x OA OB ++=21002x OA OB -⋅=10x <≤OAC 120AOC ∠= AC x =2222cos120OA OC OA OC x +-⋅⋅= OC BO =2222cos120OA OB OA OB x +-⋅⋅= OAB 10AB =60AOB ∠= 222cos 60100OA OB OA OB +-⋅⋅= 2221002x OA OB ++=①-②得,即,又,所以,即,又,即,所以【小问2详解】易知,故又,设,所以,,在上是增函数,所以的最大值为,即BD 的最大值为10.24cos 60100OAOB x ︒⋅⋅=-21002x OA OB -⋅=222OA OB OA OB +≥⋅22100100222x x +-≥⨯2300x ≤210002x OA OB -⋅=>2100x >10x <≤ΔΔOAB OAC S S =122sin602ABC OAB S S OA OB ==⋅⋅⋅△△=Δ12ABC S AC BD =⋅⋅()BD f x =()f x =x ∈()0f x '==>()f x x ∈()f x 10f =。
北京市2023-2024学年高一下学期期中考试数学试题含答案
2023—2024学年度第二学期北京市高一数学期中考试试卷(答案在最后)一、选择题(本大题共10小题,每小题4分,共40分)1.11πsin3的值为()A.2B.2-C.2D.2【答案】A 【解析】【分析】利用诱导公式及特殊角的三角函数值计算可得.【详解】11πππsin sin 4πsin 3332⎛⎫=-=-=-⎪⎝⎭.故选:A2.下列函数中,最小正周期为π且是偶函数的是()A.πsin 4y x ⎛⎫=+ ⎪⎝⎭B.tan y x =C.cos 2y x =D.sin 2y x=【答案】C 【解析】【分析】由三角函数的最小正周期公式和函数奇偶性对选项一一判断即可得出答案.【详解】对于A ,πsin 4y x ⎛⎫=+⎪⎝⎭的最小正周期为:2π2π1T ==,故A 不正确;对于B ,tan y x =的最小正周期为:ππ1T ==,tan y x =的定义域为ππ,Z 2x x k k ⎧⎫≠+∈⎨⎬⎩⎭,关于原点对称,令()tan f x x =,则()()()tan tan f x x x f x -=-=-=-,所以tan y x =为奇函数,故B 不正确;对于C ,cos 2y x =的最小正周期为:2ππ2T ==,令()cos 2g x x =的定义域为R 关于原点对称,则()()()cos 2cos 2g x x x g x -=-==,所以cos 2y x =为偶函数,故C 正确;对于D ,sin 2y x =的最小正周期为:2ππ2T ==,sin 2y x =的定义域为R ,关于原点对称,令()sin 2h x x =,则()()()sin 2sin 2h x x x h x -=-=-=-,所以sin 2y x =为奇函数,故D 不正确.故选:C .3.设向量()()3,4,1,2a b ==- ,则cos ,a b 〈〉=()A.5-B.5C.5-D.5【答案】D 【解析】【分析】根据给定条件,利用向量夹角的坐标表示求解即得.【详解】向量()()3,4,1,2a b ==-,则cos ,5||||a b a b a b ⋅〈〉==.故选:D4.在△ABC 中,已知1cos 3A =,a =,3b =,则c =()A.1B.C.2D.3【答案】D 【解析】【分析】直接利用余弦定理求解即可【详解】因为在△ABC 中,1cos 3A =,a =,3b =,所以由余弦定理得2222cos a b c bc A =+-,2112963c c =+-⨯,得2230c c --=,解得3c =,或1c =-(舍去),故选:D5.函数()()sin f x A x =+ωϕ(其中0A >,0ω>,0ϕπ<<)的图像的一部分如图所示,则此函数的解析式是()A.()3sin 42f x x ππ⎛⎫=+⎪⎝⎭ B.3()3sin 44f x x ππ⎛⎫=+⎪⎝⎭C.()3sin 84f x x ππ⎛⎫=+ ⎪⎝⎭ D.3()3sin 84f x x ππ⎛⎫=+⎪⎝⎭【答案】C 【解析】【分析】根据图象可以求出最大值,结合函数的零点,根据正弦型函数的最小正周期公式,结合特殊值法进行求解即可.【详解】由函数图象可知函数的最大值为3,所以3A =,由函数图象可知函数的最小正周期为4(62)16⨯-=,因为0ω>,所以24(62)168ππωω⨯-==⇒=,所以()3sin 8f x x πϕ⎛⎫=+ ⎪⎝⎭,由图象可知:(2)3f =,即3sin 32()2()4424k k Z k k Z ππππϕϕπϕπ⎛⎫+=⇒+=+∈⇒=+∈ ⎪⎝⎭,因为0ϕπ<<,所以令0k =,所以4πϕ=,因此()3sin 84f x x ππ⎛⎫=+ ⎪⎝⎭,故选:C6.函数ππ()sin(2),[0,]62f x x x =+∈的最大值和最小值分别为()A.11,2-B.31,2-C.1,12- D.1,1-【答案】A 【解析】【分析】根据给定条件,求出相位的范围,再利用正弦函数的性质求解即得.【详解】由π[0,2x ∈,得ππ7π2[,666x +∈,则当ππ262x +=,即π6x =时,max ()1f x =,当π7π266x +=,即π2x =时,min 1()2f x =-,所以所求最大值、最小值分别为11,2-.故选:A7.已知向量,,a b c在正方形网格中的位置如图所示.若网格纸上小正方形的边长为1,则()a b c +⋅= ()A.2B.2- C.1 D.1-【答案】B 【解析】【分析】根据给定信息,利用向量数量的运算律,结合数量积的定义计算得解.【详解】依题意,π3π|||2,||2,,,,,44a b c a b b c a c ===〈〉=⊥〈〉= ,因此3π||||cos2(242a c a c ⋅==⨯-=-,0b c ⋅= ,所以()2a b c a c b c +⋅=⋅+⋅=-.故选:B8.在ABC 中,已知cos cos 2cos a B b A c A +=,则A =()A.π6B.π4C.π3 D.π2【答案】C 【解析】【分析】根据给定条件,利用正弦定理边化角,再逆用和角的正弦求出即得.【详解】在ABC 中,由cos cos 2cos a B b A c A +=及正弦定理,得sin cos sin cos 2sin cos A B B A C A +=,则sin()2sin cos A B C A +=,即sin 2sin cos C C A =,而sin 0C >,因此1cos 2A =,而0πA <<,所以π3A =.故选:C9.已知函数()()π2sin 03⎛⎫=+> ⎪⎝⎭f x x ωω,则“()f x 在π0,3⎡⎤⎢⎥⎣⎦上既不是增函数也不是减函数”是“1ω>”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】B 【解析】【分析】以π3x ω+为整体结合正弦函数的性质可得12ω>,进而根据充分、必要条件分析判断.【详解】因为π0,3x ⎡⎤∈⎢⎥⎣⎦且0ω>,则ππππ,3333x ωω⎡⎤+∈+⎢⎥⎣⎦,若()f x 在π0,3⎡⎤⎢⎣⎦上既不是增函数也不是减函数,则2πππ33ω+>,解得12ω>,又因为()1,+∞1,2⎛⎫+∞ ⎪⎝⎭,所以“()f x 在π0,3⎡⎤⎢⎥⎣⎦上既不是增函数也不是减函数”是“1ω>”的必要不充分条件.故选:B.10.如图,正方形ABCD 的边长为2,P 为正方形ABCD 四条边上的一个动点,则PA PB ⋅的取值范围是()A.[]1,2-B.[]0,2 C.[]0,4 D.[]1,4-【答案】D 【解析】【分析】建立平面直角坐标系,分点P 在CD 上,点P 在BC 上,点P 在AB 上,点P 在AD 上,利用数量积的坐标运算求解.【详解】解:建立如图所示平面直角坐标系:则()()0,2,2,2A B ,当点P 在CD 上时,设()(),002Px x ≤≤,则()(),2,2,2PA x PB x =-=--,所以()()224133,4PA PB x x x ⎡⎤⋅=-+=-+∈⎣⎦ ;当点P 在BC 上时,设()()2,02P yy ≤≤,则()()2,2,0,2PA y PB y =-=-,所以()220,4PA PB y ⎡⎤⋅=-∈⎣⎦ ;当点P 在AB 上时,设()(),202Px x ≤≤,则()(),0,2,0PA x PB x ==-,所以()()22111,0PA PB x x x ⎡⎤⋅=-=--∈-⎣⎦ ;当点P 在AD 上时,设()()0,02P y y ≤≤,则()()0,2,2,2PA y PB y=-=--,所以()220,4PA PB y ⎡⎤⋅=-∈⎣⎦ ;综上:PA PB ⋅的取值范围是[]1,4-.故选:D二、填空题(本大题共5小题,每小题5分,共25分)11.已知圆的半径为2,则60 的圆心角的弧度数为__________;所对的弧长为__________.【答案】①.π3##1π3②.2π3##2π3【解析】【分析】利用度与弧度的互化关系,弧长计算公式求解即可.【详解】60 的圆心角的弧度数为ππ601803⨯=;所对的弧长为π2π233⨯=.故答案为:π3;2π312.已知向量()2,3a =- ,(),6b x =- .若//a b ,则a =r __________,x =__________.【答案】①.②.4【解析】【分析】利用坐标法求出向量的模,再根据向量共线的坐标表示求出x .【详解】因为向量()2,3a =- ,所以a == ,又(),6b x =- 且//a b ,所以()326x =-⨯-,解得4x =.;4.13.若函数()sin f x A x x =的一个零点为π3,则A =__________;将函数()f x 的图象向左至少平移__________个单位,得到函数2sin y x =的图象.【答案】①.1②.π3##1π3【解析】【分析】利用零点的意义求出A ;利用辅助角公式化简函数()f x ,再借助平移变换求解即得.【详解】函数()sin f x A x x =的一个零点为π3,得ππsin 033A =,解得1A =;则π()sin 2sin()3f x x x x =-=-,显然πππ(2sin[()]2sin 333f x x x +=+-=,所以()f x 的图象向左至少平移π3个单位,得到函数2sin y x =的图象.故答案为:1;π314.设平面向量,,a b c 为非零向量,且(1,0)a = .能够说明“若a b a c ⋅=⋅ ,则b c = ”是假命题的一组向量,b c的坐标依次为__________.【答案】(0,1),(0,1)-(答案不唯一)【解析】【分析】令向量,b c 与向量a 都垂直,且b c ≠即可得解.【详解】令(0,1),(0,1)b c ==- ,显然0a b a c ⋅==⋅,而b c ≠ ,因此(0,1),(0,1)b c ==- 能说明“若a b a c ⋅=⋅ ,则b c = ”是假命题,所以向量,b c的坐标依次为(0,1),(0,1)-.故答案为:(0,1),(0,1)-15.已知函数()2cosπ1xf x x =+,给出下列四个结论:①函数()f x 是奇函数;②函数()f x 有无数个零点;③函数()f x 的最大值为1;④函数()f x 没有最小值.其中,所有正确结论的序号为__________.【答案】②③【解析】【分析】根据偶函数的定义判断①,令()0f x =求出函数的零点,即可判断②,求出函数的最大值即可判断③,根据函数值的特征判断④.【详解】函数()2cosπ1xf x x =+的定义域为R ,又22cos(π)cos π()()()11x x f x f x x x --===-++,所以()2cosπ1xf x x =+为偶函数,故①错误;令2cos ππ1()0cos π0ππ(Z)(Z)122x f x x x k k x k k x ==⇒=⇒=+∈⇒=+∈+,所以函数()f x 有无数个零点,故②正确;因为cos π1x ≤,当ππ(Z)x k k =∈,即(Z)x k k =∈时取等号,又因为211x +≥,当且仅当0x =时取等号,所以有21011x <≤+,当且仅当0x =时取等号,所以有2cos π11x x ≤+,当且仅当0x =时取等号,因此有()2cos π11xf x x =≤+,即()()max 01f x f ==,故③正确;因为()2cosπ1xf x x =+为偶函数,函数图象关于y 轴对称,只需研究函数在()0,∞+上的情况即可,当x →+∞时2101x →+,又1cosπ1x -≤≤,所以当x →+∞时()0f x →,又()()max 01f x f ==,当102x <<时cos π0x >,210x +>,所以()0f x >,当1322x <<时1cos π0x -≤<,210x +>,所以()0f x <,当1x >时212x +>,0cos π1x ≤≤,所以()12f x <,又()112f =-,102f ⎛⎫= ⎪⎝⎭,302f ⎛⎫= ⎪⎝⎭,且()f x 为连续函数,所以()f x 存在最小值,事实上()f x 的图象如下所示:由图可知()f x 存在最小值,故④错误.故答案为:②③三、解答题(本大题共6小题,共85分)16.在平面直角坐标系xOy 中,角θ以Ox 为始边,终边经过点()1,2--.(1)求tan θ,tan2θ的值;(2)求πsin ,cos ,cos 4θθθ⎛⎫+⎪⎝⎭的值.【答案】(1)tan 2θ=,4tan 23θ=-(2)sin 5θ-=,cos 5θ=,π10cos 410θ⎛⎫+=⎪⎝⎭【解析】【分析】(1)由三角函数的定义求出tan θ,再由二倍角正切公式求出tan 2θ;(2)由三角函数的定义求出sin θ,cos θ,再由两角和的余弦公式计算可得.【小问1详解】因为角θ以Ox 为始边,终边经过点()1,2--,所以2tan 21θ-==-,则222tan 224tan 21tan 123θθθ⨯===---.【小问2详解】因为角θ以Ox 为始边,终边经过点()1,2--,所以sin 5θ-==,cos 5θ==,所以πππcos cos cos sin sin 444θθθ⎛⎫+=- ⎪⎝⎭2520555210221⎛⎫- =⨯-⨯=⎪ ⎪⎝⎭.17.已知平面向量,,2,3,a b a b a == 与b的夹角为60 ,(1)求22,,a b a b ⋅;(2)求(2)(3)a b a b -⋅+的值:(3)当x 为何值时,xa b -与3a b +rr 垂直.【答案】(1)4,9,3;(2)4-;(3)3013x =.【解析】【分析】(1)利用数量积的定义计算即得.(2)利用数量积的运算律计算即得.(3)利用垂直关系的向量表示,数量积的运算律求解即得.【小问1详解】向量,,2,3,a b a b a == 与b 的夹角为60 ,所以2222|4,|9,3||||c |os 0|6a a b b a b a b ===⋅=== .【小问2详解】依题意,2222(2)(3)2352233534a b a b a b a b -⋅+=-+⋅=⨯-⨯+⨯=- .【小问3详解】由()(3)0xa b a b -⋅+= ,得223(31)4273(31)13300xa b x a b x x x -+-⋅=-+-=-= ,解得3013x =,所以当3013x =时,xa b - 与3a b +r r 垂直.18.已知函数()sin2cos2f x x x =+.(1)求(0)f ;(2)求函数()f x 的最小正周期及对称轴方程;(3)求函数()f x 的单调递增区间.【答案】(1)1;(2)π,ππ,Z 82k x k =+∈;(3)()3πππ,πZ 88k k k ⎡⎤-++∈⎢⎥⎣⎦.【解析】【分析】(1)代入计算求出函数值.(2)(3)利用辅助角公式化简函数()f x ,再结合正弦函数的图象与性质求解即得.【小问1详解】函数()sin2cos2f x x x =+,所以(0)sin0cos01f =+=.【小问2详解】函数π())4f x x =+,所以函数()f x 的最小正周期2ππ2T ==;由ππ2π,Z 42x k k +=+∈,解得ππ,Z 82k x k =+∈,所以函数()f x 图象的对称轴方程为ππ,Z 82k x k =+∈.【小问3详解】由πππ2π22π,Z 242k x k k -+≤+≤+∈,得3ππππ,Z 88k x k k -+≤≤+∈,所以函数()f x 的单调递增区间是()3πππ,πZ 88k k k ⎡⎤-++∈⎢⎥⎣⎦.19.在△ABC 中,7a =,8b =,再从条件①、条件②这两个条件中选择一个作为已知.(1)求A ∠;(2)求ABC 的面积.条件①:3c =;条件②:1cos 7B =-.注:如果选择条件①和条件②分别解答,按第一个解答计分.【答案】(1)选①②答案相同,3A π∠=;(2)选①②答案相同,ABC 的面积为【解析】【分析】(1)选①,用余弦定理得到cos A ,从而得到答案;选②:先用余弦定理求出3c =,再用余弦定理求出cos A ,得到答案;(2)选①,先求出sin 2A =,使用面积公式即可;选②:先用sin sin()C A B =+求出sin C ,再使用面积公式即可.【小问1详解】选条件①:3c =.在△ABC 中,因为7a =,8b =,3c =,由余弦定理,得222cos 2b c a A bc+-=64949283+-=⨯⨯12=.因为()0,πA ∈,所以π3A ∠=;选条件②:1cos 7B =-由余弦定理得:222249641cos 2147a cbc B ac c +-+-===-,解得:3c =或5-(舍去)由余弦定理,得222cos 2b c a A bc+-=64949283+-=⨯⨯12=.因为()0,πA ∈,所以π3A ∠=;【小问2详解】选条件①:3c =由(1)可得sin 2A =.所以ABC 的面积11sin 8322S bc A ==⨯⨯=选条件②:1cos 7B =-.由(1)可得1cos 2A =.因为sin sin[()]C A B =π-+sin()A B =+sin cos cos sin A B A B=+11()72=-+⨯3314=,所以ABC 的面积11sin 7822S ab C ==⨯⨯=..20.已知函数()2π2cos cos 213f x x x ⎛⎫=+-- ⎪⎝⎭.(1)求π6f ⎛⎫ ⎪⎝⎭的值;(2)求函数()f x 的在[]0,π上单调递减区间;(3)若函数()f x 在区间[]0,m 上有且只有两个零点,求m 的取值范围.【答案】(1)32(2)π7π,1212⎡⎤⎢⎥⎣⎦(3)3564π,π⎡⎫⎪⎢⎣⎭【解析】【分析】(1)利用二倍角公式及和差角公式化简函数解析式,再代入计算可得;(2)由x 的取值范围求出π23x +的范围,再根据正弦函数的性质得到ππ3π2232x ≤+≤,解得即可;(3)由x 的取值范围求出π23x +的范围,再根据正弦函数的性质得到不等式组,解得即可.【小问1详解】因为()2π2cos cos 213f x x x ⎛⎫=+-- ⎪⎝⎭ππcos2cos2cossin 2sin 33x x x =++3cos2sin 222x x =+1cos2sin 222x x ⎫=+⎪⎪⎭π23x ⎛⎫=+ ⎪⎝⎭,所以πππ2π3266332f ⎛⎫⎛⎫=⨯+== ⎪ ⎪⎝⎭⎝⎭.【小问2详解】当[]0,πx ∈时ππ7π2,333x ⎡⎤+∈⎢⎥⎣⎦,令ππ3π2232x ≤+≤,解得π7π1212x ≤≤,所以函数()f x 的在[]0,π上的单调递减区间为π7π,1212⎡⎤⎢⎥⎣⎦.【小问3详解】当[]0,x m ∈时,πππ2,2333x m ⎡⎤+∈+⎢⎥⎣⎦,又函数()f x 在区间[]0,m 上有且只有两个零点,所以π2π23π3m ≤<+,解得5π4π63m ≤<,即m 的取值范围为3564π,π⎡⎫⎪⎢⎣⎭.21.某地进行老旧小区改造,有半径为60米,圆心角为π3的一块扇形空置地(如图),现欲从中规划出一块三角形绿地PQR ,其中P 在 BC 上,PQ AB ⊥,垂足为Q ,PR AC ⊥,垂足为R ,设π0,3PAB α⎛⎫∠=∈ ⎪⎝⎭;(1)求PQ ,PR (用α表示);(2)当P 在BC 上运动时,这块三角形绿地的最大面积,以及取到最大面积时α的值.【答案】(1)60sin PQ α=,π60sin 3PR α⎛⎫=- ⎪⎝⎭(2)三角形绿地的最大面积是平方米,此时π6α=【解析】【分析】(1)利用锐角三角函数表示出PQ 、PR ;(2)依题意可得2π3QPR ∠=,则1sin 2PQR S PQ PR QPR =⋅⋅⋅∠ ,利用三角恒等变换公式化简,再结合正弦函数的性质求出最大值.【小问1详解】在Rt PAQ 中,π0,3PAB ∠α⎛⎫=∈ ⎪⎝⎭,60AP =,∴sin 60sin PQ AP αα==(米),又π3BAC ∠=,所以π3PAR α∠=-,在Rt PAR 中,可得πsin 60sin 3PR PAR AP α⎛⎫==-⎪⎝⎭∠(米).【小问2详解】由题可知2π3QPR ∠=,∴PQR 的面积1sin 2PQR S PQ PR QPR =⋅⋅⋅∠1π2π60sin 60sin sin 233αα⎛⎫=⨯⨯-⨯ ⎪⎝⎭πsin3αα⎛⎫=- ⎪⎝⎭ππsin cos cos sin 33ααα⎛⎫=- ⎪⎝⎭112cos 222αα⎫=+-⎪⎪⎭π1sin 262α⎡⎤⎛⎫=+- ⎪⎢⎥⎝⎭⎣⎦,又π0,3α⎛⎫∈ ⎪⎝⎭,526πππ,66α⎛⎫+∈ ⎪⎝⎭,∴当ππ262α+=,即π6α=时,PQR 的面积有最大值即三角形绿地的最大面积是π6α=.。
天津市部分区2022-2023学年高一下学期期中 数学试题及参考答案
天津市部分区2022-2023学年高一下学期期中数学试题及参考答案本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,共120分,考试用时100分钟。
祝各位考生考试顺利!第I 卷参考公式:●圆柱的体积公式V=Sh ,其中S 表示圆柱的底面面积,h 表示圆柱的高.●圆锥的体积公式V=31Sh ,其中S 表示圆锥的底面面积,h 表示圆锥的高.●棱锥的体积公式V=31Sh ,其中S 表示棱锥的底面面积,h 表示棱锥的高.●球的表面积公式S=4πR 2,其中R 表示球的半径.一、选择题:本大题共9小题,每小题4分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知向量a =(2,2),b =(1,-1),则=-b a ()A .(3,0)B .(3,1)C .(1,3)D .(-1,2)2.已知棱长为2的正方体的顶点都在球面上,则该球的表面积为()A .πB .2πC .4πD .12π3.在△ABC 中,角A,B,C 所对的边分别为a,b,c .若a=1,b=2,c=7,则C=()A .120°B .90°C .60°D .45°4.已知点P(2,0),Q(1,1),向量EF =(λ,2),若EF PQ ⋅=0,则实数λ的值为()A .21B .21-C .2D .15.在△ABC 中,角A,B,C 所对的边分别为a,b,c .若a=l ,b=2,B=4π,则A=()A .6πB .3πC .65πD .6π或65π6.已知向量a =(-1,2),b =(1,1),则a 在b 上的投影向量为()A .22B .(-1,2)C .(22,22)D .(2121,)7.陀螺是中国民间最早的娱乐工具之一,也称陀罗.图1是一种木陀螺,可近似地看作是一个圆锥和一个圆柱的组合体,其直观图如图2所示,其中A 是圆锥的顶点,B,C 分别是圆柱的上、下底面圆的圆心,且AB=1,AC=3,底面圆的半径为1,则该陀螺的体积是()A .πB .2πC .37πD .310π8.已知向量a =(m,1),b =(4,m),若a 与b 方向相反,则=+b a ()A .171022++m m B .5C .25D .59.在△ABC 中,角A,B,C 所对的边分别为a,b,c .已知△ABC 的面积为S ,2a+b=4,c(a +b -c)(sin A +sin B +sin C)=6S ,CA =3CD -2CB ,则CD 的最小值为()A .2B .322C .3D .332第II 卷二、填空题:本大题共6小题,每小题4分,共24分.试题中包含两个空的,答对1个的给2分,全部答对的给4分.10.i 是虚数单位,复数ii+-12=____________.11.直线l 上所有点都在平面α内,可以用符号表示为____________.12.若A(1,1),B(2,-1),C(a,b)三点共线,则2a+b=____________.13.在长方体ABCD-A 1B 1C 1D 1中,AB=2,AD=1,AA 1=3,则异面直线A 1C 1与AD 1所成角的余弦值为____________.14.在△ABC 中,角A,B,C 所对的边分别为a,b,c .已知a 2+b 2-c 2=ab ,则C=______________,若c=2,则△ABC 外接圆的半径为____________.15.如图,在边长为1的正方形ABCD 中,AE =AC 31;则BE DE ⋅=______________;若F 为线段BD 上的动点则FB FE ⋅的最小值为____________.三、解答题:本大题共5小题,共60分.解答应写出文字说明,证明过程或演算步骤.16.(本小题满分11分)已知向量a ,b 满足,=3,a 与b 的夹角为32π.(I +的值;(II )若()()b a k b a -⊥+2,求实数k 的值.17.(本小题满分12分)如图,三棱锥S-ABC 的底面ABC 和侧面SAB 都是边长为2的等边三角形,D,E 分别是AB,AC 的中点,SD ⊥CD .(I )证明:BC //平面SDE ;(II )求三棱锥S-ABC 的体积.18.(本小题满分12分)在△ABC 中,角A,B,C 所对的边分别为a,b,c .已知a=3+3,c=6+2,A=32π.(I )求C 的值;(II )求b 的值.19.(本小题满分12分)如图,在长方体ABCD-A 1B 1C 1D 1中,AB=2,AD=AA 1=1.(I )求证:B 1C ⊥BD 1(II )求直线AB 1与平面ABC 1D 1所成角的正弦值.20.(本小题满分13分)在△ABC 中,角A,B,C 所对的边分别为a,b,c .向量()b a m ,3=,()B A n cos ,sin =,且n m ∥.(I )求B 的值;(II )若a=2,b=7,求△ABC 的面积.参考答案一、选择题:本大题共9小题,每小题4分,共36分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一下期中考试数学试卷及答案一、选择题:本大题共8小题,每小题4分,共32分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.函数xxx x x x y tan tan cos cos sin sin ++=的值域为 (A){}3,1 (B){}3,1-(C) {}3,1--(D) {}3,1- 2.周长为1,圆心角为rad 1的扇形的面积等于(A) 1 (B)31 (C) 91 (D) 1813.在ABC ∆中,已知:4=a ,x b =,︒=60A ,如果解该三角形有两解,则 (A)4>x (B)40≤<x (C)3384≤≤x(D)3384<<x 4.函数)sin(ϕω+=x y 的部分图象如右图,则ω、ϕ可以取的一组值是( ) (A) ,24ππωϕ== (B) ,36ππωϕ==(C) ,44ππωϕ==(D) 5,44ππωϕ==5.四边形ABCD 中,3,2,90===∠=∠︒AD AB ADC ABC ,则=⋅BD AC (A) 5 (B) 5- (C) 1 (D) 1-6.已知函数x a x y cos sin +=的图象关于直线x =35π对称,则函数x x a y cos sin +=的图象关于直线 (A ) x =3π对称 (B )x =32π对称 (C )x =611π对称 (D )x =π对称 7.C B A ,,为圆O 上三点,且直线OC 与直线AB 交于圆外..一点,若OB n OA m OC +=,则n m +的范围是 (A) )1,0( (B) ),1(+∞ (C) )0,1(- (D) )1,(--∞8.在ABC ∆中,若)sin()()sin()(2222B A b a B A b a +-=-+,则ABC ∆是(A)等腰三角形 (B)直角三角形 (C)等腰直角三角形 (D)等腰三角形或直角三角形 二、填空题:本大题共7小题,每小题4分,共28分.9.已知:),3(),2,1(m OB OA =-=,若OB OA ⊥,则=m ;若OB OA //,则=m 10.已知:55cos sin =+θθ(πθπ<<2),则θtan =_________11若将函数)0)(43sin(2>+=a ax y π的图象向右平移4π个单位长度后,与函数)4sin(2π+=ax y 的图象重合,则a 的最小值为 12.)310(tan 40sin -︒︒=__________ 13.在ABC ∆中,,3,3==AB C πAB 边上的高为34,则=+BC AC ________14.已知:αππ∈⎛⎝⎫⎭⎪434,,βπ∈⎛⎝ ⎫⎭⎪04,,且cos sin παπβ435541213-⎛⎝ ⎫⎭⎪=+⎛⎝ ⎫⎭⎪=-,,则()cos αβ+=_______15.已知:c b a ,,都为单位..向量,其中b a ,的夹角为32π,+的范围是__________ 三、解答题:本大题有4小题, 共40分. 16.(本题满分10分)已知函数1cos 2)62sin()(2-+-=x x x f π(Ⅰ)求)(x f 的单调递增区间; (Ⅱ)若)3,4(ππ-∈x ,求)(x f 的值域. 17.(本题满分10分)在ABC ∆中,C B A ,,的对边分别为c b a ,,,已知C B A cos 5sin ,32cos == (Ⅰ)求C sin 的值; (Ⅱ)若2=a ,求ABC ∆的面积.18.(本题满分8分)已知锐角,αβ满足:αβαβsin )cos(3sin +=,且2πβα≠+(Ⅰ)求证:αβαtan 4)tan(=+; (Ⅱ)求βtan 的最大值.19.(本题满分12分)在ABC ∆中,内角C B A ,,的对边分别为c b a ,,,且bc a c b ︒=-+75tan )(22 (Ⅰ)求A cos 的值;(Ⅱ)若2=a ,求BC BA ⋅的取值范围; (Ⅲ)若2=b ,求BC BA ⋅的取值范围.杭州二中 2014学年第二学期高一年级期中考试数学答卷一、选择题:本大题共8小题,每小题4分, 共32分,在每个小题给出的四个选项中,有且只有一项是符合题目要求的. 二、填空题:本大题有7小题,每题4分,共28分.请将答案填写在答题卷中的横线上.9. __________ 10. 11.12. 13. 14. 15 . 三、解答题:本大题有4小题, 共40分. 16.(本题满分10分)已知函数1cos 2)62sin()(2-+-=x x x f π(Ⅰ)求)(x f 的单调递增区间;(Ⅱ)若)3,4(ππ-∈x ,求)(x f 的值域.17.(本题满分10分)在ABC ∆中,内角C B A ,,的对边分别为c b a ,,,已知C B A cos 5sin ,32cos == (Ⅰ)求C sin 的值; (Ⅱ)若2=a ,求ABC ∆的面积.18.(本题满分8分)已知锐角,αβ满足:αβαβsin )cos(3sin +=,且2πβα≠+(Ⅰ)求证:αβαtan 4)tan(=+;(Ⅱ)求βtan 的最大值.19.(本题满分12分)在ABC ∆中,内角C B A ,,的对边分别为c b a ,,,且bc a c b ︒=-+75tan )(22(Ⅰ)求A cos 的值;(II)若2=a ,求BC BA ⋅的取值范围; (III)若2=b ,求BC BA ⋅的取值范围.第二学期杭州二中高一数学期中答案二、选择题:本大题共8小题,每小题4分, 共32分,在每个小题给出的四个选项中,有且只有一项是符合题目要求的.二、填空题:本大题有7小题,每题4分,共28分.请将答案填写在答题卷中的横线上.10. 23___6-__ 10. 2- 11. 212. 1- 1314. 6533-15 . ]2,26[ 三、解答题:本大题有4小题, 共40分. 16.(本题满分10分)已知函1cos 2)62sin()(2-+-=x x x f π(Ⅰ)求)(x f 的单调递增区间; (Ⅱ)若)3,4(ππ-∈x ,求)(x f 的值域.解 (Ⅰ)f(x)=sin(2x -π6)+2cos 2x -1=32sin 2x -12cos 2x +cos 2x=32sin 2x +12cos 2x =)62sin(π+x ...................3分 令2k π-π2≤2x +π6≤2k π+π2(k ∈Z),得k π-π3≤x ≤k π+π6(k ∈Z),即f(x)的单调递增区间为[k π-π3,k π+π6](k ∈Z)................6分(II)由)3,4(ππ-∈x ,得)65,3(62πππ-∈+x , 故)(x f =)62sin(π+x 的值域为]1,23(-.........................10分 17.(本题满分10分)在ABC ∆中,内角C B A ,,的对边分别为c b a ,,,已知C B A cos 5sin ,32cos == (Ⅰ)求C sin 的值; (Ⅱ)若2=a ,求ABC ∆的面积.解:(Ⅰ)∵cos A =23>0,∴sin A =,C =sin B =sin(A +C )=sin A cos C +sin C cos A cos C +23sin C .整理得:tan C sin C =630.................................5分(Ⅱ)由正弦定理知:sin sin a cA C=,故c = (1) 对角A 运用余弦定理:cos A =222223b c a bc +-=. (2)解(1) (2)得:b =or b(舍去). ∴∆ABC 的面积为:S.......................................10分 18.(本题满分8分)已知锐角,αβ满足:αβαβsin )cos(3sin +=,且2πβα≠+(Ⅰ)求证:αβαtan 4)tan(=+; (Ⅱ)求βtan 的最大值.解:(Ⅰ)由:αβααβαβsin )cos(3])sin[(sin +=-+=展开 得到:αβααβαsin )cos(4cos )sin(+=+所以:αβαtan 4)tan(=+................................................4分(Ⅱ)由:αβαβαβαtan 4tan tan 1tan tan )tan(=-+=+ 化简得:43tan 1tan 431tan 4tan 3tan 2≤+=+=ααααβ 所以:βtan 的最大值为43,当且仅当21tan =α时取到.............................................8分19.(本题满分12分)在ABC ∆中,内角C B A ,,的对边分别为c b a ,,,且bc a c b ︒=-+75tan )(22 (Ⅰ)求A cos 的值;(II)若2=a ,求BC BA ⋅的取值范围; (III)若2=b ,求BC BA ⋅的取值范围.解:(Ⅰ)因为:32)3045tan(75tan +=+=︒︒︒所以:bc a c b ︒=-+75tan )(22展开后得:bc c b a 3222-+=故A cos =23,即6π=A .............................4分 (II)由6,2π==A a ,得ABC ∆外接圆直径42=R ,且点A 在优弧上任意运动.由图:BC AD ⊥于点D ,设有向线段BD 长为x ,则BC BA ⋅=x 2 由图可知:]3,1[-∈x ,故]6,2[-∈⋅BC BA....................................................8分(III)设线段AC 中点为D,由图可知),21[+∞∈BD由极化恒等式:BC BA ⋅=]4[41])()[(412222AC BD BC BA BC BA -=--+=12-BD所以:),43[+∞-∈⋅BC BA.........................................12分。