量子力学教程-周世勋-第三章算符

合集下载

量子力学第3章 周世勋

量子力学第3章 周世勋

ˆ F (r , P) F (r ,i) ˆ ˆ ˆ F
Ex.
ˆ 动能算符 T
2 ˆ P 2 2 ˆ T 2 2
ˆ 角动量算符 L
ˆ r P ir ˆ L
1.
ˆ 坐标算符 r
2.动量算符
ˆ p
ˆ rr
ˆ p i
1 2 2 2 ˆ ˆ T p 2m 2m
ˆ 3.动能算符 T
ˆ 4.势能算符 U
ˆ U r U
2
ˆ 5.总能量算符(哈密顿算符) H
ˆ ˆ H T
2 ˆ U 2m U r
六、力学量算符与力学量测量值的关系
ˆ 在第二章讨论哈密顿算符H 的本征值问题时已 ˆ 看到,当体系处在 H 的本征态时,体系有确定的能 ˆ 量,该能量值就是 H在此本征态中的本征值。当体 系处在任一态中时,测量体系的能量无确定值,而 ˆ 有一系列可能值,这些可能值均为 H 的本征值。这 ˆ 表明 H 的本征值是体系能量的可测值,将该结论推 广到一般力学量算符提出一个基本假设.
二、 角动量算符
(1)轨道角动量算符的定义
z
r
r y
ˆ r P ˆ L
ˆ ˆ zP i y z Lx yPz ˆy z y ˆ ˆ xP i z x Ly zPx ˆz x z ˆ xP yP i x y ˆ ˆ Lz y x y x
2)若粒子处在边长为 L 的立方体内运动,则用 所谓箱归一化方法确定常数 A 。 当粒子被限制在边长为 L 的立方体内时,本征函数 (r ) 满足周期性边界条件 P

《量子力学教程》周世勋课后答案

《量子力学教程》周世勋课后答案

量子力学课后习题详解第一章 量子理论基础1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即m λ T=b (常量);并近似计算b 的数值,准确到二位有效数字。

解 根据普朗克的黑体辐射公式dv echv d kThv v v 11833-⋅=πρ, (1) 以及 c v =λ, (2)λρρd dv v v -=, (3)有,118)()(5-⋅=⋅=⎪⎭⎫ ⎝⎛-=-=kThc v v ehc cd c d d dv λλλπλλρλλλρλρρ这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。

本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。

但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:01151186'=⎪⎪⎪⎭⎫⎝⎛-⋅+--⋅=-kT hc kThce kT hc ehcλλλλλπρ⇒ 0115=-⋅+--kThc ekThcλλ⇒ kThcekThc λλ=--)1(5 如果令x=kThcλ ,则上述方程为 x e x =--)1(5这是一个超越方程。

首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有xkhc T m =λ把x 以及三个物理常量代入到上式便知K m T m ⋅⨯=-3109.2λ这便是维恩位移定律。

据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。

1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。

解 根据德布罗意波粒二象性的关系,可知E=hv ,λh P =如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么ep E μ22= 如果我们考察的是相对性的光子,那么E=pc注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0⨯,因此利用非相对论性的电子的能量——动量关系式,这样,便有ph=λnmm m E c hc E h e e 71.01071.031051.021024.1229662=⨯=⨯⨯⨯⨯===--μμ在这里,利用了m eV hc ⋅⨯=-61024.1以及eV c e 621051.0⨯=μ最后,对Ec hc e 22μλ=作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。

(最新整理)量子力学+周世勋(全套优秀完整教学课件)

(最新整理)量子力学+周世勋(全套优秀完整教学课件)

(三)Compton 散射 -光的粒子性的进一步证实。
(1) Compton 效应
X--射线被轻元素如白蜡、石墨中的电子散射后出现的效应。该效应有如下 2 个特点:
1 散射光中,除了原来X 光的波长λ外,增加了一 个新的波长为λ'的X光, 且λ' >λ;
2 波长增量 Δλ=λ’ –λ 随 散射角增大而增大。这一现象称 为 Compton 效应。
“ 总而言之,我们可以说,在近代物理学结出 硕果的那些重大问题中,很难找到一个问题是爱因 斯坦没有做过重要贡献的,在他的各种推测中,他 有时可能也曾经没有射中标的,例如,他的光量子 假设就是如此,但是这确实并不能成为过分责怪他 的理由,因为即使在最精密的科学中,也不可能不 偶尔冒点风险去引进一个基本上全新的概念 ”
该式所决定,即
hv -A = 0,
v0 = A / h , 可见,
(2)光电效应
光照射到金属上,有电子从金属上逸出的现象。 这种电子称之为光电子。试验发现光电效应有 两个突出的特点:
•1.临界频率v0 只有当光的频率大于某一定值v0 时, 才有光电子发射出来。若光频率小于该值时,则不论 光强度多大,照射时间多长,都没有电子产生。光的 这一频率v0称为临界频率。
•2.电子的能量只是与光的频率有关,与光强无关,光 强只决定电子数目的多少。光电效应的这些规律是经典 理论无法解释的。按照光的电磁理论,光的能量只决定 于光的强度而与频率无关。
(3) 光子的动量
光子不仅具有确定的能量 E = hv,
而且具有动量。根据相对论知,速度 为 V 运动的粒子的能量由右式给出:
RH
C
1 22
1 n2
n 3,4,5,
其中RH 1.09677576 107 m 1是氢的Rydberg常数, C是光速。

量子力学教程高等教育出版社周世勋课后答案详解

量子力学教程高等教育出版社周世勋课后答案详解

量子力学课后习题详解第一章 量子理论基础1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即m λ T=b (常量); 并近似计算b 的数值,准确到二位有效数字。

解 根据普朗克的黑体辐射公式dv echv d kThv v v 11833-⋅=πρ, (1) 以及 c v =λ, (2)λρρd dv v v -=, (3)有,118)()(5-⋅=⋅=⎪⎭⎫ ⎝⎛-=-=kThc v v ehc cd c d d dv λλλπλλρλλλρλρρ这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。

本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。

但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:01151186'=⎪⎪⎪⎭⎫ ⎝⎛-⋅+--⋅=-kThc kThc e kT hc ehcλλλλλπρ ⇒ 0115=-⋅+--kThc ekThcλλ⇒ kThcekThc λλ=--)1(5 如果令x=kThcλ ,则上述方程为 x e x =--)1(5这是一个超越方程。

首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有xkhc T m =λ 把x 以及三个物理常量代入到上式便知K m T m ⋅⨯=-3109.2λ这便是维恩位移定律。

据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。

1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。

解 根据德布罗意波粒二象性的关系,可知E=hv ,λh P =如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么ep E μ22=如果我们考察的是相对性的光子,那么E=pc注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0⨯,因此利用非相对论性的电子的能量——动量关系式,这样,便有ph=λnmm m E c hc E h e e 71.01071.031051.021024.1229662=⨯=⨯⨯⨯⨯===--μμ在这里,利用了m eV hc ⋅⨯=-61024.1以及eV c e 621051.0⨯=μ最后,对Ec hc e 22μλ=作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。

量子力学教程习题答案周世勋

量子力学教程习题答案周世勋

解:
= 1
= 0
*
= 0
同理可证其它的正交归一关系。
*
1
综合两方面,两电子组成体系的波函数应是反对称波函数,即
2
独态:
*
三重态:
单击添加文本具体内容简明扼要地阐述你的观点
单击此处添加副标题
*
解:电子波函数的空间部分满足定态S-方程
*
*
两电子的空间波函数能够组成一个对称波函数和一个反对称波函数,其形式为
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
跟课本P.39(2.7-4)式比较可知,线性谐振子的能量本征值和本征函数为
式中
02
为归一化因子,即
03
求线性谐振子哈密顿量在动量表象中的矩阵元。
01
解:
02
*
第五章 微扰理论
*
运营计划简约通用模板
《量子力学教程》 习题解答
单击此处添加副标题
《量子力学教程》 习题解答说明 为了满足量子力学教学和学生自学的需要,完善精品课程建设,我们编写了周世勋先生编写的《量子力学教程》的课后习题解答。本解答共分七章,其中第六章为选学内容。 第一章 第二章 第三章 第四章 第五章 第六章 第七章
*
01
第一章 绪论
第七章 自旋和全同粒子
03
第三章 力学量的算符表示
单击此处添加正文
05
第五章 微扰理论
单击此处添加正文
02
第二章 波函数和薛定谔方程
单击此处添加正文
04
第四章 态和力学量的表象
单击此处添加正文

量子力学教程(第二版)周世勋习题解答

量子力学教程(第二版)周世勋习题解答

0 0 e k1a
0
k 2 sin k 2 a k 1 Be k1a
k 2 cos k 2 a k 2 sin k 2 a 0 e k1a sin k 2 a k 2 cos k 2 a sin k 2 a k 1e k1a sin k 2 a
d 21 ( x) dx2
#
x
1 2
4 3 1 1 2 0 , 可见 x 是所求几率最大的位置。 e
9
2.6
在一维势场中运动的粒子,势能对原点对称:U ( x) U ( x) ,证明粒子的定态波函数具有确定的
宇称。 证:在一维势场中运动的粒子的定态 S-方程为
10
2.7 一粒子在一维势阱中
U 0 0, U ( x) 0,
x a x a
运动,求束缚态( 0 E U 0 )的能级所满足的方程。 解:粒子所满足的 S-方程为
2 d 2 ( x) U ( x) ( x) E ( x) 2 dx2
按势能U ( x) 的形式分区域的具体形式为
在各区域的具体形式为 Ⅰ: x 0 Ⅱ: 0 x a
2 d 2 1 ( x) U ( x) 1 ( x) E 1 ( x) 2m dx2 2 d 2 2 ( x) E 2 ( x) 2m dx2


4
Ⅲ: x a
2 d 2 3 ( x) U ( x) 3 ( x) E 3 ( x) 2m dx2
由③再经 x x 反演,可得①,反演步骤与上完全相同,即是完全等价的。 ④
( x) c ( x)
④乘 ⑤,得

(x) (x) c 2 (x) (x) , 可见, c 2 1 ,所以 c 1

周世勋量子力学习题及解答

周世勋量子力学习题及解答

量子力学习题及解答第一章 量子理论基础1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即m λ T=b (常量); 并近似计算b 的数值,准确到二位有效数字。

解 根据普朗克的黑体辐射公式dv e chv d kThv v v 11833-⋅=πρ, (1)以及 c v =λ, (2)λρρd dv v v -=, (3)有,118)()(5-⋅=⋅=⎪⎭⎫ ⎝⎛-=-=kThc v v ehc cd c d d dv λλλπλλρλλλρλρρ这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。

本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。

但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:01151186'=⎪⎪⎪⎭⎫ ⎝⎛-⋅+--⋅=-kThc kThc e kT hc ehcλλλλλπρ ⇒ 0115=-⋅+--kThc ekThcλλ⇒ kThcekThc λλ=--)1(5 如果令x=kThcλ ,则上述方程为 x e x =--)1(5这是一个超越方程。

首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有xkhc T m =λ 把x 以及三个物理常量代入到上式便知K m T m ⋅⨯=-3109.2λ这便是维恩位移定律。

据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。

1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。

解 根据德布罗意波粒二象性的关系,可知E=hv ,λhP =如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么ep E μ22= 如果我们考察的是相对性的光子,那么E=pc注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0⨯,因此利用非相对论性的电子的能量——动量关系式,这样,便有ph =λnmm m E c hc E h e e 71.01071.031051.021024.1229662=⨯=⨯⨯⨯⨯===--μμ在这里,利用了m eV hc ⋅⨯=-61024.1以及eV c e 621051.0⨯=μ最后,对Ec hc e 22μλ=作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。

周世勋量子力学课件第三章

周世勋量子力学课件第三章
2 2 2 2
2
2
所谓一维运动就是指在某一方向上的运动。
(二)一维无限深势阱
0, V ( x)
| x | a | x | a
V(x)
I
II
III
-a
l l l l l
0
a
求解步骤: (1)列出各势域的一维Schrö dinger 方程 (2)解方程 (3)使用波函数标准条件定解 (4)定归一化系数
d2 2 I ( x ) 2 (V E ) I ( x ) 0 x a 2 dx 2 d2 2 II ( x ) 2 E II ( x ) 0 a x a 2 dx 2 d2 2 III ( x ) 2 (V E ) III ( x ) 0 xa 2 dx
1 ( n 2 ) 2 a

( 2 n1) 2 2 2 8 a 2
综合 I 、II 2 2 2 m Em 2 8a

I
结果,最后得:

III
0
对应 m = 2 n
2
设:V ( x, y, z ) V1 ( x) V2 ( y ) V3 ( z )
令: ( x, y, z) X ( x)Y ( y)Z ( z)
2 2 V ( x , y , z ) ( x , y , z ) E ( x , y , z ) 2
(3)如果在空间反射下, ( r , t ) (r , t )
则波函数没有确定的宇称。
(四)讨论 1) 定态波函数为
n ( x, t ) n ( x)e
i Ent
0
x a

[新版]量子力学周世勋习题解答第三章

[新版]量子力学周世勋习题解答第三章

第三章习题解答3.1 一维谐振子处在基态t ix e x ωαπαψ2222)(--=,求:(1)势能的平均值2221x U μω=;(2)动能的平均值μ22p T =;(3)动量的几率分布函数。

解:(1) ⎰∞∞--==dxe x x U x 2222222121απαμωμωμωμωππαμω ⋅==⋅=2222221111221ω 41= (2) ⎰∞∞-==dx x p x p T )(ˆ)(2122*2ψψμμ⎰∞∞----=dx e dx d e x x 22222122221)(21ααμπα ⎰∞∞---=dx e x x 22)1(22222αααμπα][222222222⎰⎰∞∞--∞∞---=dx e x dx e x xααααμπα]2[23222απααπαμπα⋅-=μωμαμαπαμπα⋅===442222222 ω 41=或 ωωω 414121=-=-=U E T(3) ⎰=dx x x p c p )()()(*ψψ 212221⎰∞∞---=dx ee Px i xαπαπ⎰∞∞---=dx eePx i x222121απαπ⎰∞∞--+-=dx ep ip x 2222222)(21 21αααπαπ ⎰∞∞-+--=dx ee ip x p 222222)(212 21αααπαπ παπαπα2212222p e -=22221απαp e-=动量几率分布函数为2221)()(2απαωp ep c p -==#3.2.氢原子处在基态0/31),,(a r e ar -=πϕθψ,求:(1)r 的平均值;(2)势能re 2-的平均值;(3)最可几半径; (4)动能的平均值;(5)动量的几率分布函数。

解:(1)ϕθθπτϕθψππd rd d r re a d r r r a r sin 1),,(0220/23020⎰⎰⎰⎰∞-==⎰∞-=0/233004dr a r a a r04030232!34a a a =⎪⎪⎭⎫⎝⎛=2203020/232020/232202/2322214 4 sin sin 1)()2(000a e a a e drr e a e d drd r e a e d drd r e ra e r e U a r a r a r -=⎪⎪⎭⎫ ⎝⎛-=-=-=-=-=⎰⎰⎰⎰⎰⎰⎰∞-∞-∞-ππππϕθθπϕθθπ(3)电子出现在r+dr 球壳内出现的几率为⎰⎰=ππϕθθϕθψω02022 sin )],,([)(d drd r r dr r dr r e a a r 2/23004-=2/23004)(r e a r a r -=ω 0/2030)22(4)(a r re r a a dr r d --=ω令 0321 , ,0 0)(a r r r drr d =∞==⇒=,ω 当0)( ,0 21=∞==r r r ω时,为几率最小位置/22203022)482(4)(a r e r a r a a dr r d -+-=ω08)(230220<-=-=e a dr r d a r ω ∴ 0a r =是最可几半径。

量子力学习题解答-周世勋

量子力学习题解答-周世勋

周世勋《量子力学教程》习题解答第一章 习题解答1.由黑体辐射公式导出维恩位移律:能量密度极大值所对应的波长m λ与温度T 成反比,即b T m =λ(常数)。

并近似计算b 的数值,准确到两位有效数字。

解:由能量密度的公式:185-⋅=λλλλπλρkT hc ed hcd则由0=λρλd d 解得m λ: 2256181185⎪⎪⎭⎫ ⎝⎛-⋅-⋅--⋅⋅-=λλλλλλπλπλρkT hc kT hckT hc e e kT hc hce hc d d 0511186=⎪⎪⎪⎪⎭⎫ ⎝⎛---⋅=λλλλλπkT hc kT hckT hc e ekT hc e hc 即 051=--λλλkT hckT hce e kT hc 令x kT hcm=λ,则 051=--x xe xe 解得 97.4=x所以 )(29.097.41038.110999.210626.6161027K cm kx hc T m ⋅=⨯⨯⨯⨯⨯==--λ 2.在K 0附近,钠的价电子能量约为eV 3,求其德布罗意波长。

解:01019303409.7)(1009.7106.131091.0210626.62A m mE h P h K=⨯=⨯⨯⨯⨯⨯⨯===----λ3.氦原子的动能是kT E 23=(k 为玻尔兹曼常数),求K T 1=时,氦原子的德布罗意波长。

解:氦原子的动能)(1007.211038.1232323J E --⨯=⨯⨯⨯=,氦原子的质量kg kg M 27271068.61067.14--⨯=⨯⨯=,所以102327346.12)(106.121007.21068.6210626.62A m mEh =⨯=⨯⨯⨯⨯⨯==----λ4.利用玻尔——索末菲量子化条件,求 (1)一维谐振子的能量;(2)在均匀磁场中作圆周运动的电子轨道的可能半径。

已知外磁场T H 10=,玻尔磁子T J M B /10924-⨯=,试计算动能的量子化间隔E ∆,并与K T 4=及K T 100=的热运动能量相比较。

量子力学(周世勋)习题答案 第3章

量子力学(周世勋)习题答案 第3章

12
2
(
x
ip 2
)2
p2 2 2
2
p2
e e dx 2 22
12
2
(
x
ip 2
)2
p2
e 2 22
2
1
p2
e 2 22
动量几率分布函数为
( p) c( p) 2
1
p2
e 22
#
3.2.氢原子处在基态 (r, ,)
1 e r / a0 ,求: a03
(1)r 的平均值;
24a2*p04(r(2)a4(02r,a,402
) )d
2
2a
2 0
c(
p)
1 (2)3/ 2
0
1
e r / a0 r 2 dr
e
i
pr cos
sin
d
2 d
a03
0
0
2
r 2e r / a0 dr
e
i pr cos
d ( cos )
(2)3/ 2 a03 0
0
2
(2)3/ 2
a2 n
x
cos
n a
x
a3 n2 2
sin
n a
x
a n
x 2 cos n a
x
2a 2 n2 2
x
sin
n a
x
2a 3 n3 3
cos
n a
a
x]
0
4 15 n3 3
[1 (1)n ]

(E)
Cn
2
240 n6 6
[1 (1)n ]2
960
2
5k 2 2 8

量子力学教程高等教育出版社周世勋课后答案-第三章

量子力学教程高等教育出版社周世勋课后答案-第三章

第三章 量子力学中的力学量3.1 一维谐振子处在基态t i x e x ωαπαψ2222)(--=,求:(1)势能的平均值2221x U μω=; (2)动能的平均值μ22p T =;(3)动量的几率分布函数。

解:(1) ⎰∞∞--==dx e x x U x 2222222121απαμωμωμωμωαμωαπαπαμω ⋅==⋅=22222241212121221ω 41=(2) ⎰∞∞-==dx x p x p T )(ˆ)(2122*2ψψμμ ⎰∞∞----=dx e dx d e x x22222122221)(21ααμπα⎰∞∞---=dx e x x 22)1(22222αααμπα][222222222⎰⎰∞∞--∞∞---=dx e x dx e x x ααααμπα ]2[23222απααπαμπα⋅-=μωμαμαπαμπα⋅===442222222ω 41= 或 ωωω 414121=-=-=U E T(3)*(,)()()p c p t x x dx ψψ=⎰ 2222x iit px e dx αωαππ∞----∞=⎰22122i i x px t ee dxeαωαππ∞----∞=⎰2222221()222ip p i x t edxe αωαααππ-+-∞--∞=⎰2222221()222p ip ix t e edxeαωαααππ--+∞--∞=⎰222222p i t e ωαααππ--=22222p i t e eωααπ--=动量几率分布函数为 2222()(,)p p c p t eαωαπ-==3.2.氢原子处在基态0/301),,(a r e a r -=πϕθψ,求:(1)r 的平均值;(2)势能re 2-的平均值;(3)最可几半径; (4)动能的平均值;(5)动量的几率分布函数。

解:(1) ϕθθπτϕθψππd rd d r re a d r r r a r sin 1),,(0220/23020⎰⎰⎰⎰∞-==⎰∞-=/233004dr a r a a r04030232!34a a a =⎪⎪⎭⎫⎝⎛=2203020/232020/232202/2322214 4 sin sin 1)()2(000a e a a e drr e a e d drd r e a e d drd r e ra e r e U a r a r a r -=⎪⎪⎭⎫ ⎝⎛-=-=-=-=-=⎰⎰⎰⎰⎰⎰⎰∞-∞-∞-ππππϕθθπϕθθπ(3)电子出现在r+dr 球壳内出现的几率为 ⎰⎰=ππϕθθϕθψω02022 sin )],,([)(d drd r r dr r dr r e a a r 2/23004-=2/23004)(r e a r a r -=ω0/2030)22(4)(a r re r a a dr r d --=ω 令0321 , ,0 0)(a r r r drr d =∞==⇒=,ω 当0)( ,0 21=∞==r r r ω时,为几率最小位置/22203022)482(4)(a r e r a r a a dr r d -+-=ω08)(230220<-=-=e a dr r d a r ω ∴ 0a r =是最可几半径。

量子力学(周世勋)Chap3

量子力学(周世勋)Chap3
f ( x ) ( x x0 )dx f ( x0 ) 推广到三维: r ( x ) ( y ) z



0
x0
x
2.性质:
( x ) ( x )
( ax )
1 |a|
( x)
f ( x ) ( x x0 ) f ( x0 ) ( x x0 )
d dx dx
d dx i dx

*

ˆ p * dx

ˆ 若当 x 时 , 0, 0, 则 p 是厄密算符

(8)量子力学中力学量算符的构成
• 量子力学中表示力学量的算符必需是线性,厄密算符,且它 的本征函数构成完备系. • 经典力学中力学量是坐标r和动量p的函数,把坐标保持不 变,动量换为动量算符就构成了量子力学中相应的力学量 ˆ ˆ 算符. F ( r , p ) F ( r , p )
F (x)

n0

F
(n)
(0)
n!
x
n
则可定义算符 Û 的函数 F(Û)为:
ˆ F (U )
n 0

F
(n)
(0)
n!
ˆn U
例如:
i ˆ Ht
e


n 0

1 n!
[
i
ˆ t ]n H
(6)算符的本征值方程
ˆ F x x
是常数
这样形式的方程称为算符的本征值方程。 本征值方程的解: 求得满足方程的一系列本征值: , , , 1 2 n
i
px py pz

周世勋量子力学教程第二版课件量子力学第三章

周世勋量子力学教程第二版课件量子力学第三章

*

x

ih
d dx

x


dx
*

x
ih
d
dx

x


dx
*

x
pˆ x
x 7

同 理:
py dy * y pˆ x y
pz dz * z pˆ z z
推广至三维情况
1 2πh

dx

i p(xx)
dpe h
*


x

-ih
d dx

x dx


dx

1

dx

2πh

i
eh
p( xx)
dp

*

x
-ih
d
dx

x


dx


dxδ(x

x)
加法结合律 Fˆ Gˆ Kˆ Fˆ Gˆ Kˆ
(4)算符乘积
两算符与之积定义为
FˆGˆ Fˆ Gˆ
若 [Fˆ ,Gˆ ] (FˆGˆ GˆFˆ ) 0 , 为任意函数,即
FˆGˆ GˆFˆ
则称两算符对易。
一般 FˆGˆ ,则GˆF称ˆ 二者不对易。
14
若 Fˆ ,Gˆ (FˆGˆ GˆFˆ ) 0 ,为任意函数,即
FˆGˆ GˆFˆ
则称两算符反对易。
(5)逆算符
设 Fˆ 能唯一的解出,则定义 的逆Fˆ算符为
Fˆ 1

周世勋量子力学教案

周世勋量子力学教案

周世勋量子力学教案一. 算符算符: 作用在一个函数上得出另一个函数的运算符号,量子力学中的算符是作用在波函数上的运算符号。

用表示一算符。

二.力学量算符1.坐标的算符就是坐标本身:2.动量算符:, ,3.动能算符4.哈密顿算符:5.角动量算符:如果量子力学中的力学量在经典力学中有相应的力学量,则表示这个力学量的算符由经典表示式中将换成算符得出算符和它所表示的力学量的关系?一线性算符满足运算规则的算符称为线性算符。

二单位算符保持波函数不改变的算符三算符之和加法交换律加法结合律两个线性算符之和仍为线性算符。

四算符之积定义: 算符与的积为注意: 一般说算符之积不满足交换律,即:这是与平常数运算规则不同之处。

五逆算符设能唯一解出,则定义的逆算符为:注意: 不是所有的逆算符都有逆算符。

,六算符的复共轭,转置,厄密共轭1.两个任意波函数与的标积2.复共轭算符算符的复共轭算符为:把的表示式中所有复量换成其共轭复量3.转置算符定义: 算符的转置算符满足:即:4.厄密共轭算符算符的厄密共轭算符定义为即算符的厄密共轭算符即是的转置复共轭算符5.厄密算符厄密算符是满足下列关系的算符注意:两个厄密算符之和仍为厄密算符,两个厄密算符之积却不一定是厄密算符例:证明是厄密算符证:为厄密算符,为厄密算符第三节力学量算符的本征值与本征函数一厄密算符的本征值与与本征函数设体系处于测量力学量O,一般说,可能出现不同结果,各有一定的几率,多次测量结果的平均值趋于一确定值,每次具体测量的结果围绕平均值有一个涨落,定义为如为厄密算符,也是厄密算符存在这样一种状态,测量力学量所得结果完全确定。

即. 这种状态称为力学量的本征态。

在这种状态下称为算符的一个本征值,为相应的本征函数。

二力学量算符的性质1.力学量算符是厄密算符量子力学的一个基本假定: 测量力学量时,所有可能出现的值,都是力学量算符的本征值。

厄密算符的本征值必为实数证:设为厄密算符取是实数表示力学量的算符为厄密算符2.力学量算符为线性算符态叠加原理决定了力学量算符为线性算符【证】:设也应是体系的态即为线性算符三厄密算符本征函数的性质1正交性厄密算符属于不同本征值的本征函数彼此正交。

量子力学课件 周世勋3-2

量子力学课件 周世勋3-2

相 应的本征函数为 Φ
=
Ce
i h
L
z
ϕ
=
Ce imϕ
对其归一化,有:
∫2π
Φ
2

=
C 2 2π
= 1,即可取C
=
1
0

所以Lˆ z 的本征函数是:Φ(ϕ) =
1 eimϕ 2π
本征值是:Lz = mh m = 0,±1,±2 ……
<2> Lˆ 2 的本征方程及其本征解 设 Lˆ 2 的本征函数是Y(θ, ϕ) ,本征值是 λh 2 ( λ 无量纲),则
=
Δp z
=
2πh L

1 L
表明虽然加上周期性边界条件,
pr
由连续谱
条件

分立谱;但是

当L→∞
L → ∞ 时,分立谱 ⇒ 连续谱。
b.
Ψpr (rr )
− iEt
eh
也就是自由粒子的波函数,在它所指定的
态中,粒子的动量具确定值pr ,是动量算符的本征态。
二、角动量算符
1.角动量算符的两种表示
经典式:
1 (2πh)3/ 2
,则有:
∫ ∫ ∫ +∞ −∞
+∞ −∞
+∞
Ψ −∞ pr′

(rr )Ψpr
(rr
)dτ
=
δ(pr

pr ′)
即 prˆ 的本征函数不归一,而归到δ 函数。
所以:归一化的本征函数:Ψpr (rr)
=
1 (2πh)3/ 2
i pr⋅rr
eh
本征值 pr 构成连续谱,例如:px ∈ (−∞,+∞)

量子力学课件 周世勋3-7

量子力学课件 周世勋3-7

研究算符之间的关系以及它们代表的物理量之间的关系。

一、算符的对易关系:[]⎪⎩⎪⎨⎧……≠……=−=不对易对易G ˆ,F ˆ0G ˆ,F ˆ0G ˆF ˆF ˆG ˆF ˆ,G ˆ1.坐标算符x ˆ和动量算符x pˆ的对易关系[]?p ˆ,x x = 将[]x p ˆ,x x p ˆpˆx x x −=作用在任意波函数上,即: (x p ˆp ˆx x x −))x (Ψx )i (x ∂∂−=h )(x Ψi h −))x (x (xΨ∂∂ i h =)x (x x Ψ∂∂i h −)(x x x Ψ∂∂ih −)(x Ψ )x (i Ψ=h 而)x (Ψ是任意的所以:[]x pˆ,x =h i ①该式称为x 和x pˆ的对易关系,等式右边不等于0,即x 和 x p ˆ不对易。

同样可得:[]y p ˆ,y ˆ=h i ② []z pˆ,z ˆ=h i ③ []=y p ˆ,x []0p ˆ,x z =; []z p ˆ,y ˆ=[]0p ˆ,y ˆx =; []=y p ˆ,z ˆ[]0pˆ,z ˆx =; []y x p ˆ,p ˆ=[]z x p ˆ,p ˆ=[]z y p ˆ,p ˆ=0以上可总结为基本对易关系:[][][]⎪⎩⎪⎨⎧==δ=0p ,p 0x ,x i p ,x ji j i ij j i h 3,2,1j ,i =即动量分量和它所对应的坐标分量是不对易的,而和不对应的坐标分量是对易的;动量各分量和坐标各分量是对易的。

说明:a .[]G ˆF ˆF ˆG ˆF ˆ,Gˆ−=叫G ˆ与F ˆ的对易关系,等于0叫二算符对易;否则叫二算符不对易 。

b .以上i x 和j p ˆ的对易关系是量子力学算符的基本对易关系,由它们可以推出其他的一些算符(有经典对应的)对易关系。

2.角动量算符的对易关系:[]=y x L ˆ,L ˆxy y x L ˆL ˆL ˆL ˆ− =)p ˆz ˆp ˆy ˆ(y z −)pˆx ˆp ˆz ˆ(z x −)p ˆx ˆp ˆz ˆ(z x −−)p ˆz ˆp ˆy ˆ(y z − =−x z p ˆz ˆp ˆy ˆ−z z pˆx ˆp ˆy ˆx y p ˆz ˆp ˆz ˆ+z y p ˆx ˆp ˆz ˆ +−z x p ˆy ˆp ˆz ˆy x p ˆz ˆp ˆz ˆ+−z z p ˆy ˆp ˆx ˆy z p ˆz ˆp ˆx ˆ=−x z pˆz ˆp ˆy ˆx z p ˆp ˆz ˆy ˆ+−x ˆp ˆz ˆp ˆz y x ˆz ˆp ˆp ˆz y =x pˆy ˆi h −+x ˆp ˆi y h =zL ˆi h 即:[]=y x L ˆ,L ˆzL ˆi h 同理可证: []=z y L ˆ,L ˆx L ˆi h ;[]=xz L ˆ,L ˆy L ˆi h 说明:a .[]=y x L ˆ,L ˆz L ˆi h ;[]=z y L ˆ,L ˆx L ˆi h ;[]=xz L ˆ,L ˆy L ˆi h 可合并写为:L i L L r h r r =× (矢量式),即角动量算符的定义式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C 为常数
ˆ, B ˆ, B ˆ ] = C[ A ˆ ] C 为常数 [CA
ˆ +A ˆ ,B ˆ ,B ˆ ,B ˆ] ˆ] = [A ˆ]+[A [A 1 2 1 2 ˆA ˆ ˆ ˆ ,B ˆ +A ˆ [A ˆ ,B ˆ] ˆ ]A [A 1 2 , B] = [ A 1 2 1 2
∂ ˆ ˆ ∂ ˆ ˆ ˆ, ∂ B ˆ] [ A, B ] = [ A , B] + [ A ∂t ∂t ∂t
中,因
+ * % d d ˆ + = ⎛ h ∂ ⎞ = ⎛− h ∂ ⎞ = P ˆ 。也可以直接从定义式(3.1-3)出发,来 = − ,所以 P x x ⎜ ⎟ ⎜ ⎟ dx dx ⎝ i ∂x ⎠ ⎝ i ∂x ⎠
ˆ 是厄密算符。 证明 P x


−∞
ˆ φ dx = ϕ *φ |∞ − ϕ *P −∞ x
3.其他对易关系 (1)角动量算符与位置算符之间的对易关系
67
ˆ , x] = [ yP ˆ , zP ˆ , x] = 0 [L x z y ˆ , y ] = [ yP ˆ − zP ˆ , y ] = − z[ P ˆ , y ] = z[ y, P ˆ ] = ihz [L x z y y y
ˆ −1 , FF ˆ =G ˆ ˆ −1 = F ˆ −1 F ˆ = 1。 F
并非所有的算符都有逆算符,例如把零作为算符时,称之为零算符,零算符就没有逆算符。
ˆ为 ˆ ( x ) = af ( x ) ,其中 F 对于非齐次线性微分方程: Fu
d 与函数构成的线性算符,a 为常数。 dx
ˆ = 0, 其解 u 可表示为对应齐次方程的通解 u。与非齐次方程的特解 υ 之和,即 u = u0 + v 。因 Fu 0
(4)转置算符
ˆ 与F ˆ 是一个向左作用的算符。 ˆ =uF ˆ, ˆ 的转置算符,F ˆ 表示一般函数 令 Fu 则称 F 若算符 F (或
常数) ,由于函数的左乘等于右乘,所以函数的转置就等于它本身。 定义波函数 ϕ 与 φ 的标积为:
~
~
~
< ϕ | φ >= ∫ ϕ *φ dτ

(3.1-2)
~
ˆ 与 φ 的标积为: ˆ φ 的标积以及 ϕ G ϕ 与F
ˆ | φ >= ϕ * F <ϕ | F ∫ ˆφ dτ

ˆ | φ >= ϕ * G <ϕ |G ∫ ˆ φ dτ

~
!
ˆ 为任意标积中的算符。下面考虑在任 ˆ 与G 若上两式中的 ϕ 与 φ 都是任意波函数,则称上两式中的 F
意标积中
64
ˆ 所以不存在 F
−1
ˆ Fu ˆ = u 。一般说来,在特解 υ 中应允许含有对应齐次方程的通解成分,但如 使F 0 0
−1
−1
ˆ 果当 a=0 时, υ =0,则 υ 中将不含对应齐次方程的通解成分,这时存在 F
ˆ Fv ˆ = FF ˆ ˆ v = v, 使F
−1 −1
ˆ = af 得: υ = F ˆ −1af 。从上述分析可知,是否存在逆算符还与算符所作用的函数有关。 从而由 Fv
~*
ˆ+ =F ˆ ,则称 F ˆ 为厄密算符。即厄密算符的定义为: 若在任意标积中, F
+
ˆ φ dτ = ∫ϕF ∫
* ∞

ˆ ϕ )*φ dτ (F
+
ˆ | ϕ >=< ϕ | F ˆ |ϕ > 或写为 < ϕ | F
(3.1-3)
% = x ,所以 x + = x 。在任意标积 可以证明,位置算符与动量算符都是厄密算符。因 x 是实数,而 x
~
% d 的性质。 dx
* % ∞ dϕ d φ ( x)dx = ∫ φ dx = ϕ *φ −∞ dx dx ∞ −∞


−∞
ϕ * ( x)
−∫ ϕ *
−∞

dφ dx 波函数 ϕ ( x ) 与 φ ( x) 在无限远点也应满 dx
足连续性条件:
ϕ (∞ ) = ϕ (−∞ ) [可都等于零], φ (∞ ) = φ ( −∞ ) ,所以得:
i − px x h
dx = C ( px , t ) ,则
d ,x, dx

1 2π h


−∞
dx , e
i − px ⋅ x h
都是算符。
1.算符的一般运算
ˆ ,则 G ˆ =F ˆ = Gu ˆ。 (1)算符的相等:对于任意函数 u,若 Fu ˆ = Mu ˆ 。算符的相加满足交换 ˆ + Gu ˆ ,则 M ˆ =F ˆ +G (2)算符的相加:对于任意函数 u,若 Fu
2
ˆ 所含的变量是 θ , φ ,所以 [U (r ), L ˆ ] = 0 。此外,相同的算符一定对易。 量是 r,而 L
ˆ 表示 P ˆ ,P ˆ ,P ˆ ,则应有: 以 xi (i = 1, 2,3) 表示 x,y,z,以 P i x y z
ˆi , x ˆj] = 0 ⎧ ⎪[ x ⎨ ˆ ˆ ⎪ ⎩[ Pi , Pj ] = 0 ˆ ] = ihδ ˆi , P [x j ij
ˆ −P ˆ x)ϕ = ihϕ ,此式对任意的 ϕ 都成立,所以得: [ x, P ˆ ] = ih ( xP x x x
66
在动量表象中
ˆ xϕ ( Px , Py , Pz ) = ih xP
∂ ∂φ ˆ x − Px x ˆ )φ = ihφ ,此式对 ˆφ ,即 ( xP ( Pxφ ) = ihφ + ihPx = ihφ + Px x ∂Px ∂Px
ˆ , z ] = −ihy ,……,各对易关系可合写为: 同理可得: [ L x
ˆ ,x ˆ j ] = ih ∑ ε ijk xk [L i
k
采用爱因斯坦记号,则上式可写为:
ˆ ,x ˆ j ] = ihε ijk xk [L i
(3.2-11)
其中 ε ijk 称为勒维——奇维塔(Levi-Civita)符号。 ε123 =1, ε ijk 对所有角标都是反对称的,即 交换任意两个角标,其值反号,例如, ε 213 = −1 , ε 321 = −1 。若 ε ijk 中有两个角标相同,则其值为 零。 ε ijk 具有以下数学性质:
ˆ ˆ = BA ˆ 与B ˆ ˆ ,称 A ˆ 是对易的。 式中的特例,这时 AB
1.量子力学中基本对易关系 在 位 置 表 象 中 ,
ˆ xϕ ( x, y, z ) = h ∂ ( xϕ ) = h ϕ + h x ∂ϕ = h ϕ + xP ˆϕ P x x i ∂x i i ∂x i
, 即
正算符。 (7)算符的函数
ˆ 的函数 F( A ˆ )为: 设函数 F(A)的各阶导数都存在,则定义算符 A
F ˆ) = F(A ∑
∞ n=0
(n) (o)
ni
ˆn A
ˆ ∑ ni F
n=0 ∞
(3.1-4)
ˆ ˆ n 表示 n 个 A ˆ 的乘幂,即 A ˆn = A ˆ⋅A ˆ LL A ˆ 。例如 e F 其中 A =
上式中三个不为零的对易关系式还可以写成下面的关系式:
∧ ∧ v ∧ v v L, L = ih L
(3.2-15)
(3.2-16)
ˆ =L ˆ + iL ˆ ,L ˆ =L ˆ − iL ˆ ,则可得: 若令 L + x y − x y ˆ ,L ˆ ] = 2hL ˆ ⎧ ⎪[ L + − z ⎨ ˆ ˆ ˆ ⎪ ⎩[ Lz L± ] = ± hL±
第三章
算符和力学量算符
3.1 算符概述
设某种运算把函数 u 变为函数 v,用算符表示为:
ˆ =v Fu
(3.1-1)
ˆ 称为算符。u 与 v 中的变量可能相同,也可能不同。例如, du1 = v , xu = v , u = v , F 2 2 3 3 1 dx
1 2π h


−∞
ϕ ( x, t ) , e
任意的 φ 都成立,所以得:
ˆ , Px ] = ih [x
可见在位置表象中与动量表象中都得:
ˆ ] = ih ˆ, P [x x
(3.2-2)
ˆ= y所 如果两个算符所含的独立变量不同,则这两个算符是对易的。例如,在位置表象中, y
ˆ = 含的变量是 y,而 P x
2
h ∂ ˆ ] =0。又如,在有心力场中,U(x)所含的变 所含的变量是 x,所以 [ y, P x i ∂x
律。
ˆ ˆ 。算符的相乘一般不满足交换 ˆ ˆ = Mu ˆ ,则 M ˆ = GF (3)算符的相乘:对于任意函数 u,若 FFu ˆ ˆ ,则称 F ˆ 对易。 ˆ ˆ = GF ˆ 与G 律。如果 FG
2.几种特殊算符 (1)单位算符
ˆ u=u,则称 I ˆ 为单位算符。 I ˆ 与 1 是等价的。 对于任意涵数 u,若 I
(6)幺正算符
h i
∞ h ∞ dϕ * ˆ 是厄密算符。 ˆ ϕ )*φ dx ,所以 P φ dx = ∫ ( P x x ∫ −∞ i −∞ dx
ˆ ˆ 为厄密算符,则 T ˆ = e ± iA ˆ+ = F ˆ −1 ,则称 F ˆ 为幺正算符。设 T ˆ 必为幺 若在任意标积中, F ,若 A
(3.2-13)
Ai B j − Aj Bi 2
称为将 Ai B j 反对称化, 之所以能将 Ai B j 反对称化是由于 ε ijk 对角
ˆ ,P ˆ ] = ihε P ˆ [L i j ijk k
相关文档
最新文档