模式分类实验报告
哈尔滨工程大学-模式识别实验报告模板
实验报告实验课程名称:模式识别姓名:班级: 20120811 学号:注:1、每个实验中各项成绩按照5分制评定,实验成绩为各项总和2、平均成绩取各项实验平均成绩3、折合成绩按照教学大纲要求的百分比进行折合2015年 4月实验1 图像的贝叶斯分类1.1 实验目的将模式识别方法与图像处理技术相结合,掌握利用最小错分概率贝叶斯分类器进行图像分类的基本方法,通过实验加深对基本概念的理解。
1.2 实验仪器设备及软件HP D538、MATLAB1.3 实验原理1.3.1基本原理阈值化分割算法是计算机视觉中的常用算法,对灰度图象的阈值分割就是先确定一个处于图像灰度取值范围内的灰度阈值,然后将图像中每个像素的灰度值与这个阈值相比较。
并根据比较的结果将对应的像素划分为两类,灰度值大于阈值的像素划分为一类,小于阈值的划分为另一类,等于阈值的可任意划分到两类中的任何一类。
此过程中,确定阈值是分割的关键。
对一般的图像进行分割处理通常对图像的灰度分布有一定的假设,或者说是基于一定的图像模型。
最常用的模型可描述如下:假设图像由具有单峰灰度分布的目标和背景组成,处于目标和背景内部相邻像素间的灰度值是高度相关的,但处于目标和背景交界处两边的像素灰度值有较大差别,此时,图像的灰度直方图基本上可看作是由分别对应于目标和背景的两个单峰直方图混合构成。
而且这两个分布应大小接近,且均值足够远,方差足够小,这种情况下直方图呈现较明显的双峰。
类似地,如果图像中包含多个单峰灰度目标,则直方图可能呈现较明显的多峰。
上述图像模型只是理想情况,有时图像中目标和背景的灰度值有部分交错。
这时如用全局阈值进行分割必然会产生一定的误差。
分割误差包括将目标分为背景和将背景分为目标两大类。
实际应用中应尽量减小错误分割的概率,常用的一种方法为选取最优阈值。
这里所谓的最优阈值,就是指能使误分割概率最小的分割阈值。
图像的直方图可以看成是对灰度值概率分布密度函数的一种近似。
《数据仓库与数据挖掘》实验二聚类分实验报告37
实验二、聚类分析实验报告一、实验目的通过计算机编程实现并验证谱系聚类法的模式分类能力,了解和掌握最小距离归类原则在模式识别中的重要作用与地位。
二、实验内容1)用Matlab 实现谱系聚类算法,并对给定的样本集进行分类;2)通过改变实验参数,观察和分析影响谱系聚类算法的分类结果与收敛速度的因素;三、实验原理、方法和手段人类认识世界往往首先将被认识的对象进行分类,聚类分析是研究分类问题的多元数据分析方法,是数值分类学中的一支。
多元数据形成数据矩阵,见下表1。
在数据矩阵中,共有n 个样品 x 1,x 2,…,x n (列向),p 个指标(行向)。
聚类分析有两种类型:按样品聚类或按变量(指标)聚类。
距离或相似系数代表样品或变量之间的相似程度。
按相似程度的大小,将样品(或变量)逐一归类,关系密切的类聚到一个小的分类单位,然后逐步扩大,使得关系疏远的聚合到一个大的分类单位,直到所有的样品(或变量)都聚集完毕,形成一个表示亲疏关系的谱系图,依次按照某些要求对样品(或变量)进行分类。
⑴ 分类统计量----距离与相似系数① 样品间的相似性度量----距离用样品点之间的距离来衡量各样品之间的相似性程度(或靠近程度)。
设(,)i j d x x 是样品 ,i j x x 之间的距离,一般要求它满足下列条件:1)(,)0,(,)0;2)(,)(,);3)(,)(,)(,).i j i j i j i j j i i j i k k j d x x d x x x x d x x d x x d x x d x x d x x ≥=⇔==≤+且在聚类分析中,有些距离不满足3),我们在广义的角度上仍称它为距离。
欧氏距离1221(,)()pi j ik jk k d x x x x =⎡⎤=-⎢⎥⎣⎦∑⏹ 绝对距离1(,)||pi j ik jk k d x x x x ==-∑⏹ Minkowski 距离11(,)()pmm i j ik jk k d x x x x =⎡⎤=-⎢⎥⎣⎦∑⏹ Chebyshev 距离1(,)max ||i j ik jk k pd x x x x ≤≤=-⏹ 方差加权距离12221()(,)pik jk i j k k x x d x x s =⎡⎤-=⎢⎥⎢⎥⎣⎦∑ 其中 221111,().1n n ik k ik k i i x x s x x n n ====--∑∑ ⏹ 马氏距离112(,)()()T i j i j i j d x x x x S x x -⎡⎤=--⎣⎦其中 S 是由样品12,,...,,...,j n x x x x 算得的协方差矩阵:1111,()()1n n T i i i i i x x S x x x x n n ====---∑∑ 样品聚类通常称为Q 型聚类,其出发点是距离矩阵。
模式识别实验报告
模式识别实验报告实验一、最近邻规则的聚类算法一、实验要求编写采用最近邻规则的聚类算法,距离采用欧式距离,阈值可设定。
采用二维特征空间中的10个样本对程序进行验证。
x1 = (0,0) ,x2 = (3,8) ,x3 = (2,2) ,x4 = (1,1) ,x5 = (5,3),x6 = (4,8) ,x7 = (6,3) ,x8 = (5,4) ,x9 = (6,4) ,x10 = (7,5)。
二、实验步骤○1、选取距离阈值T,并且任取一个样本作为第一个聚合中心Z1,如:Z1=x1;○2、计算样本x2到Z1的距离D21;若D21≤T,则x2∈Z1,否则令x2为第二个聚合中心,Z2=x2。
设Z2=x2,计算x3到Z1和Z2的距离D31和D32 。
若D31>T和D32>T,则建立第三个聚合中心Z3 ;否则把x3归于最近邻的聚合中心。
依此类推,直到把所有的n个样本都进行分类。
○3、按照某种聚类准则考察聚类结果,若不满意,则重新选取距离阈值T、第一个聚合中心Z1,返回第二步②处,直到满意,算法结束。
三、程序设计详见附件1:test1.m。
四、仿真结果最近邻聚类算法:阈值T=1,第一个聚类中心(5,4)最近邻聚类算法:阈值T=3,第一个聚类中心(5,4)最近邻聚类算法:阈值T=6,第一个聚类中心(5,4)最近邻聚类算法:阈值T=10,第一个聚类中心(5,4)五、结果分析1、考虑阈值对聚类的影响:由上述仿真结果可知,阈值大小对于分类的影响非常大。
当阈值小于1的时候,样本(10个)共分为10类;而当阈值大于10的时候,样本全分为1类;当阈值在其中时,随着阈值的变化分类页多样化。
所以选取合适的阈值是正确分类的前提标准!2、考虑初始聚类中心对聚类的影响:在合适的阈值下,第一个聚类中心的选取对分类结果几乎没有什么影响;而相对的,阈值不合适的情况下,第一个聚类中心的选取对分类结果还是有一些影响,仿真结果会出现一些偏差。
武汉理工大学,模式识别实验报告,带数据!带代码!
武汉理工大学模式识别实验报告姓名:班级:学号:姓名:班级:学号:实验一总体概率密度分布的非参数方法一、实验目的1.了解使用非参数方法估计样本概率密度函数的原理。
2.了解Parzen窗法的原理及其参数h1,N对估计结果的影响。
3.掌握Parzen窗法的算法并用Matlab实现。
4.使用Matlab分析Parzen窗法的参数h1,N对估计结果的影响。
二、实验数据一维正态分布样本,使用函数randn生成。
三、实验结果选取的h1=0.25,1,4,N=1,16,256,4096,65536,得到15个估计结果,如下图所示。
由下面三组仿真结果可知,估计结果依赖于N和h1。
当N=1时,是一个以样本为中心的小丘。
当N=16和h1=0.25时,仍可以看到单个样本所起的作用;但当h1=1及h1=4时就受到平滑,单个样本的作用模糊了。
随着N的增加,估计量越来越好。
这说明,要想得到较精确的估计,就需要大量的样本。
但是当N取的很大,h1相对较小时,在某些区间内hN趋于零,导致估计的结果噪声大。
分析实验数据发现在h1=4,N=256时,估计结果最接近真实分布。
附录:1.Parzen窗法函数文件parzen.m function parzen=parzen(N,h1,x) %ParzenhN = h1/sqrt(N);num_x = numel(x);parzen = zeros(1, num_x);for u = 1:num_xfor i=1:Nparzen(u) = parzen(u)+exp(((x(u)-x(i))/hN).^2/-2);endparzen(u)=parzen(u)/sqrt(2*pi)/h1/sqrt(N);end2.例程文件parzen_sample.mx = randn(1,10000);%Normally distributed pseudorandom numberspx = normpdf(x,0,1);%Normal probability density function - normpdf(X,mu,sigma)h1 = [0.25, 1, 4];N = [1, 16, 256, 1024, 4096];num_h1 = numel(h1);%Number of array elementsnum_N = numel(N);figure('Name', '总体概率密度分布的非参数方法');%遍历h1for i_h1 = 1:length(h1)h1_offset = (i_h1-1)*(num_N+1)+1;%绘图位置的偏移量subplot(num_h1, num_N+1, h1_offset);plot(x, px, '.');ylabel(sprintf('%s%4.2f', 'h1=', h1(i_h1)));title('正态分布样本的概率密度函数')%遍历Nfor i_N = 1 : length(N)pNx=parzen(N(i_N), h1(i_h1), x);subplot(num_h1, num_N+1, h1_offset+i_N);plot(x, pNx, '.');title(sprintf('%s%d', 'N=', N(i_N)));endend姓名:班级:学号:实验二感知器准则算法实验一、实验目的1.了解利用线性判别函数进行分类的原理。
设计模式实验报告总结(3篇)
第1篇一、实验背景随着软件工程的不断发展,设计模式作为一种解决软件开发中常见问题的有效方法,越来越受到广泛关注。
本次实验旨在通过学习设计模式,提高编程能力,掌握解决实际问题的方法,并加深对设计模式的理解。
二、实验目的1. 理解设计模式的基本概念和分类;2. 掌握常见设计模式的原理和应用;3. 提高编程能力,学会运用设计模式解决实际问题;4. 培养团队协作精神,提高项目开发效率。
三、实验内容本次实验主要涉及以下设计模式:1. 创建型模式:单例模式、工厂模式、抽象工厂模式、建造者模式;2. 结构型模式:适配器模式、装饰者模式、桥接模式、组合模式、外观模式;3. 行为型模式:策略模式、模板方法模式、观察者模式、责任链模式、命令模式。
四、实验过程1. 阅读相关资料,了解设计模式的基本概念和分类;2. 分析每种设计模式的原理和应用场景;3. 编写代码实现常见设计模式,并进行分析比较;4. 将设计模式应用于实际项目中,解决实际问题;5. 总结实验经验,撰写实验报告。
五、实验结果与分析1. 创建型模式(1)单例模式:通过控制对象的实例化,确保一个类只有一个实例,并提供一个访问它的全局访问点。
实验中,我们实现了单例模式,成功避免了资源浪费和同步问题。
(2)工厂模式:定义一个用于创建对象的接口,让子类决定实例化哪一个类。
实验中,我们使用工厂模式创建不同类型的交通工具,提高了代码的可扩展性和可维护性。
(3)抽象工厂模式:提供一个接口,用于创建相关或依赖对象的家族,而不需要指定具体类。
实验中,我们使用抽象工厂模式创建不同类型的计算机,实现了代码的复用和扩展。
(4)建造者模式:将一个复杂对象的构建与它的表示分离,使得同样的构建过程可以创建不同的表示。
实验中,我们使用建造者模式构建不同配置的房屋,提高了代码的可读性和可维护性。
2. 结构型模式(1)适配器模式:将一个类的接口转换成客户期望的另一个接口,使原本接口不兼容的类可以一起工作。
电子商务》实验报告B2CC2CB2B三种模式认知与比较
B2C电子商务模式交易的特点
1、从商品上,要求是适合在网上销售的商品。一般 具有标准化、不易变质、适合传递等特征。 2、从交易模式上, 所有商品都是线上交易。要完 成汇聚和分发两个职能,即电子商务商家首先将需 要销售的商品从供应商处批发仓储,然后通过网络 平台直接销售。 3. B2C的商务模式特点具有风险性。这种方式风险 集中在电子商务企业身上,并且需要额外负担物流 仓储和销售的费用。
会员收费(提供与 免费会员差异化的 服务)。
17
姓 名 纠纷时用:真实姓名,约束用户 送货地址 行送货为用规:范应准确,每次购物应验证确认
送货电话 证实用户用:填写白天能联系到的电话
邮政编码 商家促销用:商家给用户寄相关的资料
电子信箱 其它信息
联系用户用:促销信息、取回密 码等 证件号、性别、文化、出生日期、 收入等
B2C网上购物
B2C的交易流程中各种单证的设计—购物车
14
4.1 当当网(B2C电子商务)的收益来源
赢利模式
直接销售收入 店中店租金 广告收入
15
4.2 淘宝网(C2C电子商务)的收益来源
赢利模式
广告收入 增值服务收入 淘宝商城收费
①品牌广告 ②钻石展位。 ③超级卖霸 ④搜索竞价 ⑤淘宝客 ⑥阿里妈妈广告
①软件与服务 ②淘宝旺铺 ③店铺服务费。
2
实验分析
1 三种电子商务模式概述 2 三种电子商务模式的异同点 3 B2C模式的购物流程和交易特点 4 不同模式的收益来源
3
1.三种电子商务模式的定义
定义
B2C(Business To Customer)是电子商务按交易对象分类中的一 种,即表示商业机构对消费者的电子商务。
《模式识别》实验报告K-L变换特征提取
《模式识别》实验报告K-L变换特征提取基于K-L 变换的iris 数据分类⼀、实验原理K-L 变换是⼀种基于⽬标统计特性的最佳正交变换。
它具有⼀些优良的性质:即变换后产⽣的新的分量正交或者不相关;以部分新的分量表⽰原⽮量均⽅误差最⼩;变换后的⽮量更趋确定,能量更集中。
这⼀⽅法的⽬的是寻找任意统计分布的数据集合之主要分量的⼦集。
设n 维⽮量12,,,Tn x x x =x ,其均值⽮量E=µx ,协⽅差阵()T x E=--C x u)(x u ,此协⽅差阵为对称正定阵,则经过正交分解克表⽰为x =TC U ΛU ,其中12,,,[]n diag λλλ=Λ,12,,,n u u u =U 为对应特征值的特征向量组成的变换阵,且满⾜1T-=UU。
变换阵TU 为旋转矩阵,再此变换阵下x 变换为()T -=x u y U ,在新的正交基空间中,相应的协⽅差阵12[,,,]xn diag λλλ==x U C U C。
通过略去对应于若⼲较⼩特征值的特征向量来给y 降维然后进⾏处理。
通常情况下特征值幅度差别很⼤,忽略⼀些较⼩的值并不会引起⼤的误差。
对经过K-L 变换后的特征向量按最⼩错误率bayes 决策和BP 神经⽹络⽅法进⾏分类。
⼆、实验步骤(1)计算样本向量的均值E =µx 和协⽅差阵()T xE ??=--C x u)(x u5.8433 3.0573 3.7580 1.1993??=µ,0.68570.0424 1.27430.51630.04240.189980.32970.12161.27430.3297 3.1163 1.29560.51630.12161.29560.5810x----=--C (2)计算协⽅差阵xC 的特征值和特征向量,则4.2282 , 0.24267 , 0.07821 , 0.023835[]diag =Λ-0.3614 -0.6566 0.5820 0.3155 0.0845 -0.7302 -0.5979 -0.3197 -0.8567 0.1734 -0.0762 -0.4798 -0.3583 0.0755 -0.5458 0.7537??=U从上⾯的计算可以看到协⽅差阵特征值0.023835和0.07821相对于0.24267和4.2282很⼩,并经计算个特征值对误差影响所占⽐重分别为92.462%、5.3066%、1.7103%和0.52122%,因此可以去掉k=1~2个最⼩的特征值,得到新的变换阵12,,,newn k u u u -=U。
《模式识别》线性分类器设计实验报告
《模式识别》实验报告三、线性分类器实验1.(a)产生两个都具有200 个二维向量的数据集X1 和X1 ’。
向量的前半部分来自m1=[-5;0]的正态分布,并且S1=I 。
向量的后半部分来自m2=[5;0]的正态分布,并且S1=I。
其中I是一个2×2 的单位矩阵。
(b)在上面产生的数据集上运用Fisher 线性判别、感知器算法和最小平方误差判别算法,需要初始化参数的方法使用不同的初始值。
(c)测试每一种方法在X1 和X1 ’ 上的性能(错误率)。
(d)画出数据集X1 和X1 ’,已经每种方法得到对应参数向量W 的分界线。
Fisher线性判别图1 红色为第一类,绿色为第二类,直线为对应参数向量W的分界线,参数向量w = [-9.9406, 0.9030]’错误率error=0,感知器算法:图2 红色为第一类,绿色为第二类,直线为对应参数向量W的分界线,参数的初始值为[0.1;0.1];迭代次数iter=2参数向量w = [-4.8925, 0.0920]’错误率error=0图3 红色为第一类,绿色为第二类,直线为对应参数向量W的分界线,参数的初始值为[1; 1];迭代次数iter=2参数向量w = [-3.9925, 0.9920]’错误率error=0图4 红色为第一类,绿色为第二类,直线为对应参数向量W的分界线,参数的初始值为[10; 10];迭代次数iter=122参数向量w = [-5.6569, 7.8096]’错误率error=0图5 红色为第一类,绿色为第二类,直线为对应参数向量W的分界线,参数的初始值为[50; 50];迭代次数iter=600参数向量w = [-27.0945, 37.4194]’错误率error=0图6 红色为第一类,绿色为第二类,直线为对应参数向量W的分界线,参数的初始值为[50; 100];迭代次数iter=1190参数向量w = [-54.0048, 74.5875]’错误率error=0最小平方误差判别算法:图7 红色为第一类,绿色为第二类,直线为对应参数向量W的分界线,参数的初始值为[0.1; 0.1];参数向量w = [-0.1908, -0.0001]’错误率error=0图8 红色为第一类,绿色为第二类,直线为对应参数向量W的分界线,参数的初始值为[0.5; 0.5];参数向量w = [-0.1924, 0.1492]’错误率error=0图9 红色为第一类,绿色为第二类,直线为对应参数向量W的分界线,参数的初始值为[1; 0.5];参数向量w = [-0.1914, 0.0564]’错误率error=0图10 红色为第一类,绿色为第二类,直线为对应参数向量W的分界线,参数的初始值为[1; 1];参数向量w = [-0.1943, 0.3359]’错误率error= 0.00502.重复1.中的实验内容,数据集为X2 和X2 ’。
实验四、RBF神经网络实验报告
如果对于输入空间的某个局部区域只有少数几个连接权值影响输出,则该网络称为局部逼近网络。常见的局部逼近网络有RBF网络、小脑模型(CMAC)网络、B样条网络等。
广义RBF网络
Cover定理指出:将复杂的模式分类问题非线性地映射到高维空间将比投影到低维空间更可能线性可分。
广义RBF网络:从输入层到隐藏层相当于是把低维空间的数据映射到高维空间,输入层细胞个数为样本的维度,所以隐藏层细胞个数一定要比输入层细胞个数多。从隐藏层到输出层是对高维空间的数据进行线性分类的过程,可以采用单层感知器常用的那些学习规则,参见神经网络基础和感知器。
寻找逼近函数F(x)通过最小化下面的目标函数来实现:
加式的第一项好理解,这是均方误差,寻找最优的逼近函数,自然要使均方误差最小。第二项是用来控制逼近函数光滑程度的,称为正则化项,λ是正则化参数,D是一个线性微分算子,代表了对F(x)的先验知识。曲率过大(光滑度过低)的F(x)通常具有较大的||DF||值,因此将受到较大的惩罚。
3)Inverse multiquadrics(拟多二次)函数
σ称为径向基函数的扩展常数,它反应了函数图像的宽度,σ越小,宽度越窄,函数越具有选择性。
完全内插存在一些问题:
1)插值曲面必须经过所有样本点,当样本中包含噪声时,神经网络将拟合出一个错误的曲面,从而使泛化能力下降。K,K<P,从样本中选取K个(假设不包含噪声)作为Φ函数的中心。
隐藏层的作用是把向量从低维m映射到高维P,低维线性不可分的情况到高维就线性可分了。
2021年模式识别实验报告实验一BAYES分类器设计
模式识别实验报告实验一Bayes分类器设计模式识别实验报告实验一Bayes分类器设计实验一 Bayes分类器设计【实验目的】对模式识别有一个初步的理解,能够根据自己的设计对贝叶斯决策理论算法有一个深刻地认识,理解二类分类器的设计原理。
【实验原理】最小风险贝叶斯决策可按下列步骤进行: (1)在已知,,i=1,…,c及给出待识别的的情况下,根据贝叶斯公式计算出后验概率: j=1,…,x (2)利用计算出的后验概率及决策表,按下面的公式计算出采取,i=1,…,a的条件风险,i=1,2,…,a(3)对(2)中得到的a个条件风险值,i=1,…,a进行比较,找出使其条件风险最小的决策,即则就是最小风险贝叶斯决策。
【实验内容】假定某个局部区域细胞识别中正常()和非正常()两类先验概率分别为正常状态:P()=0.9;异常状态:P()=0.1。
现有一系列待观察的细胞,其观察值为: -3.9847 -3.5549 -1.2401 -0.9780 -0.7932 -2.8531 -2.7605 -3.7287 -3.5414 -2.2692 -3.4549 -3.0752 -3.9934 2.8792 -0.9780 0.7932 1.18823.0682 -1.5799 -1.4885 -0.7431 -0.4221 -1.11864.2532 已知类条件概率是的曲线如下图:类条件概率分布正态分布分别为N(-2,0.25)、N(2,4)试对观察的结果进行分类。
【实验要求】 1) 用 ___tlab完成基于最小错误率的贝叶斯分类器的设计,要求程序相应语句有说明文字,要求有子程序的调用过程。
2) 根据例子画出后验概率的分布曲线以及分类的结果示意图。
3) 如果是最小风险贝叶斯决策,决策表如下:最小风险贝叶斯决策表:状态决策α1 0 4 α2 2 0 请重新设计程序,完成基于最小风险的贝叶斯分类器,画出相应的条件风险的分布曲线和分类结果,并比较两个结果。
模式识别基础实验报告资料
2015年12月实验一 Bayes 分类器的设计一、 实验目的:1. 对模式识别有一个初步的理解,能够根据自己的设计对贝叶斯决策理论算法有一个深刻地认识;2. 理解二类分类器的设计原理。
二、 实验条件:1. PC 微机一台和MATLAB 软件。
三、 实验原理:最小风险贝叶斯决策可按下列步骤进行:1. 在已知)(i P ω,)|(i X P ω,c i ,,1 =及给出待识别的X 的情况下,根据贝叶斯公式计算出后验概率:∑==c j jj i i i P X P P X P X P 1)()|()()|()|(ωωωωω c j ,,1 =2. 利用计算出的后验概率及决策表,按下式计算出采取i α决策的条件风险: ∑==c j j j i i X P X R 1)|(),()|(ωωαλα a i ,,1 =3. 对2中得到的a 个条件风险值)|(X R i α(a i ,,1 =)进行比较,找出使条件风险最小的决策k α,即:)|(min )|(,,1X R X R k c i k αα ==, 则k α就是最小风险贝叶斯决策。
四、 实验内容:假定某个局部区域细胞识别中正常(1ω)和非正常(2ω)两类先验概率分别为: 正常状态:)(1ωP =0.9;异常状态:)(2ωP =0.1。
现有一系列待观察的细胞,其观察值为x :-3.9847 -3.5549 -1.2401 -0.9780 -0.7932 -2.8531-2.7605 -3.7287 -3.5414 -2.2692 -3.4549 -3.0752-3.9934 2.8792 -0.9780 0.7932 1.1882 3.0682-1.5799 -1.4885 -0.7431 -0.4221 -1.1186 4.2532)|(1ωx P )|(2ωx P 类条件概率分布正态分布分别为(-2,0.25)(2,4)。
决策表为011=λ(11λ表示),(j i ωαλ的简写),12λ=6, 21λ=1,22λ=0。
模式识别实验【范本模板】
《模式识别》实验报告班级:电子信息科学与技术13级02 班姓名:学号:指导老师:成绩:通信与信息工程学院二〇一六年实验一 最大最小距离算法一、实验内容1. 熟悉最大最小距离算法,并能够用程序写出。
2. 利用最大最小距离算法寻找到聚类中心,并将模式样本划分到各聚类中心对应的类别中.二、实验原理N 个待分类的模式样本{}N X X X , 21,,分别分类到聚类中心{}N Z Z Z , 21,对应的类别之中.最大最小距离算法描述:(1)任选一个模式样本作为第一聚类中心1Z 。
(2)选择离1Z 距离最远的模式样本作为第二聚类中心2Z 。
(3)逐个计算每个模式样本与已确定的所有聚类中心之间的距离,并选出其中的最小距离.(4)在所有最小距离中选出一个最大的距离,如果该最大值达到了21Z Z -的一定分数比值以上,则将产生最大距离的那个模式样本定义为新增的聚类中心,并返回上一步.否则,聚类中心的计算步骤结束。
这里的21Z Z -的一定分数比值就是阈值T ,即有:1021<<-=θθZ Z T(5)重复步骤(3)和步骤(4),直到没有新的聚类中心出现为止。
在这个过程中,当有k 个聚类中心{}N Z Z Z , 21,时,分别计算每个模式样本与所有聚类中心距离中的最小距离值,寻找到N 个最小距离中的最大距离并进行判别,结果大于阈值T 是,1+k Z 存在,并取为产生最大值的相应模式向量;否则,停止寻找聚类中心。
(6)寻找聚类中心的运算结束后,将模式样本{}N i X i ,2,1, =按最近距离划分到相应的聚类中心所代表的类别之中。
三、实验结果及分析该实验的问题是书上课后习题2。
1,以下利用的matlab 中的元胞存储10个二维模式样本X {1}=[0;0];X{2}=[1;1];X {3}=[2;2];X{4}=[3;7];X{5}=[3;6]; X{6}=[4;6];X{7}=[5;7];X{8}=[6;3];X{9}=[7;3];X{10}=[7;4];利用最大最小距离算法,matlab 运行可以求得从matlab 运行结果可以看出,聚类中心为971,,X X X ,以1X 为聚类中心的点有321,,X X X ,以7X 为聚类中心的点有7654,,,X X X X ,以9X 为聚类中心的有1098,,X X X 。
iris数据集的贝叶斯分类
iris数据集的贝叶斯分类IRIS 数据集的Bayes 分类实验⼀、实验原理 1) 概述模式识别中的分类问题是根据对象特征的观察值将对象分到某个类别中去。
统计决策理论是处理模式分类问题的基本理论之⼀,它对模式分析和分类器的设计有着实际的指导意义。
贝叶斯(Bayes )决策理论⽅法是统计模式识别的⼀个基本⽅法,⽤这个⽅法进⾏分类时需要具备以下条件:各类别总体的分布情况是已知的。
要决策分类的类别数是⼀定的。
其基本思想是:以Bayes 公式为基础,利⽤测量到的对象特征配合必要的先验信息,求出各种可能决策情况(分类情况)的后验概率,选取后验概率最⼤的,或者决策风险最⼩的决策⽅式(分类⽅式)作为决策(分类)的结果。
也就是说选取最有可能使得对象具有现在所测得特性的那种假设,作为判别的结果。
常⽤的Bayes 判别决策准则有最⼤后验概率准则(MAP ),极⼤似然⽐准则(ML ),最⼩风险Bayes 准则,Neyman-Pearson 准则(N-P )等。
2) 分类器的设计对于⼀个⼀般的c 类分类问题,其分类空间:{}c w w w ,,,21 =Ω表特性的向量为:()T d x x x x ,,,21 =其判别函数有以下⼏种等价形式:a) ()()i j i w w i j c j w w x w P x w P ∈→≠=∈→>,且,,,2,11, b) ()()()()i j j i w w i j c j w P w x p w P w x p ∈→≠=>,且,,,2,1ic) ()()()()()i i j ji w w i j c j w P w P w x p w x p x l ∈→≠=>=,且,,,2,1d)()()()()ij j i i w w i j c j w P w x np w P w x p ∈→≠=+>+,且,,,2,1ln ln ln3) IRIS 数据分类实验的设计IRIS 数据集:⼀共具有三组数据,每⼀组都是⼀个单独的类别,每组有50个数据,每个数据都是⼀个四维向量。
模式识别技术实验报告
模式识别技术实验报告本实验旨在探讨模式识别技术在计算机视觉领域的应用与效果。
模式识别技术是一种人工智能技术,通过对数据进行分析、学习和推理,识别其中的模式并进行分类、识别或预测。
在本实验中,我们将利用机器学习算法和图像处理技术,对图像数据进行模式识别实验,以验证该技术的准确度和可靠性。
实验一:图像分类首先,我们将使用卷积神经网络(CNN)模型对手写数字数据集进行分类实验。
该数据集包含大量手写数字图片,我们将训练CNN模型来识别并分类这些数字。
通过调整模型的参数和训练次数,我们可以得到不同准确度的模型,并通过混淆矩阵等评估指标来评估模型的性能和效果。
实验二:人脸识别其次,我们将利用人脸数据集进行人脸识别实验。
通过特征提取和比对算法,我们可以识别不同人脸之间的相似性和差异性。
在实验过程中,我们将测试不同算法在人脸识别任务上的表现,比较它们的准确度和速度,探讨模式识别技术在人脸识别领域的应用潜力。
实验三:异常检测最后,我们将进行异常检测实验,使用模式识别技术来识别图像数据中的异常点或异常模式。
通过训练异常检测模型,我们可以发现数据中的异常情况,从而做出相应的处理和调整。
本实验将验证模式识别技术在异常检测领域的有效性和实用性。
结论通过以上实验,我们对模式识别技术在计算机视觉领域的应用进行了初步探索和验证。
模式识别技术在图像分类、人脸识别和异常检测等任务中展现出了良好的性能和准确度,具有广泛的应用前景和发展空间。
未来,我们将进一步深入研究和实践,探索模式识别技术在更多领域的应用,推动人工智能技术的发展和创新。
【字数:414】。
模式识别实验报告哈工程
一、实验背景随着计算机科学和信息技术的飞速发展,模式识别技术在各个领域得到了广泛应用。
模式识别是指通过对数据的分析、处理和分类,从大量数据中提取有用信息,从而实现对未知模式的识别。
本实验旨在通过实践操作,加深对模式识别基本概念、算法和方法的理解,并掌握其应用。
二、实验目的1. 理解模式识别的基本概念、算法和方法;2. 掌握常用的模式识别算法,如K-均值聚类、决策树、支持向量机等;3. 熟悉模式识别在实际问题中的应用,提高解决实际问题的能力。
三、实验内容本次实验共分为三个部分:K-均值聚类算法、决策树和神经网络。
1. K-均值聚类算法(1)实验目的通过实验加深对K-均值聚类算法的理解,掌握其基本原理和实现方法。
(2)实验步骤① 准备实验数据:选取一组二维数据,包括100个样本,每个样本包含两个特征值;② 初始化聚类中心:随机选择K个样本作为初始聚类中心;③ 计算每个样本到聚类中心的距离,并将其分配到最近的聚类中心;④ 更新聚类中心:计算每个聚类中所有样本的均值,作为新的聚类中心;⑤ 重复步骤③和④,直到聚类中心不再变化。
(3)实验结果通过实验,可以得到K个聚类中心,每个样本被分配到最近的聚类中心。
通过可视化聚类结果,可以直观地看到数据被分成了K个类别。
2. 决策树(1)实验目的通过实验加深对决策树的理解,掌握其基本原理和实现方法。
(2)实验步骤① 准备实验数据:选取一组具有分类标签的二维数据,包括100个样本,每个样本包含两个特征值;② 选择最优分割特征:根据信息增益或基尼指数等指标,选择最优分割特征;③ 划分数据集:根据最优分割特征,将数据集划分为两个子集;④ 递归地执行步骤②和③,直到满足停止条件(如达到最大深度、叶节点中样本数小于阈值等);⑤ 构建决策树:根据递归分割的结果,构建决策树。
(3)实验结果通过实验,可以得到一棵决策树,可以用于对新样本进行分类。
3. 神经网络(1)实验目的通过实验加深对神经网络的理解,掌握其基本原理和实现方法。
模式识别实验报告
模式识别实验报告实验一、线性分类器的设计与实现1. 实验目的:掌握模式识别的基本概念,理解线性分类器的算法原理。
2. 实验要求:(1)学习和掌握线性分类器的算法原理;(2)在MATLAB 环境下编程实现三种线性分类器并能对提供的数据进行分类;(3)对实现的线性分类器性能进行简单的评估(例如算法适用条件,算法效率及复杂度等)。
注:三种线性分类器为,单样本感知器算法、批处理感知器算法、最小均方差算法批处理感知器算法算法原理:感知器准则函数为J p a=(−a t y)y∈Y,这里的Y(a)是被a错分的样本集,如果没有样本被分错,Y就是空的,这时我们定义J p a为0.因为当a t y≤0时,J p a是非负的,只有当a是解向量时才为0,也即a在判决边界上。
从几何上可知,J p a是与错分样本到判决边界距离之和成正比的。
由于J p梯度上的第j个分量为∂J p/ða j,也即∇J p=(−y)y∈Y。
梯度下降的迭代公式为a k+1=a k+η(k)yy∈Y k,这里Y k为被a k错分的样本集。
算法伪代码如下:begin initialize a,η(∙),准则θ,k=0do k=k+1a=a+η(k)yy∈Y k|<θuntil | ηk yy∈Y kreturn aend因此寻找解向量的批处理感知器算法可以简单地叙述为:下一个权向量等于被前一个权向量错分的样本的和乘以一个系数。
每次修正权值向量时都需要计算成批的样本。
算法源代码:unction [solution iter] = BatchPerceptron(Y,tau)%% solution = BatchPerceptron(Y,tau) 固定增量批处理感知器算法实现%% 输入:规范化样本矩阵Y,裕量tau% 输出:解向量solution,迭代次数iter[y_k d] = size(Y);a = zeros(1,d);k_max = 10000; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% k=0;y_temp=zeros(d,1);while k<k_maxc=0;for i=1:1:y_kif Y(i,:)*a'<=tauy_temp=y_temp+Y(i,:)';c=c+1;endendif c==0break;enda=a+y_temp';k=k+1;end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %k = k_max;solution = a;iter = k-1;运行结果及分析:数据1的分类结果如下由以上运行结果可以知道,迭代17次之后,算法得到收敛,解出的权向量序列将样本很好的划分。
模式识别实验报告_3
模式识别实验报告_3第⼀次实验实验⽬的:1.学习使⽤ENVI2.会⽤MATLAB读⼊遥感数据并进⾏处理实验内容:⼀学习使⽤ENVI1.使⽤ENVI打开遥感图像(任选3个波段合成假彩⾊图像,保存写⼊报告)2.会查看图像的头⽂件(保存或者copy⾄报告)3.会看地物的光谱曲线(保存或者copy⾄报告)4.进⾏数据信息统计(保存或者copy⾄报告)5.设置ROI,对每类地物⾃⼰添加标记数据,并保存为ROI⽂件和图像⽂件(CMap贴到报告中)。
6.使⽤⾃⼰设置的ROI进⾏图像分类(ENVI中的两种有监督分类算法)(分类算法名称和分类结果写⼊报告)⼆MATLAB处理遥感数据(提交代码和结果)7.⽤MATLAB读⼊遥感数据(zy3和DC两个数据)8.⽤MATLAB读⼊遥感图像中ROI中的数据(包括数据和标签)9.把图像数据m*n*L(其中m表⽰⾏数,n表⽰列数,L表⽰波段数),重新排列为N*L的⼆维矩阵(其中N=m*n),其中N表⽰所有的数据点数量m*n。
(提⽰,⽤reshape函数,可以help查看这个函数的⽤法)10.计算每⼀类数据的均值(平均光谱),并把所有类别的平均光谱画出来(plot)(类似下⾯的效果)。
11.画出zy3数据中“农作物类别”的数据点(⾃⼰ROI标记的这个类别的点)在每个波段的直⽅图(matlab函数:nbins=50;hist(Xi,nbins),其中Xi表⽰这类数据在第i波段的数值)。
计算出这个类别数据的协⽅差矩阵,并画出(figure,imagesc(C),colorbar)。
1.打开遥感图像如下:2.查看图像头⽂件过程如下:3.地物的光谱曲线如下:4.数据信息统计如下:(注:由于保存的txt⽂件中的数据信息过长,所以采⽤截图的⽅式只显⽰了出⼀部分数据信息)5.设置ROI,对每类地物⾃⼰添加标记数据,CMap如下:6.使⽤⾃⼰设置的ROI进⾏图像分类(使⽤⽀持向量机算法和最⼩距离算法),⽀持向量机算法分类结果如下:最⼩距离算法分类结果如下:对⽐两种算法的分类结果可以看出⽀持分量机算法分类结果⽐最⼩距离算法分类结果好⼀些。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《模式分类》实验报告2 pattern classification
学生:江二华
学号:201111806
专业:信号与信息处理
学院:信息科学与工程学院
课程:模式分类
老师:王汇源教授
时间:2011-12-19
题目:
2.write a program to implement the batch perceptron algorithm(Algorithm 3)
(a) starting with a =0,apply your program to the training data from w1and w2. note the number of iterations required for convergence .
Apply your program to w3 and w2 again,note the number of iterations required for convergence.
Explain the difference between the iterations required in the two cases.
一、Matlab程序代码
plot(xxindex,yyindex)clear
sam1=[0.1 6.8 -3.5 2.0 4.1 3.1 -0.8 0.9 5.0 3.9; 1.1 7.1 -4.1 2.7 2.8 5.0 -1.3 1.2 6.4 4.0];
sam2=[7.1 -1.4 4.5 6.3 4.2 1.4 2.4 2.5 8.4 4.1;4.2 -4.3 0.0 1.6 1.9 -3.2 -4.0 -6.1 3.7 -2.2];
sam3=[-3.0 0.5 2.9 -0.1 -4.0 -1.3 -3.4 -4.1 -5.1 1.9;-2.9 8.7 2.1 5.2 2.2 3.7 6.2 3.4 1.6 5.1];
%分别产生第一类、第二类和第三类增广样本向量集ww1、ww2 和ww3
ww1=[ones(1,size(sam1,2)); sam1];
ww2=[ones(1,size(sam2,2)); sam2];
ww3=[ones(1,size(sam3,2)); sam3];
%产生第一类和第二类样本向量的规范化增广样本向量集w12
w12=[ww1,-ww2];
w13=[ww1,-ww3];
w23=[ww2,-ww3];
y=zeros(1,size(w12,2));%产生1x20 的行向量,赋给y,初值全为0
v=[1;1;1]; %给权向量v 赋初值
k=0; %k 为迭代次数,v(0)= [1;1;1]
while any(y<=0)
for i=1:size(y,2)
y(i)=v'*w12(:,i);
end
v=v+(sum((w12(:,find(y<=0)))'))';
k=k+1;
end
v %显示最终求得的权向量v 的值
k %迭代次数值
figure(1)
plot(sam1(1,:),sam1(2,:),'r.')
hold on
plot(sam2(1,:),sam2(2,:),'*')
xmin=min(min(sam1(1,:)),min(sam2(1,:)));
xmax=max(max(sam1(1,:)),max(sam2(1,:)));
ymin=min(min(sam1(2,:)),min(sam2(2,:)));
ymax=max(max(sam1(2,:)),max(sam2(2,:)));
xindex=xmin-1:(xmax-xmin)/100:xmax+1;
yindex=-v(2)*xindex/v(3)-v(1)/v(3);
plot(xindex,yindex)
%写出实现批处理感知器算法的程序,从v=0 开始,将程序应用在ω2 和ω3 类上,同样记下收敛的步数。
w23=[ww2,-ww3];
yy=zeros(1,size(w23,2)); %产生1x20 的行向量,赋给y,初值全为0
vv=[1;1;1]; %给权向量v 赋初值
kk=0; %k 为迭代次数,v(0)= [1;1;1]
while any(yy<=0)
for i=1:size(yy,2)
yy(i)=vv'*w23(:,i);
end
vv=vv+(sum((w23(:,find(yy<=0)))'))';
kk=kk+1;
end
vv %显示最终求得的权向量v 的值
kk %迭代次数值
figure(2)
plot(sam2(1,:),sam2(2,:),'r.')
hold on
plot(sam3(1,:),sam3(2,:),'*')
xxmin=min(min(sam2(1,:)),min(sam3(1,:)));
xxmax=max(max(sam2(1,:)),max(sam3(1,:)));
yymin=min(min(sam2(2,:)),min(sam3(2,:)));
yymax=max(max(sam2(2,:)),max(sam3(2,:)));
xxindex=xmin-1:(xxmax-xxmin)/100:xxmax+1;
yyindex=-vv(2)*xxindex/vv(3)-vv(1)/vv(3);
plot(xxindex,yyindex)
二、程序运行结果
(1)对w1和w2和的分类
最终的权向量a = [ 63.2000 -36.4000 44.7000];
迭代次数k = 28
(2)对w2和w3和的分类
最终的权向量a =[ -29.6000 34.4000 -44.7000]
迭代次数k = 23
三、分析
以上的实验中,w1 和w2的分类迭代次数为33,w2 和w3的分类迭代次数为23,这种差别是因为样本间距不一样导致的。