扫描隧道显微镜的原理及应用 ppt课件
合集下载
扫描隧道电子显微镜ppt课件
缺点
• 1、在扫描隧道显微镜(STM)的恒电流工作模式下,有时它对样品表面微 粒之间的某些沟槽不能够准确探测,与此相关的分辨率较差。对铂超细 粉末的一个研究实例:铂粒子之间的沟槽被探针扫描过的曲面所盖,在形 貌图上表现得很窄,而铂粒子的粒径却因此而被增大了。在TEM的观测 中则不会出现这种问题。 在恒高度工作方式下,从原理上这种局限性会 有所改善。但只有采用非常尖锐的探针,其针尖半径应远小于粒子之间 的距离,才能避免这种缺陷。在观测超细金属微粒扩散时,这一点显得 尤为重要。
应用与展望
• 扫描隧道电子显微镜的出现为人类认识和改造微观世界提供了 一个极其重要的新型工具。随着实验技术的不断完善,STM 将在 单原子操纵和纳米技术等诸多研究领域中得到越来越广泛的应 用。STM和 SEM 的结合在纳米技术中的应用必将极大地促进纳 米技术不断发展。可预言,在未来科学的发展中,STM 和 SEM 的 结合将渗透到表面科学、材料科学、生命科学等各个科学技术 领域中。
STM的工作模式
•
尽管扫描隧道电子显微镜的构型各不相同, 但都包括有下
述三个主要部分:驱动探针相对于导电试样表面作三维运动的
机械系统(镜体),用于控制和监视探针与试样之间距离的电子
系统和把测得的数据转换成图像的显示系统。它有两种工作方
式:恒流模式、恒高模式。
STM的工作模式
恒电流模式
• 利用一套电子反馈线路控制隧道电流,使 其保持恒定。再通过计算机系统控制针尖 在样品表面扫描,即是使针尖沿 x、y 两个 方向作二维运动。由于要控制隧道电流不 变,针尖与样品表面之间的局域高度也会保 持不变,因而针尖就会随着样品表面的高 低起伏而作相同的起伏运动,高度的信息 也就由此反映出来。这就是说,扫描隧道 电子显微镜得到了样品表面的三维立体信 息。这种工作方式获取图像信息全面,显 微图象质量高,应用广泛。
扫描隧道显微镜与原子力显微镜原理及应用介绍 ppt课件
ppt课件
9
4.STM的应用
“看见”了以前所看不到的东西 STM具有惊人的分辨本领,水平分辨率小于0.1纳米,垂直分辨率小于0.001纳米。 一般来讲,物体在固态下原子之间的距离在零点一到零点几个纳米之间。在扫 描隧道显微镜下,导电物质表面的原子、分子状态清晰可见。
ppt课件
10
4.STM的应用
在分子水平上构造电子学器件 一般情况下金属和半导体材料具有正的电导,即流过材料的电流随着所施加的电压的 增大而增加。但在单分子尺度下,由于量子能级与量子隧穿的作用会出现新的物理现 象──负微分电导。中国科技大学的科学家仔细研究了基于C60分子的负微分电导现象。 他们利用STM针尖将吸附在有机分子层表面的C60分子“捡起”,然后再把C60移到另 一个C60分子上方。这时,在针尖与衬底上的C60分子之间加上电压并检测电流,他 们获得了稳定的具有负微分电导效应的量子隧穿结构。这项工作通过对单分子操纵构 筑了一种人工分子器件结构。这类分子器件一旦转化为产品,将可广泛的用于快速开 关、震荡器和锁频电路等方面,这可以极大地提高电子元件的集成度和速度。
1990年,IBM公司的科学家展 示了一项令世人震惊的成果, 他们在金属镍表面用35个惰性 气体原子组成“IBM”三个英文 字母。
世界首例STM原子ppt课操件纵
11
4.STM的应用
单分子化学反应已经成为现实 单原子、单分子操纵在化学上是一个极具诱惑力且具有潜在应用 “选键化学”,可 以对分子内的化学键进行选择性的加工。 一个直观的例子是由Park等人完成的,他们将碘代苯分子吸附在Cu单晶表面的原子台 阶处,再利用STM针尖将碘原子从分子中剥离出来,然后用STM针尖将两个苯活性基 团结合到一起形成一个联苯分子,完成了一个完整的化学反应过程。
扫描隧道显微镜ppt课件
测固体表面原子中电子的隧道电流来分辨固体表面形貌的新型显 微装置。
那么什么是隧道效应?根据量子力学原理,由于粒子存在波 动性,当一个粒子处在一个势垒之中时,粒子越过势垒出现在另 一边的几率不为零, 这种现象称为隧道效应。
一、STM结构及工作原理
由于隧道效应,金属中电子不完全局 限于金属表面之内,电子云密度并不在表 面边界处突变为零。金属表面外,电子云 密度呈指数衰减,衰减长度约为 1nm。用 一个极细的、仅原子线度的金属针尖作为 探针,将它与被研究物质(即样品)的表面 作为两个电极,当样品表面与针尖非常靠 近(距离<1nm)时,两者电子云略有重叠。
原子操纵或纳米加工,构造所需的纳米结构。
二、STM特点
配合扫描隧道谱STS(Scanning Tunneling Spectroscopy)可以得到 有关表面局域电子结构的信息。
二、STM特点
STM技术局限性: 不能探测深层结构信息。 扫描范围小。 探针质量具有不确定性,常依赖于操作者的经验。 无法直接观测绝缘体材料。
一、STM结构及工作原理 二、STM特点 三、STM, TEM, SEM, FIM的比较
四、STM前沿发展
三、STM, TEM, SEM, FIM的比较
一、STM结构及工作原理 二、STM特点 三、STM, TEM, SEM, FIM的比较
四、STM前沿发展
四、STM前沿发展
宾尼等人1986年研制作成功的原子力显微镜(Atomic Force Microscope,AFM)弥补了STM的一部分不足。后来又陆续发展了 一系列的扫描探针显微镜(Scanning Probe Microscope,SPM),如 磁力显微镜(MFM)、静电力显微镜(EFM)、扫描热显微镜、光子 扫描隧道显微镜(PSTM)等。
那么什么是隧道效应?根据量子力学原理,由于粒子存在波 动性,当一个粒子处在一个势垒之中时,粒子越过势垒出现在另 一边的几率不为零, 这种现象称为隧道效应。
一、STM结构及工作原理
由于隧道效应,金属中电子不完全局 限于金属表面之内,电子云密度并不在表 面边界处突变为零。金属表面外,电子云 密度呈指数衰减,衰减长度约为 1nm。用 一个极细的、仅原子线度的金属针尖作为 探针,将它与被研究物质(即样品)的表面 作为两个电极,当样品表面与针尖非常靠 近(距离<1nm)时,两者电子云略有重叠。
原子操纵或纳米加工,构造所需的纳米结构。
二、STM特点
配合扫描隧道谱STS(Scanning Tunneling Spectroscopy)可以得到 有关表面局域电子结构的信息。
二、STM特点
STM技术局限性: 不能探测深层结构信息。 扫描范围小。 探针质量具有不确定性,常依赖于操作者的经验。 无法直接观测绝缘体材料。
一、STM结构及工作原理 二、STM特点 三、STM, TEM, SEM, FIM的比较
四、STM前沿发展
三、STM, TEM, SEM, FIM的比较
一、STM结构及工作原理 二、STM特点 三、STM, TEM, SEM, FIM的比较
四、STM前沿发展
四、STM前沿发展
宾尼等人1986年研制作成功的原子力显微镜(Atomic Force Microscope,AFM)弥补了STM的一部分不足。后来又陆续发展了 一系列的扫描探针显微镜(Scanning Probe Microscope,SPM),如 磁力显微镜(MFM)、静电力显微镜(EFM)、扫描热显微镜、光子 扫描隧道显微镜(PSTM)等。
扫描隧道显微镜(STM)PPT课件
扫描隧道显微镜 (STM)
Scanning Tunneling Microscope
一、简介 二、基本原理 三、STM的结构及关键技术 四、应用
1.表面形貌测量及分辨率 2.逸出功的测量 3. 扫描隧道谱 (STS)
1
五、原子力显微镜(AFM)
1.特点 2.工作原理 3.结构及关键技术
Δ 力传感器 Δ 微悬臂位移检测法 4.应用例举
如s↗ → I↘→ Pz上的电压↗→ Pz伸长 → s↘。 VPz(VPx,VPy)曲线为样品表面三维轮廓线。
9
△ XYZ位移器(样品位置细调〕 微小距离移动的精确控制
△ 样品粗调 使针尖与表面的距离,从光学可觉察的距离 (10- 100μm) 调整到100 Å 量级 - Louse 结构 - 精细螺旋机构
△ 防震系统分析 - 使由振动引起的隧道距离变化 0.001 nm (振动:针对重复性、连续的,通常频率在 1-100Hz)
10
四、扫描隧道显微镜的应用
1.表面形貌测量及其分辨率 假设样品表面存在陡变台阶,由于针尖半径R有 一定尺寸,针尖的轨迹将有一过渡区δ。δ与 R、 s 和 ko 有如下近似关系:
ΔI/Δs = 2Iko 若I保持不变 则:dI/ds ∝ ko∝φ1/2 工作方式: 扫描中保持I不变,使s有一交流调制, dI/ds 随x,y变化。dI/ds(x,y)平方后即为逸出功象。
3.扫描隧道谱(STS)
在表面的某个位置作I-V 或dI/dV-V,得有特征峰
的STS。在特征峰电压处,保持平均电流不变,使
例: 微杠杆由25μm金箔作成,重量10-10kg fd = 2kHz k = 2×10-2 N/m
因 STM 测的Δz可小至10-3-10-5 nm 则有:F = kΔz
Scanning Tunneling Microscope
一、简介 二、基本原理 三、STM的结构及关键技术 四、应用
1.表面形貌测量及分辨率 2.逸出功的测量 3. 扫描隧道谱 (STS)
1
五、原子力显微镜(AFM)
1.特点 2.工作原理 3.结构及关键技术
Δ 力传感器 Δ 微悬臂位移检测法 4.应用例举
如s↗ → I↘→ Pz上的电压↗→ Pz伸长 → s↘。 VPz(VPx,VPy)曲线为样品表面三维轮廓线。
9
△ XYZ位移器(样品位置细调〕 微小距离移动的精确控制
△ 样品粗调 使针尖与表面的距离,从光学可觉察的距离 (10- 100μm) 调整到100 Å 量级 - Louse 结构 - 精细螺旋机构
△ 防震系统分析 - 使由振动引起的隧道距离变化 0.001 nm (振动:针对重复性、连续的,通常频率在 1-100Hz)
10
四、扫描隧道显微镜的应用
1.表面形貌测量及其分辨率 假设样品表面存在陡变台阶,由于针尖半径R有 一定尺寸,针尖的轨迹将有一过渡区δ。δ与 R、 s 和 ko 有如下近似关系:
ΔI/Δs = 2Iko 若I保持不变 则:dI/ds ∝ ko∝φ1/2 工作方式: 扫描中保持I不变,使s有一交流调制, dI/ds 随x,y变化。dI/ds(x,y)平方后即为逸出功象。
3.扫描隧道谱(STS)
在表面的某个位置作I-V 或dI/dV-V,得有特征峰
的STS。在特征峰电压处,保持平均电流不变,使
例: 微杠杆由25μm金箔作成,重量10-10kg fd = 2kHz k = 2×10-2 N/m
因 STM 测的Δz可小至10-3-10-5 nm 则有:F = kΔz
扫描隧道显微镜ppt
扫描隧道显微镜的工作模式
1 2 3
恒高模式
在ห้องสมุดไป่ตู้模式下,针尖在固定的高度位置进行扫描 ,适用于表面高度变化较大的样品。
恒力模式
在此模式下,针尖根据表面形貌调整自身高度 ,以保持恒定的力,适用于表面高度变化较小 的样品。
交流模式
在此模式下,针尖与样品之间存在小幅度的振 动,以实现更精确的表面形貌扫描。
01
扫描隧道显微镜(STM)是一种基于量子力学隧道效应的测量技术,它能够直 接探测样品表面的原子结构,具有极高的分辨率和灵敏度。
02
STM技术自1981年被发明以来,已经广泛应用于物理、化学、生物学等各个领 域,成为研究物质表面结构和电子态的重要工具。
03
在过去的几十年中,STM技术不断发展和完善,不仅在实验上取得了许多重要 的成果,如原子操纵、单分子检测等,同时也促进了理论计算和模拟方法的发 展。
扫描隧道显微镜的应用范围
材料科学
用于研究材料表面的微观结构和物理性质,如表 面重构、吸附和脱附等。
生物学
用于研究生物分子和细胞膜的表面结构和功能, 如DNA和蛋白质的微观结构等。
环境科学
用于研究表面污染和环境变化对材料表面的影响 。
03
扫描隧道显微镜的优缺点
扫描隧道显微镜的优点
原子级分辨率
扫描隧道显微镜具有原子级的分辨 率,能够观察和解析材料表面的原 子结构。
分子构造研究
STM可以用于研究分子尺度的构造 和化学键信息,为理解分子性质提 供基础数据。
在生物领域的应用
细胞结构研究
STM可以用于观察细胞表面的结构、分子分布等,为生物医学 研究提供新的视角。
病毒构造研究
STM可以用于解析病毒的原子级别结构,为疫苗研发等提供关 键信息。
扫描隧道显微镜STM-PPT课件
2.STM的原理
l
隧道效应 Evaluation only. l 对于经典物理学来说,当一个粒子的动能E低 ted with于前方势垒的高度 Aspose.Slides for .NET 3.5 Client Profile 5.2 V0时,它不可能越过此势 Copyright 2019-2019 Aspose Pty Ltd. 垒,即透射系数等于零,粒子将完全被弹回。 而按照量子力学的计算,在一般情况下,其透 射系数不等于零,也就是说,粒子可以穿过比 它能量更高的势垒,这个现象称为隧道效应。
1.STM的发明
1982年,国际商业机器公司(IBM)苏黎世研究所 的Gerd Binnig和Evaluation Heinrich Rohrer 及其同事们成功地研 only. 制出世界上第一台新型的表面分析仪器,即扫描隧道 with Aspose.Slides for .NET 3.5 Client Profile 显微镜 (Scanning Tunneling Microscope) 。 它使人类第一次能够直接观察到物质表面上的单 Copyright 2019-2019 Aspose Pty Ltd. 个原子及其排列状态,并能够研究其相关的物理和化 学特性。因此,它对表面物理和化学、材料科学、生 命科学以及微电子技术等研究领域有着十分重大的意 义和广阔的应用前景。 STM的发明被国际科学界公认 为20世纪80年代世界十大科技成就之一;由于这一杰 出成就Binnig和Rohrer获得了1986年诺贝尔物理奖。
ted
5.2
1.STM的发明
Evaluation only. ted with Aspose.Slides for .NET 3.5 Client Profile 5.2 Copyright 2019-2019 Aspose Pty Ltd.
《扫描隧道显微镜》PPT课件
第一类是光成像,包括光折射放大成像和光干涉成像。光折射放
大成像检测方法的代表是光学显微镜和透射电子显微镜;光干涉
成像法的代表是光干涉显微镜和TOPO移相干涉仪。第二类是对
试件表面进行扫描,逐点检测,从而获得表面微观形貌的信息,
这一类检测方法的代表是表面轮廓仪和扫描电子显微镜(SEM)
2021/3/8
1
1.光学显微镜
光学显微镜是在光学放大镜基础 上发明的,放大镜的物体形貌分辨率 可达到0.1mm。1665年发明了光学显 微镜,它可将被测物体放大数百倍。 光学显微镜经过多次改进,现在的放 大倍数达到1250倍。如果再采用油浸 镜头或用紫外光,放大倍数还能在提 高一些。光学显微镜使用方便,应用 广泛,但受光波波长的限制,放大倍 数无法再提高。
TEM 是 通 过 电 子 束透过试件而放大成像 的,电子束穿透材料的 能力不强,故试件必须 做得极薄,加工这种极 薄的试件有相当难度, 故TEM的适用范围有限。
2021/3/8
3
3.表面轮廓仪
用探针对试件表面形貌进行接触测量是一种古老的方法。随着测量技术的提高,现在的测 量表面粗糙度的轮廓仪,分辨率达0.05um以上。为了避免探针尖磨损,用金刚石制造。探针尖 曲率半径在0.05um左右,这就限制了测量分辨率的提高,且测量时针尖有一定力压向试件,容 易划伤试件。
2021/3/8
2
2.透射电子显微镜(TEM)
TEM出现在20世纪30年代,到50年代进入实用阶段。透射电子显微镜和光学显微镜的原理 极为相似,只是用波长极短的电子束代替了可见光线,用静电或磁透镜代替光学玻璃透镜,最 后在荧光屏上成像。TEM的放大倍数极高,点分辨率可达0.3nm,线分辨率可达0.144nm,已 达原子级分辨率。用TEM观察物体内部显微结构时,可看到原子排列的晶格图像,并已观察到 某些重金属原子的投影图像。用TEM检测时,试件需放在真空室内。
扫描隧道显微镜优秀课件
合使用; • 电子学控制系统的采集和反馈速度和质量; • 样品的导电性对图像也有一定的影响。 • 各种参数的选择要合适。
26
STM的实验步骤
• 准备针尖和样品 • 手动逼近样品和针尖,使之距离约为1mm;切忌使针尖与样品发
生相撞; • 设置参数:隧道电流;针尖偏压;软件控制马达,使针尖自动逼
近进入隧道区; • 根据不同的样品设置不同的扫描范围(金膜一般取700~900nm,石
15
STM的仪器构造
STM Instrumentation
16
STM的仪器构造
STM Instrumentation
STM由具有减振系统的STM 头部(含探针和样品台)、电 子学控制系统和包括A/D 多
功能卡的计算机组成。
• Tip
• Scanner
• Sample positioner
• Vibration isolation
190
STM的基本原理
10
STM的基本原理
1、隧穿效应 (Tunneling Effect) STM的工作原理是基于量子力学的
隧穿效应。 STM中最重要的概念隧穿电流(Tunneling current)可通过一维模 型简单说明。
对于经典物理学来说,当一粒子的动能E低于前方势垒的高度U0时,它不 可能越过此势垒,即透射系数等于零,粒子将完全被弹回。 而按照量子力 学的计算,在一般情况下,其透射系数不等于零,也就是说,粒子可以穿 过比它的能量更高的势垒,这个现象称为隧道效应。
• 1986年,STM的发明者宾尼和罗雷尔被授予诺贝尔物理学奖。
葛·宾尼(Gerd Binning)
海·罗雷尔(Heinrich Rohrer)
3
概况
26
STM的实验步骤
• 准备针尖和样品 • 手动逼近样品和针尖,使之距离约为1mm;切忌使针尖与样品发
生相撞; • 设置参数:隧道电流;针尖偏压;软件控制马达,使针尖自动逼
近进入隧道区; • 根据不同的样品设置不同的扫描范围(金膜一般取700~900nm,石
15
STM的仪器构造
STM Instrumentation
16
STM的仪器构造
STM Instrumentation
STM由具有减振系统的STM 头部(含探针和样品台)、电 子学控制系统和包括A/D 多
功能卡的计算机组成。
• Tip
• Scanner
• Sample positioner
• Vibration isolation
190
STM的基本原理
10
STM的基本原理
1、隧穿效应 (Tunneling Effect) STM的工作原理是基于量子力学的
隧穿效应。 STM中最重要的概念隧穿电流(Tunneling current)可通过一维模 型简单说明。
对于经典物理学来说,当一粒子的动能E低于前方势垒的高度U0时,它不 可能越过此势垒,即透射系数等于零,粒子将完全被弹回。 而按照量子力 学的计算,在一般情况下,其透射系数不等于零,也就是说,粒子可以穿 过比它的能量更高的势垒,这个现象称为隧道效应。
• 1986年,STM的发明者宾尼和罗雷尔被授予诺贝尔物理学奖。
葛·宾尼(Gerd Binning)
海·罗雷尔(Heinrich Rohrer)
3
概况
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
扫描隧道显微镜的原理及应用
扫描隧道显微镜的原理及应用
利用一套电子反馈线路控制隧道电流 I ,使 其保持恒定。再通过计算机系统控制针尖 在样品表面扫描,即保持针尖与样品表面 之间的局域高度不变,针尖随着样品表面 的高低起伏而作相同的起伏运动,高度的 信息也就由此反映出来。这种工作方式获 取图象信息全面,显微图象质量高,应用 广泛
扫描隧道显微镜的原理及应用
STM的应用优势: • STM具有极高的分辨率 • STM得到的是实时的、真实的样品表面的
高分辨率图象。 • STM的使用环境宽松。 • STM的应用领域是宽广的 • STM的价格相对于电子显微镜等大型仪器
来讲是较低的。
STM主要用于纳米技术上,常见的应用为:
1.“看见”了以前所看不到的东西
扫描隧道显微镜的原理及应用
• 发明人为德裔物理学家葛.宾尼(Gerd Bining)博士和他的 导师海.罗雷尔(Heinrich Rohrer)博士
• 他们俩当时供职于IBM公司设在瑞士苏黎士的实验室. • 他们的研究方向为超导隧道效应,并不是专门为了发明
STM • 一个偶然的机会他们读到了物理学家罗伯特.杨撰写的一
常用的 STM 针尖安放在一个可进行三维运动的压电陶瓷支架上,如图 3 所 示,Lx、Ly、Lz分别控制针尖在x、y、z方向上的运动。在Lx、Ly上施加电 压,便可使针尖沿表面扫描;测量隧道电流 I ,并以此反馈控制施加在Lz上 的电压Vz;再利用计算机的测量软件和数据处理软件将得到的信息在屏幕上 显示出来。
由此可见,隧道电流 I 对针尖与样 品表面之间的距离 s 极为敏感,如果 s 减小0.1nm,隧道电流就会增加一个数 量级。当针尖在样品表面上方扫描时, 即使其表面只有原子尺度的起伏,也将 通过其隧道电流显示出来。借助于电子 仪器和计算机,在屏幕上即显示出与样 品表面结构相关的信息。
扫描隧道显微镜的原理及应用
STM所观察到的并不是真正的原子或分子,而只是这些原子或分子的 电子云形态。我们通过STM所获得的分子图象将不是与分子内部的原 子排列一一对应的。 C60在硅晶面上的吸附取向实验
2.实现了单原子和单分子操纵
单原子或单分子操纵方式:
1 利用STM针尖与吸附在材料表面的分子之间 的吸引或排斥作用,使吸附分子在材料表面 发生横向移动,具体又可分为“牵引”、 “滑动”、推动”三种方式;
篇有关“形貌仪”的文章。这篇文章让他们产生利用导体 的隧道效应来探测物体表面的想法. • 结果成功了!
• Gerd Bining , Heinrich Rohrer和Ernst Ruska荣获 1986年的诺贝尔物理奖
扫描隧道显微镜的原理及应用
扫描隧道显微镜是根据量子力学中的隧道效 应原理,通过探测固体表面原子中电子的隧道电 流来分辨固体表面形貌的新型显微装置。
隧道效应 根据量子力学原理,由于粒子存在 波动性,当一个粒子处在一个势垒之中时,粒 子越过势垒出现在另一边的几率不为零,这种 现象称为隧道效应。
由于电子的隧道效应,金属中的电子并不完全局限于金属表面之内,
电子云密度并不在表面边界处突变为零。在金属表面以外,电子云密度呈 指数衰减,衰减长度约为1nm。用一个极细的、只有原子线度的金属针尖 作为探针,将它与被研究物质(称为样品)的表面作为两个电极,当样品表面 与针尖非常靠近(距离<1nm)时,两者的电子云略有重叠,如图 2 所示。 若在两极间加上电压U,在电场作用下,电子就会穿过两个电极之间的势 垒,通过电子云的狭窄通道流动,从一极流向另一极,形成隧道电流 I 。 隧道电流 I 的大小与针尖和样品间的距离 s 以及样品表面平均势垒的高度p 有关,其关系为 I∝Uexp[-A(ps)1/2] ,式中 A 为常量。如果s以0.1nm为单 位,p以 eV为单位,则在真空条件下,A≈1,I∝ Uexp[-(ps)1/2] 。
扫描隧道显微镜的原理及应用
在对样品进行扫描过程中保持针尖的绝对 高度不变;于是针尖与样品表面的局域距 离 s 将发生变化,隧道电流I的大小也随着 发生变化;通过计算机记录隧道电流的变 化,并转换成图像信号显示出来,即得到 了 STM显微图像。这种工作方式仅适用于 样品表面较平坦、且组成成分单一(如由同 一种原子组成)的情形。
2 Park等人将碘代苯分子吸附在 Cu单晶表面的原子台阶处,再 利 用STM针尖将碘原子从分子中剥离出来,然后用 STM针尖 将两个苯活性基团结合到一起形成一个联苯分子,完成了一个完 整的化学反应过程。
4.在分子水平上构造分子器件
“从上到下”方法到“从下到上”方法的变化。
相关研究成果:
1 C60单分子开关
2 通过某些外界作用将吸附分子转移到针尖上, 然后移动到新的位置,再将分子沉积在材料 表面;化学键。
3.单分子化学反应已经成为现实
可以一个个地将单个的原子放在一起以构成一个新的分 子,或是把单个分子拆开成几个分子或原子。
最近研究成果:
1 康奈尔大学Lee和Ho用STM来控制单个的CO分子与Ag(110)表面 的单个Fe原子在13K的温度下成键,形成FeCO和Fe(CO)2分子。
利用STM针尖压迫C60单分子,使C60分子变形,从而通过改变其内部的 结构而使其电导增加了两个数量级。当压力除去后,电导又回复到原来 的水平,因此可以把这个体系看成是一种“电力”开关。
扫描隧道显微镜的原理及应用
STM历史意义
扫描隧道显微镜(STM)的发明打开了人 类对微观世界观察的大门,使得人类在纳 米尺度上研究单一原子以及单一分子的反 应成为可能。
扫描隧道显微镜的原理及应用
• 光学显微镜(荷兰人列文虎克发明),用于观 察细胞.
• 电子显微镜(德国科学家Ernst Ruska和 Max Knoll发明),可以观察到比细胞更小的 病毒.
光学显微镜
电子显微镜
扫描隧道显微镜的原理及应用
• 光学显微镜不能观察到纳米级的微观粒子. • 电子显微镜由于高速电子容易透入物质深处,低
速电子又容易被样品的电磁场偏折,故电子显微 镜很少能对表面结构有所揭示.
总之,以上两种显微镜都不能用于研究物质的微观表 面,人们急需一种能够观测物质表面结构的显微术.