初中数学二次函数难题汇编含答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学二次函数难题汇编含答案

一、选择题

1.已知在平面直角坐标系中,有两个二次函数()()39m x x y =++及

()()26y n x x =--图象,将二次函数()()39m x x y =++的图象按下列哪一种平移方式平移后,会使得此两个函数图象的对称轴重叠( )

A .向左平移2个单位长度

B .向右平移2个单位长度

C .向左平移10个单位长度

D .向右平移10个单位长度

【答案】D

【解析】

【分析】

将二次函数解析式展开,结合二次函数的性质找出两二次函数的对称轴,二者做差后即可得出平移方向及距离.

【详解】

解:∵y =m (x +3)(x +9)=mx 2+12mx +27m ,y =n (x -2)(x -6)=nx 2-8nx +12n ,

∴二次函数y =m (x +3)(x +9)的对称轴为直线x =-6,二次函数y =n (x -2)(x -6)的对称轴为直线x =4,

∵4-(-6)=10,

∴将二次函数y =m (x +3)(x +9)的图形向右平移10个单位长度,两图象的对称轴重叠.

故选:D .

【点睛】

本题考查了二次函数图象与几何变换以及二次函数的性质,根据二次函数的性质找出两个二次函数的对称轴是解题的关键.

2.如图,二次函数()2

00y ax bx c a =++=≠的图象与x 轴正半轴相交于A 、B 两点,与y 轴相交于点C ,对称轴为直线2x =,且OA OC =,则下列结论:

①0abc >;②930a b c ++<;③1c >-;④关于x 的方程()2

00ax bx c a ++=≠有一个根为1a

-,其中正确的结论个数有( )

A .1个

B .2个

C .3个

D .4个

【答案】C

【解析】

【分析】

由二次图像开口方向、对称轴与y 轴的交点可判断出a 、b 、c 的符号,从而可判断①;由图像可知当x =3时,y <0,可判断②;由OA =OC ,且OA <1,可判断③;把﹣1a 代入方程整理得ac 2-bc +c =0,结合③可判断④;从而得出答案.

【详解】

由图像开口向下,可知a <0,与y 轴的交点在x 轴的下方,可知c <0,又对称轴方程为x =2,∴﹣2b a

>0,∴b >0,∴abc >0,故①正确;由图像可知当x =3时,y >0,∴9a +3b +c >0,故②错误;由图像可知OA <1,∵OA =OC ,∴OC <1,即﹣c <1,故③正确;假设方程的一个根为x =﹣

1a ,把﹣1a 代入方程,整理得ac 2-bc +c =0, 即方程有一个根为x =﹣c ,由②知﹣c =OA ,而当x =OA 是方程的根,∴x =﹣c 是方程的根,即假设成立,故④正确.故选C.

【点睛】

本题主要考查二次函数的图像与性质以及二次函数与一元二次方程的联系,熟练掌握二次函数的相关知识是解答此题的关键.

3.已知二次函数y =ax 2+bx +c (a ≠0)的图象如图,则下列4个结论:①abc <0;②2a +b =0;③4a +2b +c >0;④b 2﹣4ac >0;其中正确的结论的个数是( )

A .1

B .2

C .3

D .4

【答案】D

【解析】

【分析】 根据二次函数y =ax 2+bx +c 系数符号由抛物线开口方向、对称轴、抛物线与y 轴的交点抛物线与x 轴交点的个数确定解答.

【详解】

①由抛物线的对称轴可知:﹣

>0,

∴ab <0,

∵抛物线与y 轴的交点在正半轴上,

∴c >0,

∴abc <0,故①正确;

②∵﹣=1,

∴b =﹣2a ,

∴2a +b =0,故②正确.

③∵(0,c )关于直线x =1的对称点为(2,c ),

而x =0时,y =c >0,

∴x =2时,y =c >0,

∴y =4a +2b +c >0,故③正确;

④由图象可知:△>0,

∴b 2﹣4ac >0,故②正确;

故选:D .

【点睛】

本题考查二次函数的图象与系数的关系,解题的关键是熟练运用二次函数的图象与性质,属于中考常考题型.

4.如图是抛物线y=ax 2+bx+c (a≠0)的部分图象,其顶点是(1,n ),且与x 的一个交点在点(3,0)和(4,0)之间,则下列结论:①a -b+c >0;②3a+b=0;③b 2=4a (c-n );④一元二次方程ax 2+bx+c=n-1有两个不等的实数根.其中正确结论的个数是( )

A .1

B .2

C .3

D .4

【答案】C

【解析】

【分析】 利用抛物线的对称性得到抛物线与x 轴的另一个交点在点(-2,0)和(-1,0)之间,则当x=-1时,y>0,于是可对①进行判断;利用抛物线的对称轴为直线x=-2b a

=1,即b=-2a ,则可对②进行判断;利用抛物线的顶点的纵坐标为n 得到2

44ac b a

=n ,则可对③进行判断;由于抛物线与直线y=n 有一个公共点,则抛物线与直线y=n-1有2个公共点,于是可对④进行判断.

【详解】

∵抛物线与x 轴的一个交点在点(3,0)和(4,0)之间,而抛物线的对称轴为直线x=1,

∴抛物线与x 轴的另一个交点在点(-2,0)和(-1,0)之间.

∴当x=-1时,y >0,

相关文档
最新文档