2017中考数学试卷汇编——圆(带答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆的有关性质

一、选择题

1.(2016·山东省滨州市·3分)如图,AB是⊙O的直径,C,D是⊙O上的点,且OC∥BD,AD分别与BC,OC相交于点E,F,则下列结论:

①AD⊥BD;②∠AOC=∠AEC;③CB平分∠ABD;④AF=DF;⑤BD=2OF;⑥△CEF≌△BED,其中一定成立的是()

A.②④⑤⑥ B.①③⑤⑥ C.②③④⑥ D.①③④⑤

【考点】圆的综合题.

【分析】①由直径所对圆周角是直角,

②由于∠AOC是⊙O的圆心角,∠AEC是⊙O的圆内部的角角,

③由平行线得到∠OCB=∠DBC,再由圆的性质得到结论判断出∠OBC=∠DBC;

④用半径垂直于不是直径的弦,必平分弦;

⑤用三角形的中位线得到结论;

⑥得不到△CEF和△BED中对应相等的边,所以不一定全等.

【解答】解:①、∵AB是⊙O的直径,

∴∠ADB=90°,

∴AD⊥BD,

②、∵∠AOC是⊙O的圆心角,∠AEC是⊙O的圆内部的角角,

∴∠AOC≠∠AEC,

③、∵OC∥BD,

∴∠OCB=∠DBC,

∵OC=OB,

∴∠OCB=∠OBC,

∴∠OBC=∠DBC,

∴CB平分∠ABD,

④、∵AB是⊙O的直径,

∴∠ADB=90°,

∴AD⊥BD,

∵OC∥BD,

∴∠AFO=90°,

∵点O为圆心,

∴AF=DF,

⑤、由④有,AF=DF,

∵点O为AB中点,

∴OF是△ABD的中位线,

∴BD=2OF,

⑥∵△CEF和△BED中,没有相等的边,

∴△CEF与△BED不全等,

故选D

【点评】此题是圆综合题,主要考查了圆的性质,平行线的性质,角平分线的性质,解本题的关键是熟练掌握圆的性质.

2.(2016·山东省德州市·3分)《九章算术》是我国古代内容极为丰富的数学名著,书中有下列问题“今有勾八步,股十五步,问勾中容圆径几何?”其意思是:“今有直角三角形,勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形能容纳的圆形(内切圆)直径是多少?”()

A.3步B.5步C.6步D.8步

【考点】三角形的内切圆与内心.

【专题】圆的有关概念及性质.

【分析】根据勾股定理求出直角三角形的斜边,即可确定出内切圆半径.

【解答】解:根据勾股定理得:斜边为=17,

则该直角三角形能容纳的圆形(内切圆)半径r==3(步),即直径为6步,故选C

【点评】此题考查了三角形的内切圆与内心,Rt△ABC,三边长为a,b,c(斜边),其内切圆半径r=.

3.(2016·山东省济宁市·3分)如图,在⊙O中,=,∠AOB=40°,则∠ADC的度数是()

A.40°B.30°C.20°D.15°

【考点】圆心角、弧、弦的关系.

【分析】先由圆心角、弧、弦的关系求出∠AOC=∠AOB=50°,再由圆周角定理即可得出结论.

【解答】解:∵在⊙O中,=,

∴∠AOC=∠AOB,

∵∠AOB=40°,

∴∠AOC=40°,

∴∠ADC=∠AOC=20°,

故选C.

4. (2016·云南省昆明市·4分)如图,AB为⊙O的直径,AB=6,AB⊥弦CD,垂足为G,EF切⊙O于点B,∠A=30°,连接AD、OC、BC,下列结论不正确的是()

A.EF∥CD B.△COB是等边三角形

C.CG=DG D.的长为π

【考点】弧长的计算;切线的性质.

【分析】根据切线的性质定理和垂径定理判断A;根据等边三角形的判定定理判断B;根据垂径定理判断C;利用弧长公式计算出的长判断D.

【解答】解:∵AB为⊙O的直径,EF切⊙O于点B,

∴AB⊥EF,又AB⊥CD,

∴EF∥CD,A正确;

∵AB⊥弦CD,

∴∠COB=2∠A=60°,又OC=OD,

∴△COB是等边三角形,B正确;

∵AB⊥弦CD,

∴CG=DG,C正确;

的长为:=π,D错误,

故选:D.

5. (2016·浙江省湖州市·3分)如图,圆O是Rt△ABC的外接圆,∠ACB=90°,∠A=25°,过点C作圆O的切线,交AB的延长线于点D,则∠D的度数是()

A.25° B.40° C.50° D.65°

【考点】切线的性质;圆周角定理.

【分析】首先连接OC,由∠A=25°,可求得∠BOC的度数,由CD是圆O的切线,可得OC⊥CD,继而求得答案.

【解答】解:连接OC,

∵圆O是Rt△ABC的外接圆,∠ACB=90°,

∴AB是直径,

∵∠A=25°,

∴∠BOC=2∠A=50°,

∵CD是圆O的切线,

∴∠D=90°﹣∠BOC=40°.

故选B.

6. (2016·浙江省绍兴市·4分)如图,BD是⊙O的直径,点A、C在⊙O上,=,∠AOB=60°,则∠BDC的度数是()

A.60° B.45° C.35° D.30°

【考点】圆周角定理.

【分析】直接根据圆周角定理求解.

【解答】解:连结OC,如图,

∵=,

∴∠BDC=∠AOB=×60°=30°.

故选D.

7.(2016广西南宁3分)如图,点A,B,C,P在⊙O上,CD⊥OA,CE⊥OB,垂足分别为D,E,∠DCE=40°,则∠P的度数为()

相关文档
最新文档