射频放大电路设计

合集下载

射频功率放大器电路设计实例

射频功率放大器电路设计实例
低噪声放大器输入(LNA in)(引脚11)使用50的传输线与开关引脚13连接,射频输入信号为20dBm,输入隔直电容大于24pF。低噪声放大器输出(LNA out)(引脚8)端的射频输出信号为7dBm,偏置电压通过电感线圈、10电阻接入,并连接100pF和1000pF旁路电容器,工作电压为3~5V,电流消耗为5mA。
一个覆盖900MHz/1.9GHz/2.5GHz的功率放大器电路和元器件布局图如图3.3.1所示,元器件参数见表3.3.1。电路是组装在0.031英寸的FR-4印制板上。C5(1000pF)是旁路电容器,用来消除加在与VCC连接的电源线上的级间反馈。MGA83563第一级FET的漏极连接到引脚1,电源电压VCC通过电感线圈L2连接在漏极上,电感线圈的电源端被旁路到地。这个级间电感线圈用来完成在第一级放大器和第二级放大器之间的匹配。电感线圈L2的数值取决于MGA83563特定的工作频率,L2的数值可以根据工作频率选择。电感L2的数值也与印制电路板材料、厚度和RF电路的版面设计有关。
第6页/共26页
① PCB版面MGA83563封装引脚焊盘的尺寸建议采用推荐使用的微型SOT-363(SC-70)封装的印制电路板引脚焊盘。该设计提供大的容差,可以满足自动化装配设备的要求,并能够减少寄生效应,保证MGA83563的高频性能。② PCB材料的选择对于频率为3GHz的无线应用来说,可选择型号为FR-4或G-10印制电路板材料,典型的单层板厚度是0.020~0.031英寸,多层板一般使用电介质层厚度在0.005~0.010英寸之间。更高的频率应用例如5.8GHz,建议使用PTFE/玻璃的电介质材料的印制电路板。
第4页/共26页
因为MGA83563中两级放大器都是使用同一个电源,为了防止从RF输出级到第一级的漏极之间的电源线产生的反馈,应确保RF输出级到第一级的漏极之间的电源线有非常好的旁路。否则,电路将变得不稳定。连接到MGA83563的RF输入(引脚3)是直流接地电位。在MGA83563的输入端,可以不使用隔直电容,除非有一个DC电压出现在输入端。

射频低噪声放大器电路设计详解

射频低噪声放大器电路设计详解

射频低噪声放大器电路设计详解射频LNA 设计要求:低噪声放大器(LNA)作为射频信号传输链路的第一级,它的噪声系数特性决定了整个射频电路前端的噪声性能,因此作为高性能射频接收电路的第一级LNA 的设计必须满足:(1)较高的线性度以抑制干扰和防止灵敏度下降;(2)足够高的增益,使其可以抑制后续级模块的噪声;(3)与输入输出阻抗的匹配,通常为50Ω;(4)尽可能低的功耗,这是无线通信设备的发展趋势所要求的。

InducTIve-degenerate cascode 结构是射频LNA 设计中使用比较多的结构之一,因为这种结构能够增加LNA 的增益,降低噪声系数,同时增加输入级和输出级之间的隔离度,提高稳定性。

InducTIve-degenerate cascode 结构在输入级MOS 管的栅极和源极分别引入两个电感Lg 和Ls,通过选择适当的电感值,使得输入回路在电路的工作频率附近产生谐振,从而抵消掉输入阻抗的虚部。

由分析可知应用InducTIve-degenerate cascode 结构输入阻抗得到一个50Ω的实部,但是这个实部并不是真正的电阻,因而不会产生噪声,所以很适合作为射频LNA 的输入极。

高稳定度的LNAcascode 结构在射频LNA 设计中得到广泛应用,但是当工作频率较高时由于不能忽略MOS 管的寄生电容Cgd,因而使得整个电路的稳定特性变差。

对于单个晶体管可通过在其输入端串联一个小的电阻或在输出端并联一个大的电阻来提高稳定度,但是由于新增加的电阻将使噪声值变坏,因此这一技术不能用于低噪声放大器。

文献对cascode 结构提出了改进,在其中ZLoad=jwLout//(jwCout)-。

短波发射机射频前端放大电路设计

短波发射机射频前端放大电路设计

短波发射机射频前端放大电路设计提纲:1. 电路拓扑结构2. 功耗及散热问题3. 外部干扰及抗干扰性能4. 射频信号质量5. 调试和实验验证1. 电路拓扑结构短波发射机射频前端放大电路的拓扑结构包括:功率放大器和驱动放大器。

功率放大器负责将低功率信号放大至一定功率,驱动放大器则将输入信号放大至合适的功率水平,以驱动功率放大器。

近年来,类F和类E功率放大器成为了主流选择,其拓扑结构简单,效率高。

类F功率放大器是一种抽取频率的方法,其拓扑与类D功率放大器相似。

类E功率放大器是综合了电容和电感的有源装置,并利用开关管的电感时保证其在高频下的效率。

这两种拓扑结构中,类E功率放大器具有更高的效率,善于处理宽带信号,但类F功率放大器的拓扑结构较为简单,容易实现。

驱动放大器的拓扑结构较为单一,通常采用差分、全差分、共模、反相等传输方式。

差分方式具有较好的共模抑制性能,可有效抑制输入信号与噪声的共模干扰;全差分方式相对复杂,但在高速传输上有明显优势;共模和反相方式可分别用于差分和全差分输出,但这两种方式都存在失真问题。

2. 功耗及散热问题功率放大器的功耗通常较大,同时也带来了散热问题。

为了实现高效且可靠的散热,常用的方法包括利用散热片、散热管和水冷等。

散热片是最常见的散热方式,但其散热效率不够高,无法满足高功率放大器的需求。

散热管则解决了这一问题,其结构类似于热管,能将热量从高处传递至低处,同时保证热传导的均匀性。

水冷方式则利用水的热传导性能,在功率放大器内部设置通道,通过水循环实现散热。

除此之外,功率放大器的电源设计和电源管理也是影响功耗和散热的重要因素。

尝试在多个单元电源之间分配负载是一种有效的电源管理策略。

当瞬态负载峰值保持在合理水平时,能降低电源出现异常的风险。

3. 外部干扰及抗干扰性能短波发射机前端放大电路需要具备较强的抗干扰能力,以避免因外部射频干扰而导致的信号质量降低。

干扰的来源可能是来自周边环境的无线电信号和其他外部信号。

射频放大器电路设计

射频放大器电路设计

下图示意了|S 时的稳定与非稳定区域。 下图示意了 22|<1及|S22|>1时的稳定与非稳定区域。 及 时的稳定与非稳定区域 |Гout|=1 ГSI rin 非稳定区
|ГS| =1
ГSR
(a) |S22|<1
(b) |S22|>1
的取值, 一旦得到Г 平面上的输出稳定圆,参考|S 的取值 一旦得到 S平面上的输出稳定圆,参考 22|的取值,就很容易知道对应于输入 端口稳定或非稳定的Г 取值范围,从而为匹配电路设计提供指导。 端口稳定或非稳定的 S取值范围,从而为匹配电路设计提供指导。
S 22 − Γ S D , 若ГS=0,则|Гout|=|S22| 1 − S11Γ S
|Гout|=1 rin Cin
ГSI |ГS| =1
ГSR
ГS平面上的输入稳定圆
晶体管稳定性
输入稳定圆
|Гout|=1 ГSI |ГS| =1 Cin 稳定区 ГSR rin 稳定区 Cin 非稳定区
放大器设计
Γin Γout 射频微波晶体管的两端口网络等 效 ΓL,ΓS分别是负载及源反射系数,由负载阻抗及源阻抗决定 分别是负载及源反射系数,由负载阻抗及源阻抗决定: ΓL= ( ZL-ZC ) / ( ZL+ ZC) ΓS= ( ZS-ZC ) / ( ZS+ ZC)
晶体管的稳定性
射频微波晶体管稳定性意味着图中诸反射系数的模值应小于 , 射频微波晶体管稳定性意味着图中诸反射系数的模值应小于1,即 稳定性意味着图中诸反射系数的模值应小于 |Γin|<1, |Γout|<1 < , <
ГLR
|S11|>1时,原点所在区域为非稳定区域 时 S − ΓL D Γin = 11 因为 ГL平面上的输出稳定圆 若ГL=0,则|Гin|=|S11| , 1 − S 22Γ L 右上图在|S 时的稳定与非稳定区域如下图所示。注意|Г 右上图在 11|<1及|S11|>1时的稳定与非稳定区域如下图所示。注意 L|≤1

射频功率放大器电路设计

射频功率放大器电路设计

本文主要对射频功率放大器电路设计进行介绍,主要介绍了射频功率放大器电路设计思路部分,以及部分设计线路图一、阻抗匹配设计大多数PA都内部集成了到50欧姆的阻抗匹配设计网络,不过也有一些高功率PA 将输出端匹配放在集成芯片外部,以减小芯片面积。

常用的匹配设计有微带线匹配设计、分立器件匹配设计网络等,在典型设计中有可能会将两者共同使用,以改善因为分立器件数值不连续带来的匹配设计不佳的问题。

PA阻抗匹配设计原理和射频中的阻抗匹配相同,都是共轭匹配设计,主要实现功率的最大传输。

常用工具可以使用Smith圆图来观察阻抗匹配设计变化,同时用ADS软件来完成仿真。

二、谐波抑制由本人微博《射频功率放大器 PA 的基本原理和信号分析》得知,谐波一般是由器件的非线性产生的倍频分量。

谐波抑制对于CE、FCC认证显得尤为重要。

由于谐波的频率较分散,所以一般采用无源滤波器来衰减谐波分量,达到抑制谐波的效果。

不仅PA,其它器件包括调制信号输出端都有可能产生谐波,为了避免PA对谐波进行放大,有必要在PA输入端即添加抑制电路。

上图所示无源滤波器常用于2.4G频段的芯片输出端位置,该滤波器为五阶低通滤波器,截止频率约为3GHz,对2倍频和3倍频的抑制分别达到45.8dB和72.8dB。

使用无源滤波器实现谐波抑制有以下优点:l 简单直接,成本有优势l 良好的性能并且易于仿真l 可以同时实现阻抗匹配设计三、系统设计优化系统设计优化主要从电源设计,匹配网络设计出发,实现PA性能的稳定改善。

3.1 电源设计功率放大器是功耗较大的器件,在快速开关的时候瞬间电流非常大,所以需要在主电源供电路径上加至少10uF的陶瓷电容,同时走线尽量宽,让电容放置走线上,充分利用电容储能效果。

PA供电电源一般有开关噪声和来自其它模块的耦合噪声,可以在PA靠近供电管脚处放置一些高频陶瓷电容。

有必要也可以加扼流电感或磁珠来抑制电源噪声。

从SE2576L的结构框图可以看出,该PA一共由三级放大组成,每一级都单独供电,前面两级作为小信号电压增大以及开关偏置电路,其工作电流较小,最后一级功率放大,其电流很大。

射频功率放大器与微带电路设计

射频功率放大器与微带电路设计

射频功率放大器与微带电路设计摘要:功率放大器作为无线通信系统中核心部件,对于无线通信系统的通信质量有着突出的作用和影响,尤其是随着无线通信技术的发展以及移动通信用户数量的不断增加,进行功率放大器及其电路的设计研究,具有十分突出的作用意义和影响。

本文将以射频功率放大器为例,在对于射频功率放大器的工作原理分析基础上,采用ADS 软件进行射频功率放大器及其电路的设计分析,以促进射频功率放大器在无线通信领域中的推广应用。

关键词:射频功率放大器电路设计无线通信设计在无线通信技术领域中,GaN高电子迁移率晶体管作为最新的半导体功率器件,由于其本身具有宽禁带以及击穿场强高、功率密度高等特征优势,在高频以及高功率的功率器件中具有较为突出的适用性,在电子信息系统性能提升方面具有较为明显和突出的作用优势,在无线通信技术领域的应用比较广泛。

针对这一情况,本文在进行射频功率放大器及其电路的设计中,专门采用ADS仿真软件对于射频功率放大器及其电路的设计进行研究分析,并对于仿真设计实现的射频功率放大器在无线通信技术领域中的应用和参数设置进行分析论述,以提高射频功率放大器的设计水平,促进在无线通信技术领域中的推广应用。

1 射频功率放大器的结构原理分析结合功率放大器在无线通信系统中的功能作用以及对于无线通信技术的影响,在进行射频功率放大器的设计中,结合要进行设计实现的射频功率放大器的工作频带以及输出功率等特点要求,以满足射频功率放大器的设计与应用要求。

在进行本文中的射频功率放大器设计中,主要通过分级设计与级联设置的方式,首先进行射频功率放大器的功率放大级以及驱动级设计实现,最终通过电路设计对于射频功率放大器的两个不同级进行连接,以在无线通信中实现其作用功能的发挥,完成对于射频功率放大器的设计。

需要注意的是,在进行射频功率放大器的功率放大级结构模块设计中,主要应用GaN高电子迁移率晶体管进行射频功率放大器功率放大级结构模块的设计实现,同时在功率放大级结构模块的电路设计中,注重对于输出功率保障的设计;其次,在进行射频功率放大器的驱动级结构模块设计中,以C 波段的功率放大模块设置为主,电路设计则以增益提升设计为主,并对于增益平坦度和输出输入驻波进行保障。

射频pa功率放大电路 输入电源设计

射频pa功率放大电路 输入电源设计

射频pa功率放大电路输入电源设计
射频功率放大器是无线通信系统中至关重要的组成部分。

在设计射频功率放大电路时,输入电源的设计是非常重要的。

输入电源的设计需要考虑到功率放大器的稳定性、线性度、效率和可靠性等方面。

首先,输入电源的稳定性是非常重要的。

功率放大电路对输入电源的变化非常敏感,输入电源的稳定性直接影响到功率放大器的稳定性。

为了保证输入电源的稳定性,可以采用低噪声、低温漂的稳压器或者是带有电源滤波器的电源设计。

其次,输入电源的线性度也是需要考虑的。

输入电源的线性度直接影响到功率放大器的输出线性度。

为了保证输入电源的线性度,可以采用带有反馈电路的电源设计,以及使用高品质的电容和电感等元器件。

此外,输入电源的效率也是需要考虑的。

功率放大器通常需要较高的功率供应,输入电源的效率直接影响到功率放大器的效率。

为了提高输入电源的效率,可以采用开关电源和多级电源等设计。

最后,输入电源的可靠性也是需要考虑的。

输入电源的可靠性对功率放大器的可靠性和寿命有着重要影响。

为了提高输入电源的可靠性,可以采用过压保护、过流保护等保护电路,以及使用高品质的电子元器件。

综上所述,输入电源的设计对射频功率放大器的性能、稳定性和可靠性都非常关键。

在进行输入电源设计时,需要综合考虑以上各个方面,以提高功率放大器的整体性能。

基于GaN器件射频功率放大电路的设计解读

基于GaN器件射频功率放大电路的设计解读

基于GaN器件射频功率放大电路的设计本文主要是基于氮化镓(GaN)器件射频功率放大电路的设计,在S波段频率范围内,应用CREE公司的氮化镓(GaN)高电子迁移速率晶体管(CGH40010和CGH40045)进行的宽带功率放大电路设计。

主要工作有以下几个方面:首先,设计功放匹配电路。

在2.7GHz~3.5GHz频带范围内,对中间级和末级功放晶体管进行稳定性分析并设置其静态工作点,继而进行宽带阻抗匹配电路的设计。

本文采用双分支平衡渐变线拓扑电路结构,使用ADS软件对其进行仿真优化,设计出满足指标要求的匹配电路。

具体指标如下:通带宽度为800MHz,在通带范围内的增益dB(S(2,1))>10dB、驻波比VSWR1<2、VSWR2同主题文章[1].宋登元,王秀山. GaN材料系列的研究进展' [J]. 微电子学.1998.(02)[2].秦志新,陈志忠,周建辉,张国义. 采用N_2-RF等离子体氮化GaAs(001)(英文)' [J]. 发光学报. 2002.(02)[3].谢崇木. 短波长半导体激光器开发动向' [J]. 半导体情报. 1998.(04)[4].Robert ,Green. 现代通信测试设备必须适合多种手机标准——谈如何选择射频功率分析测试仪器' [J]. 今日电子. 2003.(04)[5].宋航,Park,S,H,Kang,T,W,Kim,T,W. 分子束外延高Mg掺杂GaN的发光特性' [J]. 发光学报. 1999.(02)[6].付羿,孙元平,沈晓明,李顺峰,冯志宏,段俐宏,王海,杨辉. 立方相GaN的高温MOCVD生长(英文)' [J]. 半导体学报. 2002.(02)[7].段猛,郝跃. GaN基蓝色LED的研究进展' [J]. 西安电子科技大学学报. 2003.(01)[8].郎佳红,顾彪,徐茵,秦福文. GaN基半导体材料研究进展' [J]. 激光与光电子学进展. 2003.(03)[9].曾庆明,刘伟吉,李献杰,赵永林,敖金平,徐晓春,吕长志.AlGaN/GaN HEMT器件研究' [J]. 功能材料与器件学报. 2000.(03)[10].沈耀文,康俊勇. GaN中与C和O有关的杂质能级第一性原理计算' [J]. 物理学报. 2002.(03)【关键词相关文档搜索】:通信与信息系统; 功率放大电路; 高电子迁移速率晶体管; 宽带匹配【作者相关信息搜索】:南京理工大学;通信与信息系统;赵建中;夏磊;。

2.4GHz E类射频功率放大器的设计

2.4GHz E类射频功率放大器的设计

图 2为理想 E类功率放大器两端 电压 、电流 的
波形图 。
为 了使 该功率放 大器的效率达 到 1 0 0 %, 该功率放大器 的瞬态响应网络应该满足 以下三 个条件: ( 1 )晶体 管导通 时,晶体管两 端的 电压
必 须 为 零 ,即 晶体 管 的瞬 态 响 应 网 络 应 在 晶体
并且趋 向于零 。当晶体管断开时,晶体管 电压
虽然 有 点 高 ,但 无 电 流 通 过 晶 体 管 , 从 而 达 到 减 小耗 散 功 率 的 目 的 。E类 功 率 放 大 器 就 是 按
照 电压 与电流 不重叠出现而设计出来的,使得 在任 意时刻,电压与电流的乘积为零,即耗散 功 率为零 。图 l 为 E类功率放大器的拓扑结构
键 词 】E类 功 放 2 . 4 G H z 伪 差分 饱和输
, 率
提 供 直 流 偏 置 , 电 容 cl为 外 加 电容 和 晶 体 管
电疆
C a )
寄生 电容之 和 ,电感 L 2和 电容 C 2构成滤 波 谐振 网络,该 谐振 网络谐 振频率 为 2 . 4 G Hz 。 R。 为从晶体管获得最大 功率 的最佳匹配负载 。 E类射频功率放大器 由单个 晶体 管和负载匹配
流 才 不 会 发 生 重 叠 ,从 而 保证 其 1 0 0 % 的 效率 。 根 据 以上 三 点 ,可 以列 出微 分 方 程 。通 过 对 微 分 方 程 进 行 解 析 ,可 以得 出 E类 功 率 放 大 器 负

图3 :反 相 器驱 动 级 电路 图



j 可穿戴系统等 ,E类射频 功率 放大器的效
图。 该 拓 扑 机 构 由 Gr e b e n n i k o v在 2 0 0 2年 提 出 , 经过 l 0余 年 的 发 展 ,该 放 大 器 以 其 效 率 高 , 可 设计 性 强等 优 点而 被 广 泛 应 用 。

2.4G射频双向功放电路设计

2.4G射频双向功放电路设计

2.4G射频双向功放电路设计在两个或多个网络互连时,无线局域网的低功率与高频率限制了其覆盖范围,为了扩大覆盖范围,可以引入蜂窝或者微蜂窝的网络结构或者通过增大发射功率扩大覆盖半径等措施来实现。

前者实现成本较高,而后者则相对较便宜,且容易实现。

现有的产品基本上通信距离都比较小,而且实现双向收发的比较少。

本文主要研究的是距离扩展射频前端的方案与硬件的实现,通过增大发射信号功率、放大接收信号提高灵敏度以及选择增益较大的天线来实现,同时实现了双向收发,最终成果可以直接应用于与IEEE802.11b/g兼容的无线通信系统中。

双向功率放大器的设计双向功率放大器设计指标:工作频率:2400MHz~2483MHz最大输出功率:+30dBm(1W)发射增益:≥27dB接收增益:≥14dB接收端噪声系数:< 3.5dB频率响应:<±1dB输入端最小输入功率门限:<?15dB m具有收发指示功能具有电源极性反接保护功能根据时分双工TDD的工作原理,收发是分开进行的,因此可以得出采用图1的功放整体框图。

功率检波器信号输入端接在RF信号输入通道上的定向耦合器上。

当无线收发器处在发射状态时,功率检波器检测到无线收发器发出的信号,产生开关切换信号控制RF开关打向发射PA通路,LNA电路被断开,双向功率放大器处在发射状态。

当无线收发器处在接收状态时,功率检波器由于定向耦合器的单方向性而基本没有输入信号,这时通过开关切换信号将RF 开关切换到LNA通路,PA通路断开,此时双向功率放大器处在接收状态。

下面介绍重点部位的设计:发射功率放大(PA)电路发射功率放大电路的作用是将无线收发器输入功率放大以达到期望输出功率。

此处选择单片微波集成电路(MMIC)作为功率放大器件,并采用两级级联的方式来同时达到最大输出功率与增益的要求。

前级功率放大芯片选择RFMD公司的RF5189,该芯片主要应用在IEEE802.11b WLAN、2.4GHz ISM频段商用及消费类电子、无线局域网系统、扩频与MMDS 系统等等。

射频放大电路设计

射频放大电路设计

Pi/N
A G2Pi/N
Pi
Pi/N 功率 Pi/N
A G3Pi/N G4Pi/N
A
功率
P
Pi N
N
Gi
i1
分配
合成
Pi/N
A GN-1Pi/N
Pi/N
A GNPi/N
7.4.3 功率合成放大电路
3dB耦合器
G1
RFIN 1
2
匹配 网络
A1
匹配 网络
3dB耦合器
50W
4 50W
3 匹配
G2
网络
MS
PIN PAVS
VSWRIN
1
1
Ga Ga
1
1
1 MS 1 MS
7.2 射频放大电路旳噪声
7.2.1 噪声信号旳特征和分类
1) 2)
热噪声 散粒噪声
PN kTB
3) 闪烁噪声
I 等效噪声温度和噪声系数
PNI=0
R T=0K
有噪声 放大电路
PNO R
(1)若(|S11|<1,则史密斯圆图中心点 (ΓL=0点)在稳定区域内。分2种情况。
① 若输出稳定鉴别圆包括史密斯圆图中心 点(如图7.2(a)所示),ΓL旳稳定区域在输 出稳定鉴别圆内。ΓL旳稳定区域是史密斯圆图 单位圆内输出稳定鉴别圆内旳区域,是图7.2 (a)中旳阴影区。
② 若输出稳定鉴别圆不包括史密斯圆 图中心点(如图7.2(b)所示),ΓL旳稳 定区域在输出稳定鉴别圆外。ΓL旳稳定区 域是史密斯圆图单位圆内输出稳定鉴别圆 外旳区域,是图7.2(b)中旳阴影区。
|GS|1 (b) K<1, |S11|>1, |S22|<1

集成电路的射频功率放大器设计与测试

集成电路的射频功率放大器设计与测试

集成电路的射频功率放大器设计与测试随着移动通信技术的迅速发展,无线通信设备在人们生活和工作中的应用越来越广泛。

而射频(Radio Frequency,简称RF)功率放大器作为无线通信系统中不可或缺的关键器件之一,具有放大无线信号、提高通信距离和传输速率等主要作用。

本文将从集成电路的角度出发,探讨射频功率放大器的设计原理、常见技术、测试方法和应用前景。

一、射频功率放大器的设计原理射频功率放大器是一种用于向电子设备输入射频信号的放大器,能够输出较大的放大功率。

其通常由输入匹配网络、放大器、输出匹配网络和直流电源四部分组成。

其中,输入匹配网络用于匹配输入信号和功率放大器的输入阻抗;放大器是实现信号放大的核心部件;输出匹配网络用于匹配输出阻抗和负载(如天线、滤波器等);直流电源用于提供放大器所需的直流电压,以维持其正常工作。

在射频功率放大器设计中,需要考虑多个因素,如放大器的线性度、稳定性、带宽等。

其中,线性度是射频功率放大器的重要性能指标之一。

在信号输入量较小的情况下,射频功率放大器的增益输出与输入信号之间呈线性增加关系。

然而,当输入信号过大时,放大器的输出增益将不再呈线性增加,而是出现非线性失真现象,导致输出信号扭曲变形,降低通信系统的可靠性和稳定性。

二、射频功率放大器的常见技术射频功率放大器的设计和应用非常广泛,同时也涌现了不少新型的技术。

以下是其中的几种常见技术:1、高效率功率放大器技术高效率功率放大器技术是一种利用半导体材料研究高效功率放大器的技术。

该技术能够有效利用电源,提供功率放大器所需的电能。

在高速数码信号传输领域,该技术已被广泛应用。

2、宽带功率放大器技术宽带功率放大器技术是一种能够应对多种频率信号的功率放大器。

在现有的通信系统中,频率范围十分广泛,因此需要一种宽带功率放大器来满足各种信号的放大需求。

3、全固态功率放大器技术随着微电子技术的不断发展,全固态功率放大器技术也逐渐成熟。

该技术能够在多个频段实现全负载、多个模拟和数字信号的放大。

《2024年基于ADS的射频功率放大器设计与仿真》范文

《2024年基于ADS的射频功率放大器设计与仿真》范文

《基于ADS的射频功率放大器设计与仿真》篇一一、引言随着无线通信技术的不断发展,射频功率放大器(RF Power Amplifier, 简称PA)作为无线通信系统中的关键组件,其性能的优劣直接影响到整个系统的性能。

因此,设计一款高性能的射频功率放大器显得尤为重要。

本文将介绍一种基于ADS(Advanced Design System)的射频功率放大器设计与仿真方法,以期为相关领域的研究者提供一定的参考。

二、射频功率放大器设计基础射频功率放大器设计涉及到的基本原理包括功率放大器的类型、工作原理、性能指标等。

在设计中,需要考虑到功率放大器的线性度、效率、稳定性以及可靠性等因素。

常见的功率放大器类型包括A类、B类、AB类以及D类等,不同类型具有不同的优缺点,需要根据具体应用场景进行选择。

三、ADS软件在射频功率放大器设计中的应用ADS是一款功能强大的电子设计自动化软件,广泛应用于射频电路、微波电路以及高速数字电路的设计与仿真。

在射频功率放大器设计中,ADS可以帮助我们完成电路原理图的设计、仿真分析以及版图绘制等工作。

通过ADS软件,我们可以快速地建立功率放大器的电路模型,并进行仿真分析,以验证设计的正确性和可行性。

四、基于ADS的射频功率放大器设计与仿真流程1. 确定设计指标:根据应用需求,确定射频功率放大器的设计指标,如工作频率、输出功率、增益、效率等。

2. 电路原理图设计:利用ADS软件,根据设计指标进行电路原理图的设计。

包括选择合适的晶体管、电容、电感等元件,并确定其参数值。

3. 仿真分析:对设计的电路原理图进行仿真分析,包括直流扫描、交流小信号分析以及大信号分析等。

通过仿真分析,我们可以得到功率放大器的性能参数,如增益、效率、谐波失真等。

4. 版图绘制与优化:根据仿真结果,对电路原理图进行版图绘制。

在版图绘制过程中,需要考虑元件的布局、走线等因素,以减小寄生效应对电路性能的影响。

同时,还需要对版图进行优化,以提高电路的性能。

集成电路射频功率放大器的设计与实现

集成电路射频功率放大器的设计与实现

集成电路射频功率放大器的设计与实现近年来,随着科技的飞速发展和通信技术的不断革新,集成电路和射频功率放大器的需求量也不断增加。

本文将重点介绍集成电路射频功率放大器的设计和实现方法。

一、射频功率放大器的基本概念射频功率放大器是指在射频频率范围内的功率放大器,其主要目的是提供信号放大和驱动负载的功率。

一般来说,射频功率放大器的工作频率范围在几百千赫到几千兆赫之间,而功率范围则在几百瓦到几十瓦之间。

射频功率放大器的设计需要考虑多种因素,如频率响应、功率输出、效率、线性度、带宽、噪声和可靠性等。

同时,还需要考虑电路的物理尺寸和材料成本等因素。

二、集成电路射频功率放大器的设计原理基本的集成电路射频功率放大器电路通常由一个输入网络、一个放大器和一个输出网络组成。

其中,输入网络和输出网络通常用于匹配阻抗和抑制谐波,而放大器则是主要的信号处理单元。

在设计射频功率放大器时,需要根据具体的应用要求选择合适的晶体管。

而晶体管的选择主要取决于需要达到的功率输出和频率范围。

同时,还需要对晶体管的偏置点进行优化,以提高其线性度和效率。

在放大器的选择和偏置点设置之后,接下来需要对输入网络和输出网络进行设计。

输入网络需要匹配信号源的阻抗,并通过调节其参数(如电容和电感)来优化放大器的频率响应。

输出网络则需要匹配负载的阻抗,并通过调节其参数来抑制反射波和谐波。

三、集成电路射频功率放大器的实现方法在进行集成电路射频功率放大器的实现时,一种常见的设计方法是使用基于微波传输线的设计技术。

该技术基于在通信系统中广泛使用的同轴电缆或微波传输线来传输射频信号。

基于微波传输线的设计方法将电路转换为等效传输线模型,并使用S参数(也称为散射参数)描述电路的行为。

通过适当选择传输线的特性阻抗和长度,可以实现输入网络和输出网络的匹配。

此外,还可以利用现代集成电路设计软件来模拟和分析电路的行为。

通过使用这些软件可以进行电路的优化,并在仿真过程中检验电路的性能。

基于GaN器件射频功率放大电路的设计的开题报告

基于GaN器件射频功率放大电路的设计的开题报告

基于GaN器件射频功率放大电路的设计的开题报告一、题目:基于GaN器件射频功率放大电路的设计二、研究背景随着5G通信的发展,人们对于射频功率放大器(PA)的要求越来越高。

传统的射频功率放大器采用Si或GaAs器件,但是它们的特性有限,如功率密度低、温度特性差等。

近年来,GaN(氮化镓)器件由于其高电子迁移率和高饱和电子迁移速度,具有高功率密度、高频率特性和优异的热特性等优点,逐渐成为射频功率放大器的研究热点。

三、研究内容本文以GaN器件为研究对象,设计一种高效、高性能的射频功率放大器。

其中包括以下内容:1. 对GaN器件的特性进行研究,确定其适用范围;2. 根据射频功率放大器的工作原理,设计合适的电路拓扑结构;3. 选取合适的电路元件,如电容、电感、变压器等,进行电路参数设计;4. 通过仿真和实验,对该射频功率放大器的性能进行评估与分析。

四、研究意义本文研究的基于GaN器件的射频功率放大器,将具有以下意义:1. 为射频功率放大器的研究提供了一种新方向和新思路;2. 提高了射频功率放大器的功率密度和工作频率,为5G通信发展提供帮助;3. 推动GaN器件在射频功率放大器领域的应用,促进GaN器件的市场发展。

五、研究方法本文将采用以下方法进行研究:1. 通过文献资料的收集,了解目前GaN器件射频功率放大器的研究现状;2. 根据所选用的GaN器件,通过仿真软件进行电路设计和性能评估;3. 通过实验,对所设计的射频功率放大器进行性能验证。

六、预期成果本文预期达到以下成果:1. 实现基于GaN器件的射频功率放大器设计;2. 对该射频功率放大器的性能进行评估与分析,得出性能指标;3. 提高GaN器件在射频功率放大器领域的应用,推动GaN器件的市场发展。

2.3__射频小信号放大器电路设计

2.3__射频小信号放大器电路设计
耗为+2.5dB(Id<5A)。
它提供一个完整的具有可调IIP3(输入三阶截点)LNA 解决方案,IIP3可固定在为达到接收器的线性要求所 需的水平,IIP3为+35dBm,可调IIP3范围为+2~ +14dBm。
图2.3.3 MGA72543的内部结构
MGA72543的内部结构如 图2.3.3所示,有一个单 级的GaAs RFIC放大器, 一个完整的旁路开关。
MBC13720具有四种工作模式:低IP3、高IP3、旁路和 待机模式。低IP3模式和高IP3模式工作电流为5.0mA 和11mA,具有可完全关断器件的待机模式。最高的输 入互调截点IP3为10dBm(1.9GHz)和13dBm (2.4GHz)。最低的噪声系数为1.38dB(1.9GHz)和 1.55dB(2.4GHz)。
把MGA72543置为旁路模式的最简单的方法是把引脚1 和4的接地端开路,此时MGA72543的内部控制电路自 动从放大器模式转化到旁路状态,且器件电流几乎下 降到0。旁路状态的电流消耗通常是2A,最大为15A。 当设定为旁路模式时,输入和输出都由内部匹配到 50。
MGA72543采用SOT-343(SC70)封装,引脚端3 (INPUT & Vref)为射频输入和电压基准;引脚端2 (OUTPUT& Vd)为射频输出和电源电压;引脚端1和 引脚端4(GND)为接地。
MGA72543工作在1900MHz应用电路的原理图、印制 板图和元器件布局图如图2.3.4所示,应用电路的元器 件参数见表2.3.2。这个应用电路在+3V的电压下工作。 一个2位DIP开关,用来设定MGA72543的工作状态。 使用这个2位开关,可以把器件设置到以下状态的任一 模式:旁路模式;低噪声放大器模式(具有低偏置电 流);发射机驱动放大器模式(具有高偏置电流)。

射频放大器电路设计

射频放大器电路设计

01
02
03
晶体管
选择合适的晶体管类型和 型号,考虑其增益、带宽、 功率容量等参数。
电阻、电容、电感
根据电路需求选择合适的 电阻、电容和电感,确保 电路性能稳定。
调谐网络
根据工作频率和带宽需求, 设计调谐网络以实现最佳 性能。
阻抗匹配
输入阻抗匹配
通过匹配网络将源阻抗与 放大器输入阻抗匹配,提 高信号传输效率。
共集放大器
总结词
共集放大器是一种常用的射频放大器电路设计,具有高输入阻抗、低输出阻抗和电流增 益的特点。
详细描述
共集放大器采用共集电极放大方式,将输入信号通过晶体管基极进行放大,并通过发射 极输出。由于其电流增益较高,适用于对电流变化敏感的信号处理,同时具有较好的输
入阻抗和低输出阻抗性能。
功率放大器
雷达系统用放大器设计
总结词
雷达系统用放大器设计主要关注高输出功率和稳定性 ,以确保雷达系统的探测距离和准确性。
详细描述
在雷达系统用放大器设计中,高输出功率和稳定性是 关键的设计指标。为了实现高输出功率,设计师通常 会选择大功率晶体管和适当的电路结构。同时,为了 提高稳定性,需要采取有效的散热措施和电路保护措 施,以防止放大器过热或损坏。此外,还需要对放大 器的相位噪声、谐波失真等进行优化,以确保雷达系 统的探测距离和准确性。
THANKS FOR WATCHING
感谢您的观看
输出阻抗匹配
将放大器输出阻抗与负载 阻抗匹配,确保最大功率 传输。
共轭匹配
采用共轭匹配方式,使信 号在传输过程中保持恒定 幅度和相位。
噪声与增益
噪声系数
分析电路中噪声的来源,如热噪 声、散弹噪声等,并采取措施降 低噪声系数。

lna射频放大电路设计

lna射频放大电路设计

lna射频放大电路设计LNA射频放大电路设计一、介绍LNA(低噪声放大器)是射频(Radio Frequency,RF)电路中常见的一个模块,用于将微弱的射频信号放大,同时尽可能地降低噪声。

在无线通信系统中,LNA的性能直接影响到整个系统的灵敏度和动态范围,因此在设计和优化LNA射频放大电路时,需要充分考虑各种因素,并进行合适的设计和优化。

二、LNA射频放大电路的基本结构LNA射频放大电路的基本结构通常包括放大器、匹配网络、偏置电路和电源电路。

其中,放大器是整个LNA电路的核心部分,负责将输入的微弱射频信号放大到合适的幅度。

匹配网络用于调整放大器的输入和输出阻抗,以实现最大功率传递和最佳性能。

偏置电路则用于提供合适的工作电流和电压,保证放大器能够正常工作。

电源电路则用于提供稳定的直流电源,保证整个LNA电路的稳定性和可靠性。

三、LNA射频放大电路的设计步骤1. 确定设计规格:根据具体的应用需求,确定LNA电路的增益、带宽、噪声系数等性能指标。

同时考虑电源电压、工作频率和尺寸等限制条件,为后续设计提供准确的参考。

2. 选择放大器类型:根据设计规格和应用要求,选择合适的放大器类型。

常见的放大器类型包括共源放大器、共栅放大器、共基放大器等。

根据不同的放大器类型,各自有不同的特点和适用场景,需要根据具体需求进行选择。

3. 匹配网络设计:根据放大器的输入阻抗和输出阻抗,设计合适的匹配网络,以实现最佳的功率传递和性能表现。

匹配网络的设计通常需要使用阻抗转换器、电容和电感等元件,通过优化元件参数和布局方式,实现最佳匹配效果。

4. 偏置电路设计:根据放大器的工作条件,设计合适的偏置电路,保证放大器能够正常工作。

偏置电路通常包括直流偏置电阻、电容和稳压电路等,通过选择合适的元件参数和电源电压,实现工作电流和电压的稳定。

5. 电源电路设计:根据整个LNA电路的功耗和电源需求,设计合适的电源电路。

电源电路通常包括滤波器、稳压电路和功率放大器等,通过保证电源电压的稳定性和可靠性,提供稳定的工作条件给整个LNA电路。

宽带射频功率放大器设计

宽带射频功率放大器设计

宽带射频功率放大器设计射频(Radio Frequency,简称RF)功率放大器在现代通信系统中起着重要的作用。

它的主要功能是将低功率的射频信号放大到足够的功率级别,以便于传输和处理。

宽带射频功率放大器是一种可以在大范围的频率范围内提供高功率放大的设备。

本文将介绍宽带射频功率放大器的设计。

在设计宽带射频功率放大器之前,需要明确一些基本参数和要求。

首先,需要确定放大器的工作频率范围。

宽带放大器通常涵盖几个频率段,因此需要确保在所需的频率范围内具有足够的增益和线性性能。

其次,需要确定放大器的输出功率要求。

输出功率是放大器设计中的一个重要指标,它决定了放大器能够提供的最大信号功率。

最后,需要考虑放大器的线性性能和稳定性。

线性性能是指放大器输出信号与输入信号之间的线性关系,而稳定性是指放大器在工作过程中能够维持恒定的增益和相位特性。

在设计过程中,可以使用不同的拓扑结构和技术来实现宽带射频功率放大器。

其中一种常见的结构是宽带巴氏极双管功率放大器。

该结构使用共射和共基级联的方式来实现高增益和宽带特性。

另一种常用的结构是宽带巴氏极共基功率放大器,它具有简单的结构和高输入阻抗,适用于高频应用。

在选取合适的放大器结构后,还需要选取合适的放大器器件。

常用的射频功率放大器器件包括三极管、场效应晶体管和集成电路。

三极管具有高增益和线性特性,适用于较低频率的应用。

场效应晶体管具有较高的工作频率和功率特性,适用于较高频率的应用。

集成电路则具有更高的集成度和稳定性。

根据特定的应用需求,可以选择合适的器件。

除了放大器器件外,还需要选择合适的匹配网络来实现放大器的输入和输出匹配。

匹配网络能够提高放大器的功率传输效率和线性特性。

常用的匹配网络包括隔离电容、电感和变压器等。

通过合理选择匹配网络的参数,可以实现最佳的匹配效果。

最后,在完成放大器设计后,需要进行仿真和测试验证。

使用电磁仿真软件可以对放大器的工作性能进行模拟和优化。

实际测试可以验证设计的准确性和性能指标的达标情况。

第六章 射频放大器设计

第六章 射频放大器设计

b1 S11a1 S12 a2 b2 S21a1 S22 a2
b1 S11 b S 2 21
S12 a1 a S 22 2
b = S a
b1 b b 2
a1 a a 2
Smith圆上的稳定区域和不稳定区域
微波电路设计
S11 1
L 0 点
| in | 1
是不稳定点
稳定性圆与Smith圆的交接部分是稳定性区域
L 0 点
在稳定性圆内
稳定性分析
微波电路设计
1 2
稳定性圆 稳定性的判定与设计
稳定性的设计与判定
微波电路设计
稳定性包括无条件稳定和有条件稳定 需要研究什么样的前提条件下,能实现稳 定,保证放大器的正常工作 无条件稳定的充要条件
CCEE
第六章 射频放大器设计
射频微波电路设计
射频放大器的设计
微波电路设计
传输线需要与有源器件良好匹配,以降低电 压驻波比、避免寄生振荡。 稳定性分析通常被作为射频放大器设计工作 的第一个步骤。 从以下两个方面分类:
根据应用条件分类:在通信系统中的接收电路中 ,射频放大电路采用低噪声放大电路,负责将微 弱信号放大;在发射系统中,则采用功率放大电 路,负责提供足够功率的射频信号输出。 根据带宽分类:分为窄带放大器和宽带放大器。
1 | S11 |2 | S22 |2 | |2 K 0.79 1 2 | S12 S21 |
| || S11S22 S12 S21 | 0.46 1
在f=1.25GHz处,得到
1 | S11 |2 | S22 |2 | |2 K 1.02 1 2 | S12 S21 |
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

|GL|1
|GL|1
输出稳定圆 |S11|<1
输入稳定圆 |S22|<1
绝对稳定条件
7.1.1 放大电路稳定性分析
标出稳定的源反射系数取值的区域。实线 的圆表示|GS|=1,虚线的圆表示|GOUT|=1的 输入稳定圆,其他条件已经在图上标明。
|GOUT|1 |GOUT|1
|GS|1 |GS|1
第七章 射频放大电路设计
第七章 射频放大电路设计

7.1 小信号射频放大电路 7.2 射频放大电路的噪声


7.3 宽带放大电路 7.4 功率放大电路

7.2.1 噪声信号的特性和分类 7.2.2 等效噪声温度和噪声系数 7.2.3 等噪声系数圆


7.5 射频放大电路综合分析设计
补偿匹配网络
7.3 宽带放大电路

2)
T1 匹配 网络 匹配 网络
平衡放大
3dB耦合器 1 50W Z0 Z0
2 Z0 2
3dB耦合器 RFIN 1 2
Z0 2
T2 4 50W 3 匹配 网络
匹配 网络
2 Z0 2
RFOUT 4 Z0
Z0
3 Z0
7.3 宽带放大电路

3)
R2
负反馈放大电路
B rbe VBE E R1 R1 R2 C gmVBE
7.1.1 放大电路稳定性分析
RL CL |GIN|1 |CL| |CL| |GL|1 |GIN|1 |GL|1 |GIN|1 RL CL |GIN|1
|S11|<1
|S11|>1
临界稳定园,稳定区域
7.1.1 放大电路稳定性分析
RL CL |CL| |GIN|1 RS |CS| CS |GOUT|1
7.1.4 放大电路的增益

2. 单向传输情况
max
GT
GS
max
GO GL
max

1 1 S11
2
S 21
2
1 1 S22
2
1 1U
2
GT 1 GTU 1 U
2
7.1.4 放大电路的增益

3. 双向传输情况
1 1 G MS
2
GT max
S21
2
1 G ML
2 2
1 S 22 G ML
2 B1 B12 4 C1 G G MS S 2C1 2 B2 B2 2 4 C2 G L G ML 2C2
7.1.4 放大电路的增益

4. 输入和输出驻波系数
进入输入匹配电路的功率 PIN 与信号源可以输出的最大功率 PAVS 之比, 定义为输入端口 的失配系数


(1)若(|S11|<1,则史密斯圆图中心点 (ΓL=0点)在稳定区域内。分2种情况。

① 若输出稳定判别圆包含史密斯圆图中心 点(如图7.2(a)所示),ΓL的稳定区域在输 出稳定判别圆内。ΓL的稳定区域是史密斯圆图 单位圆内输出稳定判别圆内的区域,是图7.2 (a)中的阴影区。

② 若输出稳定判别圆不包含史密斯圆 图中心点(如图7.2(b)所示),ΓL的稳 定区域在输出稳定判别圆外。ΓL的稳定区 域是史密斯圆图单位圆内输出稳定判别圆 外的区域,是图7.2(b)中的阴影区。
ZL
7.1.1 放大电路稳定性分析

放大电路绝对稳定:
G IN 1 GOUT 1 对于任何 GS 1 GL 1
•放大电路有条件稳定:
G IN 1 GOUT 1 对于一定范围内的G S 和G L
7.1.1 放大电路稳定性分析
PIN MS PAVS
VSWRIN
1 Ga 1 Ga

1 1 M S 1 1 M S
7.2 射频放大电路的噪声

7.2.1 噪声信号的特性和分类 1) 热噪声 PN kTB 2) 散粒噪声 3) 闪烁噪声
I N rms 2qI DC B
7.2.2 等效噪声温度和噪声系数
Re Z S Z IN 0 Re Z L Z OUT 0
T R T R
7.1.4 放大电路的增益
转换功率增益: 工作功率增益: 可用功率增益:
GT PL 负载吸收的功率 PAVS 信号源的可用功率
PL 负载吸收的功率 GP G PIN 输入到网络的功率 PAVN 网络的可用功率 GA PAVS 信号源的可用功率
G IN S12 S21G L S11 1 S22 G L
GOUT S12 S21G S S22 1 S11G S
S12 S 21G L 1 S11 1 S 22 G L S12 S 21G S S 22 1 S G 1 11 S
(a) K<1, |S11|>1, |S22|<1
(b) K<1, |S11|>1, |S22|<1
7.1.2 绝对稳定的充要条件
K 1 1 S11
S11 S 22 S12 S 21 K 1 S11 S 22
2 2 2
2
S12 S 21 1 S 22 S12 S 21
7.4.2 B类和C类功率放大电路
Vout
Vout
Vin Vin t
Vout T 正偏置
t
Vin Vin t
Vout T 正偏置
t
Vout
Vout
Vout Vin t Vin t T 负偏置
t
Vin Vin t
Vout T 零偏置
7.4.2 B类和C类功率放大电路
IC1 VC T1 Vin Vin t IC2 T2 -VC Vout RL IC1 IOUT t 交越失真 Vout t
7.4.1 A类功率放大电路

对于A类放大电路定义输出信号有效的功 率范围为放大电路的动态范围
DR P Po, mds dB 1dB
噪声底的功率Po,mds
Po, mds dBm 10 log GA kT0 BF 3dB 174 dBm 10 log B GA dB F dB 3dB
7.1.1 放大电路稳定性分析
RL CL |CL| |GIN|1 |CS| CS RS |GOUT|1
|GL|1
|GS|1
GL平面
GS平面
临界稳定圆

稳定性要求:
1、 L 1,即单位园以内。 G 2、 in 1所确定的GL区域,称为“输出端稳定判据园”。 G 当GL 0时,由7.6式可得 Gin S11 ,11 1则稳定,11 1 S S 则不稳定。 这就是说,当 S11 1 时便有GL 0的点位于稳定区,GL 0 的点位于稳定园 Gin 1以内 ,参见图7.(a)的阴影区。 2 当 S11 1 时便有GL 0的点位于不稳定区,即Gin 1, 参见 图7.(c)。显然其中阴影区为稳定区。 2 同理,可以判断7.(b)、.(d)在图上注明稳定区条件。 2 72 ,
A A
P2 P3
P Pi
i 1
N
A
P4
A
PN-1 功率 合成 PN-1+PN
功率 合成
A
PN
7.4.3 功率合成放大电路
Pi/N Pi/N Pi/N A G1Pi/N G2Pi/N G3Pi/N G4Pi/N
A A
Pi
功率 分配
Pi/N
Pi N P Gi N i 1
功率 合成
A
S12 0.02531
0.02935 0.04044 0.06448
S21 11.8102
6.1189
S22 0.429 35
0.365 34 0.364 43 0.423 66
3.0674
1.5353
7.1.3 潜在不稳定情况
T R T R
同理得到:
GS
S
11
S
2
* * 22 2

S11

S12 S21 S11
2 2
根据 Gin 1和 Gout 1所求得的GL稳定园和Gs稳定园, 称为稳定判据园。 与原本的GL园、Gs园(称为SMITH园)不同,圆心和 半径都不同。可以自行比较。 前者表示稳定条件,后者表示实际条件,两者对比 即可判断实际系统是否稳定。
IC2 t
互补B类放大电路的基本电路
7.4.2 B类和C类功率放大电路
VC RFC IC t T RFC -VBB L C 谐振选频网络 t Vout(t) Vout
Vin Vin(t) t
IC
C类基本放大电路
7.4.3 功率合成放大电路
A P1 功率 合成 P1+P2 功率 合成 功率 合成 P3+P4 功率 合成
有噪声 放大电路
PNI=0
PNO
R
R T=0K
T=T GA, B, TS 2 R T=T1
K RL
有噪声 放大电路
PNO
无噪声 RL 放大电路
GA, B, TS PNI
PNO RL
R T=Te
GA, B, TS
7.2.2 等效噪声温度和噪声系数
PNO T F PNO I PSI SNR IN PNO T PNI PSO G A PNI SNR OUT PNOT
7.4.1 7.4.2 7.4.3 7.4.4
A类功率放大电路 B类和C类功率放大电路 功率合成放大电路 功率放大的交调失真
相关文档
最新文档