瞬态动力学分析汇总

合集下载

第三章 瞬态动力学分析

第三章 瞬态动力学分析

§3.1瞬态动力学分析的定义瞬态动力学分析(亦称时间历程分析)是用于确定承受任意的随时间变化载荷结构的动力学响应的一种方法。

可以用瞬态动力学分析确定结构在稳态载荷、瞬态载荷和简谐载荷的随意组合作用下的随时间变化的位移、应变、应力及力。

载荷和时间的相关性使得惯性力和阻尼作用比较重要。

如果惯性力和阻尼作用不重要,就可以用静力学分析代替瞬态分析。

瞬态动力学的基本运动方程是:其中:[M] =质量矩阵[C] =阻尼矩阵[K] =刚度矩阵{}=节点加速度向量{}=节点速度向量{u} =节点位移向量在任意给定的时间,这些方程可看作是一系列考虑了惯性力([M]{})和阻尼力([C]{})的静力学平衡方程。

ANSYS程序使用Newmark时间积分方法在离散的时间点上求解这些方程。

两个连续时间点间的时间增量称为积分时间步长(integration time step)。

§3.2学习瞬态动力学的预备工作瞬态动力学分析比静力学分析更复杂,因为按“工程”时间计算,瞬态动力学分析通常要占用更多的计算机资源和更多的人力。

可以先做一些预备工作以理解问题的物理意义,从而节省大量资源。

例如,可以做以下预备工作:1.首先分析一个较简单模型。

创建梁、质量体和弹簧组成的模型,以最小的代价深入的理解动力学认识,简单模型更有利于全面了解所有的动力学响应所需要的。

2.如果分析包括非线性特性,建议首先利用静力学分析掌握非线性特性对结构响应的影响规律。

在某些场合,动力学分析中是没必要包括非线性特性的。

3.掌握结构动力学特性。

通过做模态分析计算结构的固有频率和振型,了解这些模态被激活时结构的响应状态。

同时,固有频率对计算正确的积分时间步长十分有用。

4.对于非线性问题,考虑将模型的线性部分子结构化以降低分析代价。

<<高级技术分指南>>中将讲述子结构。

§3.3三种求解方法瞬态动力学分析可采用三种方法:完全(Full)法、缩减(Reduced)法及模态叠加法。

Ansys动力学瞬态动力的分析

Ansys动力学瞬态动力的分析
结果输出
将结果以图表或报告的形式输出,便于分析和评 估。
05 案例分析
案例一:桥梁的瞬态动力分析
总结词
复杂结构模型,高精度模拟,长 期稳定性
详细描述
使用ANSYS动力学瞬态分析对大 型桥梁进行模拟,考虑风载、车 流等动态因素,评估桥梁在不同 频率下的振动响应和稳定性。
案例二:汽车碰撞的瞬态动力分析
根据实际系统建立数学模型,包括确定系统的自由度和约束条件, 以及选择合适的单元类型和材料属性。
加载和求解
根据问题的实际情况,施加适当的边界条件和载荷,然后使用 ANSYS等有限元分析软件进行求解。
结果后处理
对求解结果进行后处理,包括查看位移、应力、应变等输出结果, 并进行必要的分析和评估。
瞬态动力学的应用场景
瞬态动力学是研究系统在随时间变化的载荷作用下的动力响应,其基本原理基于牛 顿第二定律和弹性力学的基本方程。
瞬态动力学考虑了时间的因素,因此需要考虑系统的初始条件和边界条件,以及载 荷随时间的变化。
瞬态动力学中,系统的响应不仅与当前时刻的载荷有关,还与之前的载荷历史有关。
瞬态动力学的分析步骤
建立模型
求解设置
选择求解器
01
根据模型特点选择合适的求解器,如直接求解器或迭代求解器。
设置求解参数
02
设置合适的求解参数,如时间步长、积分器等。
开始求解
03
启动求解过程,ANSYS将计算并输出结果。
结果后处理
查看结果
在后处理模块中查看计算结果,如位移、应力、 应变等。
分析结果
对结果进行分析,判断结构的响应和性能。
06 结论与展望
瞬态动力学的未来发展方向
更加精确的模型

(完整版)ansys动力学瞬态分析详解

(完整版)ansys动力学瞬态分析详解
关于TIMINT和IC命令的说明参见<<ANSYS命令参考手册>>。
非零速度是通过对结构中需指定速度的部分加上小时间间隔上的小位移来实现的。比如如果 =0.25,可以通过在时间间隔0.004内加上0.001的位移来实现,命令流如下:
...
TIMINT,OFF! Time integration effects off
注─如果并不想包括任何非线性,应当考虑使用另外两种方法中的一种。这是因为完全法是三种方法中开销最大的一种。
完全法的优点是:
·容易使用,不必关心选择主自由度或振型。
·允许各种类型的非线性特性。
·采用完整矩阵,不涉及质量矩阵近似。
·在一次分析就能得到所有的位移和应力。
·允许施加所有类型的载荷:节点力、外加的(非零)位移(不建议采用)和单元载荷(压力和温度),还允许通过TABLE数组参数指定表边界条件。
·唯一允许的非线性是简单的点—点接触(间隙条件)。
§3.4 完全法瞬态动力学分析
首先,讲述完全法瞬态动力学分析过程,然后分别介绍模态叠加法和缩减法与完全法不相同的计算步骤。完全法瞬态动力分析(在ANSYS/Multiphsics、ANSYS/Mechauioal及ANSYS/Structural中可用)由以下步骤组成:
D,ALL,UY,.001! Small UY displ. (assuming Y-direction velocity)
TIME,.004! Initial velocity = 0.001/0.004 = 0.25
LSWRITE! Write load data to load step file (Jobname.S01)
对于完全法瞬态动力学分析,注意下面两点:

瞬态动力学分析汇总

瞬态动力学分析汇总

第16章瞬态动力学分析第1节基本知识瞬态动力学分析,亦称时间历程分析,是确定随时间变化载荷作用下结构响应的技术。

它的输入数据是作为时间函数的载荷,可以是静载荷、瞬态载荷和简谐载荷的随意组合作用。

输出数据是随时间变化的位移及其它导出量,如:应力、应变、力等。

用于瞬态动力分析的运动方程为:[]{}[]{}[]{}(){}t F&&M=u+&+CKuu其中:式中[M]为质量矩阵;[C]为阻尼矩阵;[K]为刚度矩阵。

所以在瞬态动力分析中密度或质点质量、弹性模量及泊松比、阻尼等因素均应考虑,在ANSYS分析过程中密度或质量、弹性模量是必须输入的,忽略阻尼时可以选忽略选项。

瞬态动力学分析可以应用于承受各种冲击载荷的结构,如:炮塔、汽车车门等,应用于承受各种随时间变化载荷的结构,如:混凝土泵车臂架、起重机吊臂、桥梁等,应用于承受撞击和颠簸的办公设备,如:移动电话、笔记本电脑等,同时ANSYS在瞬态动力学分析中可以使用线性和非线性单元(仅在完全瞬态动力学中使用)。

材料性质可以是线性或非线性、各向同性或正交各项异性、温度恒定的或温度相关的。

分析结果写入jobname.RST文件中。

可以用POST1和POST26观察分析结果。

ANSYS在进行瞬态动力学分析中可以采用三种方法,即Full(完全)法、Reduced(缩减)法和Mode Superposition(模态叠加)法。

ANSYS提供了各种分析类型和分析选项,使用不同方法ANSYS软件会自动配置相应选择项目,常用的分析类型和分析选项如表16-1所示。

在瞬态分析中,时间总是计算的跟踪参数,在整个时间历程中,同样载荷也是时间的函数,有两种变化方式:Ramped :如图16-1(a )所示,载荷按照线性渐变方式变化。

Stepped :如图16-1(b )所示,载荷按照解体突变方式变化。

图16-1 载荷增加方式 渐变与突变依据载荷变化方式可以将整个时间历程划分成多个载荷步(LoadStep ),每个载荷步代表载荷发生一次突变或一次渐变阶段。

有限元分析丨瞬态动力学分析

有限元分析丨瞬态动力学分析

有限元分析丨瞬态动力学分析瞬态动力学分析(Transient Structural)是结构有限元分析中非常重要的模块,下文是学习过程的一些积累,仅供参考学习使用,如有错误请指正!目录9.1 瞬态动力学分析简介瞬态动力学分析(Transient Structural)是用于分析载荷随时间变化的结构的动力学响应的方法。

用于确定结构在受到稳态载荷、瞬态载荷和简谐载荷的随意组合下随时间变化的位移、应变和应力。

惯性力和阻尼在瞬态动力学中非常重要,如果惯性力和阻尼可以忽略,则可以用静力学分析代替瞬态动力学分析。

瞬态动态分析比静态分析更复杂,计算消耗和时间消耗较大。

通过做一些初步的工作来理解问题的物理性质,可以节省大量的资源。

9.2 瞬态动力学分析应用承受各种冲击载荷的结构,如:汽车中的门、导弹发射阶段等;承受各种随时间变化载荷的结构,如:桥梁、地面移动装置等;承受撞击和颠簸设备,如:机器设备运输过程。

9.3 瞬态动力学行业标准GB/T 2423.35-1995 电工电子产品环境试验第2部分:试验方法试验Ea和导则:冲击GJB 150-18 军用设备环境试验方法:冲击试验表9.1 脉冲加速度和持续时间(1)半正弦波半正弦形脉冲适用于模拟线性系统的撞击或线性系统的减速所引起的冲击效应,例如弹性结构的撞击。

图半正弦脉冲例:峰值加速度为15G,脉冲持续时间为11ms,Z方向冲击为例图 workbench中输入半正弦波输入载荷类型为加速度(Acceleration)条件,其中Define By选择Components,在Z Component处选择函数(Function),在等号后输入:Asin(ωt),ω=2π/Ta=14700*sin(2π*time/0.022)=14700*sin(2*180*time/0.022)=14700*sin((16363.636*time)^2)^0.5)mm/s2。

注意:单位为角度制,由于此处函数符号不支持绝对值运算符(abs)。

瞬态现象的时间特性与动力学分析

瞬态现象的时间特性与动力学分析

瞬态现象的时间特性与动力学分析瞬态现象是一种在自然界中普遍存在的现象,它可以在许多领域中观察到,如物理学、化学、生物学等。

瞬态现象通常指的是一种短暂的变化或事件,在时间上存在一定的特性与规律。

在本文中,我们将探讨瞬态现象的时间特性以及与动力学之间的关系。

首先,我们来了解一下瞬态现象的时间特性。

瞬态现象往往发生得非常迅速,持续时间很短。

它们的发生可以是由外界刺激引起的,也可以是由系统内部的变化所导致的。

无论是哪种原因引起的,瞬态现象往往都具有一个明确的起点和终点。

正是因为这种短暂且具有明确时限的特性,瞬态现象才显得尤为有趣和重要。

接下来,我们来分析瞬态现象与动力学之间的关系。

动力学是研究物体运动及其与力的关系的分支学科,它研究的是物体随时间的变化。

而瞬态现象正是动力学中的一种重要现象。

在动力学的理论框架下,我们可以通过描述瞬态现象的动力学方程来理解其时间特性。

动力学方程可以描述系统在某一时刻的运动状态以及其随时间的变化规律。

通过分析瞬态现象的动力学方程,我们可以获得关于瞬态现象的更深入的理解。

此外,瞬态现象的时间特性对于我们理解自然界的一些重要现象具有重要意义。

例如,在化学反应中,一些反应的速率非常快,导致瞬态现象的出现。

瞬态现象的短暂性使得我们能够观察到一些在平衡状态下无法观察到的现象。

通过研究瞬态反应过程中的时间特性,我们可以揭示出反应机理和反应过程中的关键因素,对于化学反应的控制和优化具有重要的意义。

此外,在物理学领域,许多实验现象也表现出瞬态性。

例如,光的传播和干涉现象,声波的传播和共振现象等。

瞬态现象使得我们能够研究和理解这些现象的特性和规律。

通过对瞬态现象的时间特性的深入研究,我们可以更好地理解自然界中的各种物理现象。

总结起来,瞬态现象的时间特性与动力学之间存在紧密的联系。

瞬态现象的存在让我们能够观察到一些平衡状态下无法察觉到的现象,通过对瞬态现象的时间特性和动力学方程的分析,我们可以深入探究这些现象背后的机制和规律。

14-瞬态动力学分析

14-瞬态动力学分析

Advanced Contact & Fasteners
(1)
在任何给定的时间t,这些方程都会转换为一系列的静态平衡方程,并且把以 下的载荷考虑进去:
-惯性力;
-阻尼力; 为了求解这些方程,ANSYS提供了两种方法:
-纽马克时间积分算法(Newmark);
-改进算法HHT算法; 时间积分步:在两个邻近的时间点的增量:
{u}: 结构节点位移矢量 (t): 载荷的作用时间
2.瞬态动力学的理论基础
求解运动方程
Training Manual
Advanced Contact & Fasteners
直接积分法
模态叠加法
隐式积分
显式积分
完整矩阵法
缩减矩阵法
完整矩阵法
缩减矩阵法
2.瞬态动力学的理论基础
Training Manual
5.模态叠加法(振型叠加法)
Training Manual
Advanced Contact & Fasteners
5.模态叠加法(振型叠加法)
时间步设置:
Training Manual
Advanced Contact & Fasteners
-时间步长必须设置为恒定值;
-自动时间步程序会自动关闭; -定义的子步或时间步作用于施加 的所有载荷; 阻尼设置: -阻尼矩阵不是显示计算的,而 是通过阻尼比来考虑的
子步 子步是载荷步中的载荷增量。子步用于逐步施加载荷。
平衡迭代步 平衡迭代步是ANSYS为得到给定子步(载荷增量)的收敛解而采用的 方法。
3.完全法的基本设置
Training Manual
Advanced Contact & Fasteners

瞬态动力学分析

瞬态动力学分析

2、瞬态动力学理论
2.1 完全法求解理论
ANSYS中使用隐式方法Newmark和 HHT来求解瞬态问题。Newmark方法使用
有限差分法,在一个时间间隔内有
u n 1 u n ( 1 ) u n u n 1 t
(2)
u n 1 u n u n t (1 2 ) u n u n 1 t2
C a 1 u n a 4 u n a 5 u n
一旦求出 u n,1 速度和加速度可以利用(5)和(6)求得。对于初始
施加于节点的速度或加速度可以利用位移约束并利用(3)计算得到
根据Zienkiewicz的理论,利用(2)和(3)式得到的Newmark求解方法的无 条件稳定必须满足:
2、瞬态动力学理论
2.1 完全法求解理论
我们期望在高频模型中使用可控的数值阻尼计算方法,因为使用有限元计算 离散空间域的结果,在高频率的模式不太准确。然而,这种算法必须具备以 下特征:在高频下引进数值阻尼不应该降低求解精度,在低频下不能产生过 多的数值阻尼。在完全瞬态分析中,HHT时间积分方法可以满足以上的要求 : 基本的HHT的方法由下式给出:
(14)
i 1
i 1
i 1
在(14)式中左乘一个典型的模态振型i T
i T M n i y i i T C n i y i i T K n i y i i T F a (15)
i 1
自然模态的正交条件:
i 1
i 1
jTKi0 i j
(16)
jTMi0 i j
2、瞬态动力学理论
2.1 完全法求解理论
1 2
1 2
1 2
m
f
(11)
m
f
1 2

有限元基础理论 瞬态分析

有限元基础理论  瞬态分析

第8章 瞬态动力学分析
✓后处理 时间历程后处理 定义变量,提取数据,绘制变量的时间变化曲线(在实例中讲解) 实例1(静力分析)
实例1(瞬态分析,方法1)
实例1(瞬态分析,方法2)
第8章 瞬态动力学分析
共振(瞬态分析,方法1)
第8章 瞬态动力学分析
共振(瞬态分析,方法2)
第8章 瞬态动力学分析
第8章 瞬态动力学分析
8.2.3缩减法(Reduced method)。 采用主自由度和缩减矩阵来压缩问题的规模。主自由度处的位移计算出来 后,扩展到初始的完整DOF集上。 特点: 比Full法快,开销小; ✓所有载荷必须施加在用户定义的自由度上,不能在实体模型和单元上施 加载荷; ✓整个瞬态分析过程中时间步长必须保持恒定,不允许用自动时间步长; ✓唯一允许的非线性是点-点接触; ✓不允许非零位移; ✓初始解只计算出主自由度的位移。要得到完整的位移、应力和力的解需 进行扩展处理。
第8章 瞬态动力学分析
8.1 瞬态动力学分析概述
瞬态动力学分析(也称时间历程分析)用于受任意随时间变 化载荷的结构动力学响应。
8.2 瞬态动力学分析方法
8.2.1完全法(full method)。 采用完整的系统矩阵计算瞬态响应。功能最强,允许包含各类非线性特 性(塑性、大变形、接触)。 优点: 容易使用,不必关心和选取主自由度; 允许包含各类非线性; 在一次处理过程中计算出所有的位移和应力; 允许施加各种类型的载荷; 允许采用实体模型上所加的载荷。
第8章 瞬态动力学分析
8.3Full法瞬态动力学分析基本步骤
✓前处理(建立模型、划分网格) ✓建立初始条件; ✓设置求解控制; ✓设置求解选项; ✓施加载荷(不随时间变化的载荷和边界条件); ✓设定载荷步和变化载荷; ✓瞬态求解; ✓后处理。

动力学04_瞬态动力分析

动力学04_瞬态动力分析

At time = t
At time = t+t
瞬态分析 - 术语和概念
积分时间步长(接上页) 积分时间步长(接上页)
如何选择一个好的ITS呢? 呢 如何选择一个好的
ANSYS推荐的办法是激活自动时间步长(AUTOTS),然后提供tinitial , tmin 和 推荐的办法是激活自动时间步长( 推荐的办法是激活自动时间步长 ),然后提供 ),然后提供 用自动时间步长算法决定最优的 tmax 。ANSYS用自动时间步长算法决定最优的t值。 用自动时间步长算法决定最优的 值 例如:如果AUTOTS开始时是tinitial= 1 秒, tmin= 0.01 秒,并且 tmax= 10 秒 开始时是 例如:如果 开始时是 并且 ;ANSYS开始计算时 开始计算时ITS=1秒,并且允许 的值在0.01和10之间变化。 之间变化。 开始计算时 秒 并且允许ITS的值在 的值在 和 之间变化 完全瞬态分析时, 默认为打开。 完全瞬态分析时,AUTOTS默认为打开。缩减法和模态叠加法时,不允许使用 默认为打开 缩减法和模态叠加法时, AUTOTS AUTOTS在下列情况下将减少 在下列情况下将减少ITS(不小于tmin ): 在下列情况下将减少 (不小于 ---在响应频率少于 个点时 在响应频率少于20个点时 在响应频率少于 ---求解不收敛 求解不收敛 ---求解很大数目的平衡方程(收敛缓慢) 求解很大数目的平衡方程( 求解很大数目的平衡方程 收敛缓慢) ---在一个时间步内塑性应变累计超过15% 在一个时间步内塑性应变累计超过15% 在一个时间步内塑性应变累计超过 ---蠕变率超过 蠕变率超过0.1 蠕变率超过 ---如果接触状态将改变(大部分的接触单元的 如果接触状态将改变( 来控制) 如果接触状态将改变 大部分的接触单元的KEYOPT(7)来控制) 来控制

瞬态动力学分析

瞬态动力学分析

(4)
把(2)和(3)式,带入到(4) n1 a0 (un1 un ) a2 u n a3 u n u
(5) (6)
n1 u n a6 u n a7 u n1 u
2、瞬态动力学理论
2.1 完全法求解理论
3、积分时间步长选取准则
--ITS=两个时刻点间的时间增量t ;
Training Manual
Advanced Contact & Fasteners
积分时间步长(亦称为ITS或t )是时间积分法中的一个重要概念
--积分时间步长决定求解的精确度,因而其数值应仔细选取。 --对于缩减矩阵法与模态叠加法瞬态分析ANSYS 只允许ITS常值.

( 9)
其中:
程序默认使用的算法是HHT算法,因此如果需要修改时间积分算 法,则需要插入以下命令流流 TRNOPT,,,,,,NMK;
2、瞬态动力学理论
2.1 完全法求解理论
Training Manual
Advanced Contact & Fasteners
我们期望在高频模型中使用可控的数值阻尼计算方法,因为使用有限元计算 离散空间域的结果,在高频率的模式不太准确。然而,这种算法必须具备以 下特征:在高频下引进数值阻尼不应该降低求解精度,在低频下不能产生过 多的数值阻尼。在完全瞬态分析中,HHT时间积分方法可以满足以上的要求 : 基本的HHT的方法由下式给出:
瞬态动力分ng Manual
Advanced Contact & Fasteners
承受各种冲击载荷的结构,如:汽车中的门和缓冲器、建筑框 架以及悬挂系统等; 承受各种随时间变化载荷的结构,如:桥梁、地面移动装置以

ansys动力学瞬态分析详解

ansys动力学瞬态分析详解

§ 3.1瞬态动力学分析的定义瞬态动力学分析(亦称时间历程分析)是用于确定承受任意的随时间变化载荷结构的动力学响应的一种方法。

可以用瞬态动力学分析确定结构在稳态载荷、瞬态载荷和简谐载荷的随意组合作用下的随时间变化的位移、应变、应力及力。

载荷和时间的相关性使得惯性力和阻尼作用比较重要。

如果惯性力和阻尼作用不重要,就可以用静力学分析代替瞬态分析。

瞬态动力学的基本运动方程是:[岡以+ [汕]+因国二{叫)}其中:[M]=质量矩阵[C]=阻尼矩阵[K]=刚度矩阵{」}=节点加速度向量{乂}=节点速度向量{u}=节点位移向量在任意给定的时间一,这些方程可看作是一系列考虑了惯性力([M]{:: })和-阻尼力([C]{ : })的静力学平衡方程。

ANSY程序使用Newmar时间积分方法在离散的时间点上求解这些方程。

两个连续时间点间的时间增量称为积分时间步长(integrationtime step )。

§ 3.2学习瞬态动力学的预备工作瞬态动力学分析比静力学分析更复杂,因为按“工程”时间计算,瞬态动力学分析通常要占用更多的计算机资源和更多的人力。

可以先做一些预备工作以理解问题的物理意义,从而节省大量资源。

例如,可以做以下预备工作:1. 首先分析一个较简单模型。

创建梁、质量体和弹簧组成的模型,以最小的代价深入的理解动力学认识,简单模型更有利于全面了解所有的动力学响应所需要的。

2. 如果分析包括非线性特性,建议首先利用静力学分析掌握非线性特性对结构响应的影响规律。

在某些场合,动力学分析中是没必要包括非线性特性的。

3. 掌握结构动力学特性。

通过做模态分析计算结构的固有频率和振型,了解这些模态被激活时结构的响应状态。

同时,固有频率对计算正确的积分时间步长十分有用。

4. 对于非线性问题,考虑将模型的线性部分子结构化以降低分析代价。

<<高级技术分指南>>中将讲述子结构。

§3.3 三种求解方法瞬态动力学分析可采用三种方法:完全(Full )法、缩减(Reduced)法及模态叠加法。

瞬态动力分析(4)

瞬态动力分析(4)

DYNAMICS 11.0
分析过程
• 讨论完全法瞬态分析过程. • 五个主要步骤:
– – – – – 建立模型 选择分析类型和选项 指定边界条件和初始条件 施加载荷历程并求解 查看结果
Training Manual
DYNAMICS 11.0
模型: 所有的非线性因素可允许注意要求密度!
分析选项
– – – – 进入求解阶段,并选择瞬态分析. 选择完全法 求解选项 阻尼
在瞬态分析过程中,可自动计算正确的时间步长. 推荐激活该选项同时指定最大与最小积分步长. 如果有非线性因素,选择 “Program Chosen”选项 注意: 在ANSYS 中,总体求解器控制开关 [SOLCONTROL]的缺省状态为开, 建议保留这一状态, 更为重要的是,不要在载荷步之间打开或关闭此开关
积分时间步长
Training Manual
• AUTOTS对于全瞬态分析缺省是打开的. 对于缩 减法和模态叠加法,是不可用的. • AUTOTS 会减小ITS (直到 Dtmin) 在下列情况:
– – – – – – 在响应频率处,小于20个点 求解发散 求解需要大量的平衡迭代(收敛很慢) 塑性应变在一个时间步内累积超过15% 蠕变率超过0.1 如果接触状态要发生变化 ( 决大多数接触单元可由 KEYOPT(7) 控制)
缩减/完整结构矩阵
Training Manual
• 求解时既可用缩减结构矩阵,也可用完整结构矩阵; • 缩减矩阵:
– 用于快速求解; – 不允许非线性因素存在 – 根据主自由度写出[K]、[C]和[M]等矩阵,主自由度是完全自由度 的子集; – 缩减的 [K] 是精确的,但缩减的 [C] 和 [M] 是近似的。
• 不同的a 和d 造成积分方案的变化 (隐式 / 显式 / 平均加速度 ). • Newmark 是隐式积分方案. • ANSYS/LS-DYNA 利用显式积分方案.

瞬态动力分析

瞬态动力分析
SOLVE
! 关闭瞬态效应 ! 小的时间间隔 ! 在指定节点定义强制位移 ! 两个子步 ! 阶梯载荷步
24
分析步骤-规定边界条件和初始条件
▪ 载荷步2: ➢ 打开瞬态效应; ➢ 删除强加位移; ➢ 指定终止时间,连续进行瞬态分析。
! 载荷步 2 TIMINT,ON ! 打开瞬态效应开关 TIME,… ! 指定载荷步实际的终点时刻 DDELE,… ! 删除所有强制位移 ... SOLVE.
尼),仅规定b阻尼(由滞后造成的阻 尼):
b = 2/w
式中 x 为阻尼比,w 为主要响应频率 (rad/sec)。
典型命令: ALPHAD,… BETAD,…
17
分析步骤-规定边界条件和初始条件
建模 选择分析类型和选项
规定边界条件和初始条件 ▪ 在这种情况下边界条件为载荷或在整
个瞬态过程中一直为常数的条件,例 如: ➢ 固定点(约束) ➢ 对称条件 ➢ 重力 ▪ 初始条件
15
瞬态分析步骤-选择分析类型和选项
求解方法 ▪ 完整矩阵方法为缺省方法。允许下
列非线性选项: ➢ 大变形 ➢ 应力硬化 ➢ Newton-Raphson 解法 集中质量矩阵 ▪ 主要用于细长梁和薄壁壳或波的传 播 公式求解器 ▪ 由程序自行选择
16
瞬态分析步骤-选择分析类型和选项
阻尼 ▪ α和b阻尼均可用; ▪ 在大多数情况下,忽略α阻尼(粘性阻
➢ 不进行缩减。 采用完整的[K], [C], 和 [M]矩阵;
7
瞬态分析- 求解方法
模态叠加法 + 运动方程是去耦的,求解速度很快
直接积分法 – 完全耦合的运动方程,求解很费时间
+ 当仅需少量模态来描述响应时有效 + 对大多数问题都有效

ansys动力学瞬态分析详解

ansys动力学瞬态分析详解

§3.1瞬态动力学分析的定义瞬态动力学分析(亦称时间历程分析)是用于确定承受任意的随时间变化载荷结构的动力学响应的一种方法。

可以用瞬态动力学分析确定结构在稳态载荷、瞬态载荷和简谐载荷的随意组合作用下的随时间变化的位移、应变、应力及力。

载荷和时间的相关性使得惯性力和阻尼作用比较重要。

如果惯性力和阻尼作用不重要,就可以用静力学分析代替瞬态分析。

瞬态动力学的基本运动方程是:其中:[M] =质量矩阵[C] =阻尼矩阵[K] =刚度矩阵{}=节点加速度向量{}=节点速度向量{u} =节点位移向量在任意给定的时间,这些方程可看作是一系列考虑了惯性力([M]{})和阻尼力([C]{})的静力学平衡方程。

ANSYS程序使用Newmark时间积分方法在离散的时间点上求解这些方程。

两个连续时间点间的时间增量称为积分时间步长(integration time step)。

§3.2学习瞬态动力学的预备工作瞬态动力学分析比静力学分析更复杂,因为按“工程”时间计算,瞬态动力学分析通常要占用更多的计算机资源和更多的人力。

可以先做一些预备工作以理解问题的物理意义,从而节省大量资源。

例如,可以做以下预备工作:1.首先分析一个较简单模型。

创建梁、质量体和弹簧组成的模型,以最小的代价深入的理解动力学认识,简单模型更有利于全面了解所有的动力学响应所需要的。

2.如果分析包括非线性特性,建议首先利用静力学分析掌握非线性特性对结构响应的影响规律。

在某些场合,动力学分析中是没必要包括非线性特性的。

3.掌握结构动力学特性。

通过做模态分析计算结构的固有频率和振型,了解这些模态被激活时结构的响应状态。

同时,固有频率对计算正确的积分时间步长十分有用。

4.对于非线性问题,考虑将模型的线性部分子结构化以降低分析代价。

<<高级技术分指南>>中将讲述子结构。

§3.3三种求解方法瞬态动力学分析可采用三种方法:完全(Full)法、缩减(Reduced)法及模态叠加法。

第4章 瞬态动力分析.

第4章 瞬态动力分析.
M4-4
瞬态分析
第二节:术语和概念
包括的主题如下:
• • 运动方程 求解方法

积分时间步长
M4-5
瞬态分析 – 术语和概念
运动方程
• 用于瞬态动力分析的运动方程和通用运动方程相同;
C u K u F t M u
• 这是瞬态分析的最一般形式,载荷可为时间的任意函数; • 按照求解方法, ANSYS 允许在瞬态动力分析中包括各种类 型的非线性- 大变形、接触、塑性等等。
M4-23
瞬态分析步骤
选择分析类型和选项(接上页)
求解方法和其它选项
• 选择大位移或小位移分析方法 – 不确定时选择大位移瞬态分析法 指定加载步结束时的时间 自动时间步长(后面讨论) 指定初始时当前载荷步最小和最大值Dt 指定输出控制(后面讨论)
• • • •
M4-24
瞬态分析步骤
选择分析类型和选项(接上页)
瞬态分析- 术语和概念
求解方法(接上页)
• • 求解时即可用缩减结构矩阵,也可用完整结构矩阵; 缩减矩阵: – 用于快速求解; – 不允许非线性(除间隙外); – 根据主自由度写出[K], [C], [M]等矩阵,主自由度是完全自由 度的子集; – 缩减的 [K] 是精确的,但缩减的 [C] 和 [M] 是近似的。此外,还 有其它的一些缺陷,但不在此讨论。 完整矩阵: – 不进行缩减。 采用完整的[K], [C], 和 [M]矩阵; – 允许非线性特性; – 在本手册中的全部讨论都是基于此种方法。
M4-19
• •
瞬态分析
第三节:步骤
• 在此节中只讨论完整矩阵 • 五个主要步骤: – 建模 – 选择分析类型和选项 – 规定边界条件和初始条件 – 施加时间历程载荷并求解 – 查看结果

第三章瞬态动力学分析

第三章瞬态动力学分析

第三章瞬态动力学分析瞬态动力学分析是一种用来描述系统在外部扰动下的短期响应情况的方法。

在工程领域中,瞬态动力学分析常常用于评估系统的稳定性、性能和安全性。

本章将介绍瞬态动力学分析的基本原理和具体应用。

1.原理瞬态动力学分析的基本原理是基于系统的动力学特性进行建模和分析。

首先,需要建立系统的数学模型,包括系统的方程、初值和边界条件。

系统的方程可以通过物理定律、动力学原理或实验数据等方法确定。

然后,通过求解数学模型的解析解或数值解的方式,可以得到系统在不同时间下的响应。

2.方法瞬态动力学分析的方法可以分为解析方法和数值方法两种。

解析方法是通过求解系统的微分方程或差分方程得到解析解,从而得到系统的瞬态响应。

常见的解析方法有变量分离法、特征根法和拉普拉斯变换法等。

数值方法则是通过离散化连续系统,将微分方程或差分方程转化为差分方程或代数方程,利用计算机进行数值求解。

常见的数值方法有欧拉法、龙格-库塔法、增量法和有限元法等。

3.应用瞬态动力学分析在工程中的应用非常广泛,下面简要介绍几个典型的应用场景。

(1)电力系统瞬态分析:电力系统瞬态分析是电力工程中的一个重要问题,它用于评估电力系统的稳定性、动态响应和故障处理能力。

通过瞬态动力学分析,可以控制系统的电压、频率和功率稳定性,提高电力系统的可靠性和安全性。

(2)水力系统瞬态分析:水力系统瞬态分析主要用于评估水力系统中的液压冲击、水锤和阀门控制等问题。

通过瞬态动力学分析,可以确定系统中各个节点的压力和流量变化规律,以及液压冲击和水锤的大小和位置,为系统设计和维护提供依据。

(3)机械系统瞬态分析:机械系统瞬态分析主要用于评估机械系统的运动学和动力学性能,如加速度、速度、力和位移等。

通过瞬态动力学分析,可以分析系统中的动力学特性,确定系统的自然频率、阻尼比和共振点等参数,为系统的设计和优化提供参考。

总结:瞬态动力学分析是一种用来描述系统在外部扰动下的短期响应情况的方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第16章瞬态动力学分析第1节基本知识瞬态动力学分析,亦称时间历程分析,是确定随时间变化载荷作用下结构响应的技术。

它的输入数据是作为时间函数的载荷,可以是静载荷、瞬态载荷和简谐载荷的随意组合作用。

输出数据是随时间变化的位移及其它导出量,如:应力、应变、力等。

用于瞬态动力分析的运动方程为:[]{}[]{}[]{}(){}t F&&M=u+&+CKuu其中:式中[M]为质量矩阵;[C]为阻尼矩阵;[K]为刚度矩阵。

所以在瞬态动力分析中密度或质点质量、弹性模量及泊松比、阻尼等因素均应考虑,在ANSYS分析过程中密度或质量、弹性模量是必须输入的,忽略阻尼时可以选忽略选项。

瞬态动力学分析可以应用于承受各种冲击载荷的结构,如:炮塔、汽车车门等,应用于承受各种随时间变化载荷的结构,如:混凝土泵车臂架、起重机吊臂、桥梁等,应用于承受撞击和颠簸的办公设备,如:移动电话、笔记本电脑等,同时ANSYS在瞬态动力学分析中可以使用线性和非线性单元(仅在完全瞬态动力学中使用)。

材料性质可以是线性或非线性、各向同性或正交各项异性、温度恒定的或温度相关的。

分析结果写入jobname.RST文件中。

可以用POST1和POST26观察分析结果。

ANSYS在进行瞬态动力学分析中可以采用三种方法,即Full(完全)法、Reduced(缩减)法和Mode Superposition(模态叠加)法。

ANSYS提供了各种分析类型和分析选项,使用不同方法ANSYS软件会自动配置相应选择项目,常用的分析类型和分析选项如表16-1所示。

在瞬态分析中,时间总是计算的跟踪参数,在整个时间历程中,同样载荷也是时间的函数,有两种变化方式:Ramped :如图16-1(a )所示,载荷按照线性渐变方式变化。

Stepped :如图16-1(b )所示,载荷按照解体突变方式变化。

图16-1 载荷增加方式 渐变与突变依据载荷变化方式可以将整个时间历程划分成多个载荷步(LoadStep ),每个载荷步代表载荷发生一次突变或一次渐变阶段。

在每个载荷步时间内,载荷增量又可以划分多个子步(Substep ),在子步载荷增量的条件下程序进行迭代计算即Iteriation ,经过多个子步的求解实现一个载荷步的求解,进而求出多个载荷步的求解实现整个载荷时间历程的求解。

利用ANSYS 进行瞬态动力学分析时可以在实体模型或有限元模型上施加下列载荷:约束(Displacement )、集中力(Force )、力矩(Moment )、面载荷(Pressure )、体载荷(Temperature 、Fluence )、惯性力(Gravity ,Spinning ,ect.)。

在ANSYS 中,进行多载荷步加载的基本方法常用有三种:(1)连续多载荷步加载法。

(2)定义载荷步文件批加载法。

(3)定义表载荷加载法。

第2节 瞬态动力学分析实例案例1——自由度弹簧质量系统瞬态分析LOAD(a) Ramped (b ) Stepped图16-2 弹簧质量系统/载荷图 问题如图16-2所示,单自由度的弹簧质量系统,试对质点M 在变力FORCE 作用下的瞬态分析,并绘出位移瞬态响应曲线。

条件弹簧刚度50 000 N/m ,长度0.2 m,质量大小为150 KG ,质点受力如表16-3所示,忽略阻尼。

解题过程以弹簧上部端点为坐标原点,建立直角坐标系。

制定分析方案。

分析类型为瞬态动力学分析;模型类型为线、质点模型,由于结构简单可以直接创建节点和单元,弹簧部分选用Combin14单元,质量块部分简化为质点选用MASS21单元,边界条件为上端施加固定全约束,据图16-2中Force —Time 图的特点采用外力以Ramped 线性渐变方式加载,连续多载荷步加载方法。

瞬态分析的求解方法采用Reduce (缩减)法。

1.ANSYS 分析开始准备工作(1)清空数据库并开始一个新的分析选取Utility Menu> & Start New ,弹出Clears database and Start New 对话框,单击OK 按钮,弹出Verify 对话框,单击OK 按钮完成清空数据库。

(2)指定新的工作文件名指定工作文件名。

选取Utility Menu> Jobname ,弹出Change Jobname 对话框,在Enter New Jobname 项输入工作文件名,本例中输入的工作文件名为“Transient example1”,单击OK 按钮完成工作文件名的定义。

o Time M-100-200-300-400-500Force(3)指定新的标题指定分析标题。

选取Utility Menu> Title,弹出Change Title对话框,在Enter New Title 项输入标题名,本例中输入“exercise1”为标题名,然后单击OK按钮完成分析标题的定义。

(4)重新刷新图形窗口选取Utility Menu>Plot>Replot,定义的信息显示在图形窗口中。

(5)定义结构分析运行主菜单Main Menu>Preferences,出现偏好设置对话框,选中赋值分析模块为Structure结构分析模块,单击OK按钮完成分析模块的定义。

2.定义单元及材料(1)新建单元类型运行主菜单Main Menu>Preprocessor>Element Type>Add/Edit/Delete命令,弹出Element Types对话框,单击Add按钮新建单元类型,弹出Library of Element Types对话框,先选择单元大类为Structural Mass,接着选择3D Mass 21(MASS21单元),单击Apply按钮,选择单元大类为Combination,接着选择Spring-damper14(COMBIN14单元)单击OK按钮,完成单元类型TYPE 1和单元类型TYPE 2的定义,如图16-3所示。

图16-3 定义单元类型选择TYPE 1,单击Option按钮进入单元设置选项,弹出MASS21 Element type options对话框,在Rotary inertia options(K3)栏中更改选项为2-D w/o rot iner(2D无转动惯量),在单击OK关闭窗口,如图16-4所示,再选择TYPE 2,单击Option按钮进入单元设置选项如图16-5所示,在DOF selection for 2D+3D(K3)栏中更改选项为2-D longitudinal(定义弹簧单元自由度),单击OK按钮。

3.定义实常数(1)新建实例常量运行主菜单Main Menu>Preprocessor>Real Constants Add/Edit/Delete命令,弹出实常数定义对话框,如图16-6所示。

16-4 设置单元配置项图16-5 设置单元配置项(2)输入实常数单击Add按钮进入选择单元类型对话框如图16-7所示,选择TYPE 1单击OK按钮。

进入实例常量输入对话框,如图16-8,输入质点质量150,单击OK按钮,出现如16-9左图所示。

如上步骤继续单击Add按钮,如图16-9、图16-10所示,完成实常数Set 2的输入,在Spring constant(K)项,输入50 000,在单击OK按钮。

(3)关闭实常数对话框回到实例常量对话框,此时显示出新建编号为Set 1和Set 2的实例常量,单击Close按钮完成输入,如图16-11所示。

图16-6 定义实常数对话框图16-7 选择定义实常数的单元类型对话框图16-8 实例常量Set 2输入对话框图16-9 选择定义实常数的单元类型对话框图16-10 实例常量Set 2输入对话框图16-11 定义实常数对话框4.建立有限元模型(由于本案例模型较为简单,可以直接创建节点和单元形成有限元模型。

)(1)创建节点运行主菜单Main Menu>Preprocessor>Modeling>Create>Nodes>In Active CS命令,在对话框中分别在节点号NODE栏输入1,节点坐标X,Y,Z栏输入0,0,0,单击Apply按钮完成一次输入,如图16-12所示。

在对话框中分别在节点号NODE栏输入2,节点坐标X,Y,Z栏输入0,-0.2,0,单击OK按钮完成节点输入,单击OK按钮,如图16-13所示。

图16-12 当前坐标系下创建节点对话框图16-13 当前坐标系下创建节点对话框(2)创建单元运行主菜单Main Menu>Preprocessor>Modeling>Create>Elements>Elem Attributes命令,在[TYPE]单元类型序号栏中更改选项为1 MASS21,在[REAL]实常数序号栏中更改选项为1,单击OK按钮,如图16-14所示。

运行主菜单Main Menu>Preprocessor>Modeling>Create>Elements>Auto Numbered>Thru Nodes命令,如图16-15所示,输入节点号2,单击OK按钮,创建质点单元。

运行主菜单Main Menu>Preprocessor>Modeling>Create>Elements>Elem Attributes命令,在[TYPE]单元类型序号栏中更改选项为 2 COMBIN14,在[REAL]实常数序号栏中更改选项为2,单击OK按钮,如图16-16所示。

运行主菜单Main Menu>Preprocessor>Modeling>Create>Elements>Auto Numbered>Thru Nodes命令,如图16-17所示,输入节点号1,2(中间用“,”间隔)或用鼠标按顺序点选1、2节点,单击OK按钮,创建弹簧单元。

图16-14 单元属性对话框图16-15 以节点创建单元对话框图16-16单元属性对话图16-17以节点创建单元对话框运行功能菜单Utility Menu>PlotCtrls>Numbering命令,弹出Plot Numbering Control菜单在NODE Node numbers栏中鼠标点击选项为On,在Elem/attrib numbering栏中更改选项为Element numbers单击OK按钮,如图16-18所示。

5.定义分析类型和分析选项并加载(1)定义分析类型及选项运行主菜单Main Menu>Solution>Analysis Type>New Analysis命令,弹出New Analysis 对话框,选择Transient瞬态分析选项,单击OK按钮,弹出Transient Analysis对话框,选择Reduced选项,单击OK按钮,如图16-19、图16-20所示。

相关文档
最新文档