高等数学讲义-第一章-函数
高等数学讲义答案第一章
第一章 极限与连续第一节 函 数【例1】研究函数)1ln()(2x x x f ++=的奇偶性,并求其反函数. 【分析】()f x 定义域为R ,()ln(ln(()f x x x f x -=-==-+=-故()f x 为奇函数.由)1ln()(2x x x f ++=得,y e x =yex -=-+两式相减得.2y ye e x --=【例2】设0,0()1,0x f x x <⎧=⎨≥⎩, 22,1()||2,1x x g x x x ⎧-<⎪=⎨-≥⎪⎩, 试求[()],[()]f g x g f x .【分析】0,12[()]1,12x f g x x x ⎧≤<⎪=⎨<≥⎪⎩或,2,0[()]=1,0x g f x x <⎧⎨-≥⎩.【例3】设函数2||sin(2)()(1)(2)x x f x x x x -=--在下列哪个区间内有界( ).()()A 1,0- ()()B 0,1 ()()C 1,2 ()()D 2,3【分析】()1,0x ∈-,2||sin(2)11()(1)(2)144x x f x x x x -=≤=--⨯,故有界,选(A ) 2111||sin(2)sin(2)lim ()lim lim (1)(2)(1)x x x x x x f x x x x x ---→→→--===+∞--- 111sin(2)sin(2)lim ()lim lim (1)(1)x x x x x f x x x +++→→→--===-∞-- 222222sin(2)(2)1lim ()lim lim lim (2)(2)2x x x x x x f x x x x ++++→→→→--====+∞--- 故BCD 均不正确.第二节 极 限【例1】讨论11012lim12x x x→-+.【分析】1111001212lim 1,lim 11212x x x x xx+-→→--=-=++,故此极限不存在.【例2】讨论1121lim ()xx x x e e+→-. 【分析】111111221122lim ()lim ,lim ()limttttt t xx xx t t x x e e e ex e e x e e t t +-++++→+∞→-∞→→---==+∞-==故此极限不存在.【例3】110|sin |lim 21x x x x e x e →⎛⎫⎪- ⎪ ⎪+⎝⎭. 【分析】1111000|sin |sin lim 2lim 2lim 12111x xx x x x x x e x e x x e e +++→→→⎛⎫ ⎪-=-=-=- ⎪ ⎪++⎝⎭1111000|sin |sin lim 2lim 2lim 10111x xx x x x x x e x e x x e e --+→→→⎛⎫- ⎪-=-=--=- ⎪ ⎪++⎝⎭,故110|sin |lim 2 1.1x x x x e x e →⎛⎫⎪-=- ⎪ ⎪+⎝⎭【例1】)0,0,0()(lim 1>>>++∞→c b a c b a nnnn n【分析】不妨设0a b c ≥≥>,由3n n n nna abc a ≤++≤得11()3n nn n na abc a ≤++≤ 又因为1lim lim3nn n a a a →∞→∞==,由三明治定理得1lim().nnn nn a b c a →∞++=故()1lim()max ,,.nnn nn a b c a b c →∞++=【例2】)2211(lim 222n n nn n n +++++∞→【分析】由2221i i i n n n i n ≤≤+++得2221111n n n i i i i i in n n i n ===≤≤+++∑∑∑又因为22111lim lim 12nn n n i i i i n n n →∞→∞====++∑∑,由三明治定理得211lim .2nn i i n i→∞==+∑题型一 极限概念与性质【例1】设数列{}n x 与{}n y 满足lim 0n n n x y →∞=, 则下面断言正确的是 ( ).(A)若{}n x 发散,则{}n y 必发散 (B)若{}n x 无界,则{}n y 必有界 (C)若{}n x 有界, 则{}n y 必为无穷小 (D)若1{}nx 为无穷小,则{}n y 必为无穷小 【分析】令,0n n x n y ==,(A)不正确;令0,n n x y n ==,(C)不正确;令,1,3,50,1,3,5,0,2,4,6,2,4,6n n n n n x y n n n ==⎧⎧==⎨⎨==⎩⎩(B)不正确;选(D). 事实上,lim lim01nn n n n ny x y x →∞→∞==,分母趋于0,分子趋于0,(D)正确. 【例2】{},{},{}n n n a b c 均为非负数列, 且lim 0n n a →∞=,lim 1n n b →∞=,lim n n c →∞=∞, 则 ( ). (A),n n a b n <∀ (B),n n b c n <∀ (C)lim n n n a c →∞不存在 (D)lim n n n b c →∞不存在【分析】对n ∀,(A) (B)肯定不正确,lim n n n a c →∞可能存在可能不存在,选(D).【例3】设函数()f x 在(),-∞+∞内单调有界, {}n x 为数列, 下面命题正确的是 ( ). (A)若{}n x 收敛,则{()}n f x 必收敛 (B)若{}n x 单调,则{()}n f x 必收敛 (C)若{()}n f x 收敛, 则{}n x 收敛 (D)若{()}n f x 单调, 则{}n x 收敛【分析】{}n x 单调,由于()f x 单调,则{()}n f x 单调,又因为其有界,故由单调有界定理,(B)正确.题型二 不定式求极限【例1】(1) 0x0011233lim .3x x xx o x o x x (2) )cos 1(sin 1tan 1limx x xx x -+-+→()30002tan 1cos 1tan sin 1lim lim .1222x x x x x x xx x x →→→--===⨯(3) limxlimlimlim1.x x x ===(4) 3012cos lim 13x x x x32200012cos 12cos 1cos 11lim 1lim ln lim .3336x x x x x x x xx x(5) sin 30limx xx e e x →-()sin sin 3330001sin 1lim lim lim .6x x x x x x x x e e e e x x x x x -→→→---===-(6) 211lim (arctan arctan )1x x x x →∞-+()222220011arctan arctan 11111lim (arctan arctan )lim lim 12x t t t t t t t t x x x t t →∞→→--++++-==+()()222011lim1.2t t t t t→++-+==(7) ()()4sin sin sin sin limx x x x x →-()()()34330001sin sin sin sin sin sin sin sin 16lim lim lim .6x x x x x x x x x x x x →→→--=== (8)()()()401cos ln 1tan limsin x x x x x→--+()()()()()42220001cos ln 1tan ln 1tan tan ln 1tan 11tan limlim lim sin 22x x x x x x x x x x x x xx x x →→→--+-+-+⎛⎫-==+ ⎪⎝⎭2201tan 112lim .24x xx →==【例2】 (1) 22211lim sin cos x x x x →⎛⎫- ⎪⎝⎭()()2222222224000cos sin cos sin 11cos sin lim lim lim sin cos cos sin x x x x x x x x x x x x x x x x x x x →→→+--⎛⎫-== ⎪⎝⎭30cos sin 22lim.3x x x x x →-==-(2)()12lim x x x x e →+∞⎛- ⎝ ()()()121222011lim lim 1.txx t t e t x x e t +→+∞→--+⎛-==- ⎝【例3】(1) 310sin 1tan 1lim x x x x ⎪⎭⎫ ⎝⎛++→()333000tan 1cos 11tan 1tan sin 1limln lim lim .1sin 1sin 2x x x x x x x x x x x x x →→→-+-⎛⎫⎛⎫=== ⎪ ⎪++⎝⎭⎝⎭ 311201tan lim .1sin x x x e x →+⎛⎫= ⎪+⎝⎭(2) 21coslim x x x ⎪⎭⎫ ⎝⎛∞→ 222211111lim ln cos lim cos 1lim .22x x x x x x x x x →∞→∞→∞⎛⎫⎛⎫⎛⎫=-=-⋅=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2121lim cos .x x e x -→∞⎛⎫= ⎪⎝⎭ (3) ()110ln 1lim xe x x x -→+⎛⎫ ⎪⎝⎭()()()2000ln 1ln 1ln 1111lim ln lim 1lim .12x x x x x x x x e x x x x →→→+++-⎛⎫⎛⎫=-==- ⎪ ⎪-⎝⎭⎝⎭()11120ln 1lim .xe x x e x --→+⎛⎫= ⎪⎝⎭(4)()()2lim xx xx a x b →∞⎡⎤⎢⎥-+⎣⎦()()()()()()22lim ln lim .x x x x a x b x x x a b x a x b x a x b →∞→∞⎡⎤--+==-⎢⎥-+-+⎣⎦()()2lim .xa b x x e x a x b -→∞⎡⎤=⎢⎥-+⎣⎦(5) 11ln lim 1xxx x →+∞⎛⎫- ⎪⎝⎭()1112111ln 1ln 1ln 11ln lim ln 1lim lim lim 1.ln 111xx x x x x x x x x x x x x x x x x x x x x x x e →+∞→+∞→+∞→+∞-⎛⎫ ⎪⎛⎫--⎝⎭-=⋅===- ⎪⎛⎫⎛⎫⎝⎭--- ⎪ ⎪⎝⎭⎝⎭ 11ln 1lim 1.xxx x e -→+∞⎛⎫-= ⎪⎝⎭(6) lim nn →∞⎣⎦()02ln ln 1lim ln lim 1lim ln 22222t t x x t a b a b x x ab t +→+∞→+∞→⎤+-+=-===⎢⎢⎥⎣⎦⎣⎦lim lim n xn x →∞→+∞==⎣⎦⎣⎦【例4】 (1) 若30sin 6()lim0x x xf x x →+=, 求206()lim .x f x x →+233300006()sin 6()6sin 6sin 6()6sin 6limlim lim lim 36.x x x x f x x xf x x x x xf x x xx x x x →→→→+++-+-==+=(2)设0ln(1()sin 5)lim 121x x f x x →+=-, 求0lim ().x f x →000ln(1()sin 5)()sin 55()lim lim lim 1.21ln 2ln 2x x x x f x x f x x f x x →→→+===-0ln 2lim ().5x f x →= 题型三 连加或连乘求极限【例1】(1) ()11lim ()nn i l N i i l +→∞=∈+∑(2)231lim nn i i n →∞=∑ (3) n n x x x 2cos 4cos 2cos lim ∞→ 11111111111,11,lim 1.()22311()nnn i i l i i l n n n i i l →∞====-+-++-=-=++++∑∑1111111111112,11,()232422212ni l i i l n n n n =⎛⎫⎛⎫==-+-++-=+-- ⎪ ⎪++++⎝⎭⎝⎭∑1111lim 1.()22nn i i i l →∞=⎛⎫=+ ⎪+⎝⎭∑同理,得()11111lim1.()2nn i l N i i l l l +→∞=⎛⎫∈=+++ ⎪+⎝⎭∑ (2)231lim nn i i n →∞=∑ ()()2331111lim lim 121.63nn n i i n n n nn →∞→∞==⨯++=∑ (3) n n xx x 2cos 4cos 2coslim ∞→cos cos cos 2sin sin sin 2422lim cos cos cos limlim .2422sin 2sin 22n n nn n n n n n n nx x x xx x x x x x x x →∞→∞→∞⋅===【例2】 (1))212654321(lim nn n -⋅⋅∞→()()()()()22222212+11352113355711()=24622462+12+12n n n n n n n --⨯⨯⨯⋅⋅⋅⋅⋅≤ 因为1lim=02+1n n →∞,由三明治定理得213521lim()=02462n n n →∞-⋅⋅, 故13521lim()=0.2462n n n→∞-⋅⋅ (2)⎰∞→xx dt t x 0sin 1lim()()()10sin sin 11,sin 1n n xt dtt dt n x n t dt n x n ππππππ+≤<+≤≤+⎰⎰⎰即()()02121sin 1xn n t dt n x n ππ+≤≤+⎰ ()()2122lim lim 1x x n n n n πππ→∞→∞+==+,由三明治定理得012lim sin .x x t dt x π→∞=⎰(3))0,0i n p a >>设()12max ,,p M a a a =M ≤≤lim n n M M →∞==,由三明治定理得()1max ,,.p n M a a == 【例3】(1)1limn n i →∞=11011limlnln 1112lim lim .nn i in nxdxn n n n i n e e e n n n →∞=-→∞→∞=∑⎛⎫⎰=⋅⋅⋅=== ⎪⎝⎭(2)lim n11013lim 112lim .n n i i xdxn n n e e e →∞=⎛⎫+ ⎪+⎝⎭∑⎰===【例4】(1) 1limn i →∞=111nnni i i ===≤≤11lim lim 1.nnn n i i →∞→∞====由三明治定理,得1lim 1.nn i →∞==(2)1limnn i →∞=((11111lim lim ln ln 1.nnn n i i x n →∞→∞======+⎰(3)1limnn i →∞=)10111lim lim 21.nn n n i i n →∞→∞======⎰(4)21limnn i →∞=222111nn ni i i ===≤≤22111lim lim .3n n n n i i →∞→∞====故211lim.3nn i →∞==(5)11limnn i n i →∞=+∑()1100111111lim lim ln 1ln 2.11nn n n i i dx x i n i n x n→∞→∞=====+=+++∑∑⎰(6)21limn i nn i →∞=++∑2221111nn ni i i i i in n n n n i n n ===≤≤++++++∑∑∑ 22111lim lim .12nnn n i i i i n n n n n →∞→∞====++++∑∑ 故211lim.2nn i i n n i →∞==++∑ (7) 221limnn i n n i →∞=+∑ 1102222011111lim lim arctan .141nnn n i i n dx x n i n x i n π→∞→∞======++⎛⎫+ ⎪⎝⎭∑∑⎰(8) 221lim1nn i n n i →∞=++∑()22222211111nnni i i nn nn i n i ni ===≤≤+++++∑∑∑()1222220111lim lim .141nnn n i i nn dx n i x n i π→∞→∞=====++++∑∑⎰【例5】(1)2sin sin sin lim 1112n n n n n n n n n πππ→∞⎛⎫ ⎪+++ ⎪+ ⎪++⎝⎭222sin sin sin sin sin sin sin sin sin 1111112n n n n n n n n n n n n n n n n nn n n n n πππππππππ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪+++≤+++≤+++ ⎪ ⎪ ⎪++++ ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭1022sin sin sin sin sin sin 2lim lim sin .111n n n n n n n n n n xdx n n n n n n ππππππππ→∞→∞⎛⎫⎛⎫ ⎪ ⎪+++=+++== ⎪ ⎪+++ ⎪ ⎪⎝⎭⎝⎭⎰2sin sin sin 2lim .1112n n n n n n n n n ππππ→∞⎛⎫⎪+++=⎪+ ⎪++⎝⎭(2)21tanlim nn i i n n n i →∞=+∑222111tann tan tan 1n n ni i i i i in n n n n n n n i n ===≤≤+++∑∑∑1100222111tantan tanlim lim lim tan ln cos lncos1.1n n n n n n i i i i i in n n n n n xdx x n n n n →∞→∞→∞=======-=-++∑∑∑⎰【例6】(1)1lim 1nn i →∞=⎫⎪⎪⎭∑111lim 1lim .4nn n n i i →∞→∞==⎫==⎪⎪⎭∑ (2)()1222411lim n n n i n i n →∞=+∏()()()12222421011limln 2ln 12242arctan 2411lim25.n n n i n i nn nx dx n i niee e n →∞=⎡⎤+⎢⎥+⎢⎥-+⎣⎦→∞=∏⎰+===∏题型四 数列极限的存在性【例1】(1)设111,0n a a +=+=,证明数列{}n a 收敛,并求lim n n a →∞.121,0a a ==设1k k a a +≤,则≤21k k a a ++≤由数学归纳法得{}n a 递减下面证明n a ≥显然112a ≥-设12k a +≥-则12+≥-,即112k a +≥-由数学归纳法得n a ≥由单调有界必收敛得{}n a 收敛.设lim ,n n a A →∞=两边取极限得0A =,即A =(2) 123a a a === ,证明数列{}n a 收敛,并求lim n n a →∞.lim 2.n n a →∞=(3) 设1111,2n n n a a a a a a +⎛⎫=>=+ ⎪⎝⎭,证明数列{}n a 收敛,并求lim n n a →∞. lim n n a →∞=(4) 设1103,n a a +<<={}n a 收敛,并求lim n n a →∞.3lim .2n n a →∞= 【例2】设)(x f 是区间[)0,+∞上单调减少且非负的连续函数,()()()11,1,2,nnn k a f k f x dx n ==-=∑⎰…证明数列{}n a 的极限存在.()()()()1111110n n n n nna a f n f x dx f n f n dx +++-=+-≤+-+=⎰⎰,即{}n a 递减.()()()()()()23112112nn n k a f k f x dx f f x dx f f x dx ==-=-+-+∑⎰⎰⎰()()()()110.nn f n f x dx f n f n -+--+≥≥⎰故{}n a 有下界.由单调有界定理,{}n a 的极限存在.题型五 含参数的极限【例1】确定,,a b c 值,使()()3sin lim0ln 1x x bax xc c t dtt→-=≠+⎰. 【分析】分式极限不为0,分子趋于0,则分母趋于0,故0.b =()()()233000sin cos cos limlimlim 0ln 1ln 1x x x x ax xa x a xc c x t x dttx→→→---===≠++⎰故11,.2a c ==【例2】()()22ln 1lim2x x ax bx x →+-+=,求,a b .【分析】()()()()222222001ln 12lim lim 2x x x x o x ax bx x ax bx x x →→-+-++-+==故51,.2a b ==-题型六 含变积分限的极限【例1】设()(),g f x x 连续,且()()()g 0f x x x → ,又lim ()0x ax ϕ→=,证明:()()()()()0x x f t dt g t dt x a ϕϕ→⎰⎰.【例2】设)(x f 是[)0,+∞上的连续函数,且满足()2lim 1x f x x →+∞=,求()()220limxx t x e e f t dtf x -→+∞⎰.【分析】()()()()()222222222limlimlimxxxxttt xxx x x ee f t dte f t dte f t dt xf x x e f x x e -→+∞→+∞→+∞=⋅=⎰⎰⎰()()()2222221limlim .22222xxx x f x e f x x x x x xx e →+∞→+∞==⋅=++题型七 函数的连续与间断【例1】设()()()f x x ϕ-∞+∞和在内有定义,()f x 为连续函数,且()()0,f x x ϕ≠有间断点,则 ( ). (A)()f x ϕ⎡⎤⎣⎦必有间断点(B)()2f x ϕ⎡⎤⎣⎦必有间断点(C)()f x ϕ⎡⎤⎣⎦必有间断点 (D)()()x f x ϕ必有间断点【分析】(D) 【例2】设函数nn x xx f 211lim)(++=∞→,讨论函数)(x f 的连续性与间断点.【分析】0,11,11()1,10,1x x x f x x x ≤-⎧⎪+-<<⎪=⎨=⎪⎪>⎩()f x 在1x =处是跳跃间断点,在其他区域均连续.【例3】求()sin sin sin lim sin x t xt x t f x x -→⎛⎫=⎪⎝⎭的间断点,并判别其类型.【分析】()sin sin sin sin lim .sin xx t xxt x t f x e x -→⎛⎫== ⎪⎝⎭其中,,0x k k Z k π=∈≠且为第二类间断点,0x =为可去间断点.。
第一章函数 《高等数学》课件
第一部分 极限初论
机动 目录 上页 下页 返回 结束
极限初论三个内容的关系 函数 — 研究对象 极限 — 研究方法 连续 — 研究桥梁
机动 目录 上页 下页 返回 结束
第一章 函 数
机动 目录 上页 下页 返回 结束
第一章 函 数
§1.1 函数的概念 §1.2 函数的基本性质 §1.3 复合函数与反函数 §1.4 初等函数及其应用 §1.5 常用经济函数
t s
s/km 200
100
0
0
1
2
0
100
200
1
2
t/h
思考:
(1) 在描点时,是怎样确定一个点的位 置的? 哪个变量作为点的横坐标?哪 个变量作为点的纵坐标? (2) 函数的定义域是什么? (3) s 的值能大于 200 吗?能是负值吗? 为什么?函数的值域是什么? (4) 随行驶时间 t 的增大,距离 s有怎样 的变化?
函数的定义
设x和y是两个变量,D 是一个给定的非空数集. 如果对于每个数x∈D,按照一定对应法则总有唯一 确定的数值y和它对应,则称y是x的函数。
D
B
f:对应法则
x.
y.
机动 目录 上页 下页 返回 结束
记作
因变量
自变量
定义域
其中, x 称为自变量,y 称为因变量,数集 D 称
为这个函数的定义域。
在某一自然现象或社会现象中,往往 同时存在多个不断变化的量(变量),这 些变量并不是孤立变化的,而是相互联系 并遵循一定的规律。函数就是描述这种联 系的一个法则。
机动 目录 上页 下页 返回 结束
例如,在自由落体运动中,设物体下落的 时间为t,落下的距离为s。假定开始下落 的时刻为t=0,则变量s与t之间的相依关系 由数学模型
高等数学函数讲义
y x2
自变量在定义域内的不同范围变化时,用两个
或两个以上的解析式表示的函数, 数学o 上称这x种 函数为分段函数.
微积分
第一章 函数
上页 下页 返回
例:某运输公司规定货物的吨公里运价为:在 a
公里以内,每公里 k元;超过 a 公里,超过部分
每公里为 4 k 元。求运价 m 和里程 s 之间的函数
P(x) b a c x x2
函数自变量x的定义域为(0,a],并且x是正整数.
微积分
第一章 函数
上页 下页 返回
例2 :要设计一个容积为20 立方米的圆柱形封闭容
器。 已知上底材料每平方米的造价是侧面材料单
位面积造价的一半, 而侧面材料单位面积造价是
下底面单位面积造价的一半。试求容器的总造价
所以函数 f (x) x3 2x 是奇函数.
微积分
第一章 函数
上页 下页 返回
(2) 因为 f (x) ex ex , 所以
2
f (x) ex e(x) ex ex ex ex f (x)
2
2
2
因此 f ( x) e x e x 是偶函数. 2
(3) 因为 f (x) x x2 的定义域为 D x x 0 ,
故该函数的定义域为 (2 , 3)
微积分
第一章 函数
上页 下页 返回
例2 求下列函数的定义域
(1) y
1 x x2
;
(2) y arcsin x 2 3
解 (1) 要使该函数有意义, 须有
1 x 0
x2
0
,
解之得
x 1且 x 0 ,
故该函数的定义域为 (, 0) U(0,1] .
高等数学第一章函数极限和连续讲义
第一章函数、极限和连续【考试要求】一、函数1.理解函数的概念:函数的定义,函数的表示法,分段函数.2.理解和掌握函数的简单性质:有界性,单调性,奇偶性,周期性.3.了解反函数:反函数的定义,反函数的图像.4.掌握函数的四则运算与复合运算.5.理解和掌握基本初等函数:幂函数,指数函数,对数函数,三角函数,反三角函数.6.了解初等函数的概念.二、极限1.理解数列极限的概念:数列,数列极限的定义.2.了解数列极限的性质:唯一性,有界性,四则运算定理,夹逼定理,单调有界数列,极限存在定理,掌握极限的四则运算法则.3.理解函数极限的概念:函数在一点处极限的定义,左右极限及其与极限的关系,x趋于无穷(x→∞,x→+∞,x→-∞)时函数的极限.4.掌握函数极限的定理:唯一性定理,夹逼定理,四则运算定理.5.理解无穷小量和无穷大量:无穷小量与无穷大量的定义,无穷小量与无穷大量的关系,无穷小量与无穷大量的性质,两个无穷小量阶的比较.6.熟练掌握用两个重要极限求极限的方法.7.熟练掌握分段函数求极限的方法.三、连续1.理解函数连续的概念:函数在一点连续的定义,左连续和右连续,函数在一点连续的充分必要条件,函数的间断点及其分类.2.掌握函数在一点处连续的性质:连续函数的四则运算,复合函数的连续性,反函数的连续性,会求函数的间断点及确定其类型.3.掌握闭区间上连续函数的性质:有界性定理,最大值和最小值定理,介值定理(包括零点定理),会运用介值定理推证一些简单命题.4.理解初等函数在其定义区间上连续,并会利用连续性求极限. 5.熟练掌握分段函数连续性的判定方法.【考试内容】一、函数(一)函数的概念1.函数的定义:设数集D R ⊂,则称映射:f D R →为定义在D 上的函数,通常简记为()yf x =,x D ∈,其中x 称为自变量,y 称为因变量,D 称为定义域.说明:表示函数的记号是可以任意选取的,除了常用的f外,还可以用其他的英文字母或希腊字母,如“g ”、“F ”、“ϕ”等,相应的,函数可记作()y g x =,()y F x =,()y x ϕ=等.有时还直接用因变量的记号来表示函数,即把函数记作()y y x =,这一点应特别注意.2.函数的解析(公式)表示法 (1)函数的显式表示法(显函数):()yf x =形式的函数,即等号左端是因变量的符号,而右端是含有自变量的式子,如2cos xy xe x =-,13sin ln x x e y x e x-=++等.(2)函数的隐式表示法(隐函数):函数的对应法则由方程(,)0F x y =所确定,即如果方程(,)0F x y =确定了一个函数关系()y f x =,则称()y f x =是由方程(,)0F x y =所确定的隐函数形式.说明:把一个隐函数化成显函数,叫做隐函数的显化.例如从方程310x y +-=解出31y x =-,就把隐函数化成了显函数.但并非所有的隐函数都能显化,隐函数的显化有时是非常困难的,甚至是不可能的.(3)分段函数:如果函数的对应法则是由几个解析式表示的,则称之为分段函数,如1,0()1,0x x f x x x +≥⎧=⎨-<⎩ 是由两个解析式表示的定义域为(,)-∞+∞的一个函数.(4)由参数方程确定的函数:如果自变量x 与因变量y 的关系是通过第三个变量t 联系起来 ()()x t y t ϕφ=⎧⎨=⎩ (t 为参变量),则称这种函数关系为参数方程所确定的函数.例如:参数方程 2cos 2sin x t y t=⎧⎨=⎩ 表示的图形即为圆心在原点,半径为4的圆.(二)函数的几种特性1.有界性设函数()f x 的定义域为D ,数集X D ⊂,如果存在正数M,使得()f x M≤对任一x X ∈都成立,则称函数()f x 在X 上有界.如果这样的M不存在,就称函数()f x 在X 上无界.说明:我们这里只讨论有界无界的问题而不区分上界和下界,并且,由上述定义不难看出,如果正数M 是函数()f x 的一个界,则比M大的数都是函数()f x 的界.2.单调性 设函数()f x 的定义域为D ,区间I D ∈.如果对于区间I 上任意两点1x 及2x ,当12x x <时,恒有12()()f x f x <,则称函数()f x 在区间I 上是单调增加的;如果对于区间I 上任意两点1x 及2x ,当12x x <时,恒有12()()f x f x >,则称函数()f x 在区间I 上是单调减少的.单调增加和单调减少的函数统称为单调函数. 3.奇偶性 设函数()f x 的定义域D 关于原点对称.如果对于任一x D ∈,()()f x f x -=恒成立,则称()f x 为偶函数.如果对于任一x D ∈,()()f x f x -=-恒成立,则称()f x 为奇函数.例如:()cos f x x =、2()f x x =都是偶函数,()s i n f x x =、()arctan f x x =是奇函数,而()sin cos f x x x =+则为非奇非偶函数.偶函数的图形关于y 轴对称,而奇函数的图形关于原点对称.说明:两个偶函数的和是偶函数,两个奇函数的和是奇函数;两个偶函数的乘积是偶函数,两个奇函数的乘积是偶函数,偶函数与奇函数的乘积是奇函数.其余结论读者可自行论证. 4.周期性设函数()f x 的定义域为D .如果存在一个正数l ,使得对于任一x D ∈有()x l D ±∈,且()()f x l f x +=恒成立,则称()f x 为周期函数,l 称为()f x 的周期,通常我们说周期函数的周期是指最小正周期.例如:函数sin x 、cos x 都是以2π为周期的周期函数,函数tan x 是以π为周期的周期函数.(三)函数的运算1.和差积商运算 设函数()f x ,()g x 的定义域依次为1D ,2D ,12D D D φ=≠,则我们可以定义这两个函数的下列运算: (1)和(差)f g ±:()()()()f g x f x g x ±=±,x D ∈;(2)积f g ⋅:()()()()f g x f x g x ⋅=⋅,x D ∈;(3)商f g :()()()f f x x g g x ⎛⎫= ⎪⎝⎭,\{()0,}x D x g x x D ∈=∈. 2.反函数(函数的逆运算)对于给定的y 是x 的函数()y f x =,若将y 当作自变量而x 当作因变量,则由关系式()y f x =所确定的函数()x y ϕ=称为函数()f x 的反函数,记为1()y f x -=,()f x 叫做直接函数.若直接函数()yf x =的定义域为D ,值域为M ,则反函数1()y f x -=的定义域为M ,值域为D .且直接函数的图像与反函数的图像关于直线y x =对称.3.复合函数(函数的复合运算)设函数()y f u =的定义域为fD ,函数()ug x =的定义域为g D ,且其值域g f R D ⊂,则由下式确定的函数[()]y f g x =,g x D ∈称为由函数()u g x =与函数()y f u =构成的复合函数,它的定义域为g D ,变量u 称为中间变量.说明:g 与f能构成复合函数的条件是函数g 的值域g R 必须含在函数f的定义域fD 内,即gf R D ⊂,否则不能构成复合函数.此外,复合函数可以由多个函数复合而成.(四)基本初等函数与初等函数1.基本初等函数 幂函数:yx μ=(R μ∈是常数); 指数函数:x y a =(0a >且1a ≠);对数函数:log a y x =(0a >且1a ≠,特别当a e =时记为ln y x =);三角函数:sin yx =,cos y x =,tan y x =,cot y x =,sec y x =,csc y x =;反三角函数:arcsin y x =,arccos y x =,arctan y x =,cot y arc x =.以上五类函数统称为基本初等函数.说明:反三角函数是学习和复习的难点,因此这里重点给出三角函数和反三角函数的关系,这对于后边学习极限、渐近线及导数等知识是非常有帮助的,请大家牢记. (1)反正弦函数arcsin yx =:是由正弦函数sin y x =在区间[,]22ππ-上的一段定义的反函数,故其定义域为[1,1]-,值域为[,]22ππ-. (2)反余弦函数arccos y x =:是由余弦函数cos y x =在区间[0,]π上的一段定义的反函数,故其定义域为[1,1]-,值域为[0,]π. (3)反正切函数arctan yx =:是由正切函数tan y x =在区间(,)22ππ-上的一段定义的反函数,故其定义域为(,)-∞+∞,值域为(,)22ππ-. (4)反余切函数cot yarc x =:是由余切函数cot y x =在区间(0,)π上的一段定义的反函数,故其定义域为(,)-∞+∞,值域为(0,)π. 2.初等函数由常数和基本初等函数经过有限次的四则运算和有限次的函数复合步骤所构成并可用一个式子表示的函数,称为初等函数.例如:22sin cos y x x =,22y x =-,2ln(1)y x x =++,2arccos(1)y x =-等都是初等函数.在本课程中所讨论的函数绝大多数都是初等函数.二、极限(一)数列的极限1.数列极限的定义:设{}n x 为一数列,如果存在常数A ,对于任意给定的正数ε(不论它多么小),总存在正整数N ,使得当n N >时,不等式n x A ε-<都成立,那么就称常数A 是数列{}n x 的极限,或者称数列{}n x 收敛于A ,记为lim n n x A →∞=或n x A →(n →∞).如果不存在这样的常数A ,就说数列{}n x 没有极限,或者说数列{}n x 是发散的,习惯上也说lim n n x →∞不存在.说明:数列极限中自变量n 的趋向只有一种,即n →∞,虽然含义表示正无穷,但不要写做n→+∞,注意与函数极限的区别.2.收敛数列的性质性质(1):(极限的唯一性)如果数列{}n x 收敛,那么它的极限唯一.性质(2):(收敛数列的有界性)如果数列{}n x 收敛,那么数列{}n x 一定有界. 说明:对于数列{}n x ,如果存在正数M ,使得对一切n ,都有n x M ≤,则称数列{}n x 是有界的,否则称数列{}n x 是无界的. 性质(3):(收敛数列的保号性)如果lim nn x A →∞=,且0A >(或者0A <),那么存在正整数N ,当n N >时,都有0n x >(或0n x <). (二)函数的极限1.函数极限的定义 (1)0xx →时函数的极限:设函数()f x 在点0x 的某个去心邻域内有定义.如果存在常数A ,对于任意给定的正数ε(不论它多么小),总存在正数δ,使得当x 满足不等式00x x δ<-<时,对应的函数值()f x 都满足不等式()f x A ε-<,那么常数A就叫做函数()f x 当0x x →时的极限,记作0lim ()x x f x A →=或()f x A →(当0x x →).说明:函数的左极限lim ()x x f x A -→=或0()f x A -=;右极限0lim ()x x f x A +→=或0()f x A +=;左极限与右极限统称单侧极限.函数()f x 当0x x →时极限存在的充要条件是左右极限都存在并且相等,即00()()f x f x -+=.(2)x →∞时函数的极限:设函数()f x 当x大于某一正数时有定义.如果存在常数A ,对于任意给定的正数ε(不论它多么小),总存在正数X ,使得当x 满足不等式x X >时,对应的函数值()f x 都满足不等式()f x A ε-<,那么常数A 就叫做函数()f x 当x →∞时的极限,记作lim ()x f x A →∞=或()f x A →(当x →∞).说明:此定义包含lim ()x f x A →+∞=和lim ()x f x A →-∞=两种情况.2.函数极限的性质(以0xx →为例)性质(1):(函数极限的唯一性)如果0lim ()x x f x →存在,那么这极限唯一.性质(2):(函数极限的局部有界性)如果0lim ()x x f x A →=,那么存在常数0M >和0δ>,使得当00x x δ<-<时,有()f x M ≤.性质(3):(函数极限的局部保号性)如果0lim()x x f x A →=,且0A >(或0A <),那么存在常数0δ>,使得当00x x δ<-<时,有()0f x >(或()0f x <). (三)极限运算法则1.如果0lim()x x f x A →=,0lim ()x x g x B →=,则有(1)0lim[()()]lim ()lim ()x x x x x x f x g x f x g x A B →→→±=±=±; (2)0lim[()()]lim ()lim ()x x x x x x fx g x f x g x A B →→→⋅=⋅=⋅;(3)000lim ()()lim()lim ()x x x x x x f x f x A g x g x B→→→==,其中0B ≠; (4)0lim[()]lim ()x x x x cfx c f x →→=,其中c 为常数;(5)0lim[()][lim ()]n n x x x x fx f x →→=,其中n 为正整数.2.设有数列{}n x 和{}n y ,如果lim nn x A →∞=,lim n n y B →∞=,则有(1)lim()nn n x y A B →∞±=±; (2)lim()nn n x y A B →∞⋅=⋅;(3)lim n n nx Ay B →∞=,其中0n y ≠(1,2,n =)且0B ≠.3.如果()()x x ϕψ≥,而0lim ()x x x A ϕ→=,0lim ()x x x B ψ→=,则A B ≥.4.复合函数的极限运算法则:设函数[()]y f g x =是由函数()u g x =与函数()y f u =复合而成,[()]f g x 在点0x 的某去心邻域内有定义,若00lim ()x x g x u →=,0lim ()u u f u A→=,且存在00δ>,当00(,)x U x δ∈时,有()g x u ≠,则lim [()]lim ()x x u u f g x f u A →→==.说明:本法则以0xx →为例,其他趋向下亦成立.(四)极限存在准则1.准则I 如果数列{}n x 、{}n y 及{}n z 满足下列条件: (1)从某项起,即0n N ∃∈,当0n n >时,有n n n y x z ≤≤,(2)lim nn y A →∞=,lim n n z A →∞=,那么数列{}n x 的极限存在,且lim nn x A →∞=.准则I ' 如果函数()f x 、()g x 及()h x 满足下列条件:(1)当0(,)x U x r ∈(或x M >)时,()()()g x f x h x ≤≤,(2)0()lim ()x x x g x A →→∞=,0()lim ()x x x h x A →→∞=,那么0()lim ()x x x f x →→∞存在,且等于A .说明:准则I 及准则I '称为夹逼准则.2.准则II 单调有界数列必有极限.准则II ' 单调有界函数必有极限.(函数有界一般是指在某个邻域内有界)(五)两个重要极限1.0sin lim1x xx→=,可引申为()0sin ()lim1()x x x ϕϕϕ→=,式中不管自变量x 是哪种趋向,只要在此趋向下()0x ϕ→即可(()0x ϕ+→或()0x ϕ-→时亦成立).2.10lim(1)xx x e →+= 或 1lim(1)x x e x→∞+=,可引申为1()()0lim (1())x x x e ϕϕϕ→+=(()0x ϕ+→或()0x ϕ-→时亦成立)或()()1lim (1)()x x ex ϕϕϕ→∞+=(()x ϕ→+∞或()x ϕ→-∞时亦成立). 说明:数列亦有第二种极限形式,即1lim(1)nn e n→∞+=.两个重要极限是考试的必考内容,请大家务必好好掌握.(六)无穷小和无穷大1.定义(1)无穷小的定义:如果函数()f x 当0x x →(或x →∞)时的极限为零,那么称函数()f x 为当0x x →(或x →∞)时的无穷小量(简称无穷小).特别地,以零为极限的数列{}n x 称为n→∞时的无穷小.说明:以后我们再提到无穷小时,把数列{}n x 当作特殊的函数来看待,故所谓的无穷小本质上就是函数,并且一定是在自变量x 的某一趋向下才有意义. (2)无穷大的定义:如果在自变量的某一变化过程中,函数()f x 的绝对值无限增大,则称函数()f x 为自变量在此变化过程中的无穷大量(简称无穷大).说明:在自变量的同一变化过程中,如果()f x 为无穷大,则1()f x 为无穷小;反之,如果()f x 为无穷小且()0f x ≠,则1()f x 为无穷大. 2.无穷小的比较设α,β均为自变量同一趋向下的无穷小,且0α≠,(1)如果lim0βα=,则称β是比α高阶的无穷小,记作()o βα=; (2)如果lim βα=∞,则称β是比α低阶的无穷小;(3)如果lim0c βα=≠,则称β与α是同阶无穷小; (4)如果lim 1βα=,则称β与α是等价无穷小,记作~αβ;(5)如果lim0k c βα=≠,0k >,则称β是关于α的k 阶无穷小. 3.无穷小的性质(1)有限个无穷小的和是无穷小. (2)常数与无穷小的乘积是无穷小. (3)有限个无穷小的乘积是无穷小. (4)有界函数与无穷小的乘积是无穷小.(5)求两个无穷小之比的极限时,分子及分母都可用等价无穷小来替换,即设α,β,α',β'均为自变量同一趋向下的无穷小,且~αα',~ββ',limβα''存在,则lim lim ββαα'='(lim 表示自变量的任一趋向下的极限,以后文中出现此符号时均为此意,不再解释).说明:等价无穷小非常重要,故将常用的等价无穷小列举如下,请大家务必牢记.0x →时sin ~x x ,可引申为()0x ϕ→时,sin ()~()x x ϕϕ; 0x →时tan ~x x ,可引申为()0x ϕ→时,tan ()~()x x ϕϕ;0x →时sin ~arc x x ,可引申为()0x ϕ→时,sin ()~()arc x x ϕϕ; 0x →时211cos ~2x x -,可引申为()0x ϕ→时,211cos ()~()2x x ϕϕ-;0x →时111~n x x n +-,可引申为()0x ϕ→时,11()1~()n x x nϕϕ+-;0x →时1~x e x -,可引申为()0x ϕ→时,()1~()x e x ϕϕ-;0x →时ln(1)~x x +,可引申为()0x ϕ→时,ln(1())~()x x ϕϕ+.三、连续(一)连续的概念1.连续的定义连续性定义(1):设函数()f x 在点0x 的某一邻域内有定义,如果000lim lim[()()]0x x y f x x f x ∆→∆→∆=+∆-=,则称函数()yf x =在点0x 连续(即自变量的变化量趋于零时函数值的变化量也趋于零). 连续性定义(2):设函数()f x 在点0x 的某一邻域内有定义,如果00lim ()()x x f x f x →=,则称函数()yf x =在点0x 连续.2.左连续、右连续及区间连续 (1)左连续:lim ()x x f x -→存在且等于0()f x ,即00()()f x f x -=;(2)右连续::lim ()x x f x +→存在且等于0()f x ,即00()()f x f x +=;(3)区间连续:若函数()f x 在区间每一点都连续,则称()f x 为该区间上的连续函数,或者说函数()f x 在该区间上连续.如果区间包括端点,则函数()f x 在右端点连续是指左连续,()f x 在左端点连续是指右连续.说明:一切初等函数在其定义区间内都是连续的.(二)函数的间断点1.定义:设函数()f x 在点0x 的某去心邻域内有定义,如果函数有下列三种情形之一:(1)在0xx =处没有定义;(2)虽在0x x =处有定义,但0lim ()x x f x →不存在;(3)虽在0x x =处有定义,且0lim ()x x f x →存在,但00lim ()()x x f x f x →≠,则函数()f x 在点0x 为不连续,而点0x 称为函数()f x 的不连续点或间断点.2.分类:(1)第一类间断点:如果0x 是函数()f x 的间断点,但左极限0()f x -和右极限0()f x +都存在,那么0x 称为函数()f x 的第一类间断点.00()()f x f x -+=时称0x 为可去间断点,00()()f x f x -+≠时称0x 为跳跃间断点.(2)第二类间断点:不是第一类间断点的任何间断点,称为第二类间断点.常见的第二类间断点有无穷间断点和振荡间断点.(三)闭区间上连续函数的性质1.有界性与最值定理:在闭区间[,]a b 上连续的函数在该区间上有界且一定能取得它的最大值和最小值. 2.零点定理:设函数()f x 在闭区间[,]a b 上连续,且()f a 与()f b 异号(即()()0f a f b ⋅<),那么在开区间(,)a b 内至少有一点ξ,使得()0f ξ=. 3.介值定理:设函数()f x 在闭区间[,]a b 上连续,且在这区间的端点取不同的函数值()f a A =及()f b B =,那么对于A 与B 之间的任意一个数C ,在开区间(,)a b 内至少有一点ξ,使得()f C ξ=(a b ξ<<).【典型例题】【例1-1】求复合函数. 1.设()12xf x x =-,求[()]f f x . 解:求[()]f f x 就是用()f x 代替x 然后化简,得12[()]122141212xx xx f f x x x x x x -===----⋅-. 2.设2,01()3,12x x f x x x ⎧≤≤=⎨<≤⎩ ,()xg x e =,求[()]f g x .解:当01xe ≤≤即0x ≤时,22[()]()x xfg x e e ==, 当12xe <≤即0ln 2x <≤时,[()]3xfg x e =,故2,0[()]3,0ln 2x x e x f g x e x ⎧≤=⎨<≤⎩ .【例1-2】求函数的定义域. 1.()arcsin(21)ln(1)f x x x =-+-.解:由arcsin(21)x -可得1211x -≤-≤,即01x ≤≤;由arcsin(21)x -可得arcsin(21)0x -≥,即0211x ≤-≤,112x ≤≤;由l n (1)x -可得10x->,即1x <,故原函数的定义域为三部分的交集,即1[,1)2. 2.21()arccos(2)2x f x x x x -=+---. 解:由1x -可得10x -≥,即1x ≥;由220x x --≠即(1)(2)0x x +-≠可得1x ≠-且2x ≠;由arccos(2)x -可得121x -≤-≤,13x ≤≤,故原函数的定义域为三部分的交集,即为[1,2)(2,3].【例1-3】判断函数的奇偶性. 1.设()f x 和()g x 为任意函数,定义域均为(,)-∞+∞,试判定下列函数的奇偶性. (1)()()()()f x f x g x g x +-++-解:由奇偶性的判定可知,()()f x f x +-与()()g x g x +-均为偶函数,故其和亦为偶函数. (2)()()()()f x f x g x g x --++-解:由奇偶性的判定可知,()()f x f x --为奇函数,()()g x g x +-为偶函数,故其和为非奇非偶函数. 2.判定函数2()ln(1)f x x x =++的奇偶性.解:因2()ln(()1)f x x x -=-+-+2ln(1)x x =-++21ln 1x x=++2ln(1)()x x f x =-++=-,故原函数为奇函数.【例1-4】计算下列极限.1.22212lim()n nn n n→∞+++.解:当n →∞时,此题是无限个无穷小之和,不能直接求极限,先变形化简再计算:222221(1)121212lim()lim lim 2n n n n n n n n n n n n →∞→∞→∞+++++++===. 2.222111lim()12n n n n n→∞++++++. 解:因22222111121nn n n n n n nn <+++<+++++,并且2l i m1n nn n→∞=+,2lim 11n nn →∞=+,故原极限值为1.(夹逼准则)3.222lim(1)nn n n→∞++.解:22(22)222222222222lim(1)lim(1)lim(1)n n n n n n n n n n n n e n n n n+⋅+→∞→∞→∞++++=+=+=.4.23lim()21nn n n →∞-+.解:21424212344lim()lim(1)lim(1)212121n nn n n n n n n e n n n +-⋅--+→∞→∞→∞---=+=+=+++. 【例1-5】计算下列极限. 1.sin limx xx→∞.解:当x →∞时,1x为无穷小,sin x 虽没有极限但却是有界函数,故根据无穷小与有界函数的乘积仍为无穷小,可得sin lim0x xx→∞=.说明:本极限与01lim sin x x x →意义是一样的.2.21lim 1n x x x x nx →+++--.解:2211111lim lim 11n n x x x x x n x x x x x →→+++--+-++-=--2121lim[1(1)(1)(1)]n n x x x x x x x --→=+++++++++++(1)1232n n n +=++++=. 说明:此题也可用洛必达法则(见第三章)求解,过程如下:2111(1)lim lim(12)12n n x x x x x n n n x nx x -→→+++-+=+++=-.3.0sin(1)lim 3x x e x→-.解:因当0x →时,sin(1)~1xx ee --,1~x e x -,故 00sin(1)11limlim 333x x x x e e x x →→--==. 说明:本题可以使用洛必达法则求解如下:00sin(1)cos(1)1lim lim 333x x x x x e e e x →→--⋅==. 4.sin 0limsin x x x e e x x→--.解:sin sin sin 00(1)lim lim 1sin sin x x x x x x x e e e e x x x x-→→--==--(0x →时,sin ~sin x x e x x --).5.23lim()2xx x x→∞++. 解:2(2)2222311lim()lim(1)lim(1)222x x x x xx x x x e x x x+⋅+→∞→∞→∞+=+=+=+++. 6.11lim(sincos )x x x x→∞+. 解:111(sin cos 1)11sin cos 11111lim(sin cos )lim[1(sin cos 1)]x x x x x xx x x x x x⋅+-+-→∞→∞+=++-211111sin cos 1sincos 12limlim lim 1lim 111110x x x x x x x x x xx xxe e e e e →∞→∞→∞→∞-+--+++=====.【例1-6】已知()f x 是多项式,且32()2lim 2x f x x x →∞-=,0()lim 3x f x x→=,求()f x . 解:利用前一极限式可令32()22f x x x ax b =+++,再利用后一极限式,得 00()3lim lim()x x f x ba x x→→==+,则 3a =,0b =,故32()223f x x x x =++.【例1-7】当0x →时,比较下列无穷小的阶. 1.2x 比1cos x -.解:因 22002limlim 211cos 2x x x x x x →→==-,故2x 与1cos x -是同阶无穷小. 2.2x 比11x +-.解:因 220limlim 01112x x x x x x→→==+-,故2x 是比11x +-高阶的无穷小. 3.11x x +--比x .解:因 0011(11)(11)lim lim (11)x x x x x x x x x x x x →→+--+--++-=++-2lim 1(11)x x x x x →==++-,故11x x +--与x 是等价无穷小. 4.2x 比tan sin x x -.解:因 2220002cos limlim lim 1tan sin sin (1cos )2x x x x x x x x x x x x x →→→===∞--⋅, 故2x 是比tan sin x x -低阶的无穷小. 说明:本题中的四个题目均可用洛必达法则求解. 【例1-8】讨论下列分段函数在指定点处的连续性.1.2,01()1,11,1x x f x x x x ⎧≤<⎪==⎨⎪+>⎩在1x =处的连续性. 解:因(1)1f =,11(1)lim ()lim 22x x f f x x ---→→===, 11(1)lim ()lim(1)2x x f f x x +++→→==+=,从而1lim ()2(1)x f x f →=≠,故函数在1x =处不连续.2.1,0()ln(1),0x e x f x x x ⎧⎪<=⎨⎪+≥⎩ 在0x =处的连续性.解:因(0)0f =,1(0)lim ()lim 0xx x f f x e ---→→===,(0)lim ()lim ln(1)0x x f f x x +++→→==+=,从而0lim ()0(0)x f x f →==,故函数在0x =处连续.【例1-9】当常数a 为何值时,函数2,0()ln(1),0x a x f x x x x-≤⎧⎪=⎨+>⎪⎩ 在0x =处连续?解:因(0)f a =-,0(0)lim ()lim(2)x x f f x x a a ---→→==-=-,10000ln(1)1(0)lim ()lim lim ln(1)lim ln(1)1xx x x x x f f x x x xx +++++→→→→+===+=+=,故由连续性可得,(0)(0)(0)f f f -+==,即1a -=,故1a =-.【例1-10】求下列函数的间断点并判断其类型. 1.1()xf x e= .解:所给函数在0x =处无定义,故0x =是间断点.又1lim x x e +→=+∞,10lim 0xx e -→=,故0x=是()f x 的第二类间断点.2.()sin xf x x= .解:所给函数在x k π=(0,1,2,k =±±)处无定义,故0x =、x k π=(1,2,k=±±)是间断点.又0lim1sin x xx→=,故0x =是第一类间断点,且是可去间断点;lim sin x k xxπ→=∞,故x k π=是第二类间断点,且是无穷间断点.3.111()1xxe f x e -=+ .解:所给函数在0x=处无定义,故0x =是间断点.又111(0)lim 11xx xe f e ++→-==+,111(0)lim 11xx xe f e --→-==-+,故0x =是()f x 的第一类间断点且是跳跃间断点.4.1arctan ,0()0,0x f x xx ⎧≠⎪=⎨⎪=⎩ . 解:该题是分段函数的连续性问题,因0x ≠时1arctanx 是初等函数,故1arctan x在0x ≠时是连续的,所以该题主要考虑分界点0x =处的连续性.由1(0)lim arctan 2x f x π++→==,01(0)lim arctan 2x f x π--→==-,可知0x =是()f x 的第一类间断点且是跳跃间断点.【例1-11】证明方程32410x x -+=在区间(0,1)内至少有一个根.证:函数32()41f x x x =-+在闭区间[0,1]上连续,又(0)10f =>,(1)20f =-<,根据零点定理,在(0,1)内至少有一点ξ,使得()0f ξ=,即32410ξξ-+= (01ξ<<),该等式说明方程32410x x -+=在区间(0,1)内至少有一个根是ξ.【例1-12】证明方程21xx ⋅=至少有一个小于1的正根.证:由题意,函数()21x f x x =⋅-在区间[0,1]上连续,又(0)10f =-<,(1)10f =>,根据零点定理,在(0,1)内至少有一点ξ,使得()0f ξ=,即210ξξ⋅-= (01ξ<<),该等式说明方程21x x ⋅=在区间(0,1)内至少有一个小于1的正根ξ.【历年真题】一、选择题1.(2010年,1分)函数211arccos 2x y x +=--的定义域是( )(A )[3,1]- (B )[3,1]-- (C )[3,1)-- (D )[1,1]-解:因 2101112x x ⎧-≥⎪⎨+-≤≤⎪⎩,故 11212x x -≤≤⎧⎨-≤+≤⎩ , 1131x x -≤≤⎧⎨-≤≤⎩ ,所以 11x -≤≤,故选(D ). 2.(2010年,1分)极限0sin3lim x xx→等于( )(A )0 (B )1 (C )13(D )3 解:00sin33limlim 3x x x xx x→→==,故选(D ). 3.(2009年,1分)极限(1)limnn n n→∞+-=( ) (A )1 (B )0 (C )∞ (D )不存在解:(1)(1)(1)lim lim[1]1lim 101n n n n n n n n n n→∞→∞→∞+---=+=+=+=,故选(A ).4.(2009年,1分)若1,0()0,01,0x x f x x x x -<⎧⎪==⎨⎪+>⎩,则0lim ()x f x →=( )(A )1- (B )0 (C )1 (D )不存在解:因00lim ()lim(1)1x x f x x --→→=-=-,0lim ()lim(1)1x x f x x ++→→=+=,lim ()lim ()x x f x f x -+→→≠,故0lim ()x f x →不存在,选(D ). 5.(2009年,1分)2x π=是函数tan xy x=的( ) (A )连续点 (B )可去间断点 (C )跳跃间断点 (D )第二类间断点解:因 2lim 0tan x x x π→=,故2x π=是函数tan xy x =的可去间断点,选(B ). 6.(2008年,3分)设1()sinf x x x= ,则lim ()x f x →∞等于( )(A )0 (B )不存在 (C )∞ (D )1解:1sin1lim ()lim sin lim11x x x x f x x x x→∞→∞→∞===,故选(D ).7.(2008年,3分)当0x →时,23x 是2sinx 的( )(A )高阶无穷小 (B )同阶无穷小,但不等价 (C )低阶无穷小 (D )等价无穷小解:因 22220033lim lim 3sin x x x x x x→→==,故选(B ).8.(2007年,3分)当0x →时,tan 2x 是( )(A )比sin3x 高阶的无穷小 (B )比sin3x 低阶的无穷小 (C )与sin3x 同阶的无穷小 (D )与sin3x 等价的无穷小解:因0tan 222limlim sin333x x x x x x →→==,故选(C ). 9.(2006年,2分)设()sin f x x = ,,0(),0x x g x x x ππ-≤⎧=⎨+>⎩ ,则[()]f g x =( )(A )sin x (B )cos x (C )sin x - (D )cos x - 解:当0x ≤时,[()]()sin()sin()sin f g x f x x x x πππ=-=-=--=-;当0x>时,[()]()sin()sin f g x f x x x ππ=+=+=-,故选(C ). 10.(2005年,3分)设120lim(1)xx mx e →-=,则m =( )(A )12- (B )2 (C )2- (D )12解:由11()20lim(1)lim[1()]m m xmxx x mx mx e e ⋅---→→-=+-==,得2m =-,选(C ).11.(2005年,3分)设1xy e-=是无穷大,则x 的变化过程是( )(A )0x+→ (B )0x -→ (C )x →+∞ (D )x →-∞解:0x +→时,1x →+∞,1x-→-∞,10x e -→;0x -→时,1x →-∞,1x-→+∞,1x e -→+∞;故选(B ). 二、填空题1.(2010年,2分)若函数21,1(),1x x f x x a x -+≤⎧=⎨->⎩ 在1x =处连续,则a = .解:11lim()lim(21)1x x f x x --→→=-+=-,11lim ()lim()1x x f x x a a ++→→=-=-,因()f x 在点1x =处连续,故11lim ()lim ()x x f x f x -+→→=,即11a -=-,2a =. 2.(2010年,2分)0x =是函数1()cos f x x x=的第 类间断点.解:因1lim ()lim cos0x x f x x x→→==,故0x =是函数()f x 的第一类间断点.3.(2009年,2分)设1,1()0,11,1x f x x x ⎧<⎪==⎨⎪->⎩,()x g x e =,则[(l n 2)]g f = .解:因0ln 21<<,故 (ln 2)1f =,所以 1[(ln 2)](1)g f g e e ===.4.(2009年,2分)1sin y x=在0x =处是第 类间断点.解:因0x →时,1x→∞,1sin x 没有极限,故 0x = 是第二类间断点.5.(2008年,4分)函数ln arcsin yx x =+的定义域为 .解:由题意,011x x >⎧⎨-≤≤⎩ ,故原函数的定义域为 (0,1].6.(2008年,4分)设数列n x 有界,且lim 0n n y →∞=,则lim n n n x y →∞= .解:数列可看作特殊的函数,因数列n x 有界,数列n y 为无穷小,所以根据无穷小与有界函数的乘积仍然是无穷小可得,lim 0n nn x y →∞=.7.(2008年,4分)函数31y x =+的反函数为 .解:由31yx =+可得,31y x =+,31x y =-,故反函数为 31y x =-.8.(2007年,4分)函数21arcsin 3x y -=的定义域为 .解:由21113x --≤≤得,3213x -≤-≤,即12x -≤≤,所以定义域为[1,2]-. 9.(2007年,4分)21lim()xx x x→∞-= .解:22(2)2111lim()lim(1)lim(1)x x x x x x x e x x x-⋅--→∞→∞→∞---=+=+=.10.(2006年,2分)若函数2121212(),0()12,0x x x f x xx a x +⎧->⎪=⎨+⎪-≤⎩在0x =处连续,则a = .解:0lim()lim(2)x x f x x a a --→→=-=-,22211221(3)3322000123lim ()lim()lim(1)11x x x x x x xx f x e xx+++++⋅---→→→--==+=++, 因()f x 在0x =处连续,故0lim ()lim ()x x f x f x -+→→=,即3a e --=,故3a e -=-. 三、计算题1.(2010年,5分)求极限lim xx x c x c →∞+⎛⎫⎪-⎝⎭,其中c 为常数.解:22222lim lim 1lim 1x c cxxxc x cc x x x x c c c e x c x c x c -⋅-→∞→∞→∞+⎛⎫⎛⎫⎛⎫=+=+=⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭.2.(2010年,5分)求极限3tan limx x xx→-. 解:22322000tan sec 1tan 1lim lim lim 333x x x x x x x x x x →→→--===. 说明:此题也可多次使用洛必达法则,解法如下:232000tan sec 12sec sec tan 1lim lim lim 363x x x x x x x x x x x x →→→--⋅===. 3.(2009年,5分)求极限 3113lim 11x x x →⎛⎫- ⎪--⎝⎭ . 解:此题为“∞-∞”型的极限,解法如下:23321111313(1)(2)lim lim lim 1111(1)(1)x x x x x x x x x x x x x →→→++--+⎛⎫-===- ⎪----++⎝⎭. 4.(2009年,5分)求极限 0limsin x x x e e x-→- .解:002limlim 2sin cos 1x x x x x x e e e e x x --→→-+===.5.(2008年,5分)求极限 2sin 2lim cos()x xx ππ→- .解:22sin 22cos2limlim 2cos()sin()(1)x x x x x x ππππ→→==----⋅-.6.(2007年,5分)求极限011lim()1x x x e →-- . 解:20000111111lim()lim lim lim 1(1)22x x x x x x x x x e x e x e x e x e x x →→→→------====--. 说明:0x →时,1~xex -.7.(2006年,4分)求极限 011limcot ()sin x x x x→- .解:2300011cos (sin )sin limcot ()lim lim sin sin x x x x x x x xx x x x x x→→→---== 2220011cos 12lim lim 336x x xx x x →→-===.8.(2006年,4分)设1cos 20()sin xf x t dt -=⎰,56()56x xg x =+,求0()lim()x f x g x →. 解:因0x →时,1cos 20()sin 0xf x t dt -=→⎰,56()056x xg x =+→,且1cos 220()(sin )sin sin(1cos )xf x t dt x x -''==-⎰,45()g x x x '=+,故 2245450000()()sin sin(1cos )(1cos )lim lim lim lim ()()x x x x f x f x x x x x g x g x x x x x →→→→'--==='++224454500011()124lim lim lim 041x x x x x x x x x x x x x→→→⋅====+++.9.(2005年,5分)求极限111lim()1ln x x x→-- .解: 1111111ln 1lim()lim lim 11ln (1)ln ln x x x x x xx x x x x x x→→→--+-==---+11111limlim ln 1ln 112x x x x x x x →→--===-+-++.。
《高等数学第一章》PPT课件
若函数f ( x)在[ x0 , b)内有定义,且f ( x0 0) f ( x0 ),
则
称f
(
x
)在
点x
处右
0
连续.
定理 函数 f ( x)在 x0 处连续 是函数 f ( x)在 x0
处既左连续又右连续.
例2
讨论函数
f
(x)
x 2,
x
2,
x 0, x 0,
一、函数的连续性
1.函数的增量
设函数 f ( x)在U ( x0 )内有定义, x U ( x0 ), x x x0 , 称为自变量在点 x0的增量.
y f ( x) f ( x0 ),称为函数 f ( x)相应于x的增量.
y
y
y f (x)
y f (x)
★
f
(
x)
1, 1,
当x是有理数时, 当x是无理数时,
在定义域 R内每一点处都间断, 但其绝对值处 处连续.
判断下列间断点类型:
y
y f x
x1 o
x2
x3
x
例8 当a取何值时,
函数
f
(x)
cos a
x, x,
x 0, 在 x 0处连续. x 0,
解 f (0) a,
y
解 f (0 0) 0, f (0 0) ,
x 1为函数的第二类间断点.
o
x
这种情况称为无穷间 断点.
例7 讨论函数 f ( x) sin 1 在 x 0处的连续性. x
解 在x 0处没有定义,
且 lim sin 1 不存在. x0 x
高等数学讲义教材
高等数学讲义教材第一章函数与极限1.1 函数的概念与性质函数是数学中最基本的概念之一,它描述了一个变量与另一个变量之间的关系。
函数可以用公式、图表或者图形来表示。
在这一章中,我们将介绍函数的定义、分类以及常见的函数性质。
1.2 极限的概念与性质极限是数学分析的重要概念之一。
它描述了随着自变量趋近某个值时,函数的变化趋势。
在这一节中,我们将介绍极限的定义、性质以及常见的求解方法。
第二章导数与微分2.1 导数的定义与求导法则导数是描述函数在某一点上的变化率的概念。
它可以用于求解函数的最大值、最小值以及函数的图像特征。
在这一节中,我们将介绍导数的定义、求导法则以及常见的导数计算方法。
2.2 微分的概念与应用微分是导数的一种应用形式,它可以用于求解函数在某一点上的近似变化量。
在这一节中,我们将介绍微分的概念、微分的计算方法以及微分在实际问题中的应用。
第三章积分与定积分3.1 积分的定义与性质积分是导数的反向运算,它可以用于计算曲线下面的面积、求解定积分以及求解函数的原函数。
在这一章中,我们将介绍积分的定义、性质以及常见的积分计算方法。
3.2 定积分的定义与应用定积分是积分的一种特殊形式,它可以用于求解曲线下面的面积、计算曲线的长度以及求解函数的平均值。
在这一节中,我们将介绍定积分的定义、定积分的计算方法以及定积分在实际问题中的应用。
第四章微分方程4.1 微分方程的基本概念微分方程是描述自变量、函数及其导数之间关系的方程。
它在物理学、工程学以及经济学中有着广泛的应用。
在这一节中,我们将介绍微分方程的基本概念、分类以及常见的解法方法。
4.2 常微分方程的解法常微分方程是一类特殊形式的微分方程,它可以用一些常见的解法方法进行求解。
在这一节中,我们将介绍常微分方程的解法思路、常微分方程的解法技巧以及常微分方程在实际问题中的应用。
结语高等数学是大学数学学科中的重要课程之一。
通过学习这门课程,我们可以深入理解函数与极限、导数与微分、积分与定积分以及微分方程等概念与方法,为今后的学习与研究打下坚实的数学基础。
高等数学第一章复习课ppt课件.ppt
3.极限的性质
定理 设 lim f ( x) A,lim g( x) B,则 (1) lim[ f ( x) g( x)] A B; (2) lim[ f ( x) g( x)] A B; (3) lim f ( x) A , 其中B 0. g(x) B
推论1 如果lim f ( x)存在,而c为常数,则 lim[cf ( x)] c lim f ( x).
1 o 1
x
(5) 函数的周期性:
设函数 f(x) 的定义域为D,如果存在一个不为零的
数l,使得对于任一 x D,有 x l D .且 f(x+l)=f(x)
恒成立,则称f(x)为周期函数,l 称为 f(x) 的周期.(通
常说周期函数的周期是指其最小正周期).
T 1
y
y x [x]
1
o
1
x
3.反函数
由y f ( x)确定的y f 1( x)称为反函数.
y sinh x
4.隐函数
y f 1( x) ar sinh x
由方程F ( x, y) 0所确定的函数 y f ( x)称为隐函数.
5.反函数与直接函数之间的关系
设函数f ( x)是一一对应
函数, 则
y y f 1( x)
3.连续的充要条件
定理 函数f ( x)在 x0 处连续 是函数f ( x)在 x0 处 既左连续又右连续.
4.间断点的定义
函数f ( x)在点x0处连续必须满足的三个条件: (1) f ( x)在点x0处有定义;
(2) lim f ( x)存在; x x0
(3) lim x x0
f (x)
f ( x0 ).
2.函数的性质
高等数学-第一章-函数与极限-函数的极限-同济大学
经过不等式的变形, 得到关系
f (x) A M x x0 ,
其中 M是一个与x无关的常量. 再取 , 则当
0 x x0 时, 有:
M
f (x) A M x x0 ,
此即说明 lim f (x) A. x x0
例1 证明下列极限
⑴ lim(2x 1) 5; x2
xn
是函数 f
x
xx0
定义域中的一个任意数列,
xn
x0 ,
且
lim
n
xn
x0,
则相应的数列 f xn 收敛, 且
lim
n
f
(xn )
lim
x x0o
f
(x).
o
证
设 lim f (x) A, xx0
则存在U (x0, ), 当x U (x0, ), 有
f (x) A ,
o
又因
lim
n
x
证令
xn
1,
1
2n
2
yn
1
2n
,
则
lim
n
xn
lim
n
yn
0,
且 xn
0, yn , 0,
但
lim
n
f
(xn )
1, lim n
f
( yn )
0,
所以 lim sin π 不存在.
x0
x
对于数列, 相应的归并性定理为
定理
设数列
lim
n
xn 存在,
则对于
xn
的任一子列(xnk )
有
lim
2x 2(x2 1)
1 x
高等数学-第1章课件
三、函数极限的性质
第三节 极限的运算
一、极限的运算法则
法则1 法则2
x x0
lim[ f ( x) g ( x)] lim f ( x) lim g ( x) A B
x x0 x x0 x x0 x x0
x x0
lim[ f ( x ) g ( x )] lim f ( x ) lim g ( x ) A B
第 一 章 函 数 ︑ 极 限 与 连 续
目录
第一节 函数
第二节 极限
第三节 极限的运算 第四节 无穷小与无穷大 第五节 函数的间断性与连续点 第六节 初等函数的连续性
第一节 函数
一、集合、区间与邻域
1.集合
集合(简称集)是具有某种共同性质的事物的全 体,组成集合的单一事物称为该集合的元素。
有限集合 有限个元素构成 北京户籍人口
° a
• a •
a°Leabharlann a3.邻域设 x0, δ R, 其中δ > 0,以 x0为中心,以δ 为半径,长为 2δ的
开区间. 即
( x0 , x0 ) { x x x0 , 0}
称为点 x0 的 δ 邻域 , 记为U(x0 , δ ).
2
x0
x0
x0
集合的运算及关系
由所有属于集合A或属于集合B的元 并集 素所组成的集合,称为集合A与B的 并集 交集 差集 由属于集合A且属于集合B的所有元 素组成的集合,称为A与B的交集
由所有属于集合A 而不属于集合B 的 元素组成的集合
A∪B A∪B={x|x∈A,或 x∈B}
A∩B A-B
A∩B={x|x∈A,且 x∈B} A-B={x|x∈A,且 xB}
大学高数第一章函数和极限ppt课件
lim 3x
x
28
2、当 x x0 时函数极限
定义 1.6 设函数在点 x0 附近有定义(但在这一点可以没有
定义),若 x ( x x0 )无论以怎样的方式趋近于 x0 ,函
数 f (x) 都无限趋近于一个常数 A ,就称当 x 趋近于 x0 时,
函数以 A 为极限,记为:
lim f (x) A 或
解:由于函数表达式中带有| x | ,
y
所以要分别求函数的左右极限。
因为: lim | x | lim x 1,
x x0
x x0
lim | x | lim x 1,
x
x x0
x x0
左右极限不相等,所以, lim | x | 不存在. x0 x
也可以从函数的图像上明确地看出该函数的极限不存在
变量 u 称为中间变量。
如:y sin3 x 可视为 y u3,u sin x 复合而成的 复合函数。 类似地,可以定义多于两重复合关系的复合函数。
11
例 已知 y arcsin[ln(x 1)]
(1)分析 y 的复合结构;(2)求 y 的定义域.
解:(1) y arcsinu , u ln v , v x 1
常见的周期函数有:sin x 、cos x 、tan x ,cot x
前两者周期为 2 ,后两者周期为 。
9
5.函数的有界性
若存在某个正数 M ,使得不等式 f (x) M
对于函数 f (x) 的定义域 D 内的一切 x 值都成立,则称函数 f (x) 在定义域内是有界函数; 如果这样的正数 M 不存在,则称函数 f (x) 在定义域 D 内是
高等数学函数
例如 方程xy310确定的隐函数为 y 3 1 x
把一个隐函数化成显函数 叫做隐函数的显化
但是并非每个方程都表示一个单值函数.
y 1 x2 如 x y 1
2 2
高等数学
下页
5、反函数
y
函数 y f ( x )
y0
y
反函数x ( y )
y0
W
W
例如 A {1,2},
C { x x 2 3 x 2 0}, 则 A C .
不含任何元素的集合称为空集. ( 记作 )
例如, { x x R, x 1 0}
2
规定 空集为任何集合的子集.
高等数学
2.区间: 是指介于某两个实数之间的全体实数. 这两个实数叫做区间的端点.
y a0 a1 x an x n 不是初等函数
y e sin x 1
x 2
为初等函数
x x0 不是初等函数 y x 1 x 0
高等数学
47
x, x 0 例1 y x x , x 0
复合而成的复合函数
是由y u和u x 2
则称函数 f ( x )在区间 I上是单调减少的;
y
y f (x)
f ( x1 )
f ( x2 )
o
I
高等数学
x
2.函数的奇偶性:
设D关于原点对称 , 对于x D, 有 f ( x ) f ( x ) 称 f ( x )为偶函数 ;
y
y f ( x)
f ( x )
-x o 偶函数 高等数学 x
当x0 D时, 称f ( x0 )为函数在点x0处的函数值.
高等数学第一章-课件2.ppt
1.函数在点x0的连续性
函数连续的概念源于对几何曲线的直观分析,粗略地 说,如果函数是连续的,那么它的图像是一条连绵不断的曲 线,当然我们不能满足于这种直观的认识,我们需要用数学 的语言给出它的精确定义。
第四节
考察如图1-21所示的函数图像。
图1-21
第四节
故函数f(x)在点 x=0处连续,如图 1-22所示。
图1-20
第二节 极
四 无穷小量与无穷大量
1.无穷小量
定义1-9 若函数f(x)在自变量的某一变化过程中 的极限为零,则称该函数为自变量在此变化过程中的无 穷小量,简称无穷小。通常函数极限有x→+∞,x→- ∞, x→∞,x→x0 + ,x→x0 -,x→x0这六种情形。因此,只简 单地说函数是无穷小量是不确切的,还必须指出x的趋近 方式。
fξ=0。 该推论表明方程fx=0在 a,b内有实根。其几何解释如 图1-26所示。
图1-26
Thank You!
第一章 函数、极限与连续
第一节 函数
第二节 极限
第三节
极限的运算
第四节
初等函数的连续性Leabharlann 第五节 闭区间上连续函数的性质
第一节 函数
一 函数
1.函数的概念
定义1-1 给定两个实数集D和E,若有一个对应法则f,使 得对每个x∈D,都有唯一确定的值y∈E与之对应,则称f是定义 在数集D上的函数,记作y=f(x) ,x∈D。其中,x称为自变量,y 称为因变量,D称为函数fx的定义域,全体函数值的集合E称为函 数的值域.如果在D中任取某一个数值x0,与之对应的y的数值y0, 称为函数f(x)在点x0处的函数值,记作y0=f(x)0 。
《高等数学》课件第1章
(3) y e2sin3 x2 解 (1) y是由y=sinu与u=2x (2) y是由y=u2、u=tanv及 v x
(3) 表格法.变量间的函数关系通过列表形式反映出来. 例 如,火车时刻表就是利用列表的方法,把进(出)站火车的车 次与时间的函数关系表示出来.这种表示方法使得自变量 与因变量的对应关系一目了然.
4. 某市电话局规定市话的收费标准为:当月所打电话次数 不超过30次时,只收月租费10元;超过30次时,每次加收 0.20元.则电话费y和用户当月所打电话次数x的关系可用下面 的形式给出:
有arccos(-x)=π-arccosx成立.
图 1-8
图 1-9
反正切函数y=arctanx的图形如图1-10所示,其定义域是
x∈(-∞,+∞),值域是
y
π 2
,
π 2
,该函数是单调增加
的,是奇函数,即arctan(-x)=-arctanx.
图 1-10
反余切函数y=arccotx的图形如图1-11所示,其定义域是 x∈(-∞,+∞),值域是y∈(0,π),该函数是单调减少的, 且有arccot(-x)=π-arccotx成立.
第一章 函数的极限与连续
1.1 函数及其性质 1.2 初等函数 1.3 数学模型方法概述 1.4 极限的概念 1.5 极限的运算 1.6 函数的连续性 本章小结
1.1 函数及其性质
1.1.1 函数
函数是微积分学研究的对象.虽然在中学已经学习了函数 的概念, 但是在以后的学习中我们不再是进行简单的重复, 而是要从全新的视角对函数进行描述并重新分类.
邻域是一个经常应用到的概念. 以点x0为中心的任何开 区间称为点x0的邻域,记作N(x0).
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2. 算术平均值大于等于几何平均值
设 xi 0 (i 1,2,, n)
则
x1 x2 xn n
n
x1x2 xn
当且仅当 x1 x2 xn 时,上式等号成立。
此时,对于算术平均值而言,达到了最小值;
高等数学
主讲:李铮
预备知识
1. 数学归纳法 设 P 是一个与自然数 n 有关的命题。如果 (1) n=1 时,P 成立。 (2) 假设 n=k 时,P 成立,能够推出 n=k+1 时 P 也成立。 则 命题 P 对一切自然数 n 均成立。
注:i) 如果命题 P 对于 n≥ N0 时成立,则应验证 n= N0 时,P 成立。
解: f (x) lg(x 1 (x)2 )
lg
1
f (x)
x 1 x2
所以 f ( x ) 为奇函数。
2. 单调性
设函数 y = f ( x ),定义域为 X。 x1 , x2 X ,当 x1 x2 时,若 (1) f (x1) f (x2 ) 则称函数 f 为单调增函数, (2) f (x1) f (x2) 则称函数 f 为单调减函数。
例2. 证明函数 f ( x ) = x cos x 在 (- ,+ ) 上无界。
证:M 0 取 N M 1
xM 2N 则 f (xM ) 2N cos2N 2N M
f (x) 在(,)上无界。
4. 周期性
设 y = f ( x ),定义域为 X,若 T > 0,使得 x X, 有 x T X 且 f ( x + T ) = f ( x )。
单调增(或减)函数,简称单调函数。 除去等号称为严格单调函数。
3. 有界性 设 y = f ( x ),定义域为 X
若 M > 0, x X ,有|f ( x )| < M
则称函数 f 有界,反之,称函数 f 无界。
无界也的可 严以 格定义为是:什么?
M 0, xM X ,使 f (xM ) M
对于几何平均值而言,达到了最大值。
3. 常用记号 : 对于任意给定的; :存在
第一章 函数
函数是高等数学的主要研究对象,它揭示了现实世 界中各种变量之间的相互依存关系,是高等数学中最 重要的基本概念之一。
§1. 函数的概念Fra bibliotek1. 实数的绝对值
a
a, a,
a0 a0
常用的相关不等式
1) x A(A 0) A x A
2) x a ( 0) a x a
3) a b a b
4) a b a b
2. 变量 在高等数学中,主要研究变量。
常用区间或邻域来表示变量的取值范围
1)区间:开区间(a,b)
x
a
x
b
闭区间[a,b]
x
a
x
b
无穷区间(a,) x x a
a, b, a, b, , a, a,, ,等。
数 x 对应的数 y 称为 f 的函数值,记作 y =f (x) 其中 X 称为函数 f 的定义域 (或D( f ) ), 函数值 y 的集合称为 f 的值域 ,记作 f (X) (或R( f ) ) 。
即:f (X ) y y f (x), x X , f (X ) Y
在本课程中,为了便于讨论具体的函数常把函数 f 记作 f (x) 。
0 ,
x为无理数
函数定义的两个要素:定义域、对应规律。
求函数的定义域主要掌握五种基本类型
1 , y 0; y
y , y 0; loga y, y 0(a 0, a 1);
arcsin y , arccos y , y 1
例4. 求下列函数的定义域
(1) f (x) 1 log 2 x 1
2 x, 1 x 2
是一个定义在[0,2]上的分段函数
例 2. 设 x 为任一实数,不超过 x 的最大整数称为 x 的
整数部分,记作[ x ],称 y = [ x ] 为 x 的取整函数。
如[2.3] = 2 [-2.3]==?-3
例3. (Dirichlet) 函数
D(x)
1
,
x为有理数
解:
x 1 0 log2 x 1 0
即 x 1, x 0, x 2
所以,定义域为 (- ,0) (0,1) (1,2) (2,+ )
(2) f (x) 1 arcsin x 1
x2 1
3
解:xx2
1 1
3
0 1
即
x 1
x
1
3
x 1或x 1
2 x4
所以,定义域为[-2,-1) (1,4]
则称 f ( x )为周期函数,T 为一个周期。 一般,当最小 周期存在时,称最小周期为周期。 注:定义中也可用 T 0 ,此时,最小正周期存在 的话,简称周期。 思考:周期函数是否一定有最小(正)周期。
2)邻域:
Ua, x x a a , a
称为点a的 邻域,a为邻域中心, 为邻域半径。
0
U
a,
x
0
xa
称为点 a的去心
邻域。
定义:设有非空数集 X 和数集 Y ,如果对于 X 中 的每一个数 x , 按照对应法则 f 都对应于 Y 中唯一 的一个确定的数 y ,则称 f 为定义在 X 上的函数, 记做 f : X Y。
x X 1) 若 f (x) f (x) 则称 f 为偶函数; 2)若 f (x) f (x) 则称 f 为奇函数。
例1. 判定下列函数的奇偶性
1) f (x) chx e x ex 2
解:
ex ex
f (x)
f (x)
2
所以 f ( x ) = ch x 为偶函数
2) f (x) lg(x 1 x ) 2
§2. 函数的表示法 1. 表格法:用表格来表示一种函数关系。
2. 图示法:用图来表示一种函数关系。
3. 公式法 (或称解析法): 用公式来表示一种函数关系。
在函数定义中,对应法则不一定是一个公式,有时 需用几个公式加以表达,用多个公式来表示的函数 称为分段函数。
例 1.
f
(x)
x2
,
0 x 1
例5. 已知 2 f (x) f (1 x) x2 ,求 f (x)
解:利用函数的“变量无关性”
2 f (x) f (1 x) x2
2
f
(1
x)
f
(x)
(1
x)2
消去 f (1 x)可得 f (x) 1 (x2 2x 1) 3
§3. 函数的特性 1. 奇偶性
设 X 为对称区间或为 R = (- ,+ )