2021届浙江省高三第一次五校联考文科数学试卷

合集下载

2021年10月浙江省五校(杭州高中杭州二中等)2021届高三毕业班上学期第一次联考数学试题及答案

2021年10月浙江省五校(杭州高中杭州二中等)2021届高三毕业班上学期第一次联考数学试题及答案

绝密★启用前浙江省五校联考联盟(杭州高中 杭州二中 学军中学 绍兴一中 效实中学) 2022届高三毕业班上学期第一次联考质量检测数学试题2021年10月考生须知:1.本卷满分150分,考试时间120分钟;2.答题前,在答题卷指定区域填写学校、班级、姓名、试场号、座位号及准考证号;3.所有答案必须写在答题卷上,写在试卷上无效;4.考试结束后,只需上交答题卷。

参考公式:若事件A,B 互斥,则P(A +B)=P(A)+P(B)若事件A,B 相互独立,则P(AB)=P(A)P(B)若事件A 在一次试验中发生的概率是p,则n 次独立重复试验中事件A 恰好发生k 次的概率P n (k)=C n k p k (1-p)n -k (k =0,1,2,…,n)台体的体积公式:V =13(S 1+S 2)h 其中S 1、S 2分别表示台体的上、下底面积,h 表示台体的高柱体的体积公式:V =Sh其中S 表示柱体的底面积,h 表示柱体的高锥体的体积公式:V =13Sh 其中S 表示锥体的底面积,h 表示锥体的高球的表面积公式:S =4πR 2球的体积公式:V =43πR 3 共中R 表示球的半径第I 卷(选择题部分,共40分)一、选择题:本大题共10小题,每小题4分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A ={x|0<x<2},B ={x|x 2+4x -5>0},则AI(∁R B)等于A.{x|0<x ≤1}B.{x|1≤x<2}C.{x|0<x<2}D.{x|-1≤x<2}2.已知点(1,1)在直线x +2y +b =0的下方,则实数b 的取值范围为A.b>-3B.b<-3C.-3<b<0D.b>0或b<-33.若a>b>0,m<0。

则下列不等式成立的是A.am 2<bm 2B.m b a ->1C.a m a b m b -<-D.22a m b m a b --> 4.已知sin(4π+α)=13,则cos(2π-2α)= A.-79 B.79C.-429D.429 5.函数f(x)=(1-x21e +)cosx(其中e 为自然对数的底数)的图象大致形状是6.有10台不同的电视机,其中甲型3台,乙型3台,丙型4台。

2021届浙江省名校新高考研究联盟(Z20名校联盟)高三上学期第一次联考数学试题(解析版)

2021届浙江省名校新高考研究联盟(Z20名校联盟)高三上学期第一次联考数学试题(解析版)
(1)求角 的值;
(2)求 的取值范围.
【答案】(1) ;(2) .
【解析】(1)利用辅助角公式化简题中式子,得到 ,从而求得 ,进而求得 ;
(2)根据正弦定理得到 ,从而可以求得 ,能得到 ,结合角 的范围,求得 ,进而得到 .
【详解】
(1)∵
∴ ,即 .
(2)由正弦定理得 ,
∴ ,
∵ ,
又∵ ,∴ ,∴ .
由于 、 、 均为正数,则 ,
当且仅当 时,即当 时,等号成立,
因此, 的最小值是 .
故选:C.
【点睛】
本题考查利用基本不等式求最值,考查计算能力,属于中等题.
9.已知平面向量 , , 满足 ,且 ,则 的取值范围是()
A. B. C. D.
【答案】B
【解析】首先根据题中所给的条件,求得 ,将向量坐标化,设 ,利用题中条件得到点 在以 为圆心,以 为半径的圆上,结合圆上点的坐标的范围求得 的范围.
【详解】
当 且 时, , , 成等比数列,故 ,又
,整理得 ,所以数列 是等差数列,首项为1,公差为1,故 , , .
故选:D.
【点睛】
本题考查了数列的递推关系,等差与等比数列的综合应用,属于中档题.
7.函数 在区间 上的图象可能是()
A. B.
C. D.
【答案】A
【解析】判断函数的奇偶性,排除C和D,再利用 时, ,得出答案.
5.已知空间中 , 是两条不同直线, 是平面,则()
A.若 , ,则 B.若 , ,则
C.若 , ,则 D.若 , ,则
【答案】C
【解析】根据线面关系和直线与平面垂直的性质定理逐一判断可得选项.
【详解】
对于A,B,直线m,n可能平行、相交或异面,A,B错误;

2020-2021学年高三年级第一学期第一次五校联考五校联考数学试题

2020-2021学年高三年级第一学期第一次五校联考五校联考数学试题

2020-2021学年高三年级第一学期第一次五校联考数学试题一、单项选择题(本大题共8小题,共40.0分) 1.函数 的定义域为A.B. C.D.2.已知 ,则下列不等式一定成立的是A.B. C.D.3.已知 是定义在R 上的偶函数,且在 上是增函数, ,则不等的解集为A.B. C.D.4.我国著名数学家华罗庚先生曾说:数缺形时少直观,形缺数时难入微,数形结合百般好,隔裂分家万事休. 在数学的学习和研究中,常用函数的图象来研究函数的性质,也常用函数的解析式来琢磨函数的图象的特征,如函数(1)e sin ()e 1x xxf x =-+在区间ππ(-,)22上的图象的大致形状是( ) A . B .C .D .5.已知 ,则的最小值是 .A. 3B.C.D. 96.已知函数()sin f x x x =+,x ∈R ,若()2l og 3a f =,13log 2b f ⎛⎫= ⎪⎝⎭,()22c f -=则,,a b c 的大小为( ) A .a b c >> B .a c b >>C .c b a >>D .b a c >>27.已知命题:,;命题q: ,,若、都为真命题,则实数的取值范围是( )A .B .C .D .8.已知函数 有两个极值点,则实数a 的取值范围是A.B.C. D.二、不定项选择题(本大题共4小题,共20.0分,每小题全对得5分,部分对得3分,有错得零分)9.若直线是函数 图象的一条切线,则函数 可以是A.B. C. D.10.设正实数m n 、满足2m n +=,则下列说法正确的是( ) A .2n m n+的最小值为3 B .mn 的最大值为1 C的最小值为2 D .22m n +的最小值为211.下列命题中正确命题的是.已知a ,b 是实数,则“”是“ ”的充分而不必要条件; ,使 ;设 是函数 的一个极值点,则若角 的终边在第一象限,则的取值集合为 .12.高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,他和阿基米德、牛顿并列为世界三大数学家,用其名字命名的“高斯函数”为:设,用 表示不超过x 的最大整数,则 称为高斯函数,例如: , 已知函数,则关于函数 的叙述中正确的是 A. 是偶函数B. 是奇函数C. 在 上是增函数D. 的值域是三、填空题(本大题共4小题,共20.0分)13.已知扇形的圆心角为,半径为5,则扇形的面积 ______.14.已知函数 ,且,则 ______. 15.已知三个函数ℎ ℎ′ , ℎ若 , ,都有 成立,求实数b 的取值范围16.设 是定义在R 上的偶函数,且 ,当 时,,若在区间 内关于x 的方程 有3个不同的根,则a 的范围是 .p x ∀∈R 220mx +>x ∃∈R 2210x mx -+≤p q m [1,)+∞(,1]-∞-(,2]-∞-[1,1]-四、解答题(本大题共6小题,共70.0分)17.(本题共10分)已知角为第一象限角,且.求,的值;求的值.18.(本题共12分)已知集合,求集合A;若p:,q:,且p是q的充分不必要条件,求实数m的取值范围.19.(本题共12分)已知函数,满足: ;.求函数的解析式;若对任意的实数,都有成立,求实数m的取值范围.20. (本题共12分)已知函数是定义在R上的奇函数.求a的值;判断并证明函数的单调性,并利用结论解不等式:;是否存在实数k,使得函数在区间上的取值范围是?若存在,求出实数k的取值范围;若不存在,请说明理由.21.(本题共12分)如图,公园内直线道路旁有一半径为10米的半圆形荒地圆心O在道路上,AB为直径,现要在荒地的基础上改造出一处景观.在半圆上取一点C,道路上B点的右边取一点D,使OC垂直于CD,且OD的长不超过20米.在扇形区域AOC 内种植花卉,三角形区域OCD内铺设草皮.已知种植花卉的费用每平方米为200元,铺设草皮的费用每平方米为100元.设单位:弧度,将总费用y表示为x的函数式,并指出x的取值范围;当x为何值时,总费用最低?并求出最低费用.22.已知函数,其中a为正实数.若函数在处的切线斜率为2,求a的值;求函数的单调区间;若函数有两个极值点,,求证:.4。

2021届浙江省名校新高考研究联盟高三上学期第一次联考数学试题Word版含答案

2021届浙江省名校新高考研究联盟高三上学期第一次联考数学试题Word版含答案

2021届浙江省名校新高考研究联盟高三上学期第一次联考数学试题一、选择题:本大题共10小题,每小题4分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 已知集合{|(3)(1)0}, {||1|1}A x x x B x x =-+>=->,则()R C A B =A.[1,0)(2,3]-B.(2,3]C.(,0)(2,)-∞+∞D.(1,0)(2,3)-2. 已知双曲线22:193x y C -=,则C 的离心率为 A.32 B.3 C.233D.2 3. 已知,a b 是不同的直线,,αβ是不同的平面,若,,//a b a αββ⊥⊥,则下列命题中正确的是A.b α⊥B.//b αC.αβ⊥D.//αβ 4. 已知实数,x y 满足312(1)x x y y x ≤⎧⎪+≥⎨⎪≤-⎩,则2x y +的最大值为A.11B.10C.6D.45. 已知圆C 的方程为22(3)1x y -+=,若y 轴上存在一点A ,使得以A 为圆心,半径为3的圆与圆C 有公共点,则A 的纵坐标可以是A.1B.3-C.5D.7-6. 已知函数2|2|1,0()log ,0x x f x x x +-≤⎧=⎨>⎩,若()1f a ≤,则实数a 的取值范围是 A.(,4][2,)-∞-+∞ B.[1,2]- C.[4,0)(0,2]- D.[4,2]-7. 已知函数()ln(||)cos f x x x =⋅,以下哪个是()f x 的图象A. B.C. D.8. 在矩形ABCD 中,4,3AB AD ==E 为边AD 上的一点,1DE =,现将ABE ∆沿直线BE 折成'A BE ∆,使得点'A在平面BCDE 上的射影在四边形BCDE 内(不含边界),设二面角'A BE C --的大小为θ,直线','A B A C 与平面BCDE 所成的角分别为,αβ,则A.βαθ<<B.βθα<<C.αθβ<<D.αβθ<< 9. 已知函数2()(,R)f x x ax b a b =++∈有两个零点,则“20a b -≤+≤”是“函数()f x 至少有一 个零点属于区间[0,2]”的一个( )条件A.充分不必要B.必要不充分C.充分必要D.既不充分也不必要10.已知数列{}n a 满足:1102a <<,1ln(2)n n n a a a +=+-,则下列说法正确的是 A.2019102a << B. 2019112a << C. 2019312a << D. 2019322a <<二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。

(浙江省五校联考)浙江省高三第一次五校联考试题(数学文).pdf

(浙江省五校联考)浙江省高三第一次五校联考试题(数学文).pdf

古代诗歌四首 【学习指导】 唐宋诗词是我国古代文化的艺术瑰宝,多读多背必有好处。

课前搜集一些与之相关的诗词,以开阔视野,拓展思路,增加积累。

【学习目标】 1.了解诗词有关知识。

2.品味语言,体味诗词意境。

3.有感情地反复诵读并熟练地背诵。

4.启发热爱祖国古代文化的思想感情,提高文化品位和审美情趣。

【】【学习方法指导】读诗需要读出节奏,读读看。

观沧海曹 操 东临/碣石,以观/沧海。

水何/澹澹,山岛/竦峙。

树木/丛生,百草/丰茂。

秋风/萧瑟,洪波/涌起。

日月/之行,若出/其中。

星汉/灿烂,若出/其里。

幸甚/至哉,歌以/咏志。

次北固山下王 湾 客路/青山/外,行舟/绿水/前。

潮平/两岸/阔,风正/一帆/悬。

海日/生/残夜,江春/入/旧年。

乡书/何处/达?归雁/洛阳/边。

钱塘湖春行白居易 孤山/寺北/贾亭/西,水面/初平/云脚/低。

几处/早莺/争/暖树,谁家/新燕/啄/春泥。

乱花/渐欲/迷/人眼,浅草/才能/没/马蹄。

最爱/湖东/行/不足,绿杨/阴里/白/沙堤。

天净沙 秋思马致远 枯藤/老树/昏鸦, 小桥/流水/人家, 古道/西风/瘦马。

夕阳/西下 , 断肠人/在/天涯。

【基础知识精讲】 一、作者简介 曹操(155~220),字孟德,东汉末政治家、军事家、诗人。

汉献帝建安十二年(207)八月,曹操大破盘踞在我国东北部的乌桓族及袁绍的残余势力统一了北方;九月,在归途中经过碣石山,写下了这首诗。

诗人当时正处在自己事业的最高峰。

他已削平了北方群雄,现在又打垮了乌桓和袁绍残部,消除了后患,统一了北方。

如果再以优势兵力去消灭南方割据势力,他就可以荡平宇内,一统天下了。

《观沧海》正是北征乌桓归途中经过碣石山时写的。

大战之前,身为主帅的曹操,登上当年秦皇汉武也曾登过的碣石山,又当秋风萧瑟之际,他的心情像沧海一样难以平静。

他将自己宏伟的抱负、阔大的胸襟融会到诗歌里,借着大海的形象表现出来,使这首诗具有一种雄浑苍劲的风格,成为一篇流传至今的优秀作品。

2021届浙江五校第一次联考数学试题附参考答案

2021届浙江五校第一次联考数学试题附参考答案

2021届浙江五校第一次联考一、选择题:每小题4分,共40分1.已知集合{A x y ==,{}02B x x =<<,则()A B =R ð()A .()1,2B .()0,1C .()0,+∞D .(),2-∞2.“直线l 与平面α内无数条直线垂直”是“直线l 与平面α垂直”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不必要也不充分条件3.若x ,y 满足约束条件22111x y x y y -≤⎧⎪-≥-⎨⎪-≤≤⎩,则2z x y =-的最大值为()A .9B .8C .7D .64.已知()1,2=a ,()1,7=-b ,2=+c a b ,则c 在a 方向上的投影为()A.5-B.10-C.10D.55.在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,已知()2sin tan 12cos C A C =-,2c b =,则cos B的值为()A .23B .23C .34D .786.函数()2e e x xf x x --=的图象是下列图中的()7.已知数列{}n a 的前n 项的和为n S ,且()23n n S a n n *=-∈Ν,则()A .{}n a 为等比数列B .{}n a 为摆动数列C .1329n n a +=⨯-D .6236n n S n =⨯--8.已知25cos2cos αα+=,()4cos 25αβ+=,0,2πα⎛⎫∈ ⎪⎝⎭,3,22πβπ⎛⎫∈ ⎪⎝⎭,则cos β的值为()A .45-B .44125C .44125-D .459.已知抛物线2:3C x y =,过点()3,4P m m ⎛⎫-∈ ⎪⎝⎭R 作抛物线的切线PA 、PB ,切点分别为A 、B ,则A 、B 两点到x 轴距离之和的最小值为()A .3B .32C.2D.410.已知函数()()11f x x a x a x a x=++-+∈-R ,()()()20g x p f x q pq =->⎡⎤⎣⎦,给出下列四个命题:①函数()f x 图象关于点()0,0对称;②对于任意a ∈R ,存在实数m ,使得函数()f x m +为偶函数;③对于任意a ∈R ,函数()f x 存在最小值;④当1a =时,关于x 的方程()0g x =的解集可能为{}3,1,1,2--,其中正确命题为()A .②③B .②④C .②③④D .①③④二、填空题:单空题每题4分,多空题每题6分11.不等式231133xx x -+⎛⎫> ⎪⎝⎭的解集是;不等式()24log 2log x x -<的解集是.12.函数()()cos 06f x x πωω⎛⎫=+> ⎪⎝⎭在区间[],ππ-的图象如下图,则()f x 的最小正周期为;()f π=.13.已知双曲线:C ()222210,0x y a b a b-=>>的左、右焦点分别为1F 、2F P 为双曲线上一点,12120F PF ∠=︒,则双曲线的渐近线方程为;若双曲线C 的实轴长为4,则12F PF △的面积为.14.已知函数()132e 4,13,1x x f x x x x -⎧-<=⎨-≥⎩(其中e 是自然对数的底数),则()()2f f =;若()y f x =与9y x b =+的图象有两个不同的公共点,则实数b 的取值范围是.15.某个几何体的三视图如图所示,则这个几何体的体积为.16.已知a ,b ,c 是非零向量,-=a b ,()()2-⋅-=-c a c b ,λ为任意实数,当-a b 与a 的夹角为3π时,λ-c a 的最小值是.17.若a ,b 为实数,且13a ≤≤,24b ≤≤,则324a bab +的取值范围是.三、解答题:5小题,共74分18.(本题满分14分)已知()sin (sin )f x x x x =,ABC △中,角A ,B ,C 所对的边为a ,b ,c .(1)求()f x 的单调递增区间;(2)若()32f A =,2a =,求ABC △周长的取值范围.19.(本题满分15分)已知四棱锥P ABCD -的底面是矩形,PA ⊥面ABCD ,2PA AD ==,AB =.(1)作AM PB ⊥于M ,AN PC ⊥于N ,求证:PC ⊥平面AMN ;(2)求二面角D PC A --的正切值.20.(本题满分15分)已知数列{}n a 与{}n b 满足()1131nn n n n b a b a +++=-+,2,1,n n b n ⎧=⎨⎩为奇数为偶数,*n ∈N ,且12a =.(1)设2+121n n n c a a -=-,*n ∈N ,求1c ,并证明:数列{}n c 是等比数列;(2)设n S 为{}n a 的前n 项和,求2n S .21.(本题满分15分)已知椭圆()2222:10x y C a b a b+=>>的离心率为22,短轴长为(1)求椭圆C 的标准方程;(2)设直线:l y kx m =+与椭圆C 交于A ,B 两个不同的点,M 为AB 中点,()1,0N -,当△AOB (点O 为坐标原点)的面积S 最大时,求MN 的取值范围.22.(本题满分15分)已知函数()sin sin 2f x a x x =+,a ∈R .(1)若2a =,求函数()f x 在()0,π上的单调区间;(2)若1a =,不等式()cos f x bx x ≥对任意20,3x π⎛⎫∈ ⎪⎝⎭恒成立,求满足条件的最大整数b .2020学年第一学期浙江省高三“五校联考”考试参考答案1-10.CBCADCDBBA11.{|1}x x ≠,{|12}x x <<12.43π,1213.y =,83314.54e -,(27,12](11,)---+∞ 15.4316.1217.335[,]41218.解:1cos 2()sin (sin cos )sin 2222-=+=+x f x x x x x 1sin(2)62π=-+x ……3分由3222262πππππ+≤-≤+k x k ,∈k Z 得536ππππ+≤≤+k x k ,∈k Z ∴()f x 的单调递减区间为5[,]36k k k Z ππππ++∈……………6分(2)∵13()sin(2)622π=-+=f A A ,则sin(2)16π-=A ,∵0π<<A ,∴112666πππ-<-<A ,262ππ-=A ,解得3π=A .……………8分法一:∵2=a ,3π=A ,由余弦定理得,2222cos3a b c bc π=+-,即224b c bc +-=……10分∴2()43b c bc +-=,则22()43()2b c b c ++-≤…………12分又∵2b c +>,∴24b c <+≤…………13分∴△ABC 周长的范围是(6,8]…………14分法二:由正弦定理得2sin sin sin a b cR A B C====∴sin )b c B C +=+…………10分∵23sin sin sin sin()sin cos )3226B C B B B B B ππ+=+-=+=+………12分又∵2(0,3B π∈,∴1sin((,1]62B π+∈,∴(4,6]b c +∈…………13分∴△ABC 周长的范围是(6,8]…………14分19.(1)BC ABAM PB PA ABCD BC PABC PAB AM BC AM PBC BC ABCD AB PA A PB BC B AM PAB PC PBC ⊥⊥⎫⎫⎫⎫⊥⎫⎪⎪⎪⎪⇒⊥⇒⊥⇒⊥⇒⊥⎬⎬⎬⎬⎬⊂⎭⎪⎪⎪⎪==⊂⊂⎭⎭⎭⎭面面面面面面 =PC AM PC AN PC AMN AM AN A ⇒⊥⎫⎪⊥⇒⊥⎬⎪⎭面………7分(2)方法一:作DE AC E ⊥于,EF PC F ⊥于,连DF ,PA ABCD ⊥ 面,PAC ABCD∴⊥面面DE PAC ∴⊥面,DE PC ∴⊥,EF PC ⊥ ,EF DE E = ,PC DEF ∴⊥面,DF PC ∴⊥,DFE ∴∠是二面角D PC A --的平面角, (11)分2PA AD ==,AB =,AC ∴=,30PCA ∴∠=︒3DE ∴=,3CE =,233EF =,tan DE DFE EF ∴∠==DFE ∴∠是二面角D PC A --.………15分方法二:建立坐标系(以AD 为x 轴,以AB 为y 轴,以AP 为z 轴).(0,0,0),(0,(2,(2,0,0),(0,0,2)A B C DP (0,(2,2),(0,0,2)DC PC AP ==-=平面DPC 的法向量1(1,0,1)n = ,平面APC的法向量21,0)n =-设二面角D PC A --的平面角为α,12cos |cos ,|3n n α=<>=,tan α=20.(1)证明:1222a a +-=,23210a a +=,两式作差得112c =…………3分对任意*n N ∈,21212231n n n a a ---++=①,2221231n n n a a ++=+②…………2分②-①,得21212134n n n a a -+-⨯-=,即2134n n c -⨯=,于是14n nc c +=.所以{}n c 是等比数列.…………7分(2)证明当*n N ∈且2n ≥时,2113153752123()()()()n n n a a a a a a a a a a =+-+-+-+⋅⋅⋅-+---22131(19)92922129n n --=+++++⋅⋅⋅=⋅+…………10分由(1)得112339321922n n n a --⋅++=-⋅+,所以2194n n a -=…………12分12123(19)4n n n a a --+=-,得2391()48n n S n -=-…………15分21.解:(1)由已知22c e a ==,2b =,222a b c =+得2b a ==,故椭圆C 的22142x y +=;……………………5分(2)设()()()112200,,,,,A x y B x y M x y ,则由2224x y y kx m⎧+=⎨=+⎩得()222214240k x mkx m +++-=2121222424,2121mk m x x x x k k -⇒+=-=++,点O 到直线l的距离d =,1122S d AB =⋅⋅=()222242221m k m k ++-=≤=+S ,当且仅当22242m k m =+-即2221m k =+,①……………10分此时21200022221,221x x mk k k x y kx m m k m m m+==-=-=+=-+=+,法一:即00001,22x m m k x y y ==-=-代入①式整理得()22000102x y y +=≠,即点M 的轨迹为椭圆()221:102x C y y +=≠………13分且点N 恰为椭圆1C 的左焦点,则MN 的范围为)1-+……………15分法二:MN =由①得kMN m===-………13分设kt m=代入2221m k =+得22221m m t =+,即22(12)1t m -=,221012m t =>-∴2222t -<<,即2222k m -<<∴)1MN ∈……………15分22、解答:(Ⅰ)当2a =时,()2sin sin 2f x x x =+,于是()2cos 2cos 22(1cos )(2cos 1)f x x x x x '=+=+-…………3分于是()0f x '>,解得(0,3x π∈;()0f x '<,解得(,)3x ππ∈即(0,)3x π∈函数()f x 单调递增,(,)3x ππ∈函数()f x 单调递减…………6分(Ⅱ)当1a =时,()sin sin 2cos f x x x bx x =+≥对任意2(0,3x π∈恒成立首先考察(0,2x π∈时,易得0b >∵()sin sin 2sin (12cos )cos f x x x x x bx x=+=+≥∴2(,)23x ππ∈时,()0cos f x bx x ≥≥,显然成立…………9分于是只考察()sin sin 2cos f x x x bx x =+≥对任意(0,)2x π∈恒成立由(14242f b ππ=+≥⋅,于是2128b +≤21238+>,所以3b ≤…11分下证:()sin sin 23cos f x x x x x =+≥对任意(0,2x π∈恒成立考察函数()tan 2sin 3g x x x x =+-,(0,2x π∈32222212cos 3cos 1(cos 1)(2cos 1)()2cos 30cos cos cos x x x x g x x x x x-+-+'=+-==>于是()g x 在(0,)2x π∈上单调递增,则()(0)0g x g >=即tan 2sin 30x x x +->,则sin sin 23cos x x x x +≥综上可知,max 3b =………15分。

2021年浙江高三上学期五校联考高考模拟数学试卷(10月)-学生用卷

2021年浙江高三上学期五校联考高考模拟数学试卷(10月)-学生用卷

2021年浙江高三上学期五校联考高考模拟数学试卷(10月)-学生用卷一、选择题(本大题共10小题,每小题4分,共40分)1、【来源】 2021年浙江嘉兴南湖区嘉兴市第一中学高三上学期高考模拟(10月)第1题4分2021年浙江杭州下城区浙江省杭州高级中学高三上学期高考模拟(10月)第1题4分2021年浙江杭州滨江区浙江省杭州第二中学高三上学期高考模拟(10月)第1题4分2021年浙江宁波海曙区宁波效实中学(白杨校区)高三上学期高考模拟(10月)第1题4分2021年浙江杭州西湖区杭州学军中学高三上学期高考模拟(10月)第1题4分已知集合A={x|y=√1−x},B={x|0<x<2},则(∁R A)∪B=().A. (1,2)B. (0,1)C. (0,+∞)D. (−∞,2)2、【来源】 2021年浙江杭州下城区浙江省杭州高级中学高三上学期高考模拟(10月)第2题4分2021年浙江宁波海曙区宁波效实中学(白杨校区)高三上学期高考模拟(10月)第2题4分2021年浙江杭州滨江区浙江省杭州第二中学高三上学期高考模拟(10月)第2题4分2021年浙江杭州西湖区杭州学军中学高三上学期高考模拟(10月)第2题4分2021年浙江嘉兴南湖区嘉兴市第一中学高三上学期高考模拟(10月)第2题4分“直线l与平面α内的无数条直线垂直”是“直线l与平面α垂直”的().A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件3、【来源】 2021年浙江杭州西湖区杭州学军中学高三上学期高考模拟(10月)第3题4分2021年浙江嘉兴南湖区嘉兴市第一中学高三上学期高考模拟(10月)第3题4分2021年浙江杭州滨江区浙江省杭州第二中学高三上学期高考模拟(10月)第3题4分2021年浙江杭州下城区浙江省杭州高级中学高三上学期高考模拟(10月)第3题4分2021年浙江宁波海曙区宁波效实中学(白杨校区)高三上学期高考模拟(10月)第3题4分若x,y满足约束条件{x−2y⩽2x−y⩾−1−1⩽y⩽1,则z=2x−y的最大值为().A. 9B. 8C. 7D. 64、【来源】 2021年浙江杭州下城区浙江省杭州高级中学高三上学期高考模拟(10月)第4题4分2021年浙江宁波海曙区宁波效实中学(白杨校区)高三上学期高考模拟(10月)第4题4分2021年浙江杭州滨江区浙江省杭州第二中学高三上学期高考模拟(10月)第4题4分2021年浙江嘉兴南湖区嘉兴市第一中学高三上学期高考模拟(10月)第4题4分2021年浙江杭州西湖区杭州学军中学高三上学期高考模拟(10月)第4题4分已知a→=(1,2),b→=(1,−7),c→=2a→+b→,则c→在a→方向上的投影为().A. −3√55B. −3√210C. 3√210D. 3√555、【来源】 2021年浙江嘉兴南湖区嘉兴市第一中学高三上学期高考模拟(10月)第5题4分2021年浙江宁波海曙区宁波效实中学(白杨校区)高三上学期高考模拟(10月)第5题4分2021年浙江杭州滨江区浙江省杭州第二中学高三上学期高考模拟(10月)第5题4分2021年浙江杭州西湖区杭州学军中学高三上学期高考模拟(10月)第5题4分2021年浙江杭州下城区浙江省杭州高级中学高三上学期高考模拟(10月)第5题4分在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知2sin⁡C =tan⁡A (1−2cos⁡C ),c =2b ,则cos⁡B 的值为( ).A. 23B. √23C. 34D. 786、【来源】 2021年浙江杭州滨江区浙江省杭州第二中学高三上学期高考模拟(10月)第6题4分2021年浙江宁波海曙区宁波效实中学(白杨校区)高三上学期高考模拟(10月)第6题4分 2021年浙江杭州西湖区杭州学军中学高三上学期高考模拟(10月)第6题4分2021年浙江嘉兴南湖区嘉兴市第一中学高三上学期高考模拟(10月)第6题4分2021年浙江杭州下城区浙江省杭州高级中学高三上学期高考模拟(10月)第6题4分函数f (x )=e x −e −x x 2的图象是下列图中的( ).A.B.C.D.7、【来源】 2021年浙江杭州滨江区浙江省杭州第二中学高三上学期高考模拟(10月)第7题4分2021年浙江杭州西湖区杭州学军中学高三上学期高考模拟(10月)第7题4分2021年浙江杭州下城区浙江省杭州高级中学高三上学期高考模拟(10月)第7题4分2021年浙江嘉兴南湖区嘉兴市第一中学高三上学期高考模拟(10月)第7题4分2021年浙江宁波海曙区宁波效实中学(白杨校区)高三上学期高考模拟(10月)第7题4分已知数列{a n}的前n项的和为S n,且S n=2a n−3n(n∈N∗),则().A. {a n}为等比数列B. {a n}为摆动数列C. a n=3×2n+1−9D. S n=6×2n−3n−68、【来源】 2021年浙江宁波海曙区宁波效实中学(白杨校区)高三上学期高考模拟(10月)第8题4分2021年浙江杭州西湖区杭州学军中学高三上学期高考模拟(10月)第8题4分2021年浙江嘉兴南湖区嘉兴市第一中学高三上学期高考模拟(10月)第8题4分2021年浙江杭州滨江区浙江省杭州第二中学高三上学期高考模拟(10月)第8题4分2021年浙江杭州下城区浙江省杭州高级中学高三上学期高考模拟(10月)第8题4分已知2+5cos⁡2α=cos⁡α,cos⁡(2α+β)=45,α∈(0,π2),β∈(3π2,2π),则cos⁡β的值为( ).A. −45B. 44125C. −44125D. 459、【来源】 2021年浙江杭州西湖区杭州学军中学高三上学期高考模拟(10月)第9题4分 2021年浙江杭州滨江区浙江省杭州第二中学高三上学期高考模拟(10月)第9题4分2021年浙江杭州下城区浙江省杭州高级中学高三上学期高考模拟(10月)第9题4分2021年浙江宁波海曙区宁波效实中学(白杨校区)高三上学期高考模拟(10月)第9题4分 2021年浙江嘉兴南湖区嘉兴市第一中学高三上学期高考模拟(10月)第9题4分已知抛物线C :x 2=3y ,过点P (m,−34)(m ∈R )作抛物线的切线PA 、PB ,切点分别为A 、B ,则A 、B 两点到x 轴距离之和的最小值为( ).A. 3B. 32C.3√32 D. 3√3410、【来源】 2021年浙江嘉兴南湖区嘉兴市第一中学高三上学期高考模拟(10月)第10题4分 2021年浙江杭州西湖区杭州学军中学高三上学期高考模拟(10月)第10题4分2021年浙江宁波海曙区宁波效实中学(白杨校区)高三上学期高考模拟(10月)第10题4分 2021年浙江杭州滨江区浙江省杭州第二中学高三上学期高考模拟(10月)第10题4分2021年浙江杭州下城区浙江省杭州高级中学高三上学期高考模拟(10月)第10题4分已知函数f(x)=|x+1x |+|a−x+1a−x|(a∈R),g(x)=p[f(x)]2−q(pq>0),给出下列四个命题:①函数f(x)的图象关于点(0,0)对称;②对于任意a∈R,存在实数m,使得函数f(x+m)为偶函数;③对于任意a∈R,函数f(x)存在最小值;④当a=1时,关于x的方程g(x)=0的解集可能为{−3,−1,1,2},其中正确命题为().A. ②③B. ②④C. ②③④D. ①③④二、填空题(本大题共7小题,共36分)11、【来源】 2021年浙江杭州下城区浙江省杭州高级中学高三上学期高考模拟(10月)第11题6分2021年浙江宁波海曙区宁波效实中学(白杨校区)高三上学期高考模拟(10月)第11题6分2021年浙江杭州西湖区杭州学军中学高三上学期高考模拟(10月)第11题6分2021年浙江杭州滨江区浙江省杭州第二中学高三上学期高考模拟(10月)第11题6分2021年浙江嘉兴南湖区嘉兴市第一中学高三上学期高考模拟(10月)第11题6分不等式3x2−3x+1>(13)x的解集是;不等式log2(2−x)<log4x的解集是.12、【来源】 2021年浙江嘉兴南湖区嘉兴市第一中学高三上学期高考模拟(10月)第12题6分2021年浙江杭州滨江区浙江省杭州第二中学高三上学期高考模拟(10月)第12题6分2021年浙江杭州下城区浙江省杭州高级中学高三上学期高考模拟(10月)第12题6分2021年浙江杭州西湖区杭州学军中学高三上学期高考模拟(10月)第12题6分2021年浙江宁波海曙区宁波效实中学(白杨校区)高三上学期高考模拟(10月)第12题6分函数f(x)=cos⁡(ωx+π6)(ω>0)在[−π,π]的图象如下图,则f(x)的最小正周期为;f(π)=.13、【来源】 2021年浙江杭州滨江区浙江省杭州第二中学高三上学期高考模拟(10月)第13题6分2021年浙江嘉兴南湖区嘉兴市第一中学高三上学期高考模拟(10月)第13题6分2021年浙江宁波海曙区宁波效实中学(白杨校区)高三上学期高考模拟(10月)第13题6分2021年浙江杭州下城区浙江省杭州高级中学高三上学期高考模拟(10月)第13题6分2021年浙江杭州西湖区杭州学军中学高三上学期高考模拟(10月)第13题6分已知双曲线C:x 2a2−y2b2=1(a>0,b>0)的左、右焦点分别为F1、F2,离心率为√3,点P为双曲线上一点,∠F1PF2=120°,则双曲线的渐近线方程为;若双曲线C的实轴长为4,则△F1PF2的面积为.14、【来源】 2021年浙江嘉兴南湖区嘉兴市第一中学高三上学期高考模拟(10月)第14题6分2021年浙江杭州滨江区浙江省杭州第二中学高三上学期高考模拟(10月)第14题6分2021年浙江杭州西湖区杭州学军中学高三上学期高考模拟(10月)第14题6分2021年浙江杭州下城区浙江省杭州高级中学高三上学期高考模拟(10月)第14题6分2021年浙江宁波海曙区宁波效实中学(白杨校区)高三上学期高考模拟(10月)第14题6分已知函数f(x)={e1−x−4,x<1x3−3x2,x⩾1(其中e是自然对数的底数),则f(f(2))=,若y=f(x)与y=9x+b的图象有两个不同的公共点,则实数b的取值范围是.15、【来源】 2021年浙江杭州下城区浙江省杭州高级中学高三上学期高考模拟(10月)第15题4分2021年浙江嘉兴南湖区嘉兴市第一中学高三上学期高考模拟(10月)第15题4分2021年浙江宁波海曙区宁波效实中学(白杨校区)高三上学期高考模拟(10月)第15题4分 2021年浙江杭州西湖区杭州学军中学高三上学期高考模拟(10月)第15题4分2021年浙江杭州滨江区浙江省杭州第二中学高三上学期高考模拟(10月)第15题4分 某个几何体的三视图如图所示,则这个几何体的体积为 .16、【来源】 2021年浙江宁波海曙区宁波效实中学(白杨校区)高三上学期高考模拟(10月)第16题4分2021年浙江杭州下城区浙江省杭州高级中学高三上学期高考模拟(10月)第16题4分 2021年浙江嘉兴南湖区嘉兴市第一中学高三上学期高考模拟(10月)第16题4分2021年浙江杭州滨江区浙江省杭州第二中学高三上学期高考模拟(10月)第16题4分 2021年浙江杭州西湖区杭州学军中学高三上学期高考模拟(10月)第16题4分已知a →,b →,c →是非零向量,|a →−b →|=2√3,(c →−a →)⋅(c →−b →)=−2,λ为任意实数,当a →−b →与a →的夹角为π3时,|c →−λa →|的最小值是 .17、【来源】 2021年浙江嘉兴南湖区嘉兴市第一中学高三上学期高考模拟(10月)第17题4分 2021年浙江宁波海曙区宁波效实中学(白杨校区)高三上学期高考模拟(10月)第17题4分 2021年浙江杭州西湖区杭州学军中学高三上学期高考模拟(10月)第17题4分2021年浙江杭州滨江区浙江省杭州第二中学高三上学期高考模拟(10月)第17题4分 2021年浙江杭州下城区浙江省杭州高级中学高三上学期高考模拟(10月)第17题4分若a,b为实数,且1⩽a⩽3,2⩽b⩽4,则a 3+4bab2的取值范围是.三、解答题(本大题共5小题,共74分)18、【来源】 2021年浙江杭州西湖区杭州学军中学高三上学期高考模拟(10月)第18题14分2021年浙江宁波海曙区宁波效实中学(白杨校区)高三上学期高考模拟(10月)第18题14分2021年浙江杭州滨江区浙江省杭州第二中学高三上学期高考模拟(10月)第18题14分2021年浙江嘉兴南湖区嘉兴市第一中学高三上学期高考模拟(10月)第18题14分2021年浙江杭州下城区浙江省杭州高级中学高三上学期高考模拟(10月)第18题14分已知f(x)=sin⁡x(sin⁡x−√3cos⁡x),△ABC中,角A,B,C所对的边为a,b,c.(1) 求f(x)的单调递增区间.(2) 若f(A)=32,a=2,求△ABC周长的取值范围.19、【来源】 2021年浙江杭州下城区浙江省杭州高级中学高三上学期高考模拟(10月)第19题15分2021年浙江宁波海曙区宁波效实中学(白杨校区)高三上学期高考模拟(10月)第19题15分2021年浙江嘉兴南湖区嘉兴市第一中学高三上学期高考模拟(10月)第19题15分2021年浙江杭州西湖区杭州学军中学高三上学期高考模拟(10月)第19题15分2021年浙江杭州滨江区浙江省杭州第二中学高三上学期高考模拟(10月)第19题15分已知四棱锥P−ABCD的底面是矩形,PA⊥面ABCD,PA=AD=2,AB=2√2.(1) 作AM⊥PB于M,AN⊥PC于N,求证:PC⊥平面AMN.(2) 求二面角D−PC−A的正切值.20、【来源】 2021年浙江杭州下城区浙江省杭州高级中学高三上学期高考模拟(10月)第20题15分2021年浙江杭州滨江区浙江省杭州第二中学高三上学期高考模拟(10月)第20题15分2021年浙江宁波海曙区宁波效实中学(白杨校区)高三上学期高考模拟(10月)第20题15分2021年浙江嘉兴南湖区嘉兴市第一中学高三上学期高考模拟(10月)第20题15分2021年浙江杭州西湖区杭州学军中学高三上学期高考模拟(10月)第20题15分已知数列{a n}与{b n}满足b n+1a n+b n a n+1=(−3)n+1,b n={2,n为奇数1,n为偶数,n∈N∗,且a1=2.(1) 设c n=a2n+1−a2n−1,n∈N∗,求c1,并证明:数列{c n}是等比数列.(2) 设S n为{a n}的前n项和,求S2n.21、【来源】 2021年浙江杭州西湖区杭州学军中学高三上学期高考模拟(10月)第21题15分2021年浙江杭州滨江区浙江省杭州第二中学高三上学期高考模拟(10月)第21题15分2021年浙江宁波海曙区宁波效实中学(白杨校区)高三上学期高考模拟(10月)第21题15分2021年浙江嘉兴南湖区嘉兴市第一中学高三上学期高考模拟(10月)第21题15分2021年浙江杭州下城区浙江省杭州高级中学高三上学期高考模拟(10月)第21题15分已知椭圆C:x 2a2+y2b2=1(a>b>0)的离心率为√22,短轴长为2√2.(1) 求椭圆C的标准方程.(2) 设直线l:y=kx+m与椭圆C交于A,B两个不同的点,M为AB中点,N(−1,0),当△AOB(点O为坐标原点)的面积S最大时,求|MN|的取值范围.22、【来源】 2021年浙江嘉兴南湖区嘉兴市第一中学高三上学期高考模拟(10月)第22题15分2021年浙江杭州下城区浙江省杭州高级中学高三上学期高考模拟(10月)第22题15分2021年浙江杭州西湖区杭州学军中学高三上学期高考模拟(10月)第22题15分2021年浙江宁波海曙区宁波效实中学(白杨校区)高三上学期高考模拟(10月)第22题15分2021年浙江杭州滨江区浙江省杭州第二中学高三上学期高考模拟(10月)第22题15分已知函数f(x)=asin⁡x+sin⁡2x,a∈R.(1) 若a=2,求函数f(x)在(0,π)上的单调区间.(2) 若a=1,不等式f(x)⩾bxcos⁡x对任意x∈(0,2π3)恒成立,求满足条件的最大整数b.1 、【答案】 C;2 、【答案】 B;3 、【答案】 C;4 、【答案】 A;5 、【答案】 D;6 、【答案】 C;7 、【答案】 D;8 、【答案】 B;9 、【答案】 B;10 、【答案】 A;11 、【答案】{x|x≠1};{x|1<x<2};12 、【答案】43π;12;13 、【答案】y=±√2x;8√33;14 、【答案】e5−4;(−27,−12]∪(−11,+∞);15 、【答案】43;16 、【答案】12;17 、【答案】[34,35 12];18 、【答案】 (1) [π6+kπ,23π+kπ],k∈Z.;(2) (4,2+4√33].;19 、【答案】 (1) 证明见解析.;(2) √2.;20 、【答案】 (1) c1=12,证明见解析.;(2) S2n=34(n−9n−18).;21 、【答案】 (1) x24+y22=1.;(2) |MN|∈(√2−1,√2+1).;22 、【答案】 (1) x∈(0,π3)时,函数f(x)单调递增;x∈(π3,π)时,函数f(x)单调递减.; (2) 3.;。

浙江省五校2021届高三数学上学期联考试题(含解析)

浙江省五校2021届高三数学上学期联考试题(含解析)

浙江省五校2021届高三数学上学期联考试题(含解析)1.已知集合{}lg 0A x x =>,{}24B x x =≤,则A B =( )A. ()1,2B. (]1,2C. (]0,2 D. ()1,+∞【答案】B 【解析】 【分析】分别计算出集合,A B 后可得两个集合的交集. 【详解】()1,A =+∞,[]2,2B =-,故(]1,2AB =,故选B.【点睛】本题考查集合的交运算,属于基础题.2.已知向量1a =,2b =,且a 与b 的夹角为60︒,则( ) A. ()a ab ⊥+B. ()b a b ⊥+C. ()a ab ⊥-D.()b a b ⊥-【答案】C 【解析】 【分析】逐项采用向量数量积的公式进行验证即可【详解】解析:对A :()20a a b a a b +=+⋅≠,故不垂直,A 错; 对B :()20b a b b a b +=+⋅≠,故不垂直,B 错; 对C :()2110a a b a a b -=-⋅=-=,故垂直,C 对; 对D :()2140b a b a b b -=⋅-=-≠,故不垂直,D 错; 故选C【点睛】本题考查向量数量积的运算和向量垂直的判断,是基础题型3.函数()332xx xf x =+的值域为( ) A. [)1,+∞B. ()1,+∞C. (]0,1D. ()0,1【答案】D 【解析】 【分析】需要先对函数式进行化简,化简成()3132213xxx xf x ==+⎛⎫+ ⎪⎝⎭形式,再进行值域求解 【详解】()3132213xx x xf x ==+⎛⎫+ ⎪⎝⎭,∵2210110133213xxx⎛⎫⎛⎫>⇒+>⇒<< ⎪ ⎪⎝⎭⎝⎭⎛⎫+ ⎪⎝⎭,故选D【点睛】本题考查复合函数的值域求解,一般复合函数值域求解需要先求内层函数的值域,形如()()f g x ,先求()g x 的值域D 再求()f D 的取值范围4.已知数列{}n a 是公差为d 的等差数列,其前n 项和为n S ,则( ) A. 0d <时,n S 一定存在最大值 B. 0d >时,n S 一定存在最大值C. n S 存在最大值时,0d <D. n S 存在最大值时,0d >【答案】A 【解析】 【分析】根据等差数列的特点来判断n S 与d 的关系即可【详解】对A :因为0d <,所以数列单调递减,故n S 一定存在最大值,A 正确; 对B :因为0d >,所以数列单调递增,故n S 不存在最大值,B 错; 对C :因为当0d =,10a <时,n S 存在最大值1S ,C 错; 对D :由C 的解析知,D 错; 故选A【点睛】本题考查等差数列n S 与d 的关系,我们可以通过21=22n n S d d n a ⎛⎫+- ⎪⎝⎭来加强理解,当公差0d =,数列为常数列,1n S na =,当10a >时,n S 有最小值,10a <时,n S 有最大值;当公差0d ≠时,0d >,n S 有最小值,0d <,n S 有最大值5.已知关于x 的不等式2230ax x a -+<在(]0,2上有解,则实数a 的取值范围是( )A. ⎛-∞ ⎝⎭B. 4,7⎛⎫-∞ ⎪⎝⎭C. ⎫∞⎪⎪⎝⎭D.4,7⎛⎫+∞ ⎪⎝⎭【答案】A 【解析】 【分析】 将不等式化为32aax x+<,讨论0a =、0a >和0a <时,分别求出不等式成立时a 的取值范围即可【详解】(]0,2x ∈时,不等式可化为32aax x+<; 当0a =时,不等式为02<,满足题意;当0a >时,不等式化为32x x a +<,则223x a x>=,当且仅当x =所以a ,即0a <<;当0a <时,32x x a+>恒成立;综上所述,实数a 的取值范围是(,3-∞ 答案选A【点睛】本题考查不等式与对应函数的关系问题,含参不等式分类讨论是求解时常用方法 6.已知a ,b 为实数,则01b a <<<,是log log a b b a >的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件【答案】A 【解析】 【分析】通过正向与反向推导来验证充分与必要条件是否成立即可【详解】若01b a <<<,则lg lg b a <,lg lg 1,1lg lg b a a b >> ,lg lg log log lg lg a bb ab a a b>⇔>, 显然o 0l g lo 1g a b b a b a <><<⇒,充分条件成立但log log a b b a >时,比如说2,3a b ==时,却推不出01b a <<<,必要条件不成立 所以01b a <<<是log log a b b a >的充分不必要条件【点睛】本题考查充分与必要条件的判断,推理能力与计算能力,由于参数的不确定性,故需要对参数进行讨论7.定义{}max ,a a b a b b a b ≥⎧=⎨<⎩,则关于实数,x y 的不等式组{}22max ,0x y x y x y ⎧≤⎪≤⎨⎪+-≥⎩所表示的平面区域的面积是( ) A. 4 B. 6C. 8D. 12【答案】D 【解析】 【分析】通过对新定义的解读,需要先求解{}max ,0x y x y +-≥,即0,00,0x y y x y y +≥≥⎧⎨-≥<⎩,再通过分类讨论形式表示不等式组,画出对应的线性规划区域,再求解对应面积即可【详解】解析:{}0,0max ,00,0x y y x y x y x y y +≥≥⎧+-≥⇒⎨-≥<⎩, 即{}22220220max ,000x x x y y y x y x y x y x y ⎧⎧⎧≤≤≤⎪⎪⎪≤⇔≤≤-≤<⎨⎨⎨⎪⎪⎪+-≥+≥-≥⎩⎩⎩或 由图像可得:平面区域面积:11642122S =-⨯⨯=,故选D【点睛】本题考查根据新定义表示线性规划区域,对可行域面积的求解,难点在于通过分类讨论合理表示出符合条件的区域8.函数()()sin 22cos 0f x x x x π=+≤≤,则()f x ( ) A. 在0,3π⎡⎤⎢⎥⎣⎦上递增 B. 在06,π⎡⎤⎢⎥⎣⎦上递减C. 在5,66ππ⎡⎤⎢⎥⎣⎦上递减 D. 在2,63ππ⎡⎤⎢⎥⎣⎦上递增 【答案】C 【解析】 【分析】由于常规方法无法进行化简,故需要对()f x 进行求导,根据导数来研究函数的增减性 【详解】()()()()22cos 22sin 22sin sin 102sin 1sin 10f x x x x x x x '=-=-+->⇒-+<,故151sin 0,,266x x πππ⎛⎫⎛⎫-<<⇒∈ ⎪ ⎪⎝⎭⎝⎭,故()f x 在0,6x π⎛⎫∈ ⎪⎝⎭和5,6ππ⎛⎫⎪⎝⎭单调递增,即在5,66ππ⎡⎤⎢⎥⎣⎦上递减 答案选C【点睛】本题考查根据导数来研究三角函数增减性问题,根据导数正负对应的区间来确定原函数的增减性,既考查了导数在函数中的应用,又考查了三角函数图像的基本性质9.三角形ABC 中,已知sin cos 0sin A C B +=,tan A =,则tan B =( )B. C.3D.2【答案】D 【解析】 【分析】 先将sin cos 0sin AC B+=化简,得到sin cos sin A C B =-,此时需要用到()sin sin A B C =+进行代换,化简得到关于B 与C 的正切公式,由于题中求的是角B ,故需将tan C 代换成()tan A B -+,进而化简求值【详解】解析:()sin cos 0sin cos sin sin 2tan tan 0sin AC A C B B C B C B+=⇒=-=+⇒+=,()tan tan 2tan tan tan 1tan tan 2A B B A B B A B +⇒=+=⇒=- 故选D .【点睛】本题考查三角函数的化简求值,由于前期不能锁定解题方向,所以需要进行解题方向预判,大体是弦化切,故整体思路都围绕弦化切展开,中间遇到两次三角函数的整体代换,对基本功要求较高,这就要求平时强化基础,苦练基本功 10.若不等式()sin 06x a b x ππ⎛⎫--+≤ ⎪⎝⎭对[]1,1x ∈-上恒成立,则a b +=( ) A.23B.56C. 1D. 2【答案】B 【解析】 【分析】将不等式()sin 06x a b x ππ⎛⎫--+≤ ⎪⎝⎭看作两个因式,x a b --和sin 6x ππ⎛⎫+ ⎪⎝⎭,先讨论sin 6x ππ⎛⎫+ ⎪⎝⎭的正负,确定x 对应区间,再对x a b --的正负进行判断,确定在交汇处取到等号,进而求解【详解】解析:法一:由题意可知:当15 , 66x⎡⎤∈-⎢⎥⎣⎦,sin06xππ⎛⎫+≥⎪⎝⎭,当151,,166x⎡⎤⎡⎤∈--⎢⎥⎢⎥⎣⎦⎣⎦,sin06xππ⎛⎫+≤⎪⎝⎭,故当15,66x⎡⎤∈-⎢⎥⎣⎦,0x a b--≤,当151,,166x⎡⎤⎡⎤∈--⎢⎥⎢⎥⎣⎦⎣⎦,0x a b--≥,即有5165316126a b aa bba b⎧⎧--==⎪⎪⎪⎪⇒⇒+=⎨⎨⎪⎪=---=⎪⎪⎩⎩,故选B;法二:由sin6xππ⎛⎫+⎪⎝⎭右图像可得:显然有5165316126a b aa bba b⎧⎧--==⎪⎪⎪⎪⇒⇒+=⎨⎨⎪⎪=---=⎪⎪⎩⎩,故选B【点睛】本题考查双变量不等式中参数的求解问题,通过分段讨论确定交汇点是解题关键,方法二采用数形结合的方式进一步对方法一作了补充说明,建议将两种方法对比研究11.已知集合{}2210A x x x=--<,{}B x a x b=<<,若{}21A B x x⋃=-<<,则a=______;若(){}13RA B x x⋂=≤<,则b=______.【答案】 (1). 2a=- (2). 3b=【解析】【分析】先化简集合A,根据题设条件,画出数轴图,根据交并补关系进行求解即可【详解】{}21210,12A x x x⎛⎫=--<=-⎪⎝⎭,因为{}B x a x b=<<,{}21A B x x⋃=-<<所以2a=-,如图所示[)1,1,2RC A⎛⎤=-∞-+∞⎥⎝⎦,(){}13RA B x x⋂=≤<所以3b=.如图:【点睛】本题考查根据集合的交并补的结果求解参数,最好的方式是结合数轴图加以理解,更具体,更直观12.已知0,6aπ⎛⎫∈ ⎪⎝⎭,若2sin sin21a a+=,则tan a=______;sin2a=______.【答案】 (1).12(2).45【解析】【分析】将右式的“1”化成“22sin cosαα+”,再化简求值【详解】22221sin sin21sin cos sin2cos tan2a a a a a a a+==+⇒=⇒=;22tan14sin211tan514aaa===++所以1tan2a=,4sin25a=【点睛】本题考查三角函数的化简求值,“1”的代换很关键,22tan sin 21tan aa a=+为万能公式的使用,应当熟记 13.不等式1231122xx --⎛⎫< ⎪⎝⎭的解集是______;不等式()212log 31log 4x -<的解集是______.【答案】 (1). {}0x x < (2). 15312x x ⎧⎫<<⎨⎬⎩⎭【解析】 【分析】将1212x-⎛⎫ ⎪⎝⎭化简成212x -,再利用指数函数性质解不等式;同理对于12log 4化简成21log 4,但要注意310x ->,再进行求解即可 【详解】123121122312102xx x x x x ---⎛⎫<=⇒-<-⇒< ⎪⎝⎭,所以不等式1231122xx --⎛⎫< ⎪⎝⎭的解集是{}0x x <()2122310115log 31log 4log 214312314x x x x ->⎧⎪-<==-⇒⇒<<⎨-<⎪⎩ 不等式()212log 31log 4x -<的解集是15312x x ⎧⎫<<⎨⎬⎩⎭【点睛】本题考查指数不等式与对数不等式的求解,化成同底数再根据函数的增减性求解是常规方法,同时还需注意定义域必须符合对数函数性质14.设数列{}n a 的前n 项和为n S ,满足()()112nnn n S a n N *⎛⎫=--∈ ⎪⎝⎭,则3a =______,7S =______.【答案】 (1). 116- (2). 1256- 【解析】 【分析】再写一个下标减一的递推式,两式作差,表示出n a 的关系式,再根据n 为奇数和偶数求解具体数值即可【详解】当1n =时,1111124S a a =--⇒=-; 当2n ≥时,()()()()()()1111111112111111122112nn n nn n n n n n n n n n n n n n n S a a a a a a S a -------⎧⎛⎫=--⎪ ⎪⎪⎝⎭⎛⎫⎛⎫⎡⎤⇒=---+⇒--=-+⎨ ⎪ ⎪⎣⎦⎝⎭⎝⎭⎛⎫⎪=-- ⎪⎪⎝⎭⎩当n 为偶数时,112nn a -⎛⎫=- ⎪⎝⎭即n 为奇数时112n n a +=-,所以3411216a =-=-; 7812a =-,()7787811111222256S ⎛⎫=---=-=- ⎪⎝⎭. 【点睛】本题考查根据递推数列求解具体通项和n S 的方法,涉及题设包含()1n-这种形式时,一定要分类讨论奇偶性 15.定义{},max ,,a a ba b b a b≥⎧=⎨<⎩,已知(){}max 11,2f x x x =++,()g x ax b =+.若()()f x g x ≤对[)1,x ∈+∞恒成立,则2a b +的最小值是______.【答案】5 【解析】 【分析】画出()()=11,2m x x h x x ++=的图像,根据题意,表示出()f x 的表达式,再根据()f x 与()g x 的位置关系,进行求解【详解】如图:()(]()11,222,x xf xx x⎧++∈-∞⎪=⎨∈+∞⎪⎩,,若()()f xg x≤对[)1,x∈+∞恒成立,此时()[]()2,1,22,2,x xf xx x⎧+∈⎪=⎨∈+∞⎪⎩,则2a≥,2ax b x+≥+在[]1,2上恒成立,所以3a b+≥()2235a b a a b+=++≥+=当且仅当2a=,1b=时等号成立.即图中的红色直线为临界状态.则2a b+的最小值是5【点睛】本题考查根据新定义写出表达式,根据函数图像求不等式的最值,准确画出函数图像并从临界点切入是解题关键16.已知向量,,a b c,其中2a b-=,a c-=1,b与c夹角为60︒,且()()1a b a c-⋅-=-.则a的最大值为______.221【解析】【分析】可设OA a =,OB b =,OC c =,则a b BA -=,a c CA -=,则2BA =,1CA =,进而可求出BA 与CA 夹角,根据几何关系能得出四点共圆,再根据正弦定理求得圆的半径即可 【详解】设OA a =,OB b =,OC c =,则2BA =,1CA =,1BA CA ⋅=- 所以1cos ,2BA CABA CA BA CA⋅<>==-,即BA 与CA 的夹角为120︒,而OB 与OC 的夹角为60︒, 所以四点,,,O B A C 共圆, 于是a OA =为圆的直径时最大,2212122172BC ⎛⎫=+-⨯⨯⨯-= ⎪⎝⎭,72212sin1203BC r 2===︒则a 的最大值为221【点睛】本题考查向量模长的求法,通过构造向量的形式表示a b BA -=,a c CA -=是解题关键,借助几何图形能帮助我们快速解题17.已知实数,a b 满足:2224b a -=,则2a b -的最小值为______. 【答案】2 【解析】 【分析】本题解法较多,具体可考虑采用距离问题、柯西不等式法,判别式法,整体换元法,三角换元法进行求解,具体求解过程见解析 【详解】方法一:距离问题问题理解为:由对称性,我们研究“双曲线上的点(),a b 到直线20a b -=问题若相切,则()22224b b z -+=有唯一解222440b zb z +++=,()2221684042z z z z =-+=⇒=⇒=两平行线20a b -=与20a b z --=的距离d ==所以22a b -== 方法二:柯西不等式法 补充知识:二元柯西不等式 已知两组数,a b ;,x y ,则()()()22222a bxy ax by ++≥+()()()222222222222222222a b x y ax by a x a y b x b y a x b y abxy ++≥+⇔+++≥++()2222220a y b x abxy ay bx ⇔+≥⇔-≥已知两组数,a b ;,x y ,则()()()22222a bxy ax by --≤-()()()222222222222222222a b x y ax by a x a y b x b y a x b y abxy --≤-⇔--+≤+-()2222220a y b x abxy ay bx ⇔+≥⇔-≥所以()()()22242212b aa b =--≤-,所以22a b -≥.方法三:判别式法设22a b t a b t -=⇒=+,将其代入2224b a -=,下面仿照方法一即可. 方法四:整体换元0a ->0a +>设x a y a⎧=-⎪⎨=+⎪⎩,则()40,0xy x y =>>,且22222y xay xa bb-⎧=⎪-⎪⇒-=-=≥=⎨⎪=⎪⎩方法五:三角换元由对称性,不妨设2tanbaθθ⎧=⎪⎨=⎪⎩(θ为锐角)所以sin cos22tan222cos cosa bθθθθθθ-=-==≥=所以2a b-的最小值为2【点睛】本题考查不等式中最值的求解问题,解法较为多样,方法一通过点到直线距离公式进行求解,方法二通过柯西不等式,方法三通过判别式法,方法四通过整体换元法,方法五通过三角换元,每种解法都各有妙处,这也提醒我们平时要学会从多元化方向解题,培养一题多解的能力,学会探查知识点的联系,横向拓宽学科知识面18.已知()sin3f x x xπ⎛⎫=+⎪⎝⎭,ABC△中,角,,A B C所对的边为,,a b c.(1)若,22xππ⎡⎤∈-⎢⎥⎣⎦,求()f x的值域;(2)若()13f A=,a=2b=,求sin B的值.【答案】(1)11,2⎡⎤-⎢⎥⎣⎦(2)6+【解析】【分析】(1)将表达式先展开再合并,化简求值即可(2)将()13f A=化简求得1sin33Aπ⎛⎫-=⎪⎝⎭,通过数值进一步锁定32Aππ<<,求出22cos 3A π⎛⎫-=⎪⎝⎭,采用拼凑法求出sin sin 33A A ππ⎛⎫⎛⎫=-+ ⎪ ⎪⎝⎭⎝⎭,再用正弦定理求解sin B 【详解】解析:()13sin 3cos sin cos 3cos sin 3223f x x x x x x x ππ⎛⎫⎛⎫=+-=+-=- ⎪ ⎪⎝⎭⎝⎭ (1)∵51,,sin 2236632x x x ππππππ⎡⎤⎡⎤⎛⎫⎡⎤∈-⇒-∈-⇒-∈-1, ⎪⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎝⎭⎣⎦,即()11,2f x ⎡⎤∈-⎢⎥⎣⎦(2)()11sin 333f A A π⎛⎫=⇒-= ⎪⎝⎭,因为1132<,所以036A ππ<-<,或者563A πππ<-<,即32A ππ<<或者7463A ππ<<(舍去),故22cos 3A π⎛⎫-= ⎪⎝⎭;126sin sin 336A A ππ⎛⎫+⎛⎫=-+= ⎪ ⎪⎝⎭⎝⎭,由正弦定理得:sin sin a b A b =⇒243sin 6B += 【点睛】本题考查复合三角函数值域的求法,三角恒等变换中关于具体角的求解问题,正弦定理在解三角形中的应用,对于角的拼凑问题是解题过程中经常会遇到的问题,如本题中33A A ππ⎛⎫=-+ ⎪⎝⎭,常见的还有442x x πππ⎛⎫⎛⎫-++= ⎪ ⎪⎝⎭⎝⎭,233x x πππ⎛⎫⎛⎫-++= ⎪ ⎪⎝⎭⎝⎭,()A A B B =+-等19.已知多面体P ABCD -中,AB CD ∥,90BAD PAB ∠=∠=︒,12AB PA DA PD DC ====,M 为PB 中点. (1)求证:PA CM ⊥;(2)求直线BC 与平面CDM 所成角的正弦.【答案】(1)证明见解析(2)24【解析】 【分析】(1)可通过线面垂直的判定定理来证线线垂直,即设法证明PA ⊥ CD 直线所在平面 (2)过点B 作BO CMD ⊥面,连接CO ,则BCO ∠为直线BC 与平面CDM 所成角的平面角,再采用等体积法求出BO ,即可求得 也可采用建系法直接求解 【详解】法一:(1)由90BAD PAB ∠=∠=︒得:BA PAD ⊥面;如图:取PA 中点E , 连接ME ,DE 得:ME PA ⊥,DE PA ⊥,PA DEMC ⊥面;故:PA CM ⊥;(2)过点B 作BO CMD ⊥面;连接CO ,则BCO ∠为直线BC 与平面CDM 所成角的平面角,即有B CDM M CBD V V --=, 不妨设122AB PA DA PD DC ==-==,即有:11113434213232h h ⨯⨯⨯=⨯⨯⨯⨯⇒=,所以2sin h BCO BC ∠==法二:由90BAD PAB∠=∠=︒得:BA PAD⊥面;122AB PA DA PD DC=====如图建系得:()200P,,,()3A,,,()3B,,,()004C,,,()0,0,0D,33122M⎛⎫⎪⎪⎝⎭,(1)()3,0PA=-,33,,-322CM⎛⎫= ⎪⎪⎝⎭则0PA CM PA CM⋅=⇒⊥(2)设面CDM的法向量为(),,n x y z=,()0,0,4DC=,332DM⎛⎫= ⎪⎪⎝⎭,()1,3,2BC=--即有:()401,3,00330zDC nnDM n x=⎧⎧⋅=⎪⇒⇒=-⎨⎨⋅==⎪⎩⎩,故132sin cos28BC nα-+=<⋅>==⨯【点睛】本题考查利用线面垂直证线线垂直,求线面角的正弦值,相对来说,立体图形比较规整,也可采用建系法进行求解,属于中档题20.设数列{}n a是等比数列,数列{}n b是等差数列,若223a b==,359a b==.(1)若nnnn bca⋅=,数列{}nc中的最大项是第k项,求k的值(2)设n n nd a b=⋅,求数列{}n d的前n项和n T【答案】(1)2k=(2)()131nnT n=-⨯+【解析】【分析】(1)根据题设已知条件利用通项公式直接表示出223a b ==,359a b ==的关系式,求解出{}n a 与{}n b 的通项公式,表示出{}n c 的通项公式,利用1n n c c +-进行判断(2)采用错位相减法进行求解即可 【详解】解析:(1)设公差为d ,公比为q则11112111314923a a qb d b a q b d d q =⎧⎪=+==⎧⎪⇒⎨⎨=+==⎩⎪⎪=⎩,所以13-=n n a ,21n b n =-;2123n n n n n b n n c a -⋅-==,212313n nn n c +++= 222112312461333n n n n nn n n n n n c c +-++--++-=-= 当1n =时,246120n n -++=>,于是21c c >; 当2n ≥时,24610n n -++<,于是1n n c c +<; 综上所述:123n c c c c <>>⋅⋅⋅>, 于是()2max 2n c c ==,2k = (2)错位相减求和法()1213n n d n -=-⋅,()()01112133321331333213n n n nT n T n -⎧=⨯+⨯+⋅⋅⋅+-⨯⎪⎨=⨯+⨯+⋅⋅⋅+-⨯⎪⎩,()()()()1213321233321312213223231n n nn n n T n n n ---=+⨯+⋅⋅⋅+--⨯=+--⨯=-+⨯--()131n n T n =-⨯+【点睛】本题考查等差等比数列基本量的求解,数列前n 项和最大值和对应项的辨析,错位相减法求前n 项和,错位相减法关键在于第二个式子一般乘以公比,跟第一个式子对应时,依次向后错一位,两式相减时,第二个式子多出的末项符号正负要书写正确21.过椭圆2212xy+=的左焦点F作斜率为()11k k≠的直线交椭圆于A,B两点,M为弦AB的中点,直线OM交椭圆于C,D两点.(1)设直线OM的斜率为2k,求12k k的值;(2)若F,B分别在直线CD的两侧,2MB MC MD=⋅,求FCD的面积.【答案】(1)12-(2)22【解析】【分析】(1)设直线方程为1y k x b=+,代入椭圆方程,根据方程的根与系数关系求弦中点M的坐标为1221122(,)1212bk bk k-++,代入可得2112kk=-,进行求解(法二)(利用点差法)设点1(A x,1)y,2(B x,2)y,中点(M x,)y,由2211112x y+=与2222112x y+=,作差得21212121()()12()()y y y yx x x x-+-=-+再进行求解(2)设直线方程为()11y k x=-,联立椭圆方程得出211221412kx xk+=+,点M的横坐标为21021212kxk=+,用焦点弦公式表示出())2211122112214222212kkAB a e x xk+=++==+,同理联立方程()22222222122x yk xy k x⎧+=⇒+=⎨=⎩,用弦长公式表示出MC,MD,结合题干2MB MC MD =⋅求出2k ,再用点到直线距离公式求得F 到CD 距离,进而求得面积【详解】(1)解法一:设直线方程为1y k x b =+,代入椭圆方程并整理得:22211(12)4220k x k bx b +++-=,1122412k bx x k +=-+,又中点M 在直线上,所以1212122y y x x k b +⎛⎫⎝+⎪⎭=+,从而可得弦中点M 的坐标为1221122(,)1212bk b k k -++,2112k k =-, 所以1212k k =-解法二:设点1(A x ,1)y ,2(B x ,2)y ,中点0(M x ,0)y 则1202x x x +=,1202y y y +=0122012y y y k x x x +==+,21121y y k x x -=- 又2211112x y +=与2222112x y +=,作差得21212121()()12()()y y y y x x x x -+-=-+所以1212k k =-(2)设()11,A x y ,()22,B x y ,()33,C x y ,()44,D x y()()22222221111221242201x y k x k x k y k x ⎧+=⎪⇒+-+-=⎨=-⎪⎩ 211221412k x x k +=+,点M 的横坐标为21021212k x k =+())221112221114221212k k AB a e x x k k +=++==++于是)212111212k MB MB k +==+ 联立方程()22222222122x y k x y k x⎧+=⇒+=⎨=⎩所以3x =4x =2121212k MC k =+,MD =所以()2221222212211212k MC MD k k k ⎛⎫=+- ⎪++⎝⎭从而有)()222212122221211221121212k k k k k k ⎤+⎛⎫⎢⎥=+- ⎪+++⎢⎥⎝⎭⎣⎦,结合1212k k =-, 从而得2112k =,不妨设12k =,此时22k =-:0CD x +=此时CD ==d =1232FCD S ∆== 【点睛】本题考查直线与曲线相交问题的具体应用,要求考生具有较强的运算能力和逻辑推理能力,用点差法解决弦的中点问题可大大减小运算22.设函数()1xf x e x =+≥- (1)当1a =-时,若0x 是函数()f x 的极值点,求证:0102x -<<; (2)(i )求证:当0x ≥时,()2112f x x x ≥+++; (ii )若不等式()25242f x a x x a++≤对任意0x ≥恒成立,求实数a 的取值范围. 注:e=2.71828为自然对数的底数.【答案】(1)证明见解析(2)(i )证明见解析 (i i )(]0,1【解析】【分析】(1)先求导,得()f x '=()21g x e =,求得()0g x '>,可判断()g x 单调递增恒成立,再根据零点存在定理计算两端点值,即可求证(2)(i )要证()2112f x x x ≥+++2112x e x x ≥++,只需证()21102x h x e x x =---≥,通过求导证明()'0h x >,求得()0=0h ,即可求证 (ii )先通过必要性进行探路,当0x =时,一定成立,推出(]0,1a ∈ ,当01a <≤时,()()25=224f x a g x x x a ⎛⎫-++ ⎪⎝⎭令,化简得()()2512042x g x e x x x ⎛⎫≥++≥ ⎪⎝⎭, 进一步求导得()54x g x e x ⎛⎫'=++ ⎪⎝⎭,结合(i )中2112x e x x ≥++放缩可得()2511424x g x e x x ⎛⎫'=-+≥+- ⎪⎝⎭,再对1x ≥和01x <<分类讨论,进而求证【详解】解析:(1)()xf x e '==,令()()2120x g x e g x e e '=⇒=>即()g x 恒增,又1102g ⎛⎫-=< ⎪⎝⎭,()010g =>,所以()f x '在1,02⎛⎫- ⎪⎝⎭上有一根,即为()f x 的极值点0x ,且0102x -<<; (2)(i )要证()2112f x x x ≥+++2112x e x x ≥++,只需证()21102x h x e x x =---≥,()1x h x e x '=--,()10x h x e ''=->,即()h x '在[)0,+∞,即()()min 00h x h ''==,所以()0h x '≥恒成立,即()h x 在[)0,+∞单调递增,又有()()min 00h x h ==,所以()0h x ≥恒成立,即()2112f x x x ≥+++(i i )必要性探路:当0x =,有1201a a a+≤⇒<≤, 当01a <≤时,2225551222424242x x a e a x x x x e x x a ⎛⎫⎛⎫⎛⎫++=++≥++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭设()()2512042x g x e x x x ⎛⎫=++≥ ⎪⎝⎭ ()225151142424x g x e x x x x x ⎛⎫⎛⎫'=+≥1+++-+=+- ⎪ ⎪⎝⎭⎝⎭ (1)当1x ≥时,()221111110242424g x x x '≥+->-≥->, 所以函数()()00g x g ≥=(2)当01x <<时,()2111102444g x x '≥->->> 所以函数()()00g x g ≥=综上所述:实数a 的取值范围为(]0,1.【点睛】本题考查导数零点区间的证明,零点存在定理的应用,利用导数证明不等式恒成立,利用利用放缩法证明不等式,利用导数研究恒成立问题求解参数,难度系数比较大,对考生综合素质要求较高。

2021年高三上学期第一次五校联考数学(文)试题 含答案

2021年高三上学期第一次五校联考数学(文)试题 含答案

2021年高三上学期第一次五校联考数学(文)试题 含答案注意事项:1. 答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。

2. 选择题每小题选出答案后,用2B 铅笔把答题卡对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3. 非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效.4. 作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再作答。

漏涂、错涂、多涂的,答案无效.5. 考生必须保持答题卡的整洁。

考试结束后,将试卷和答题卡一并交回.参考公式:锥体的体积公式为,其中为锥体的底面积,为锥体的高.个数据的方差()()()2222121n s x x x x x x n ⎡⎤=-+-+⋅⋅⋅+-⎢⎥⎣⎦,其中.一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,集合,则A. B. C. D.2.设复数,,若,则A.B.C.D.3.已知是两条不同直线,是三个不同平面,下列命题中正确的是A.B.C.D.4.已知向量,且,则的值为A.B.C.5 D.13 5.等差数列的前项和为,已知,则A.B.C.D.6.执行如右图所示的程序框图,则输出的=A.B.C.D.7.将函数的图像向右平移个单位后所得的图像的一个对称轴是A.B.C.D.8.函数在区间[0,4]上的零点个数是A.4B.5 C.6 D.7 9.已知直线,若曲线上存在两点P、Q关于直线对称,则的值为A.B.C.D.10.已知函数是定义在R上的奇函数,,当时,有成立,则不等式的解集是A.B.C.D.二、填空题:本大题共5题,考生作答4小题,每小题5分,满分20分.(一)必做题(11~13题)11. 函数的定义域为.12.一个几何体的三视图如图1,则该几何体的体积为.2y=开始结束1i=2014?i≥y输出1i i=+是否第(6)题11yy=-图3625x 0611y 11988967乙甲13.设双曲线的离心率为2,且一个焦点与抛物线的焦点相同,则此双曲线的方程 为____.(二)选做题(14、15题,考生只能从中选做一题)14. (几何证明选讲选做题)如图,是圆的切线,切点为,点在圆上, ,,则圆的面积为________.15. (正四棱锥与球体积选做题)棱长为1的正方体的外接球的体积为________.三、解答题:本大题共6小题,满分80分。

浙江省高三数学五校联考试卷文科一 人教版

浙江省高三数学五校联考试卷文科一 人教版

浙江省高三数学五校联考试卷文科一 人教版本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.卷面共150分,考试时间120分钟.第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1、已知集合{}{}221,,10,A x x x R B x x x Z ==∈=-≤∈,则有( ) (A )A B = (B ) (C ) (D )A=C R B2、具有A 、B 、C 三种性质的总体,其容量为63,将A 、B 、C 三种性质的个体按1∶2∶4的比例进行分层抽样调查,如果抽取的样本容量为21,则A 、B 、C 三种元素分别抽取( ) (A )12、6、3 (B )12、3、6 (C )3、6、12 (D )3、12、6 3、下列函数中最小正周期为π的是( )(A )()sin f x x = (B )()sin 2f x x = (C )()sin 1f x x =+ (D )()tan 2f x x =4、已知()3f x x =,则实数a b >是()()f a f b >的( )条件(A )充分不必要 (B )必要不充分 (C )充要 (D )既不充分也不必要 5、函数()cos (cos sin ),0,4f x x x x x π⎡⎤=+∈⎢⎥⎣⎦的值域是( ) (A )121,22⎡⎤+⎢⎥⎣⎦ (B )120,22⎡⎤+⎢⎥⎣⎦ (C )12,022⎡⎤-⎢⎥⎣⎦ (D )12,122⎡⎤-⎢⎥⎣⎦6、已知{}n a 是正项的等差数列,如果满足:225757264a a a a ++=,则数列{}n a 的前11项的和为( )(A )8 (B )44 (C )56 (D )647、函数()322f x x ax x =+++在R 上存在极值点,则实数a 的取值范围是( )(A )()3,3- (B )3,3⎡⎤-⎣⎦(C )(),33,⎤⎡-∞-+∞⎦⎣(D )()(),33,-∞-+∞8、同时抛掷三枚骰子,出现正面朝上的点数之和不大于5的概率是( )(A )3206 (B )3106 (C )396 (D )376 9、已知平面向量,,a b c 满足1,2,3a b c ===,且向量,,a b c 两两所成的角相等,则a b c ++=( ) (A )3 (B )6或2 (C )6 (D )6或310、设二次函数()()220f x ax x b a =++≠,若方程()f x x =无实数根,则方程()f f x x =⎡⎤⎣⎦的实数根的个数为( )(A )0 (B )2 (C )4 (D )4个以上第Ⅱ卷(非选择题,共100分)二、填空题:本大题共4小题,每小题4分,共16分. 11、()622xx -展开式中5x 的系数是 ▲ .12、若关于x 的不等式220x x a -+≥恒成立,则实数a 的取值范围是 ▲ . 13、用0,1,2,3,4这五个数字组成无重复数字的五位数,其中恰有一个偶数夹在两个奇数之间的五位数的个数是 ▲ (用数字作答). 14、在直角三角形ABC 中,,,c r S 分别表示它的斜边、内切圆半径和面积,则crS的最小值是 ▲ .三、解答题:本大题共6小题,每小题14分,共84分. 15.(本小题满分14分) 已知集合A 表示函数()1(0)f x x x x=+>的值域,集合B 表示函数 ()12g x x =-的定义域,集合C 表示不等式2220x ax a --≥的解 集.(1)求集合A 和B ;(2)若01a <<,判断集合A B 与集合C 的关系.16.(本小题满分14分) 已知0m >,且向量11,,,x m a x b m x x --⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭. (1) 若向量a b ⊥,求x 的值; (2) 若向量,a b 满足,求实数x 的取值范围.17.(本小题满分14分) 已知,02x π⎛⎫∈-⎪⎝⎭,sin cos 3x x +=-.(1)求cos()4x π+的值;(2)求cos 2tan cot xx x+的值.18.(本小题满分14分)已知在一袋中有x 个红球、3个黑球和2个白球,现从中任取3个. (1)如果3x =,求取出的3球中颜色都相同的概率; (2)如果取出的3球的颜色各不相同的概率为1235,求x 的值19.(本小题满分14分) 已知函数()23f x x =-.(1)求过点()1,2的切线方程;(2)在下面坐标系中作出函数()()[](2,2)h x f x x =∈-的图象;(3)若函数()4g x ax a =+的图象总在函数()()[](2,2)h x f x x =∈-图象的上方,求实数a 的取值范围.3Y XO 2-220.(本小题满分14分)已知正项数列{}n a 满足:()()()2*113,2122181,n n a n a n a n n n N -=-+=++>∈ .(1)求证:数列21n a n ⎧⎫⎨⎬+⎩⎭是等差数列;(2)求数列{}n a 的通项n a ; (3)求证:2311111156n a a a ≤+++<.[参考答案]二.填空题:11.160-; 12.[)1,+∞ ;13.28; 14.2. 三.解答题:15.(1)∵()102x f x x x>⇒=+≥,∴[)2,A =+∞ 3分 ∵要使函数()g x 有意义,则202x x ->⇒>∴()2,B =+∞ 6分 (2)∵{}()(){}222020C x x ax a x x a x a =--≥=-+≥ 9分∵01a << ∴2a a >-(][),2,C a a =-∞-+∞, 12分又∵()2,AB =+∞而22a < ∴满足AB C 14分16.(1)∵a b ⊥,∴0a b = 即10ma b x m x=--+= ()210x m x m -++=解得1x =或x m = 4分 (2)因不等式0a b ≥等价于10ma b x m x=--+≥ ()210x m x mx-++⇔≥ ()()10x m x x--⇔≥ 8分当01m <<时,0x m <≤或1x ≥; 10分 当1m =时,0x <; 12分 当1m >时,01x <≤或x m ≥. 14分17.(1)∵sin cos 3x x +=-1)sin()4343x x ππ+=-⇒+=- 2分∵,02x π⎛⎫∈-⎪⎝⎭,∴,444x πππ⎛⎫+∈- ⎪⎝⎭, 4分∴cos()43x π+==. 6分 (2)∵cos 2cos 21sin cos cos 2sin 4sin cos tan cot 4cos sin x x x x x x x x x x x x===++又∵cos 2sin 22sin cos 4449x x x x πππ⎡⎤⎛⎫⎛⎫⎛⎫=+=++=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦27sin 2cos 212cos 449x x x ππ⎡⎤⎛⎫⎛⎫=-+=-+=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦∴cos 2117sin 4tan cot 429981x x x x ⎛⎛⎫==⨯-⨯-= ⎪ +⎝⎭⎝⎭ 14分 18.(1)设3球中颜色都相同的事件为A当3x =时,()333338128C C P A C +== 5分 (2)设取出3球中颜色都不相同的事件为B ,则有()1113235x x C C C P B C += 依题意有11132351235x x C C C C += 化简得321258600x x x +-+= 即()()2214300x x x -+-=因x N ∈,所以2x = 14分 19.(1)∵()()''212fx x f =-⇒=-,∴过点()1,2的切线方程为:()221y x -=--,即240x y +-=. 4分(2)在坐标系中标出主要的关键点,图象要求光滑美观. 8分 (3)方法1:把问题转化为不等式243ax a x +>-对一切[]2,2x ∈-恒成立∵40x +>∴234x a x ->+对一切[]2,2x ∈-恒成立∵2313134488444x x x x x x -=-+=++-≥+++,当且仅当[]42,2x =∈-时取到等号,∴当且仅当4x =时,234x x -+的最小值为80<∵当2x =-时,23142x x -=+,∴23084x x -≤≤-+∴8a >- 14分方法2:∵函数()4g x ax a =+的图象恒过点()4,0-的直线,∴在[]2,2-上,只要直线在函数()h x 的图象的上方即可.①如果直线与二次函数()23f x x =-相切,思路1:则由2234430x ax a x ax a -=+⇒++-=,()24430a a ∆=--=解得8a =±(验证得8a =-此时,()(8(4)g x x =-+.思路2:()2'2,324a a f x x a x y =-=⇒=-=-+代入()4y a x =+得216120a a -+=,解得8a =±(验证得8a =-此时,()(8(4)g x x =-+.②如果直线过()h x 的左端点()2,1-,则()1(4)2g x x =+.∵182->,∴满足条件的实数8a >- 14分 20.(1)∵()()21212218n n n a n a n --+=++∴()()21212182n n n a n a n ---+=-即()1212121n n a an n n --=>+-∵1121a =+,∴21n a n ⎧⎫⎨⎬+⎩⎭是以1为首项,2为公差的等差数列 5分 (2)∵()1122121na n n n =+-⨯=-+ ∴241n a n =- 9分(3)∵()()211111141212122121n a n n n n n ⎛⎫===- ⎪--+-+⎝⎭∴()2311111111112235572121n n S n a a a n n ⎛⎫=+++=-+-+-≥ ⎪-+⎝⎭1112321n ⎛⎫=- ⎪+⎝⎭∵1112321n S n ⎛⎫=- ⎪+⎝⎭在[)2,+∞上单调递增, ∴当2n =时,即221115n S S a ≥==,另一方面111123216n S n ⎛⎫=-< ⎪+⎝⎭ 14分。

浙江省名校新高考研究联盟(Z20名校联盟)2021届高三第一次联考数学试题含答案

浙江省名校新高考研究联盟(Z20名校联盟)2021届高三第一次联考数学试题含答案

B.若 m / / , n / / ,则 m n
C.若 m , n ,则 m / /n
D.若 m , n ,则 m n
6.已知数列an 的前 n 项和为 Sn , a1 1 ,当 n 2 且 n N * 时,an , Sn , Sn 1成等比数列,则 a5
()
A. 1 5
Z20 名校联盟(浙江省名校新高考研究联盟)2021 届第一次联考 数学试题卷
考生须知: 1.本卷满分 150 分,考试时间 120 分钟; 2.答题前务必将自己的姓名,准考证号用黑色字迹的签字笔或钢笔分别填写在试题卷和答题纸规定的地方. 3.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范答题,在本试卷纸上答题一 律无效. 4.考试结束后,只需上交答题卷. 参考公式:
B. - 1 5
C. 1 20
D. - 1 20
7.函数
y
cos
x
|
sin x x2
|
在区间 [2
, 0)
(0,
2
]
上的图象可能是(

A.
B.
C.
D.
8.已知正实数 x , y , z 满足 x2 y2 z2 1,则 5 8xy 的最小值是( ) z
A.6
B.5
C.4
D.3
9.已知平面向量
a
(1)求角 A 的值; (2)求 b c 的取值范围.
19.如图,在三棱台 ABC ABC 中,平面 A ABB 平面 BBCC , AB BC ,四边形 A ABB 是等腰
梯形,且 AB 2 AB 2BB BC .
3
(1)证明: BC 平面 A ABB ;
(2)求直线 CC 与平面 ABC 所成角的正弦值.

2021届浙江省五校高三上学期第一次联考数学试题解析

2021届浙江省五校高三上学期第一次联考数学试题解析

2021届浙江省五校高三上学期第一次联考数学试题一、单选题1.已知集合{A x y ==,{}02B x x =<<,则()RA B =()A .1,2B .0,1C .0,D .(),2-∞答案:C先求定义域得集合A ,再根据补集与并集定义求结果. 解:{{}10(,1]A x y x x ===-≥=-∞所以()RA B ={}(1,)02(0,)x x +∞<<=+∞故选:C 点评:本题考查补集与并集运算、函数定义域,考查基本分析求解能力,属基础题. 2.“直线l 与平面α内无数条直线垂直”是“直线l 与平面α垂直”的() A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不必要也不充分条件答案:B根据充分必要条件的定义即可判断. 解:设命题p :直线l 与平面α内无数条直线垂直, 命题q :直线l 与平面α垂直, 则pq ,但q p ⇒,所以p 是q 的必要不充分条件.故选:B 点评:本题主要考查必要不充分条件的判断,涉及线面垂直的定义和性质,属于中档题.3.若x ,y 满足约束条件22111x y x y y -≤⎧⎪-≥-⎨⎪-≤≤⎩,则2z x y =-的最大值为()A .9B .8C .7D .6答案:C先作可行域,再根据目标函数表示直线,结合图象确定最大值取法,即得结果.解:142201y x x y y ==⎧⎧⇒⎨⎨--==⎩⎩ 先作可行域,如图,则直线2z x y =-过点(4,1)A 时z 取最大值,为7 故选:C点评:本题考查利用线性规划求最值,烤箱数形结合思想方法,属基础题. 4.已知()1,2a =,()1,7b =-,2c a b =+,则c 在a 方向上的投影为() A .35B .32C 32D .355答案:A由向量的坐标表示可得(3,3)c =-,利用数量积公式求向量夹角余弦值,进而可求c 在a 方向上的投影.解:由题意知:2(3,3)c a b =+=-, ∴10cos ,||||a c a c ab ⋅<>==-,故c 在a 方向上的投影:35||cos ,c a c <>=-, 故选:A 点评:本题考查了向量数量积的坐标表示,由向量线性关系求向量的坐标,利用向量数量积的坐标表示求向量的夹角,进而求向量的投影.5.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知()2sin tan 12cos C A C =-,2c b =,则cos B 的值为()A .23B .23C .34D .78答案:D先化切为弦,再根据两角和正弦公式以及正弦定理得2b a =,最后根据余弦定理求结果. 解:()()2sin tan 12cos 2sin cos sin 12cos C A C C A A C =-∴=- 2sin()sin 2sin sin 2C A A B A b a ∴+=∴=∴=2222222447cos 288a cb b b b B ac b +-+-=== 故选:D 点评:本题考查两角和正弦公式、正弦定理、余弦定理,考查基本分析求解能力,属基础题.6.函数()2x xe ef x x--=的图象是下列图中的() A . B .C .D .答案:C先确定函数奇偶性,舍去A,B ;再根据函数值确定选择项. 解:()()220,()x x x xe e e ef x x f x f x x x ----=∴≠-==-∴()2x x e e f x x --=为奇函数,舍去A,B ;因为当0x >时,()20x xe ef x x --=>,所以舍去D, 故选:C 点评:本题考查函数图象识别、奇函数判断,考查基本分析判断能力,属基础题. 7.已知数列{}n a 的前n 项的和为n S ,且()23n n S a n n N *=-∈,则() A .{}n a 为等比数列 B .{}n a 为摆动数列 C .1329n n a +=⨯- D .6236n n S n =⨯--答案:D利用已知条件求出数列{}n a 的通项公式,再求出{}n a 的前n 项的和为n S ,即可判断四个选项的正误. 解:因为23n n S a n =-①,当1n =时,1123a a =-,解得:13a =, 当2n ≥时,()11231n n S a n --=--②,①-②得:1223n n n a a a -=--,即123n n a a -=+,所以()1323n n a a -+=+,所以{}3n a +是以6为首项,2为首项的等比数列,所以1362n n a -+=⨯,所以1623n n a -=⨯-,所以{}n a 不是等比数列,{}n a 为递增数列,故A B 、不正确,()11263623612n n n S n n ⨯-=⨯-=⨯---,故选项C 不正确,选项D 正确.故选:D 点评:本题主要考查了利用数列的递推公式求通项公式,考查了构造法,考查了分组求和,属于中档题.8.已知25cos2cos αα+=,()4cos 25αβ+=,0,2πα⎛⎫∈ ⎪⎝⎭,3,22πβπ⎛⎫∈ ⎪⎝⎭,则cos β的值为() A .45-B .44125C .44125-D .45答案:B先根据二倍角余弦公式求cos α,解得cos2α,最后根据两角差余弦公式得结果. 解:2125cos2cos 10cos cos 30cos 2ααααα+=∴--=∴=-或35因为0,2πα⎛⎫∈ ⎪⎝⎭,所以3cos 5α=22443247sin ,sin 22,cos 2cos sin 5552525ααααα∴==⨯⨯==-=-,42ππα⎛⎫∴∈ ⎪⎝⎭()()43cos 2,2(2,3)sin 255αβαβππαβ+=+∈∴+=cos cos(22)cos(2)cos 2sin(2)sin 2βαβααβααβα∴=+-=+++4732444525525125=-⨯+⨯=故选:B 点评:本题考查二倍角余弦公式、两角差余弦公式,考查基本分析求解能力,属中档题.9.已知抛物线2:3C x y =,过点()3,4P m m R ⎛⎫-∈ ⎪⎝⎭作抛物线的切线PA 、PB ,切点分别为A 、B ,则A 、B 两点到x 轴距离之和的最小值为()A .3B .32C D 答案:B由题意得到切线PA 、PB 的方程,联立求得P 点坐标,结合已知()3,4P m m R ⎛⎫-∈ ⎪⎝⎭,即可的1294x x =-,设直线AB 为y kx b =+联立抛物线方程可求34b =,即可求A 、B两点到x 轴距离之和的最小值.设221212(,),(,)33x x A x B x ,由抛物线2:3C x y =知:23x y '=, ∴切线PA 、PB 分别为:21112()33x x y x x -=-,22222()33x x y x x -=-,联立PA 、PB 的方程,可得:1212(,)23x x x x P +,而()3,4P m m R ⎛⎫-∈ ⎪⎝⎭,∴1294x x =-,若设直线AB 为y kx b =+,联立抛物线方程得:2330x kx b --=, ∴12934x x b =-=-,即34b =,而123x x k +=, ∴2121233()322y y k x x k +=++=+,故当0k =时12y y +有最小值32,故选:B 点评:本题考查了抛物线,利用准线上的动点与抛物线的切线的关系求得切点横坐标的数量关系,由切点到横轴的距离为切点纵坐标之和,结合已知方程所得函数式求最值. 10.已知函数()()11f x x a x a R x a x=++-+∈-,()()()20g x p f x q pq =->⎡⎤⎣⎦,给出下列四个命题:①函数()f x 图象关于点()0,0对称;②对于任意a R ∈,存在实数m ,使得函数()f x m +为偶函数; ③对于任意a R ∈,函数()f x 存在最小值;④当1a =时,关于x 的方程()0g x =的解集可能为{}3,1,1,2--, 其中正确命题为() A .②③ B .②④C .②③④D .①③④答案:A举例说明①不成立;根据偶函数定义证明②成立;根据绝对值定义说明③成立;举例说明④不成立.当0a ≠时,f a 没有意义,即不满足()()0f a f a +-=,故①错误;对于任意a R ∈,存在实数2am =,()()h x f x m =+=112222a a x x a a x x+++-++-此时函数定义域为{|}2ax x ≠±,且1111()2222()2222a a a a x x x x h x a a a a x x x x x h -+++++=-++++=-+-+=+-即函数()f x m +为偶函数;故②正确; 对于任意a R ∈,函数()1111||||||||f x x a x x a x x a x x a x =++-+=++-+-- 当0a =时,()12(||)24||f x x x =+≥⨯(当且仅当||1x =时取等号),此时函数()f x 存在最小值;当0a >时,()11,11,011,0x x a x a x x a f x a x a x a x x x a x x x a ⎧++-+>⎪-⎪⎪=++<<⎨-⎪⎪---+-<⎪-⎩当0x a <<时,()1111()1()(2)x a x a x a f x a a a x a x x a x a a x a x+--=++=++=+++---14(2a a a a ≥++=+,当且仅当2a x =时取等号,此时当2a x =时,()f x 存在最小值()2af 当x a >时,()()()2233111111,2,20,()22()f x x x a f x f x x x a x x a x x a '''=++-+=--=++>--- 因此()'f x 在(,)a +∞上单调递增又()22111240,1210,12(1)()2f a f a a a ⎛⎫''+=--<+=--> ⎪+⎝⎭+ 因此存在唯一0(,)x a ∈+∞,使得0()0f x '=即当0a x x <<时,()0f x '<;当0x x >时,()0f x '>; 因此当0x x =时,()f x 存在最小值0()f x综上,当0,x x a >≠时,()f x 存在最小值0min{(),()}2a f x f 因为()()f x f a x =-,所以()f x 关于2ax =对称,从而函数()f x 必存在最小值,即③正确;当1a =时,()1f 没有意义,即关于x 的方程()0g x =的解集不可能为{}3,1,1,2--,故④错误; 故选:A 点评:本题考查函数奇偶性、最值以及函数与方程,考查综合分析判断能力,属中档题. 二、双空题 11.不等式231133xx x -+⎛⎫> ⎪⎝⎭的解集是___________;不等式()24log 2log x x -<的解集是___________.答案:(,1)(1,)-∞⋃+∞(1,2)利用指数函数、对数函数的单调性及其性质求不等式解集即可. 解: 231133xx x -+⎛⎫> ⎪⎝⎭有23133x x x -+->,所以231x x x -+>-,即2(1)0x ->,解得1x ≠; ()24log 2log x x -<有()1222log 2log x x -<,所以()22{020x x x x >->->,解得12x <<;故答案为:(,1)(1,)-∞⋃+∞;(1,2); 点评:本题考查了利用函数的单调性,结合一元二次不等式的解法解不等式,属于基础题.12.函数()()cos 06f x x πωω⎛⎫=+> ⎪⎝⎭在区间[],ππ-的图象如下图,则()f x 的最小正周期为___________;()fπ=___________.答案:43π12将4,09π⎛⎫-⎪⎝⎭代入解析式,即可得42962k πππωπ-+=-+,再结合22T πππω<=<,即可求得ω的值,从而求出()f x 的解析式,即可得周期和()f π的值.解: 由图知4,09π⎛⎫- ⎪⎝⎭在()cos 6⎛⎫=+ ⎪⎝⎭ωf x x π图象上,且为图象上升时与x 轴的交点,所以42962k πππωπ-+=-+,()k Z ∈,解得:()392kk Z ω-=∈, 因为2T ππ<<,所以22πππω<<,所以12ω<<, 令0k =,得32ω=,所以224332T πππω===,所以()3cos 26f x x π⎛⎫=+ ⎪⎝⎭,()31cos sin 2662f ππππ⎛⎫=+== ⎪⎝⎭,故答案为:43π;12 点评:本题主要考查了利用三角函数图象求解析式,考查了周期公式和诱导公式,属于中档题.13.已知双曲线:C ()222210,0x y a b a b -=>>的左、右焦点分别为1F 、2F ,离心率为3P 为双曲线上一点,12120F PF ∠=,则双曲线的渐近线方程为___________;若双曲线C 的实轴长为4,则12F PF △的面积为___________. 答案:2y x=833双曲线的离心率为213c b e a a ⎛⎫==+= ⎪⎝⎭2b a =P 在右支上,1PF m =,2PF n =,由双曲线的定义可知4n m -=,再利用余弦定理列方程,即可求出323mn =,再利用三角形面积公式即可以求面积. 解:双曲线的离心率为c e a ===b a =所以双曲线的渐近线方程为:y =,由题意知:2a =,所以c =,b =,设点P 在右支上,1PF m =,2PF n =,则4n m -=,在12F PF △中,由余弦定理得:()222121222cos120c PF PF PF PF =+-, 即222214822m n mn m n mn ⎛⎫=+-⨯-=++ ⎪⎝⎭①, 将4n m -=两边同时平方得:22216m n mn +-=②, 由①②得:332mn =,所以323mn =,所以12F PF △的面积为1132sin1202232mn ⨯=⨯⨯=故答案为:y = 点评:本题主要考查了双曲线的定义,双曲线的几何性质,离心率、渐近线,考查求焦点三角形的面积,涉及余弦定理和三角形面积公式,属于中档题. 三、填空题14.已知函数()1324,13,1x e x f x x x x -⎧-<=⎨-≥⎩(其中e 是自然对数的底数),则()()2f f =___________;若()y f x =与9y x b =+的图象有两个不同的公共点,则实数b 的取值范围是___________. 答案:54e -(27,12](11,)---+∞根据自变量范围代入对应解析式,计算即得第一空;先转化为函数()13294,,9131x e x x h x x x x x -⎧--<=⎨-≥-⎩与y b =交点,再结合导数确定函数()h x 单调性,最后根据数形结合确定实数b 的取值范围. 解:()()()3252232(4)4f f f f e =-⨯=-=-;()y f x =与9y x b =+的图象有两个不同的公共点,即函数()13294,,9131x e x x h x x x x x -⎧--<=⎨-≥-⎩与y b =的图象有两个不同的公共点, 当1x <时,()194xh x ex -=--单调递减;当1≥x 时,()()322993(33(6)31)h x x x h x x x x x x -∴-=-'=-+=-,即()h x 在[1,3)上单调递减,在[3,)+∞上单调递增;画出示意图,由图可知当(27,12](11,)b ∈---+∞时,()y f x =与9y x b =+的图象有两个不同的公共点,点评:本题考查求分段函数值、根据函数交点求参数,考查数形结合思想方法,属中档题. 15.某个几何体的三视图如图所示,则这个几何体的体积为___________.答案:43先还原三视图,再根据锥体体积公式求结果. 解:先还原三视图,几何体为三棱锥11A BB D -,112A BB D d -=,因此体积为1142222323⨯⨯⨯⨯= 故答案为:43点评:本题考查三视图、锥体体积公式,考查空间想象能力,属基础题.16.已知a ,b ,c 是非零向量,23a b -=,()()2c a c b -⋅-=-,λ为任意实数,当a b -与a 的夹角为3π时,c a λ-的最小值是___________. 答案:12设PA a =,PB b =,PC c =,(),C x y ,利用23a b -=可以设()3,0A -)3,0B 利用()()2c a c b -⋅-=-即可求出点C 的轨迹为单位圆,c a PC AP λλ-==+,c aλ-的最小值是点C 到直线PA 的距离,从而求得答案. 解:设PA a =,PB b =,PC c =,(),C x y 因为23a b PA PB AB -=-==,()3,0A -,)3,0B,因为a b -与a 的夹角为3π,所以BA 与PA 夹角为3π,所以3BAP π∠=, 所以tan603OP OA ==,所以()3,0P-,因为()()·2c a c b --=-得:所()()223,3,32AC BC x y x y x y ⋅=⋅=+-=-,所以221x y +=,所以点C 的轨迹为单位圆,c a PC PA PC AP λλλ-=-=+所以c a λ-的最小值是点C 到直线PA 的距离. 过点O 作OH PA ⊥于点H ,交单位圆于点G , 所以22AOPOA OP AP OHS==, 3933OH +⨯=,解得:32OH =, 所以min31122c aGH OH OG λ-==-=-=, 故答案为:12点评:本题主要考查了向量模的几何意义,运用坐标法可以使向量问题更简单,属于难题.17.若a ,b 为实数,且13a ≤≤,24b ≤≤,则324a bab +的取值范围是___________.答案:335[,]412构造函数224()a f b b ab=+,根据其在24b ≤≤单调性,得到两边含有a 的不等式组,结合a 的范围、基本不等式,应用导数研究22()4a g a a=+的最值,即可求324a bab +的范围. 解:设2222344124()()a f b a b ab b a a =+=+-,故24b ≤≤上()f b 单调减,∴2212()164a a f b a a +≤≤+,而2211131616224a a a a a +=++≥=, 当且仅当2a =时等号成立;令22()4a g a a =+,则324()2a g a a -'=,即()g a 在上单调减,在上单调增, 而9(1)4g =,35(3)12g =, 所以max 35()(3)12g a g ==, 综上,有324335[,]412a b ab +∈ 故答案为:335[,]412.点评:本题考查了构造函数法求代数式的范围,利用基本不等式、导数研究函数最值,结合已知条件求目标式的范围. 四、解答题18.已知()sin (sin )f x x x x =,ABC 中,角A ,B ,C 所对的边为a ,b ,c .(1)求()f x 的单调递增区间; (2)若()32f A =,2a =,求ABC 周长的取值范围.答案:(1)2[,]63k k ππππ++,k Z ∈;(2)(4,23+ (1)利用正余弦的倍角公式化简函数式得()1sin(2)26f x x π=-+,结合正弦型函数的单调性求()f x 的单调递增区间即可;(2)由已知条件求A ,由余弦定理、基本不等式、三角形三边关系有23b c <+≤,进而可求ABC 周长的范围. 解:(1)()2111sin cos (cos22)sin(2)2226f x x x x x x x π==-=-+, ∴()f x 在3222262k x k πππππ+≤+≤+上单调递增, ∴2[,]63x k k ππππ∈++,k Z ∈ (2)()13sin(2)262f A A π=-+=,得32262A k k Z πππ+=+∈,,即23A k ππ=+,0A π<<,则23A π=, 而2a =,由余弦定理知:2222cos 4a b c bc A =+-=,有22()()444b c b c bc ++=+≤+,所以03b c <+≤b c =时等号成立,而在ABC 中2b c +>, ∵周长2l a b c b c =++=++,∴423l <≤+ 点评:本题考查了应用三角恒等变换化简三角函数求其单调区间,利用余弦定理、基本不等式以及三角形三边关系求周长范围.19.已知四棱锥P ABCD -的底面是矩形,PA ⊥面ABCD ,2PA AD ==,AB =(1)作AM PB ⊥于M ,AN PC ⊥于N ,求证:PC ⊥平面AMN ; (2)求二面角D PC A --的正切值. 答案:(1)证明见解析;(2)2;(1)由线线垂直证明线面垂直即可;(2)构建空间直角坐标系,利用空间向量求二面角正余弦值,进而求得其正切值. 解:(1)四棱锥P ABCD -的底面是矩形,PA ⊥面ABCD 有:PA DA ⊥,AB DA ⊥, 由AB PA A ⋂=,即DA ⊥面PAB ,又//DA CB∴CB ⊥面PAB ,又AM ⊂面PAB ,则CB AM ⊥,又AM PB ⊥且CB PB B =,∴AM ⊥面PBC ,而PC ⊂面PBC ,有AM PC ⊥,又AN PC ⊥且AM AN A =,∴PC ⊥面AMN .(2)由题意,构建以A 为原点,以,,AD AB AP 为,,x y z 轴正方向的空间直角坐标系,则有(0,0,0)A ,(0,0,2)P ,(2,0,0)D ,(2,22,0)C ,∴(2,0,2)PD =-,(2,2,2)PC =-,(0,0,2)AP =,(2,2,0)AC =, 令(,,)m x y z =是面PDC 的一个法向量,则:220220x z x z -=⎧⎪⎨+-=⎪⎩,若1z =,有(1,0,1)m =, 令(,,)n x y z =是面PAC 的一个法向量,则:2020z x =⎧⎪⎨+=⎪⎩,若1y =,有(2,1,0)n =-, 3cos ,||||||m n m n mn ⋅<>==,由图二面角D PC A--∴二面角D PC A --. 点评:本题考查了线面垂直的判定证垂直,通过空间向量求二面角的三角函数值,属于中档题. 20.已知数列{}n a 与{}n b 满足()1131nn n n n b a b a +++=-+,2,211,2n n k b n k ∈+⎧=⎨∈⎩且k ∈N ,*n N ∈,且12a =.(1)设2+121n n n c a a -=-,*n N ∈,求1c ,并证明:数列{}n c 是等比数列; (2)设n S 为{}n a 的前n 项和,求2n S . 答案:(1)112c =,证明见解析;(2)221243332nn S n +-+=; (1)根据已知条件即递推关系可求1c ,且2143n n c -=⋅即可证{}n c 是等比数列;(2)结合(1)奇数项之差为等比数列,同理可得偶数项之差也为等比数列,进而可得2121312n n a --+=、22134nn a -=,可知数列212{}n n a a -+前n 项和即为2n S ; 解:(1)由题意知:()()()()()112223334212122221231,231,231,...,231,23 1.n n n n n n a a a a a a a a a a --++=-++=-++=-++=-++=-+∵12a =,有22a =-,314a =, ∴13112c a a =-=,由221212+121(3)(3)43n n n n n n c a a ---=-=---=⋅,*n N ∈, ∴数列{}n c 是首项为12,公比为9的等比数列. (2)由(1)知:2122222()(3)(3)n n n n a a ++-=---,∴令22222(3)nn n n d a a +=-=-⋅-,即{}n d 是首项为18-,公比为9的等比数列,∴11212113...(91)2n n n c c c a a ---+++=-=-,即2121312n n a --+=,1121229...(19)4n n n d d d a a --+++=-=-,即22134n n a -=,∴21212334n n n a a ---+=,即数列212{}n n a a -+前n 项和即为2n S ,∴122312433(981...9)41232n n nn n S +-+=-+++=. 点评:本题考查了数列的递推关系,根据递推关系求新数列的首项,且证明其为等比数列,由递推式将奇偶项分离,分别到它们的通项,将相邻的奇数项与偶数项的和作为新数列的项求原数列的前n 项和.21.已知椭圆()2222:10x y C a b a b +=>>的离心率为2,短轴长为(1)求椭圆C 的标准方程;(2)设直线:l y kx m =+与椭圆C 交于A ,B 两个不同的点,M 为AB 中点,()1,0N -,当△AOB (点O 为坐标原点)的面积S 最大时,求MN 的取值范围.答案:(1)22142x y +=;(2)1). (1)由已知条件求出a 、b 的值,代入椭圆方程即可.(2)()11,A x y ()22,B x y 将直线与椭圆方程联立,写出判别式>0∆,以及122412km x x k -+=+,21222412m x x k-=+,再利用点到直线的距离求三角形的高,利用弦长公式求AB ,再利用面积公式求AOBS,利用基本不等式即可求得取得最值的条件是2221m k =+,再根据中点坐标公式求出21,k M m m -⎛⎫⎪⎝⎭,由两点间距离公式即可将MN 表示出来,从而求得取值范围.解:由题意知:2c e a ==,2b =222a b c =+,解得:b =2a =,c =所以椭圆C 的标准方程为22142x y +=;(2)设()11,A x y ()22,B x y ,将:l y kx m =+代入椭圆的方程得:()2224x kx m ++=,即()222124240kxmkx m +++-=,()()222216412240k m k m ∆=-+->,即22420k m -+>, 122412km x x k -+=+,21222412m x x k -=+,12AB x =-==221212k k==++, 坐标原点O 到直线:l y kxm =+的距离为:d =1122AOBSd AB =⨯⨯===2222224242122122k m m k k k -+++≤⨯=⨯=++ 当且仅当22242k m m -+=,即2221m k =+时等号成立,此时122244412km km kx x k m m---+===+,()2212124222k m y y k x x m m m-++=++==,因为M 为AB 中点,所以21,k M m m -⎛⎫⎪⎝⎭, 所以()222222222211m k m k k MN m m m -+--⎛⎫⎛⎫=++= ⎪ ⎪⎝⎭⎝⎭2222422(1)k k km m m =-+=-,1MN ∴=-,由2221m k =+,得22212()12()k k m m m +=>,即22k m -<<,11122k m --<-<-,得11122k m -<-<+,11MN <<,即11)MN ∈.点评:本题主要考查了求椭圆的标准方程,以及直线与椭圆相交所得原点三角形面积取得最大值的条件,涉及弦长公式,两点间距离公式,基本不等式求最值,属于难题. 22.已知函数()sin sin 2f x a x x =+,a R ∈.(1)若2a =,求函数()f x 在()0,π上的单调区间; (2)若1a =,不等式()cos f x bx x ≥对任意20,3x π⎛⎫∈ ⎪⎝⎭恒成立,求满足条件的最大整数b .答案:(1)()f x 在(0,)3π上单调递增,在()3ππ,上单调递减;(2)3;(1)利用导数研究函数的单调区间即可; (2)根据分析()sin sin 2f x x x =+知在20,3π⎛⎫⎪⎝⎭上()0f x >恒成立,分类讨论参数 b ,当0b =时不等式恒成立,0b <时,22()0()33h f >=ππ不能恒成立,0b >时,2,23x ππ⎛⎫∈ ⎪⎝⎭上()0()f x h x >>恒成立,在(0,)2x π∈也要恒成立则必须要()tan 2sin ,(0,)2g x x x bx x π=+-∈,有()(0)0g x g ≥=,结合基本不等式即可求b 的范围,进而得到最大整数值.解:(1)当2a =时,()2sin sin 2f x x x =+, 2()2cos 2cos22(2cos cos 1)f x x x x x '=+=+-2(2cos 1)(cos 1)x x =-+,而()0,x π∈时,1cos 1x -<<, ∴1cos 12x <<时,()0,()f x f x '>在(0,)3π上单调递增, 11cos 2x -<<时,()0,()f x f x '<在()3ππ,上单调递减; 综上,()f x 在(0,)3π上单调递增,在()3ππ,上单调递减; (2)1a =,()sin sin 2f x x x =+,令()cos h x bx x =由2()cos 2cos24cos cos 2f x x x x x '=+=+-知: 20,3x π⎛⎫∈ ⎪⎝⎭,0cos x =时0()0f x '=,而12<<04(,)3x ππ∈, ∴0(,)43x ∃∈ππ,使()f x 在0(0,)x 上单调增, 在02(,)3x π上单调减;而2(0)()03f f π==, ∴()f x 在20,3π⎛⎫ ⎪⎝⎭上()0f x >恒成立. ∴当0b =时,20,3x π⎛⎫∀∈ ⎪⎝⎭有()0()f x h x >=恒成立.当0b ≠时,有恒有(0)()02h h ==π, 令()cos t x x x =即()cos sin t x x x x '=-, ∴2,23x ππ⎛⎫∈ ⎪⎝⎭上()0t x '<, 而在(0,)2x π∈上,令()()μx t x =',()2sin cos 0x x x x '=--<μ,即()t x '单调减,又1()(1)0,()(1042432t t πππ''=->=<, 所以0(,)43x ππ'∃∈使0()0t x ''=,即0(0,)x '上()0t x '>,()t x 单调增, 0(,)2x π'上()0t x '<,()t x 单调减, ∴综上,0(,)43x ππ'∃∈,使()t x 在0(0,)x '上单调增,02(,)3x π'上单调减; 又()()h x b t x =⋅,1、0b <时,()h x 在0(0,)x '上单调减,02(,)3x π'上单调增, 且22()0()33h f >=ππ,故此时不能保证()()f x h x ≥恒成立; 2、0b >时,2,23x ππ⎛⎫∈ ⎪⎝⎭上()0()f x h x >>恒成立; 在(0,)2x π∈上要使()()f x h x ≥恒成立, 令()tan 2sin ,(0,)2g x x x bx x π=+-∈,有()(0)0g x g ≥=恒成立,所以只要()g x 单调递增即可,有21()2cos 0cos g x x b x '=+-≥成立,即22112cos cos cos 3cos cos x x x b x x +=++>=≥综上,知:03b ≤≤时不等式()cos f x bx x ≥对任意20,3x π⎛⎫∈ ⎪⎝⎭恒成立, 故max 3b =.点评: 本题考查了利用导数研究函数的性质,由导数确定函数的单调区间,根据函数不等式恒成立求参数最值.。

《精编》浙江省新高考研究联盟高三数学第一次考联考 文 新人教A版.doc

《精编》浙江省新高考研究联盟高三数学第一次考联考 文 新人教A版.doc

浙江省新高考研究联盟2021届第一次联考数学(文科)试题卷(2021.12.16)注意:本卷共22题,总分值150分,考试时间120分钟.第I 卷〔选择题 共50分〕一、选择题:本大题共10小题,每题5分,共50分。

在每题给出的四个选项中,只有一项为哪一项符合题目要求的。

1. 设集合{|2}M x x =<,集合{|01}N x x =<<,那么以下关系中正确的选项是 〔 〕 A .MN R = B .{}01MN x x =<< C .N M ∈ D .MN φ=2.复数122,3z i z i =+=-,其中i 是虚数单位,那么复数12z z 的实部与虚部之和为 A .0 B .12C .1D .2 〔 〕 3.设p :1-<x ,q ⌝:022>--x x ,那么以下命题为真的是 〔 〕A .假设q 那么p ⌝B .假设q ⌝那么p C .假设p 那么q D .假设p ⌝那么q 4.阅读右面的程序框图,那么输出的S = 〔 〕 A .14 B .20 C .30 D .555.数列{}n a 满足122,1,a a ==并且1111(2)n n n n n n n n a a a a n a a a a -+-+--=≥⋅⋅,那么数列{}n a 的第100项为〔 〕A .10012 B .5012 C .1100D .1506.某个几何体的三视图如下,根据图中标出的尺寸〔单位:cm 〕,可得这个几何体的体积是 〔 〕A .383cmB .343cmC .323cmD .313cm7.双曲线)0,0(12222>>=-b a by a x 的离心率为62,那么双曲线的渐近线方程为〔 〕A .2y x =±B .x y 2±=C .x y 22±= D .12y x =± 8.定义式子运算为12142334a a a a a a a a =-将函数sin 3()cos 1xf x x =的图像向左平移(0)n n >个单位,所得图像对应的函数为偶函数,那么n 的最小值为 〔 〕 A .6πB .3πC .56πD .23π9.点P 为ABC ∆所在平面上的一点,且13AP AB t AC =+,其中t 为实数,假设点P 落在ABC ∆的内部,那么t 的取值范围是 〔 〕A .104t <<B .103t <<C .102t <<D .203t <<10.()f x 是偶函数,且()f x 在[)+∞,0上是增函数,如果(1)(2)f ax f x +≤-在1[,1]2x ∈上恒成立,那么实数a 的取值范围是 〔 〕 A .[2,1]- B .[5,0]-C .[5,1]-D .[2,0]-第II 卷〔非选择题 共100分〕二、填空题:本大题共7小题,每题4分,共28分。

浙江省2021届高三数学第一次联考试题(含解析)

浙江省2021届高三数学第一次联考试题(含解析)

浙江省2021届高三数学第一次联考试题(含解析)一、选择题1.已知集合{|(3)(1)0}A x x x =-+>,{1|1}B xx =->‖,则()R C A B ⋂=( ) A. [1,0)(2,3]-B. (2,3]C. (,0)(2,)-∞+∞D. (1,0)(2,3)-【答案】A 【解析】 【分析】解一元二次不等式和绝对值不等式,化简集合A , B 利用集合的交、补运算求得结果.【详解】因为集合{|(3)(1)0}A x x x =-+>,{1|1}B xx =->‖, 所以{|3A x x =>或1}x <-,{|2B x x =>或0}x <, 所以{|13}R C A x x =-≤≤,所以()R C A B ⋂={|23x x <≤或10}x -≤<,故选A.【点睛】本题考查一元二次不等式、绝对值不等式的解法,考查集合的交、补运算.2.已知双曲线22:193x y C -=,则C 的离心率为( )A.2C.3D. 2【答案】C 【解析】 【分析】由双曲线的方程得229,3a b ==,又根据222c a b =+,可得,a c 的值再代入离心率公式.【详解】由双曲线的方程得229,3a b ==,又根据2229312c a b =+=+=,解得:3,a c ==3c e a ==,故选C.【点睛】本题考查离心率求法,考查基本运算能力.3.已知,a b 是不同的直线,αβ,是不同的平面,若a α⊥,b β⊥,//a β,则下列命题中正确的是( ) A. b α⊥ B. //b αC. αβ⊥D. //αβ【答案】C 【解析】 【分析】构造长方体中的线、面与直线,,,a b αβ相对应,从而直观地发现αβ⊥成立,其它情况均不成立.【详解】如图在长方体1111ABCD A B C D -中,令平面α为底面ABCD ,平面β为平面11BCC B ,直线a 为1AA若直线AB 为直线b ,此时b α⊂,且αβ⊥,故排除A,B,D ;因为a α⊥,//a β,所以β内存在与a 平行的直线,且该直线也垂直α,由面面垂直的判定定理得:αβ⊥,故选C.【点睛】本题考查空间中线、面位置关系,考查空间想象能力,求解时要排除某个答案必需能举出反例加以说明.4.已知实数,x y满足312(1)xx yy x≤⎧⎪+≥⎨⎪≤-⎩,则2z x y=+的最大值为()A. 11B. 10C. 6D. 4【答案】B【解析】【分析】画出约束条件所表示的可行域,根据目标函数2z x y=+的几何意义,当直线2y x z=-+在y 轴上的截距达到最大时,z取得最大值,观察可行域,确定最优解的点坐标,代入目标函数求得最值.【详解】画出约束条件312(1)xx yy x≤⎧⎪+≥⎨⎪≤-⎩所表示的可行域,如图所示,根据目标函数2z x y=+的几何意义,当直线2y x z=-+在y轴上的截距达到最大时,z取得最大值,当直线过点(3,4)A时,其截距最大,所以max23410z=⨯+=,故选B.【点睛】本题考查线性规划,利用目标函数的几何意义,当直线2y x z=-+在y轴上的截距达到最大时,z取得最大值,考查数形结合思想的应用.5.已知圆C的方程为22(3)1x y-+=,若y轴上存在一点A,使得以A为圆心、半径为3的圆与圆C有公共点,则A的纵坐标可以是()A. 1B. –3C. 5D. -7【答案】A 【解析】 【分析】设0(0,)A y ,以A 为圆心、半径为3的圆与圆C 有公共点,可得圆心距大于半径差的绝对值,同时小于半径之和,从而得到0y <<【详解】设0(0,)A y,两圆的圆心距d =因为以A 为圆心、半径为3的圆与圆C 有公共点,所以313124d -<<+⇒<<,解得0y <<B 、C 、D 不合题意,故选A.【点睛】本题考查两圆相交的位置关系,利用代数法列出两圆相交的不等式,解不等式求得圆心纵坐标的范围,从而得到圆心纵坐标的可能值,考查用代数方法解决几何问题.6.已知函数221,0()log ,0x x f x x x ⎧+-≤=⎨>⎩,若()1f a ≤,则实数a 的取值范围是( ) A. (4][2,)-∞-+∞ B. [1,2]-C. [4,0)(0,2]-D. [4,2]-【答案】D 【解析】 【分析】不等式()1f a ≤等价于0,211,a a ≤⎧⎨+-≤⎩或20,log 1,a a >⎧⎨≤⎩分别解不等式组后,取并集可求得a 的取值范围.【详解】()1f a ≤⇔0,211,a a ≤⎧⎨+-≤⎩或20,log 1,a a >⎧⎨≤⎩,解得:40a -≤≤或02a <≤,即[4,2]a ∈-,故选D.【点睛】本题考查与分段函数有关的不等式,会对a 进行分类讨论,使()f a 取不同的解析式,从而将不等式转化为解绝对值不等式和对数不等式.7.已知函数()ln(||)cos f x x x =⋅,以下哪个是()f x 的图象( )A. B.C. D.【答案】B 【解析】 【分析】由2x π=时的函数值,排除C,D ;由2x π=的函数值和322x ππ<<函数值的正负可排除A. 【详解】当2x π=时,(2)ln 20f ππ=>排除C,D , 当2x π=时,()02f π=,当322x ππ<<时,ln 0,cos 0x x ><, 所以()0f x <排除A, 故选B.【点睛】本题考查通过研究函数解析式,选择函数对应的解析式,注意利用特殊值进行检验,考查数形结合思想的运用.8.在矩形ABCD 中,4AB =,3AD =,E 为边AD 上的一点,1DE =,现将ABE ∆沿直线BE 折成A BE ∆',使得点A '在平面BCDE 上的射影在四边形BCDE 内(不含边界),设二面角A BE C '--的大小为θ,直线A B ','A C 与平面BCDE 所成的角分别为,αβ,则( )A. βαθ<<B. βθα<<C. αθβ<<D. αβθ<<【答案】D 【解析】 【分析】由折叠前后图象的对比得点A '在面BCDE 内的射影'O 在线段OF 上,利用二面角、线面有的定义,求出tan ,tan ,tan αβθ的表达式,再进行大小比较.【详解】如图所示,在矩形ABCD 中,过A 作AF BE ⊥交于点O ,将ABE ∆沿直线BE 折成A BE ∆',则点A '在面BCDE 内的射影'O 在线段OF 上,设A '到平面BCDE 上的距离为h ,则''h AO =,由二面角、线面角的定义得:'tan h O O θ=,'tan h O B α=,'tan hO Cβ=,显然'''',O O O B O O O C <<,所以tan θ最大,所以θ最大, 当'O 与O 重合时,max (tan )h OB α=,min (tan )h OCβ=, 因为h OB <hOC,所以max (tan )α<min (tan )β,则tan tan αβ<,所以αβ<, 所以αβθ<<,故选D.【点睛】本题以折叠问题为背景,考查二面角、线面角大小比较,本质考查角的定义和正切函数的定义,考查空间想象能力和运算求解能力.9.已知函数2()(,R)f x x ax b a b =++∈有两个零点,则“20a b -≤+≤”是“函数()f x 至少有一个零点属于区间[0]2,”的一个( )条件 A. 充分不必要 B. 必要不充分 C. 充分必要 D. 既不充分也不必要【答案】A 【解析】 【分析】函数2()(,R)f x x ax b a b =++∈有两个零点,所以判别式240a b ∆=->,再从函数在[0]2,上的零点个数得出相应条件,从而解出+a b 的范围.【详解】函数2()(,R)f x x ax b a b =++∈有两个零点,所以判别式240a b ∆=->,函数()f x 至少有一个零点属于区间[0]2,分为两种情况: (1)函数()f x 在区间[0]2,上只有一个零点0,(0)(2)0,f f ∆>⎧⇔⎨⋅≤⎩2222(0)(2)(42)2424f f b a b b ab b b ab a b a ⋅=++=++=+++- 22()40a b b a =++-≤,即22()4a b a b +≤-又因为240a b ->,所以,a b ≤+≤(2)函数()f x 在[0]2,上有2个零点0,(0)0,(2)420,02,2f b f a b a ∆>⎧⎪=≥⎪⎪⇔⎨=++≥⎪⎪<-<⎪⎩解得:20a b -≤+≤; 综上所述“函数()f x 至少有一个零点属于区间[0]2,”⇔20a b -≤+≤或a b ≤+≤所以20a b -≤+≤⇒20a b -≤+≤或a b ≤+≤ 而后面推不出前面(前面是后面的子集),所以“20a b -≤+≤”是“函数()f x 至少有一个零点属于区间[0]2,”的充分不必要条件,故选A.【点睛】本题考查二次函数的性质、简易逻辑的判定方法,考查推理能力与计算能力,属于基础题.10.已知数列{}n a 满足:1102a <<,()1ln 2n n n a a a +=+-.则下列说法正确的是( ) A. 2019102a << B. 2019112a <<C. 2019312a <<D. 2019322a <<【答案】B 【解析】 【分析】考察函数()ln(2)(02)f x x x x =+-<<,则'11()1022xf x x x-=-=>--先根据单调性可得1n a <,再利用单调性可得1231012n a a a a <<<<<<<<.【详解】考察函数()ln(2)(02)f x x x x =+-<<,由'11()1022xf x x x-=-=>--可得()f x ()0,1单调递增,由'()0f x <可得()f x 在()1,2单调递减且()()11f x f ≤=,可得1n a <,数列{}n a 为单调递增数列, 如图所示:且1(0)ln 2ln 4ln 2f e ==>=,211()(0)2a f a f =>>,图象可得1231012n a a a a <<<<<<<<,所以2019112a <<,故选B. 【点睛】本题考查数列通项的取值范围,由于数列是离散的函数,所以从函数的角度来研究数列问题,能使解题思路更简洁,更容易看出问题的本质,考查数形结合思想和函数思想.二、填空题11.复数2(1)1i z i-=+(i 为虚数单位),则z 的虚部为_____,||z =__________.【答案】 (1). -1 (2). 2 【解析】 【分析】复数z 进行四则运算化简得1i z =--,利用复数虚部概念及模的定义得虚部为1-,模为2.【详解】因为2(1)2(1)11(1)(1)i i i z i i i i ---===--++-,所以z 的虚部为1-,22||(1)12z =-+=,故填:1-;2.【点睛】本题考查复数的四则运算及虚部、模的概念,考查基本运算能力.12.某几何体的三视图为如图所示的三个正方形(单位:cm ),则该几何体的体积为_____3cm ,表面积为____2cm .【答案】 (1). 233(2). 23 【解析】 【分析】判断几何体的形状,利用三视图的数据求解几何体的体积与表面积. 【详解】由题意可知几何体为正方体去掉一个三棱锥的多面体,如图所示:正方体的棱长为2,去掉的三棱锥的底面是等腰直角三角形,直角边长为1,棱锥的高为2, 所以多面体的体积为:1123222112323⨯⨯-⨯⨯⨯⨯=3cm , 表面积为:2212116222(5)()11212232222⨯⨯+⨯⨯--⨯⨯-⨯⨯⨯=2cm【点睛】本题考查几何体的三视图的应用,几何体的体积与表面积的求法,考查空间想象能力和运算求解能力.13.若7280128(2)(21)x x a a x a x a x +-=++++,则0a =______,2a =_____.【答案】 (1). –2 (2). –154 【解析】 【分析】令0x =得:02a =-,求出两种情况下得到2x 项的系数,再相加得到答案. 【详解】令0x =得:02a =-,展开式中含2x 项为:(1)当(2)x +出x ,7(21)x -出含x 项,即1617(2)(1)T x C x =⋅⋅⋅-; (2)当(2)x +出2,7(21)x -出含2x 项,即225272(2)(1)T C x =⋅⋅⋅-; 所以2a =1277224(1)154C C ⋅+⋅⋅⋅-=-,故填:2-;154-.【点睛】本题考查二项式定理展开式中特定项的系数,考查逻辑推理和运算求解,注意利用二项式定理展开式中,项的生成原理进行求解.14.在ABC ∆中,90ACB ∠=︒,点,D E 分别在线段,BC AB 上,36AC BC BD ===,60EDC ∠=︒,则BE =________,cos CED ∠=________.【答案】 (1). 326+ (2). 2 【解析】 【分析】在BDE ∆中利用正弦定理直接求出BE ,然后在CEB ∆中用余弦定理求出CE ,再用余弦定理求出cos CEB ∠,进一步得到cos CED ∠的值.【详解】如图ABC ∆中,因为60EDC ∠=︒,所以120EDB ∠=︒, 所以sin sin BE BD EDB BED =∠∠,即2sin120sin15BE =,解得:33326sin152321BE ===+⋅-⋅在CEB ∆中,由余弦定理,可得:2222cos CE BE CB BE CB B =+-⋅2242(422)=-=-,所以422CE =-2221cos 22CE BE CB CEB CE BE +-∠==⋅,CEB 60,︒∠=CED CEB BED 45∠=∠-∠=,所以2cos 2CED ∠=326;22.【点睛】本题考查正弦定理和余弦定理在三角形中的运用,求解过程中注意把相关的量标在同一个三角形中,然后利用正、余弦定理列方程,考查方程思想的应用.15.某高三班级上午安排五节课(语文,数学,英语,物理,体育),要求语文与英语不能相邻、体育不能排在第一节,则不同的排法总数是_______(用数字作答). 【答案】60 【解析】 【分析】先求出体育不能排在第一节的所有情况,从中减去体育不能排在第一节,且语文与英语相邻的情况,即为所求.【详解】体育不能排在第一节,则从其他4门课中选一门排在第一节,其余的课任意排,它的所有可能共有144496A A ⋅=种.其中,体育不能排在第一节,若语文与英语相邻,则把语文与英语当做一节,方法有22A 种,则上午相当于排4节课,它的情况有:13233236A A A ⋅⋅=种.故语文与英语不能相邻,体育不能排在第一节,则所有的方法有963660-=种.【点睛】本题考查用间接法解决分类计数原理问题,以及特殊元素特殊处理,属于中档题.16.已知,A B 是抛物线24y x =上的两点,F 是焦点,直线,AF BF 的倾斜角互补,记,AF AB 的斜率分别为1k ,2k ,则222111k k -=____. 【答案】1 【解析】 分析】设1122(,),(,)A x y B x y ,由抛物线的对称性知点22(,)x y -在直线AF 上,直线1:(1)AF y k x =-代入24y x =得到关于x 的一元二次方程,利用韦达定理得到12,k k 的关系,从而求得222111k k -的值. 【详解】设1122(,),(,)A x y B x y ,由抛物线的对称性知点22(,)x y -在直线AF 上,直线1:(1)AF y k x =-代入24y x =得:2222111(24)0k x k x k -++=,所以2112211224,1,k x x k x x ⎧++=⎪⎨⎪=⎩,因为2221122221121121212y y k k k x x k x x x x x x -==⇒==-++++,所以212222211111111k k k k k +-=-=,故填:1. 【点睛】本题考查直线与抛物线的位置关系,会用坐标法思想把所要求解的问题转化成坐标运算,使几何问题代数化求解.17.已知非零平面向量,a b 不共线,且满足24a b a ⋅==,记3144c a b =+,当,b c 的夹角取得最大值时,||a b -的值为______. 【答案】4 【解析】 【分析】先建系,再结合平面向量数量积的坐标及基本不等式的应用求出向量b ,进而通过运算求得||a b -的值.【详解】由非零平面向量,a b 不共线,且满足24a b a ⋅==,建立如图所示的平面直角坐标系:则(2,0),(2,),0A B b b >,则(2,0),(2,)a b b ==,由3144c a b =+,则(2,)4b C , 则直线,OB OC 的斜率分别为,28b b, 由两直线的夹角公式可得:3328tan BOC 841282b b b b b b -∠==≤=+⨯+,当且仅当82bb =,即4b =时取等号,此时(2,4)B ,则(0,4)a b -=-, 所以||4a b -=,故填:4.【点睛】本题考查平面向量数量积的坐标运算及基本不等式求最值的运用,考查转化与化归思想,在使用基本不等式时,注意等号成立的条件.三、解答题18.已知函数2()cos cos f x x x x =+. (1)求3f π⎛⎫⎪⎝⎭的值; (2)若13,0,2103f απα⎛⎫⎛⎫=∈⎪ ⎪⎝⎭⎝⎭,求cos α的值. 【答案】(1)1;(2) 4cos 10α= 【解析】 【分析】(1)利用倍角公式、辅助角公式化简1()sin 226f x x π⎛⎫=++ ⎪⎝⎭,再把3x π=代入求值; (2)由13,0,2103f απα⎛⎫⎛⎫=∈⎪ ⎪⎝⎭⎝⎭,43sin ,cos 6565ππαα⎛⎫⎛⎫+=+= ⎪ ⎪⎝⎭⎝⎭,利用角的配凑法得:66ππαα=+-,再利用两角差的余弦公式得cos α=. 【详解】解:(1)因为21cos21()cos cos sin 22226x f x x x x x x π+⎛⎫=+=+=++ ⎪⎝⎭,所以121511sin sin 132362622f ππππ⎛⎫⎛⎫=++=+=+=⎪⎪⎝⎭⎝⎭. (2)由13,0,2103f απα⎛⎫⎛⎫=∈⎪ ⎪⎝⎭⎝⎭得43sin ,cos 6565ππαα⎛⎫⎛⎫+=+= ⎪ ⎪⎝⎭⎝⎭, 334cos cos cos cos sin sin 66666610ππππππαααα+⎛⎫⎛⎫⎛⎫=+-=+++=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 【点睛】本题考查三角恒等变换中的倍角公式、辅助角公式、两角差的余弦公式等,考查角的配凑法,考查运算求解能力.19.在三棱柱111ABC A B C -中,底面ABC ∆是等腰三角形,且90ABC ∠=︒,侧面11ABB A 是菱形,160BAA ∠=︒,平面11ABB A ⊥平面BAC ,点M 是1AA 的中点.(1)求证:1BB CM ⊥;(2)求直线BM 与平面1CB M 所成角的正弦值.【答案】(1) 证明见解析;10【解析】 【分析】(1)证明直线1BB 垂直CM 所在的平面BCM ,从而证明1BB CM ⊥;(2)以A 为原点,BC 为x 轴正方向,AB 为y 轴正方向,垂直平面ABC 向上为z 轴正方向建立平面直角坐标系,设2AB =,线面角为θ,可得面1B MC 的一个法向量(23,3,5)n =-,330,,22BM ⎛⎫=- ⎪ ⎪⎝⎭,代入公式sin |cos ,|n BM θ=<>进行求值. 【详解】(1)证明:在Rt ABC ∆中,B 是直角,即BC AB ⊥,平面ABC ⊥平面11AA B B , 平面ABC平面11AA B B AB =,BC ⊂平面ABC ,BC ∴⊥平面11AA B B AB =,1BC B B ∴⊥.在菱形11AA B B 中,160A AB ︒∠=,连接BM ,1A B 则1A AB ∆是正三角形,∵点M 是1AA 中点,1AA BM ∴⊥. 又11//AA B B ,1BB BM ∴⊥.又BMBC B =,1BB ∴⊥平面BMC1BB MC ∴⊥.(2)作1BG MB ⊥于G ,连结CG .由(1)知BC ⊥平面11AA B B ,得到1BC MB ⊥, 又1BG MB ⊥,且BCBG B =,所以1MB ⊥平面BCG .又因为1MB ⊂平面1CMB ,所以1CMB ⊥BCG , 又平面1CMB 平面BCG CG =,作BH CG ⊥于点H ,则BH ⊥平面1CMB ,则BMH ∠即为所求线面角. 设 2AB BC ==, 由已知得1221302,3,BB BM BG BH ====sinBHBMHBM∠===,则BM与平面1CB M所成角的正弦值为5.【点睛】本题考查空间中线面垂直判定定理、求线面所成的角,考查空间想象能力和运算求解能力.20.已知数列{}n a为等差数列,n S是数列{}n a的前n项和,且55a=,36S a=,数列{}n b满足1122(22)2n n na b a b a b n b+++=-+.(1)求数列{}n a,{}n b的通项公式;(2)令*,nnnac n Nb=∈,证明:122nc c c++<.【答案】(1) n a n=.2nnb=. (2)证明见解析【解析】【分析】(1)利用55a=,36S a=得到关于1,a d的方程,得到na n=;利用临差法得到12nnbb-=,得到{}n b是等比数列,从而有2nnb=;(2)利用借位相减法得到12111121222222n n nn n-+++++-=-,易证得不等式成立. 【详解】(1)设等差数列{}n a的公差为d,11145335a da d a d+=⎧∴⎨+=+⎩,解得111ad=⎧⎨=⎩,∴数列{}n a的通项公式为n a n=.122(22)2n nb b nb n b∴++=-+,当2n≥时,12112(1)(24)2n nb b n b n b--++-=-+11(24)(2)2nn n n b n b n b b --⇒-=-⇒=, 即{}n b 是等比数列,且12b =,2q =,2n n b ∴=. (2)2n n n n a nc b ==,记121212222n nn S c c c =++=++⋯+, 则1212321222n nS -=++++, 1211112212222222n n n n n S S S -+∴=-=++++-=-<.【点睛】本题考查数列通项公式、前n 项和公式等知识的运用,考查临差法、错位相减法的运用,考查运算求解能力.21.已知抛物线24x y =,F 为其焦点,椭圆22221(0)x y a b a b+=>>,1F ,2F 为其左右焦点,离心率12e =,过F 作x 轴的平行线交椭圆于,P Q 两点,46||3PQ =.(1)求椭圆的标准方程;(2)过抛物线上一点A 作切线l 交椭圆于,B C 两点,设l 与x 轴的交点为D ,BC 的中点为E ,BC 的中垂线交x 轴为K ,KED ∆,FOD ∆的面积分别记为1S ,2S ,若121849S S =,且点A 在第一象限.求点A 的坐标.【答案】(1)22143x y+=. (2) ()2,1【解析】【分析】(1)由题设可知26,13P⎛⎫⎪⎝⎭,又12e=,把,a b均用c表示,并把点26,13P⎛⎫⎪⎝⎭代入标圆方程,求得1c=;(2)根据导数的几可意义求得直线BC的方程,根据韦达定理及中点坐标公式求得点E的坐标,求得中垂线方程,即可求得K点坐标,根据三角形面积公式,即可求得点A坐标. 【详解】(1)不妨设P在第一象限,由题可知26,1P⎛⎫⎪⎝⎭,228113a b∴+=,又12e=,22811123c c∴+=,可得1c=,椭圆的方程为22143x y+=.(2)设2,4xA x⎛⎫⎪⎝⎭则切线l的方程为20024x xy x=-代入椭圆方程得:()422300031204xx x x x+-+-=,设()()()112233,,,,,B x yC x y E x y,则()31232223xx xxx+==+,()2200033232443x x xy xx=-=-+,KE 的方程为()()230022000324323x x y x x x x ⎡⎤+=--⎢⎥++⎢⎥⎣⎦, 即()20200243x y x x x =-++, 令0y =得()32083K x x x =+, 在直线l 方程中令0y =得02D x x =, 222004124x x FD +⎛⎫=+=⎪⎝⎭()()()23000022003428383x x x x DK x x +=-=++,002,2FD BC x k k x =-=, 1FD BC k k ∴⋅=-,FD BC ⊥,DEK FOD ∴∆∆∽,()()22200122220941849163x x S DK S FD x +∴===+. 化简得()()2200177240x x+-=,02x ∴=(02x =-舍去)A ∴的坐标为()2,1.()4223031204x x x x x +-+-=,()()462420000431234814404x x x x x ⎛⎫∆=-+-=---≥ ⎪⎝⎭,因为2008x ≤≤+【点睛】本题考查椭圆的标准方程,直线与椭圆的位置关系,考查韦达定理、中点坐标公式、三角形的面积公式,考查逻辑推理和运算求解能力.22.设a 为实常数,函数2(),(),xf x axg x e x R ==∈.(1)当12a e=时,求()()()h x f x g x =+的单调区间; (2)设m N *∈,不等式(2)()f x g x m +≤的解集为A ,不等式()(2)f x g x m +≤的解集为B ,当(]01a ∈,时,是否存在正整数m ,使得A B ⊆或B A ⊆成立.若存在,试找出所有的m ;若不存在,请说明理由.【答案】(1) ()h x 在(),1-∞-上单调递减,在()1,-+∞上单调递增.(2)存在,1m =【解析】【分析】(1)当12a e =时得21()2x h x x e e=+,求导后发现()h x '在R 上单调递增,且(1)0h '-=,从而得到原函数的单调区间;(2)令2()(2)()4x F x f x g x ax e =+=+,22()()(2)x G x f x g x ax e =+=+,利用导数和零点存在定理知存在120x x <≤,使得()()12F x F x m ==,再对m 分1m =和1m 两种情况进行讨论.【详解】解:(1)21()2x h x x e e =+,1()x h x x e e'=+, ∵()h x '在R 上单调递增,且(1)0h '-=,∴()h x '在(),1-∞-上负,在()1,-+∞上正, 故()h x 在(),1-∞-上单调递减,在()1,-+∞上单调递增.(2)设2()(2)()4x F x f x g x ax e =+=+,22()()(2)xG x f x g x ax e =+=+ ()8x F x ax e '=+,()80x F x a e ''=+>,()F x '∴单调递增.又(0)0F '>,0F '⎛ < ⎪ ⎪⎝⎭(也可依据lim ()0x F x '→-∞<), ∴存在00 x <使得()00F x '=,故()F x 在()0,x -∞上单调递减,在()0,x +∞上单调递增.又∵对于任意*m N ∈存在ln x m >使得()F x m >,又lim ()x F x →-∞→+∞,且有()0(0)1F x F m <=≤,由零点存在定理知存在120x x <≤,使得()()12F x F x m ==,故[]34,B x x =.()()222()()4x x F x G x ax e ax e -=---,令2()xH x ax e =-,由0a >知()H x 在(,0)-∞上单调递减,∴当0x <时,()()(2 )()0F x G x H x H x -=->又∵m 1≥,3x 和1x 均在各自极值点左侧,结合()F x 单调性可知()()()133F x m G x F x ==<,310x x ∴<<当1m =时,240x x ==, A B ∴⊆成立,故1m =符合题意.当0x >时,2222()()33x x x x F x G x ax e e x e e -=+-≤+-, 令1()2ln P t t t t =--,则22(1)()0t P t t '-=>, ∴当1t >时,()(1)0P t P >=. 在上式中令2x t e =,可得当0x >时,有22x xe e x -->成立, 322x x x e e xe ∴-> 令()2t Q t e t =-,则()2tQ t e '=-, ()(ln2)22ln20Q t Q ∴≥=->,2x e ∴>恒成立. 故有32223x x x e e xe x ->>成立,知当0x >时,()()0F x G x -<又∵()F x ,()G x 在[)0,+∞上单调递增,∴当1m 时,()()()244F x m G x F x ==>,240x x ∴>>,而31 0x x <<,∴此时A B ⊆和B A ⊆均不成立.综上可得存在1m =符合题意.【点睛】本题考查利用导数研究函数的单调性、零点存在定理,特别要注意使用零点存在定理判断零点的存在性,要注意说明端点值的正负.同时,对本题对构造法的考查比较深入,对逻辑推理、运算求解的能力要求较高,属于难题.。

《精编》浙江省五校联盟高三数学下学期第一次联考理试题新人教A版.doc

《精编》浙江省五校联盟高三数学下学期第一次联考理试题新人教A版.doc

浙江省五校联盟2021届高三下学期第一次联考数学理试题本试卷分第I 卷〔选择题〕和第二卷〔非选择题〕两局部。

总分值150分。

考试时间120分钟。

本卷须知:1.答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题纸上。

2.每题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

不能答在试题卷上。

参考公式:如果事件A , B 互斥, 那么 棱柱的体积公式 P (A +B )=P (A )+P (B ) V =Sh 如果事件A , B 相互独立, 那么 其中S 表示棱柱的底面积, h 表示棱柱的高P (A ·B )=P (A )·P (B ) 棱锥的体积公式如果事件A 在一次试验中发生的概率是p , 那么nV =31Sh次独立重复试验中事件A 恰好发生k 次的概率 其中S 表示棱锥的底面积, h 表示棱锥的高P n (k )=C 错误!不能通过编辑域代码创立对象。

p k (1-p )n -k (k = 0,1,2,…, n ) 球的外表积公式 棱台的体积公式 S = 4πR 2)2211(31S S S S h V ++=球的体积公式其中S 1, S 2分别表示棱台的上.下底面积, h 表示棱台 V =错误!不能通过编辑域代码创立对象。

πR 3的高 其中R 表示球的半径第I 卷(选择题 共50分)一、选择题〔本大题共10小题,每题5分,共50分,在每题给出的四个选项中,只有一项为哪一项符合题目要求的〕 1、假设集合{}}{R x x y y N R t x x M t ∈==∈==-,sin ,,2,那么M N ⋂=〔 ▲ 〕A .(]0,1B .[)1,0-C .[]1,1-D .∅ 2、复数123,1z i z i =+=-,那么复数12z z 在复平面内对应的点位于 〔 ▲ 〕 A .第一象限 B .第二象限C .第三象限D .第四象限3、假设某程序框图如以下列图,那么输出的p 的值是 〔 ▲ 〕A .22B . 27C . 31D . 564、a ∈R ,那么“2a <〞是“|2|||x x a -+>恒成立〞的 〔 ▲ 〕A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 5、两个不重合的平面,αβ,给定以下条件:①α内不共线的三点到β的距离相等;②,l m 是α内的两条直线,且//,//l m ββ; ③,l m 是两条异面直线,且//,//,//,//l l m m αβαβ;其中可以判定//αβ的是〔 ▲ 〕A .①B .②C .①③D .③ 6、假设函数)0(cos sin )(≠+=ωωωx x x f 对任意实数x 都有)6()6(x f x f -=+ππ,那么)3(ωππ-f 的值等于〔 ▲ 〕A .1-B .1C .2 D .2-7、对函数112)(2---=x x f x 的零点个数判断正确的选项是〔 ▲ 〕A .1个B .2个C .3个D .0个8、在平面直角坐标系中,不等式⎪⎩⎪⎨⎧≤≥-≥+a x y x y x 00a (为常数)表示的平面区域的面积为8,那么32+++x y x 的最小值为〔 ▲ 〕 A .1028- B .246- C .245-D .329、P 为抛物线x y 42=上一个动点,Q 为圆1)4(22=-+y x 上一个动点,那么点P 到点Q的距离与点P 到y 轴距离之和最小值是 〔 ▲ 〕 A .171+B .172-C .25+D .171-10、将一个三位数的三个数字顺序颠倒,将所得到的数和原数相加,假设和中没有一个数字是偶数,那么称这个数是奇和数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2021年浙江省高三第一次五校联考文科数学试卷学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知全集为R ,集合{}|21x A x =≥,{}2|680B x x x =-+≤,则()R A B =( )A .{}|0x x ≤B .{}|24x x ≤≤C .{}|024x x x ≤或D .{}|24x x x 或2.在等差数列{a n }中,a 5=3,a 6=−2,则a 3+a 4+⋯a 8等于( ) A .1B .2C .3D .43. 设l ,m 是两条不同的直线,α是一个平面,则下列命题正确的是( ) A. 若l m ⊥,m α⊂,则l α⊥ B. 若l α⊥,l m //,则m α⊥ C. 若l α//,m α⊂,则l m // D. 若l α//,m α//,则l m //4.设,a b 是实数,则“1a b >>”是“11a b a b+>+”的 A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分又不必要条件5.已知函数y=f (x )+x 是偶函数,且f (2)=1,则f (﹣2)=( ) A .﹣1B .1C .﹣5D .56.已知函数()cos (,0)4f x x x πωω⎛⎫=+∈> ⎪⎝⎭R 的最小正周期为π,为了得到函数()sin g x x ω=的图象,只要将()y f x =的图象( )A. 向左平移34π个单位长度 B. 向右平移34π个单位长度 C. 向左平移38π个单位长度 D. 向右平移38π个单位长度7.设实数x ,y 满足24y x y x y x ≥-⎧⎪≥⎨⎪+≤⎩,则4z y x =-的取值范围是( )A .[-8,-6]B .[-8,4]C .[-8,0]D .[-6,0]8.如图,在正四棱锥ABCD S -中,E ,M ,N 分别是BC ,CD ,SC 的中点,动点P 在线段MN 上运动时,下列四个结论:①AC EP ⊥;②//EP BD ;③SBD EP 面//;④SAC EP 面⊥.中恒成立的为( )A .①③B .③④C .①②D .②③④9.设()f x 是定义在R 上的恒不为零的函数,对任意实数x ,y R ∈,都有()()()f x f y f x y ⋅=+,若112a =,()()n a f n n N *=∈,则数列{}n a 的前n 项和n S 的取值范围是( )A . 1,22⎡⎫⎪⎢⎣⎭B . 1,22⎡⎤⎢⎥⎣⎦C . 1,12⎡⎫⎪⎢⎣⎭D . 1,12⎡⎤⎢⎥⎣⎦10.已知函数f(x)= {2x−2−1,x ≥0x +2,x <0,g(x)=,则函数f[g(x)]的所有零点之和是( ) A .B .C .D .二、填空题 11.函数的定义域为 .12.已知1sin()43πθ+=,2πθπ<<,则cos θ= . 13.已知某几何体的三视图如图所示, 则该几何体的体积为 .14.已知偶函数y =f(x)的图象关于直线x =1对称,且x ∈[0,1]时,f(x)=x −1,则f(−32)= .15.设1a ,2a ,…,n a ,…是按先后顺序排列的一列向量,若1(2014,13)a =-,且1(1,1)n n a a --=,则其中模最小的一个向量的序号n = ______.16.设a ,b ∈R ,关于x 的方程(x 2﹣ax +1)(x 2﹣bx +1)=0的四个实根构成以q 为公比的等比数列,若q ∈[13,2],则ab 的取值范围为______. 17.已知正四棱锥V ABCD -可绕着AB 任意旋转,//CD 平面α,若2AB =,5VA =,则正四棱锥V ABCD -在面α内的投影面积的取值范围是________.三、解答题18.(本题满分14分)锐角ΔABC 的内角,,,的对边分别为,,,已知cos(B −A)=2sin 2C2. (1)求sinAsinB 的值; (2)若,,求ΔABC 的面积.19.(本题满分14分)如图所示,正方形ABCD 所在的平面与等腰ABE ∆所在的平面互相垂直,其中顶120BAE ∠=,4AE AB ==,F 为线段AE 的中点.(1)若H 是线段BD 上的中点,求证://FH 平面CDE ;(2)若H 是线段BD 上的一个动点,设直线FH 与平面ABCD 所成角的大小为θ,求tan θ的最大值.20.(本题满分15分)已知数列{a n }的前n 项和S n 满足(t −1)S n =t(a n −2),(为常数,且).(1)求数列{a n }的通项公式;(2)设b n =S n −1,且数列{b n }为等比数列. ①求t 的值;②若c n =(−a n )⋅log 3(−b n ),求数列{c n }的前n 和T n . 21.设向量2(2,32)a λλα=+,(,sin cos )2mb m αα=+,其中λ,m ,α为实数. (1)若12πα=,求||b 的最小值;(2)若2a b =,求mλ的取值范围. 22.(本题满分15分) 已知函数()()1.f x x x a x R =--+∈ (1)当1a =时,求使()f x x =成立的x 的值;(2)当()0,3a ∈,求函数()y f x =在[]1,2x ∈上的最大值;(3)对于给定的正数a ,有一个最大的正数()M a ,使()0,x M a ∈⎡⎤⎣⎦时,都有()2f x ≤,试求出这个正数()M a ,并求它的取值范围.参考答案1.C 【解析】试题分析:因为{|21}{|0}xA x A x x =≥⇒=≥,2{|680}{|24}B x x x B x x =-+≤⇒=≤≤,所以{|24}R B C B x x x ==或,所以()R A B ⋂= {|024}x x x ≤或,故选C .考点:1、不等式的解法;2、集合的交集与补集运算. 2.C 【解析】试题分析:因为a 3+a 8=a 4+a 7=a 5+a 6=1,所以a 3+a 4+⋯+a 8=3(a 5+a 6)=3,故选C .考点:等差数列的性质. 3.B. 【解析】试题分析:A :根据线面垂直的判定可知A 错误;B :根据线面垂直的判定可知B 正确;C :l 与m 可能平行,可能异面,∴C 错误;D :l 与m 可能平行,可能相交,可能异面,∴D 错误,故选B.考点:空间中直线与平面的位置关系. 4.A 【详解】 设1()f a a a =+,1()f b b b =+,由于 1()f x x x=+图象如下图.∴根据函数的单调性可判断:若“a >b >1”则“11a b a b+>+”成立, 反之若“11a b a b+>+”则“a>b >1”不一定成立. 根据充分必要条件的定义可判断:“a >b >1”是“11a b a b+>+”的充分不必要条件,故选:A 5.D 【解析】试题分析:根据函数y=f (x )+x 是偶函数,可知f (﹣2)+(﹣2)=f (2)+2,而f (2)=1,从而可求出f (﹣2)的值. 解:令y=g (x )=f (x )+x , ∵f (2)=1,∴g (2)=f (2)+2=1+2=3, ∵函数g (x )=f (x )+x 是偶函数,∴g (﹣2)=3=f (﹣2)+(﹣2),解得f (﹣2)=5. 故选D .考点:函数奇偶性的性质;抽象函数及其应用. 6.D. 【解析】试题分析:∵最小正周期为π,∴22ππωω=⇒=,∴()cos(2)sin(2)442f x x x πππ=+=++3sin(2)4x π=+,故()g x 向右平移38π个单位,即可得()g x 的图象. 考点:三角函数的图象和性质. 7.B 【分析】先画出满足不等式组24y xy x y x ≥-⎧⎪≥⎨⎪+≤⎩的可行域,并求出可行域各角点的坐标,y ﹣4|x |代入角点坐标,可得答案. 【详解】解:满足不等式组24y x y x y x ≥-⎧⎪≥⎨⎪+≤⎩的可行域如下图所示:由题意可知A 的坐标由4y x y x +=⎧⎨=⎩,A (2,2),此时y ﹣4|x |=﹣6;B 的坐标由24y xy x =-⎧⎨+=⎩得B (﹣4,8).y ﹣4|x |=﹣8,O (0,0)此时y ﹣4|x |=0, D (0,4),此时y ﹣4|x |=4, y ﹣4|x |的取值范围是[﹣8,4]. 故选B .【点晴】本题考查的知识点是简单的线性规划,其中画出可行域,并分析目标函数的几何意义是解答的关键. 8.A. 【解析】试题分析:如下图所示,连结NE ,ME ,∵E ,M ,N 分别是BC ,CD ,SC 的中点,∴//EN SB ,//MN SD ,∴平面//SBD 平面NEM ,∴//EP 平面SBD ,故③正确,又由正四棱锥S ABCD -,∴AC ⊥平面SBD ,∴AC ⊥平面NEM ,∴AC EP ⊥,故①正确,②④对于线段MN 上的任意一点P 不一定成立,故正确的结论为①③.考点:1.面面平行的判定与性质;2.线面垂直的判定与性质. 9.C. 【解析】试题分析:∵112a =,()n a f n =,∴1(1)2f =,又∵()()()f x f y f x y ⋅=+,令1y =,则1(1)(1)()()2f x f f x f x +=⋅=,∴112n n a a +=,∴数列{}n a 是以12为首项,12为公比的等比数列,∴1()2n n a =,∴11(1)11221[,1)12212n n nS -==-∈-. 考点:1.函数与方程;2.等比数列的通项公式以及前n 项和. 10.B 【解析】 试题分析:由得或,由得x =1+√3,由,得x =−12,∴函数的所有零点之和是−12+1+√3=12+√3,则选B.考点:函数的零点. 11.{x|x >2且x ≠3}. 【解析】试题分析:∵{x −2>0x −2≠1 ⇒x >2且x ≠3,故定义域为{x|x >2且x ≠3}.考点:函数的定义域. 12.246. 【解析】试题分析:∵1sin()43πθ+=,2πθπ<<,∴cos 4πθ⎛⎫+= ⎪⎝⎭,则14cos cos 4432326ππθθ⎛⎫⎛⎫=+-=-⨯+⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭. 考点:三角恒等变形. 13.1603. 【解析】试题分析:由三视图可知该几何体由一个倒放的直三棱柱和一个四棱锥组成,∴其体积为21116044444233⨯⨯⨯+⨯⨯=. 考点:1.三视图;2.空间几何体的体积. 14.−12.【解析】 试题分析:∵函数为偶函数且图象关于直线x =1对称,∴f(−32)=f(32)=f(12)=12−1=−12.考点:偶函数的性质. 15.1001或1002. 【解析】试题分析:设(,)n n n a x y =,∵1(2014,13)a =-,且1(1,1)n n a a --=,∴数列{}n x 是首项为2014-,公差为1的等差数列,数列{}n y 是首项为13,公差为1的等差数列,∴2015n x n =-,12n y n =+,∴222222||(2015)(12)24006201512n a n n n n =-++=-++,∴可知当1001n =或1002时,||n a 取到最小值.考点:1.向量的坐标运算;2.等差数列的通项公式;3.二次函数的性质. 16.1124,9⎡⎤⎢⎥⎣⎦.【分析】利用等比数列的性质确定方程的根,由韦达定理表示出ab ,再利用换元法转化为二次函数,根据q 的范围和二次函数的性质,确定ab 的最值即可求出ab 的取值范围. 【详解】解:设方程(x 2﹣ax +1)(x 2﹣bx +1)=0的4个实数根依次为m ,mq ,mq 2,mq 3, 由等比数列性质,不妨设m ,mq 3为x 2﹣ax +1=0的两个实数根,则mq ,mq 2为方程x 2﹣bx +1=0的两个根,由韦达定理得,m 2q 3=1,m +mq 3=a ,mq +mq 2=b ,则231m q = 故ab =(m +mq 3)(mq +mq 2)=m 2(1+q 3)(q +q 2)31q =(1+q 3)(q +q 2)2211q q q q =+++, 设t 1q q =+,则221q q+=t 2﹣2, 因为q ∈[13,2],且t 1q q =+在[13,1]上递减,在(1,2]上递增,所以t ∈[2,103], 则ab =t 2+t ﹣221924t ⎛⎫=+- ⎪⎝⎭, 所以当t =2时,ab 取到最小值是4, 当t 103=时,ab 取到最大值是1129, 所以ab 的取值范围是:11249⎡⎤⎢⎥⎣⎦,. 【点睛】本题考查等比数列的性质,韦达定理,以及利用换元法转化为二次函数,考查学生分析解决问题的能力,正确转化是解题的关键.17.4⎤⎦.【解析】试题分析:由题意可得正四棱锥的侧面与底面所成角为3π,侧面上的高为,设正四棱锥的底面与平面所成角为,当06πθ≤≤时投影为矩形,其面积为22cos 4cos 23,4θθ⎡⎤⨯=∈⎣⎦,当26ππθ≥>时,投影为一个矩形和一个三角形,此时与平面所成角为23πθ-,正四棱锥在平面上的投影面积为 )124cos 22cos 3sin 3cos 23sin 3,23233ππθθθθθ⎛⎫⎛⎫⎡+⨯⨯-=+=+∈ ⎪ ⎪⎣⎝⎭⎝⎭,当232ππθ≥≥时投影面积为12222cos 2cos 3,2233ππθθ⎛⎫⎛⎫⎡⎤⨯⨯-=-∈ ⎪ ⎪⎣⎦⎝⎭⎝⎭,综上,正四棱锥V ABCD -在面内的投影面积的取值范围是3,4⎡⎤⎣⎦.考点:立体几何中的旋转与投影问题.18.(1);(2)3√2+√32. 【解析】试题分析:(1)利用三角恒等变形将已知条件中的式子作等价变形,即可求解;(2)利用正弦定理结合sinAsinB =12可求得sinA =√32,sinB =√33,从而可进一步求得的值,即可求解.试题解析:(1)由条件cos(B −A)=1−cosC =1+cos(B +A),∴cosBcosA +sinBsinA =1+cosBcosA −sinBsinA ,即sinAsinB =12;(2)∵,又∵sinAsinB =12,解得sinA =√32,sinB =√33,∵是锐角三角形,∴cosA =12,cosB =√63,sinC =sin(A +B)=sinAcosB +cosAsinB =3√2+√36, S Δ=12absinC =12×3×2×3√2+√36=3√2+√32. 考点:1.正弦定理;2.三角恒等变形.19.(1)详见解析;(2【解析】试题分析:(1)连接AC ,根据条件可证得CE FH //,再由线面平行的判定即可得证;(2)作FIAB ⊥垂足为I ,有FI AD ⊥,得FI ⊥面ABCD ,∴FIH ∠是直线FH 与平面ABCD 所成的角,而3tan FI FHI IH ∠==,因此问题等价转化为求IH 的最小值,即可求解.试题解析:(1)连接AC ,∵ABCD 是正方形,∴H 是AC 的中点,有F 是AE 的中点,∴FH 是ACE ∆的中位线,∴CE FH //,而⊄FH 面CDE ,⊂CE 面CDE ,∴//FH 面CDE ;(2)∵面⊥ABCE 面ABE ,交线为AB ,而AB DA ⊥,∴⊥DA 面ABE ,作FI AB ⊥垂足为I ,有FI AD ⊥,得FI ⊥面ABCD ,∴FIH ∠是直线FH 与平面ABCD 所成的角,sin 603FI AF ==,∴3tan FI FHI IH ∠==,当BD IH ⊥时,IH 取到最小值522,从而max 6(tan )FHI ∠=.考点:1.线面平行的判定;2.线面角的求解. 20.(1)a n =2t n ;(2)①t =13,②T n =32−2n+32⋅3.【解析】试题分析:(1)考虑到,因此可将条件中的式子转化为数列的一个递推公式,从而求解;(2)①以b 22=b 1b 3为出发点可以求得t =13,再验证数列是否为等比数列即可;②可得c n =(−a n )⋅log 3(−b n )=2n3n 可看成一个等比数列与一个等差数列的乘积,故考虑采用错位相减法求解即可.试题解析:(1)由(t −1)S n =t(a n −2),及(t −1)S n+1=t(a n+1−2),作差得a n+1=ta n , 即数列{a n }成等比,a n =a 1t n−1,∵a 1=2t ,故a n =2t n ;(2)①∵数列{b n }为等比数列,∴b 22=b 1b 3,代入得(2t +2t 2−1)2=(2t −1)(2t +2t 2+2t 3−1),整理得6t 3=2t 2解得t =13或t =0(舍),故t =13当t =13时,b n =S n −1=−13n 显然数列{b n }为等比数列,②c n =(−a n )⋅log 3(−b n )=2n3n , ∴T n =231+432+633+⋯+2n 3n ,则13Tn =232+433+634+⋯+2n 3n+1, 作差得23T n=23+232+233+⋯+23n −2n3n+1=1−13n −2n 3n+1=1−2n+33n+1,故T n =32−2n+32⋅3n.考点:1.数列的通项公式;2.等比数列的性质;3.错位相减法求数列的和. 21.(1)min 5||b =;(2)[]6,1m λ∈-.【解析】试题分析:(1)首先根据条件求得b ,从而求得2||b 的表达式,然后根据二次函数的性质求得||b 的最小值;(2)首先利用向量相等的条件求得,m λ的关系式,然后利用两角和的正弦公式求得m 的范围,从而求得mλ的取值范围. 试题解析:(1)当12πα=时,,2251||4416m b m =++,min 5||b =. (2)由题知:22m λ+=,22sin 2m λαα=+,2494sin 222sin(2)3m m πααα-+==+,解得124m ≤≤,而22mmλ=-,所以[]6,1m λ∈-.考点:1、平面向量的模;2、两角和的正弦公式. 22.(1)1x =;(2)()max,011,1252,23a a f x a a a <≤⎧⎪=<<⎨⎪-≤<⎩;(3)()22a M a a a ≥⎪⎪=⎨+⎪<<⎪⎩,()(M a ∈.【解析】试题分析:(1)将1=a 代入,解方程即可求解;(2)()()()2211x ax x a f x x ax x a ⎧-++≥⎪=⎨-+<⎪⎩,注意到几个关键点的值:a f =)1(,a f 25)2(-=,1)(=a f ,(0)()=1f f a =,2()124a a f =-,最大值在)1(f ,)2(f ,)(a f 中取,对a 的取值分类讨论,判断其单调性即可;(3)分析题意可知问题等价于给定区间内2)(-≥x f 恒成立,,)(a M 是方程212x ax -+=-的其中一个根,对a 的取值进行分类讨论即可求解.试题解析:(1)当1a =时,由()f x x =得11x x x --+=,解得1x =;(2)当10≤<a 时,)(x f 在]2,1[上递减,故1)()(max ==a f x f ;当21<<a 时,)(x f 在],1[a 上递增,]2,[a 上递减,故()()max 1f x f a ==;当32<≤a 时,)(x f 在1,2a ⎡⎤⎢⎥⎣⎦上单调递减,,22a ⎡⎤⎢⎥⎣⎦单调递增,且2ax =是函数的对称轴,由于213022a a a ⎛⎫⎛⎫---=-> ⎪ ⎪⎝⎭⎝⎭,∴()()max 252f x f a ==-,综上()max,011,1252,23a a f x a a a <≤⎧⎪=<<⎨⎪-≤<⎩;(3)∵当),0(+∞∈x 时,()max 1f x =,故问题只需在给定区间内2)(-≥x f 恒成立,由2124a a f ⎛⎫=- ⎪⎝⎭,当2124a -≤-时,)(a M 是方程212x ax -+=-的较小根,即a ≥()(2a M a ==,当2124a->-时,)(a M 是方程212x ax --+=-的较大根,即320<<a 时,()2a M a =,综上,(),22a M a a a ≥⎪⎪=⎨+⎪<<⎪⎩,()(M a ∈.考点:1.二次函数综合题;2.分类讨论的数学思想.。

相关文档
最新文档