超声波探伤教材

合集下载

超声波探伤教材

超声波探伤教材
超声波探伤
第一章 超声波检测的物理基础
一、波动 (一)振动与波 物体或质点在某一平衡位置附近作往复运
动,这种运动状态就叫做机械振动,简称 振动。如果物体或质点作周期性直线振动, 它离开平衡位置的距离与时间可以用正弦 或余弦函数表示,称为简谐振动。 这是最基本最重要的周期性直线振动。
适用的频率
超声波探伤常用的频率为 0.25MHz~15MHz。
对金属材料一般频率为 0.5~10MHz。
钢结构焊缝常用频率为1~5MHz。 陶瓷常用频率则为2.25~10MHz。 对铸铁、非金属声衰减强烈的粗晶材料,
甚至采用25KHz~0.25MHz 的频率。
(二)超声波的特性之一
T为周期,振子Q在平衡位置附近振动一次所需要的时间;
f为频率,单位时间内振子Q振动次数,与周期互为倒数, 即f=1/T。赫兹(Hz)单位为每秒振动一次1兆赫为1MHz;
(ωt+φ)为相位角,振子Q在振动过程中某一瞬间(t时刻) 所处的位置。在t=0时刻的相位角,称为初始相位;
ω为圆频率,表示在秒内的振动周期数? (每振动一次时间为360度)。
思考
为什么超声波会在工件中衰减?什么是第一、 第二、第三临界角?什么时候纵波入射会产生 横波全反射现象?超声检测底波高度法调节仪 器应满足的条件是什么?为什么超声纵波直探 头在钢中近场长度比水中的短?
横波 振动方向垂直于播向 固体介质
焊缝、钢管探伤
表面波 质点椭圆运动,

长轴垂直播向
固体介质
钢管、薄板探伤

短轴平行播向
板波 对称(S)型

上下表面:椭圆运动


中心:纵向振动
固体介质(波长薄板)薄板薄壁管探

《超声波探伤》课件

《超声波探伤》课件

确保被检测工件表面清洁、干 燥、无油污和锈蚀
检测过程中的操作步骤
准备超声波探伤仪和相关配件
启动超声波探伤仪进行检测
确定检测区域和检测参数
观察检测结果并记录
调整探头位置和角度
完成检测后清理现场和设备
检测后的数据处理和结果判定
数据处理:对采集到的数据进行处理和分析,包括滤波、降噪、增强等
结果判定:根据处理后的数据,判断是否存在缺陷,如裂纹、气孔等
特点:具有高精度、高分辨率、高灵敏度等优点
应用:广泛应用于无损检测、医学成像等领域 发展趋势:随着技术的不断进步,相控阵技术在超声波探伤领域的应用将 越来越广泛。
Part Five
超声波探伤操作流 程
检测前的准备工作
检查超声波探伤仪是否正常工 作
确保探头、电缆、电源线等配 件齐全
准备足够的耦合剂和试块
超声波探伤PPT课件大 纲
PPT,a click to unlimited possibilities
汇报人:PPT
目录
01 添 加 目 录 项 标 题 03 超 声 波 探 伤 设 备 05 超 声 波 探 伤 操 作 流 程 07 案 例 分 析
02 超 声 波 探 伤 概 述 04 超 声 波 探 伤 技 术 06 超 声 波 探 伤 的 质 量 控 制
接收器:接收反射回来的超声波信 号
添加标题
添加标题
探头:发射和接收超声波的装置
添加标题
添加标题
信号处理:对接收到的超声波信号 进行处理和分析,判断缺陷位置和 性质
超声波探伤的应用范围
工业领域:检 测金属、非金 属材料中的缺
陷和损伤
医疗领域:检 测人体组织中 的病变和损伤

《超声波探伤》课件

《超声波探伤》课件
用于检测平面或曲率较小的表面,常用于检测金属材料。
能够将声束聚焦成点、线或面,适用于不同检测需求。
直探头
斜探头
双晶探头
聚焦探头
定期清洁仪器表面,保持清洁干燥。
检查连接线是否松动或破损,及时更换损坏的部件。
定期校准仪器,确保检测结果的准确性。
根据使用情况,及时更换消耗品,如探头、电池等。
超声波探伤技术与方法
超声波探伤基于超声波在介质中传播的物理特性,通过发射超声波到被检测物体,接收反射回的声波,并分析声波的传播时间、振幅等信息,从而判断物体的内部结构和缺陷。
超声波探伤不会对被检测物体造成损伤,可以在不破坏物体的情况下进行检测。
超声波探伤可以检测出微小的缺陷和内部结构变化,具有很高的检测精度。
超声波探伤适用于各种材料和形状的物体,如金属、玻璃、陶瓷等。
03
总结词
基础、简单、直观
详细描述
A型超声波探伤技术是最基本的超声波探伤方法,通过显示波形反映回声情况,操作简单直观,广泛应用于金属材料的探伤。
二维成像、结构清晰
总结词
B型超声波探伤技术通过显示物体的二维图像,能够更清晰地反映物体的内部结构和缺陷,对于复杂形状和不规则物体的探伤具有优势。
详细描述
总结词
智能超声波探伤技术是未来发展的另一个重要趋势,通过人工智能和机器学习等技术提高检测效率和准确性。
详细描述
智能超声波探伤技术结合了人工智能、机器学习等先进技术,能够自动识别和分类缺陷,提高检测效率和准确性。这种技术通过大量的数据训练和学习,逐渐优化和改进检测算法,使得检测结果更加准确可靠。智能超声波探伤技术的应用范围广泛,可以为医疗、工业、航空航天等领域提供更加高效、准确的检测手段。
《超声波探伤》PPT课件

超声波探伤教材2

超声波探伤教材2

超声波声波归属于机械振动范畴。因此,产生超 声波的条件:(1)要有产生高频机械振动的声源;

(2)要有传播超声波的弹性介质。
y Acos(t kx)
2、波动方程
描述介质中质点相对于平衡位置的位移随时间变化的方程 称为行波的波动方程。波动方程式也可写成:

y=Acos( ωt-- kx)
令波在一个周期T内所传播的路程为波长,用λ 表 示。根据频率f和波速C的定义,四者关系如下:

C=fλ =λ /T
(1-4)
波动每传播一个波长,波的相位就变化 ω λ /C=2π,也即相隔整数倍波长的各点是作同相 位振动的。令k=ω /c=2π/λ ,k称为波数,描述波
动的常用物理量。
四、波形
1、束射特性 因为超声波频率较高,波长较短,声束指
向性较好,可使超声能量向一个确定的方 向集中辐射,所以利用超声波可在被检工 件内部发现缺陷,又便于缺陷定位;
超声波的特性之二
2、反射特性 超声波在弹性介质中传播时,遇到异质界
面时会产生反射、透射或折射,这些现象 主要由入射角度和不同介质的声学特性决 定。例如超声脉冲反射法的基本原理就是 利用超声波在缺陷与材料间异质界面的反 射来发现缺陷的;
T为周期,振子Q在平衡位置附近振动一次所需要的时间;
f为频率,单位时间内振子Q振动次数,与周期互为倒数, 即f=1/T。赫兹(Hz)单位为每秒振动一次1兆赫为1MHz;
(ωt+φ)为相位角,振子Q在振动过程中某一瞬间(t时刻) 所处的位置。在t=0时刻的相位角,称为初始相位;
ω为圆频率,表示在秒内的振动周期数? (每振动一次时间为360度)。
波阵面的形状即波形。波阵面是指波动传 播过程中某一瞬时振动相位相同的所有质 点联成的面。某一时刻,最前面的波阵面, 也即该时刻波动到达的空间所有的点的集 合称为“波前”,这是波阵面的特例。波 动传播方向称为“波线”。 若按波阵面的 形状来区分可把不同波源激发的超声波分 为平面波、活塞波、球面波和柱面波等。

超声波探伤教学课件

超声波探伤教学课件

缺陷检测
通过观察超声波图像中的缺陷信 号,判断缺陷的位置和大小。
材料结构
超声波图像可以显示材料的内部 结构特征,如晶粒结构和组织。
厚度测量
通过测量超声波信号的传播时间, 确定材料的厚度。
超声波探伤实验操作
1 样品准备
准备被测件,并确保表面平整干净。
2 超声波仪器设置
调整超声波探伤仪器的参数和探头,以适应 实验需求。
超声波探伤教学课件
欢迎来到超声波探伤教学课件!在本课程中,我们将深入探讨超声波探伤的 原理、分类和在工业检测中的应用,以及超声波探伤方法、图像解读和实验 操作的相关内容。
超声波探伤的原理
通过超声波的传播和反射来检测材料内部的缺陷和结构特征。超声波的频率 和波速可以提供对材料性质的详细信息。
超声波探伤的分类
管道和容器检测
通过超声波探测管道和容器 的内部缺陷,有效预防泄漏 和事故。
超声波探伤方法的讲解
1
直接法
将探测器直接接触在被测件上,适用于厚度测量和缺陷检测。
2
浸泡法
将被测件浸泡在液体中,通过液体传播超声波,适用于复杂形状的工件。
3
干扫法
探测器离开被测件表面一定距离,适用于大型工件和高温环境。
超声波探伤号峰值的大小来判断缺陷。
2 波形分析
通过分析超声波信号的波形形状来识别缺陷。
3 声能谱分析
通过分析超声波信号的频谱特征来检测材料缺陷。
超声波探伤在工业检测中的应用
金属材料检测
超声波探伤广泛应用于金属 材料的缺陷检测,如焊接、 铸造和锻造。
混凝土结构评估
超声波探伤可用于评估混凝 土结构的质量和健康状况, 如桥梁和建筑物。
3 探测信号分析

超声波探伤教学课件

超声波探伤教学课件

国家标准
国家标准定义
国家标准是由国家权威机构(如国家质量监督检验检疫总局)发布, 对全国范围内通用的技术要求和规范。
主要内容
涉及超声波探伤的原理、设备要求、操作流程、结果解读等方面, 是制定其他标准的基础。
重要性
为行业提供统一的技术指导,确保探伤结果的准确性和可靠性。
行业标准
行业标准定义
行业标准是由相关行业协会或组织制定,适用于特定 行业的标准。
案例二:复合材料超声波探伤
01
总结词
复合材料超声波探伤是近年来 发展迅速的领域之一,主要检 测复合材料内部的缺陷和损伤 。
02
详细描述
复合材料超声波探伤通常采用 脉冲反射法和透射法,通过发 射超声波到复合材料中,当遇 到缺陷或损伤时,超声波会反 射回来或透射出去,从而检测 出缺陷或损伤的位置和大小。
耦合剂
耦合剂是用于在探头和被检测物 体之间传递超声波信号的介质, 其作用是减少声能损失和提高回
波信号的清晰度。
耦合剂的种类和特性应根据被检 测物体的材质、表面状态以及探
头的类型等因素进行选择。
在使用耦合剂时,应注意其清洁 度和保存方式,避免对探伤结果
产生不良影响。
03
超声波探伤技术
纵波探伤
总结词
利用超声波在介质中传播时遇到界面或缺陷 会发生反射和散射的原理,通过接收和分析 这些反射和散射信号来判断材料内部的缺陷 和异常。
超声波探伤应用
广泛应用于各种材料的检测,如金属、陶瓷 、玻璃、复合材料等,尤其在工业生产和质 量控制中具有重要的应用价值。
超声波探伤的原理
超声波的传播速度
01
在同一种介质中,超声波的传播速度是恒定的,不同介质中声

超声波探伤培训教程

超声波探伤培训教程

培训教材之理论基础第一章无损检测概述无损检测包括射线检测(RT)、超声检测(UT)、磁粉检测(MT)、渗透检测(PT)和涡流检测(ET)等五种检测方法。

主要应用于金属材料制造的机械、器件等的原材料、零部件和焊缝,也可用于玻璃等其它制品。

射线检测适用于碳素钢、低合金钢、铝及铝合金、钛及钛合金材料制机械、器件等的焊缝及钢管对接环缝。

射线对人体不利,应尽量避免射线的直接照射和散射线的影响。

超声检测系指用A型脉冲反射超声波探伤仪检测缺陷,适用于金属制品原材料、零部件和焊缝的超声检测以及超声测厚。

磁粉检测适用于铁磁性材料制品及其零部件表面、近表面缺陷的检测,包括干磁粉、湿磁粉、荧光和非荧光磁粉检测方法。

渗透检测适用于金属制品及其零部件表面开口缺陷的检测,包括荧光和着色渗透检测。

涡流检测适用于管材检测,如圆形无缝钢管及焊接钢管、铝及铝合金拉薄壁管等。

磁粉、渗透和涡流统称为表面检测。

第二章超声波探伤的物理基础第一节基本知识超声波是一种机械波,机械振动与波动是超声波探伤的物理基础。

物体沿着直线或曲线在某一平衡位置附近作往复周期性的运动,称为机械振动。

振动的传播过程,称为波动。

波动分为机械波和电磁波两大类。

机械波是机械振动在弹性介质中的传播过程。

超声波就是一种机械波。

机械波主要参数有波长、频率和波速。

波长?:同一波线上相邻两振动相位相同的质点间的距离称为波长,波源或介质中任意一质点完成一次全振动,波正好前进一个波长的距离,常用单位为米(m);频率f:波动过程中,任一给定点在1秒钟内所通过的完整波的个数称为频率,常用单位为赫兹(Hz);波速C:波动中,波在单位时间内所传播的距离称为波速,常用单位为米/秒(m/s)。

由上述定义可得:C=? f ,即波长与波速成正比,与频率成反比;当频率一定时,波速愈大,波长就愈长;当波速一定时,频率愈低,波长就愈长。

次声波、声波和超声波都是在弹性介质中传播的机械波,在同一介质中的传播速度相同。

超声波教材[整理版]

超声波教材[整理版]

第三章仪器、探头和试块第一节超声波探伤仪一、超声波探伤仪概述1.作用产生电振荡→激励→放大电信号→显示2.仪器的分类(1)按超声波的连续性分类脉冲波:周期性、不连续、频率不变、根据波幅和传播时间最广泛连续波:连续且频率不变、根据透过超声波强度灵敏度低且不能确定缺陷位臵调频波:连续且频率周期性变化、根据发射波与反射波的差频变化检测面平行的缺陷(2)按缺陷显示方式分类A型显示探伤仪:时间、波幅位臵和大小B型:扫查轨迹、时间 B超平面分布和深度C型:(3)按通道分单通道多通道二、A型脉冲反射式超声波探伤仪的一般工作原理1.仪器电路方框图相当于示波器:包括同步电路、扫描电路、发射电路、接收电路、显示电路和电源电路方框图2.仪器主要组成部分的作用(1)同步电路:触发电路总指挥(2)扫描电路:水平扫描时基线时间(深度粗调、微调、扫描延迟)(3)发射电路 P73 可控硅的开关特性 RC振荡(4)接收电路衰减器、射频放大器、检波器、视频放大器,影响垂直线性、动态范围、探伤灵敏度、分辨力等重要技术指标Kv=20lgU出/U入(5)显示电路:示波管及外围电路组成(6)电源3.仪器的工作过程:根据工作原理图三、仪器主要开关旋钮的作用及其调整 P75重复频率旋钮:改变发射电路每秒钟发射脉冲的次数,与屏幕亮暗有关四、仪器的维护1.阅读说明书,按要求操作2.搬运仪器防止强烈振动3.避免在强磁场、灰尘多、电源波动大、有强烈振动及温度过高或过低的场合4.防雨、雪、水、机油进入仪器内部(新款仪器坏过、下雨)5.电源(充放电)、电源线不要弯折,插头要抓壳体6.旋钮不宜过猛7.使用后清洁8.潮湿季节,定期通电9.出现故障,关闭电源,请人维修第二节超声波测厚仪原理δ=1/2ct(脉冲式)使用:调整、测厚(特殊要求)第三节超声波探头一、压电效应某些晶体材料在交变拉压应力作用下,产生交变电场的效应称为正压电效应。

反之,在交变电场的作用下,藏身伸缩变形的效应称为逆压电效应。

超声波探伤教材

超声波探伤教材
4)三者关系:
C=λf或λ=C/f
由上式可知,波长与波速成正比,与频率成反比。当频率一定时,波速愈大,波长就愈长;当波速一定时,频率愈低,波长就愈长。
三、次声波、声波和超声波
1、次声、声波和超声波的划分
相同点:次声波、声波和超声波都是在弹性介质中传播的机械波,在同一介质中的传播速度相同。
区分点:频率
由以上三式可知:
(1)固体介质中的声速与介质的密度和弹性横量等有关,不同的介质,声速不同;介质的弹性模量愈大,密度愈小,则声速愈大。
(2)声速还与波的类型有关,在同一固体介质中、纵波、横波和表面波的声速各不相同,并且相互之间有以下关系:CL>CS>CR
这表明,在同一种固体材料中,纵波声速大于横波声速,横波声速又大于表面波声速。
新课内容
第二节 波的类型
一、据质点的振动方向分类
根据波动传播时介质质点的振动方向相对于波的传播方向的不同,可将波动分为纵波、横波、表面波和板波等。
1、纵波L(压缩波,疏密波)
1)定义:介质中质点的振动方向与波的传播方向互相平行的波。
2)特点:当介质质点受到交变拉压应力作用时,质点之间产生相应的伸缩形变,从而形成纵波。这时介质质点疏密相间,故纵波又称为压缩波或疏密波。
3)传播介质:固体,液体,气体介质
2、横波S(T)(切变波)
1)介质中质点的振动方向与波的传播方向互相垂直的波。
2)特点:当介质质点受到交变的剪切应力作用时,产生切变形变,从而形成横波。
3)传播介质:固体介质
3、表面波R(瑞利)
1)定义:当介质表面受到交变应力作用对,产生沿介质表面传播的波。
2)特点:表面波在介质表面传播时,介质表面质点作椭圆运动,椭圆长轴垂直于波的传播方向,短轴平行于波的传播方向。椭圆运动可视为纵向振动与横向振动的合成,即纵波与横波的合成。表面波的能量随传播深度增加而迅速减弱。当传播深度超过两倍波长时,质点的振幅就已经很小了。因此,一般认为,表面波探伤只能发现距工件表面两倍波长深度内的缺陷。

超声波探伤讲义(内部培训资料)

超声波探伤讲义(内部培训资料)

超声波探伤讲义(内部培训资料)超声波探伤讲义(内部培训资料)一、概述超声波探伤是一种常用的非破坏性检测技术,广泛应用于工业领域。

本讲义将介绍超声波探伤的原理、设备、操作流程以及常见的应用场景。

二、原理超声波探伤利用材料中超声波的传播和反射特性来检测物体内部的缺陷。

超声波在材料中传播时,遇到界面或缺陷时会发生折射和反射,通过接收和分析反射信号,可以判断缺陷的位置和性质。

三、设备1. 超声波探伤仪:包括发射装置、接收装置、控制系统等。

2. 控制台:用于调节探伤仪的参数和显示检测结果。

3. 传感器:将超声波信号传输到被检物体表面,并接收反射信号。

四、操作流程1. 准备工作:确认探伤区域、选择合适的传感器和探头,并对设备进行检查和校准。

2. 设置参数:根据被检材料的性质和缺陷类型,调节控制台上的参数,如频率、增益等。

3. 扫描检测:将传感器沿被检物体表面平稳移动,保持一定的检测速度,记录反射信号。

4. 数据分析:通过控制台或计算机软件,对采集到的数据进行分析和处理,判断是否存在缺陷。

5. 结果评估:根据分析结果,评估被检物体的质量并作出相应的判定。

五、应用场景1. 金属材料检测:超声波探伤被广泛应用于金属材料的检测,如焊接接头、铸件、锻件等。

2. 管道检测:可以通过超声波探伤检测管道内部的腐蚀、裂纹等缺陷,保证管道的安全运行。

3. 轴承检测:超声波探伤可以检测轴承内部的裂纹、磨损等问题,预防故障和损坏。

4. 建筑结构检测:超声波探伤可用于检测混凝土结构中的空洞、裂缝等缺陷,确保建筑物的安全性。

六、注意事项1. 操作人员需经过专业培训,并持证上岗。

2. 检测前需对设备进行检查和校准,确保其正常工作。

3. 根据被检材料的性质和缺陷类型,选择合适的探头和参数设置。

4. 操作过程中需保持传感器与被检物体表面的贴合度,并保持恒定的扫描速度。

5. 分析结果需结合其他检测方法或实际应用情况进行综合评估。

七、总结超声波探伤技术是一种重要的非破坏性检测方法,具有广泛的应用前景。

超声波探伤讲义(内部培训资料)

超声波探伤讲义(内部培训资料)

超声波探伤是利用超声波在物质中的传播、反射和衰减等物理特性来发现缺陷的一种探伤方法。

与射线探伤相比,超声波探伤具有灵敏度高、探测速度快、成本低、操作方便、探测厚度大、对人体和环境无害,特别对裂纹、未熔合等危险性缺陷探伤灵敏度高等优点。

但也存在缺陷评定不直观、定性定量与操作者的水平和经验有关、存档困难等缺点。

在探伤中,常与射线探伤配合使用,提高探伤结果的可靠性。

超声波检测主要用于探测试件的内部缺陷。

1、超声波:频率大于20KHZ的声波。

它是一种机械波。

探伤中常用的超声波频率为0.5~10MHz,其中2~2.5MHz被推荐为焊缝探伤的公称频率。

机械振动:物体沿着直线或曲线在某一平衡位置附近作往复周期性的运动,称为机械振动。

振幅A、周期T、频率f。

波动:振动的传播过程称为波动。

C=λ*f2、波的类型:(1)纵波L:振动方向与传播方向一致。

气、液、固体均可传播纵波。

(2)横波S:振动方向与传播方向垂直的波。

只能在固体介质中传播。

(3)表面波R:沿介质表面传播的波。

只能在固体表面传播。

(4)板波:在板厚与波长相当的薄板中传播的波。

只能在固体介质中传播。

3、超声波的传播速度(固体介质中)(1) E:弹性横量,ρ:密度,σ:泊松比,不同介质E、ρ不一样,波速也不一样。

(2)在同一介质中,纵波、横波和表面波的声速各不相同 CL >CS>C R钢:CL =5900m/s, CS=3230m/s,CR=3007m/s4、波的迭加、干涉、衍射⑴ 波的迭加原理当几列波在同一介质中传播时,如果在空间某处相遇,则相遇处质点的振动是各列波引起振动的合成,在任意时刻该质点的位移是各列波引起位移的矢量和。

几列波相遇后仍保持自己原有的频率、波长、振动方向等特性并按原来的传播方向继续前进,好象在各自的途中没有遇到其它波一样,这就是波的迭加原理,又称波的独立性原理。

⑵ 波的干涉两列频率相同,振动方向相同,位相相同或位相差恒定的波相遇时,介质中某些地方的振动互相加强,而另一些地方的振动互相减弱或完全抵消的现象叫做波的干涉现象。

《超声探伤方法讲义》课件

《超声探伤方法讲义》课件
《超声探伤方法讲义 》ppt课件
目 录
• 超声探伤基础 • 超声探伤设备与技术 • 超声探伤标准与规范 • 超声探伤案例分析 • 超声探伤的未来发展
01
超声探伤基础
超声波的特性
超声波的频率
超声波的波形
高于20kHz,是一种人耳无法听到的 声波。
有多种波形,如纵波、横波、表面波 等。
超声波的传播速度
超声探伤设备
超声波探头
用于产生和接收超声波,是超声探伤系统的核心部件。
超声波信号处理系统
用于处理和放大超声波信号,提取有用的信息。
显示和记录设备
用于显示和记录检测结果,便于分析和存档。
超声探伤技术
脉冲反射法
通过发射脉冲信号并检测反射回 来的信号,分析回波时间、幅度 等信息,判断缺陷的存在和大小

国外标准与规范
国际上,如美国、欧洲等国家和地区也制定了相应的超声探 伤标准和规范,如美国的ASTM系列标准和欧洲的EN系列标 准。这些标准和规范在国际上具有较高的认可度和影响力。
标准与规范的应用
实际操作中的应用
超声探伤的标准和规范在实际操作中具有重要的指导意义。检测人员需遵循相 关标准和规范,正确选用仪器、探头,设置合理的参数,以确保检测结果的准 确性和可靠性。
无损检测
在不影响材料性能的前提 下,对材料进行全面或局 部的检测,确保材料的质 量和可靠性。
03
超声探伤标准与规范
国内外标准与规范
国内标准与规范
我国在超声探伤领域制定了一系列的标准和规范,如《金属 材料超声探伤方法》、《压力容器无损检测》等。这些标准 和规范为国内的超声探伤工作提供了指导和依据。
国际交流与合作
加强国际交流与合作,借鉴国外先进的标准和规范,也是促进我国超声探伤领域 发展的重要途径。通过参与国际标准的制定和修订,可以提高我国在该领域的国 际地位和影响力。

《超声波探伤实验指导》(校本教材)

《超声波探伤实验指导》(校本教材)

《超声波探伤》实验指导书实验一超声波探伤仪的使用和性能测试一、实验目的1、了解A型超声波探伤仪的简单工作原理。

2、掌握A型超声波探伤仪的使用方法。

3、掌握水平线性、垂直线性和动态范围等主要性能的测试方法。

4、掌握盲区、分辨力和灵敏度余量等综合性能的测试方法。

二、超声波探伤仪的工作原理目前在实际探伤中,广泛应用的是A型脉冲反射式超声波探伤仪。

这种仪器荧光屏横坐标表示超声波在工件中传播时间(或传播距离),纵坐标表示反射回波波高。

根据荧光屏上缺陷波的位置和高度可以判定缺陷的位置和大小。

A型脉冲超声波探伤仪的型号规格较多,线路各异,但它们的基本电路大体相同。

下面以CTS-22型探伤仪为例说明A型脉冲超声波探伤仪的基本电路。

CTS-22型超声探伤仪主要由同步电路、发射电路、接收放大电路、时基电路(又称扫描电路)、显示电路和电源电路组成,如图1.1所示。

各电路的主要功能如下:(1)同步电路:产生一系列同步脉冲信号,用以控制整台仪器各电路按统一步调进行工作(2)发射电路:在同步脉冲信号触发下,产生高频电脉冲,用以激励探头发射超声波。

(3)接收放大电路:将探头接收到的信号放大检波后加于示波管垂直偏转板上。

(4)时基电路:在同步脉冲信号触发下,产生锯齿波加于示波管水平偏转板上形成时基线。

(5)显示电路:显示时基线与探伤波形。

(6)电源电路:供给仪器各部分所需要的电压。

在实际探伤过程中,各电路按统一步调协调工作。

当电路接通以后,同步电路产生同步脉冲信号,同时触发发射电路和时基电路。

发射电路被触发以后产生高频电脉冲作用于探头,通过探头中压电晶片的逆压电效应将电信号转换为声信号发射超声波。

超声波在传播过程中遇到异质界面(缺陷或底面)反射回来被探头接收,通过探头的正压电效压将声信号转换为电信号送至放大电路被放大检波,然后加到示波管垂直偏转板上,形成重迭的缺陷波F和底波B。

时基电路被触发以后产生锯齿波,加到示波管水平偏转板上,形成一条时基扫描亮线,并将缺陷波F和底波B按时间展开,从而获得波形。

超声波探伤培训教材

超声波探伤培训教材

超声波探伤1 序言1.1 超声波检测技术的发展简史尽管自古就对声学开展了研究,但是直到十九世纪中后期人类才知道存在自己听不到的高频声音(即超声波)。

有趣的是,超声波的具体应用与 1912 年泰坦尼克号邮轮的沉没这一著名海难直接相关,当时所提出的及时发现水下冰山和障碍物的要求刺激了超声波的应用,其中英国科学家提出的利用超声波的束射性可以发现远距离水下目标的思想虽然未能付诸实施,但是直接推动了超声检测的研究和应用。

一次世界大战后期,为了探测另一类更为危险的水下障碍物――潜水艇,超声波技术的实际应用再一次得到了有力推动,当时所发展的压电超声发生装置和石英晶体换能器等一直是超声检测的技术基础。

超声波应用于材料的无损检测领域起源于二十世纪二十年代末三十年代初,苏联和德国的科学家几乎同时报导了超声波在材料检测方面的应用,从此开创了一个全新的领域。

二十世纪四十年代的整个十年都是在二次世界大战中度过的,战争对于技术发展的迫切要求再次成为超声检测技术进步的推动力。

探测潜艇的超声波声纳得以广泛应用,但是其回波检测的思想对于短距离材料检测而言实在是超越了当时的电子技术水平,因此只能采用连续波透射法,这种探伤方法有很大的局限性,仅限于一些专业学院作研究用途或装置在少数几个冶金研究室内。

战争以后,随着对超声波探伤原理和特性的不断深入了解,特别是脉冲反射法的应用、纵波、横波、板波和表面波相继发现并成功应用,超声波在无损检测方面优点也得以充分体现,因此在二十世纪四十年代末超声波探伤开始被用于解决一些严格的质量问题,并在冶金制造业得到了越来越广的应用。

二十世纪六七十年代,随着半导体技术和计算机信息技术的进步,超声波探伤仪器和装备不断小型化,并出现了由电池供电的便携式超声波探伤仪器,同时新材料技术的发展也使新型的性能更为优越的压电材料得以广泛应用,相关的探伤方法、探伤标准和基准等也趋于成熟,因此超声波探伤在对产品质量有严格要求的航空航天、原子能工业、石油化工业、锅炉和压力容器行业、冶金制造业以及建筑业等得到了全面应用,成为最为重要和广泛应用的无损检测方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档