高二数学模块综合检测卷(一)
人教A版数学高二选修1-2模块综合检测1
模块综合检测(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知复数z 满足(z -1)i =1+i ,则z 等于( ) A .-2-i B .-2+i C .2-i D .2+i2.已知复数z 1=2+i ,z 2=1+3i ,则复数z =z 1z 2在复平面内所对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限3.用反证法证明:“a >b ”,应假设( ) A .a >b B .a <b C .a =b D .a ≤b4.由①正方形的对角线相等;②矩形的对角线相等;③正方形是矩形.写一个“三段论”形式的推理,则作为大前提、小前提和结论的分别为( )A .②①③B .③①②C .①②③D .②③①5.若P =a +a +7,Q =a +3+a +4,a ≥0,则P ,Q 的大小关系是( ) A .P >Q B .P =QC .P <QD .由a 的取值确定6.已知数组(x 1,y 1),(x 2,y 2),…,(x 10,y 10)满足线性回归方程y ^=b ^x +a ^,则“(x 0,y 0)满足线性回归方程y ^=b ^x +a ^”是“x 0=x 1+x 2+…+x 1010,y 0=y 1+y 2+…+y 1010”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件7.在如图所示的程序框图中,输入a =11π6,b =5π3,则输出c =( )A.33B. 3 C .1 D .0 8.观察数列1,2,2,3,3,3,4,4,4,4,…的特点,第100项为( ) A .10 B .14 C .13 D .1009.已知x >0,不等式x +1x ≥2,x +4x 2≥3,x +27x 3≥4,…,可推广为x +ax n ≥n +1,则a的值为( )A .2nB .n 2C .22(n-1)D .n n10.下面给出了关于复数的四种类比推理:①复数的加减法运算可以类比多项式的加减法运算法则;②由向量a 的性质|a |2=a 2类比得到复数z 的性质|z 2|=z 2;③方程ax 2+bx +c =0(a ,b ,c ∈R )有两个不同实数根的条件是b 2-4ac >0可以类比得到:方程az 2+bz +c =0(a ,b ,c ∈C )有两个不同复数根的条件是b 2-4ac >0;④由向量加法的几何意义可以类比得到复数加法的几何意义.其中类比得到的结论错误的是( ) A .①③ B .②④ C .②③ D .①④11.已知f (x +y )=f (x )+f (y )且f (1)=2,则f (1)+f (2)+…+f (n )不等于( ) A .f (1)+2f (1)+…+nf (1) B .f ⎣⎡⎦⎤n (n +1)2C .n (n +1)D .n (n +1)f (1)12.如图是某汽车维修公司的维修点环形分布图.公司在年初分配给A ,B ,C ,D 四个维修点某种配件各50件,在使用前发现需将A ,B ,C ,D 四个维修点的这批配件分别调整为40,45,54,61件,但调整只能在相邻维修点之间进行.那么要完成上述调整,最少的调动件次(n 件配件从一个维修点调整到相邻维修点的调动件次为n )为( )A .15B .16C .17D .18二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上) 13.已知复数z =m +i1+i (m ∈R ,i 是虚数单位)是纯虚数,则m 的值是________.14.已知x ,y 的取值如表:x 0 1 3 4 y2.24.34.86.7由表格中数据的散点图分析,y 与x 线性相关,且回归方程为y ^=0.95x +a ,则a =________.15.在平面上,我们如果用一条直线去截正方形的一个角,那么截下的一个直角三角形,按如图所标边长,由勾股定理有:c 2=a 2+b 2.设想正方形换成正方体,把截线换成如图的截面,这时从正方体上截下三条侧棱两两垂直的三棱锥O -LMN ,如果用S 1,S 2,S 3表示三个侧面面积,S 4表示截面面积,那么类比得到的结论是________.16.观察下列等式:⎝⎛⎭⎫sin π3-2+⎝⎛⎭⎫sin 2π3-2=43×1×2; ⎝⎛⎭⎫sin π5-2+⎝⎛⎭⎫sin 2π5-2+⎝⎛⎭⎫sin 3π5-2+⎝⎛⎭⎫sin 4π5-2=43×2×3; ⎝⎛⎭⎫sin π7-2+⎝⎛⎭⎫sin 2π7-2+⎝⎛⎭⎫sin 3π7-2+…+⎝⎛⎭⎫sin 6π7-2=43×3×4; ⎝⎛⎭⎫sin π9-2+⎝⎛⎭⎫sin 2π9-2+⎝⎛⎭⎫sin 3π9-2+…+⎝⎛⎭⎫sin 8π9-2=43×4×5; …… 照此规律,⎝⎛⎭⎫sin π2n +1-2+⎝⎛⎭⎫sin 2π2n +1-2+⎝⎛⎭⎫sin 3π2n +1-2+…+⎝⎛⎭⎫sin 2n π2n +1-2=________. 三、解答题(本大题共6小题,共70分,解答时应写出必要的文字说明证明过程或演算步骤)17.(本小题10分)已知复数z 满足|z |=2,z 2的虚部为2. (1)求复数z ;(2)设z ,z 2,z -z 2在复平方内对应的点分别为A ,B ,C ,求△ABC 的面积.18.(本小题12分)小流域综合治理可以有三个措施:工程措施、生物措施和农业技术措施.其中,工程措施包括打坝建库、平整土地、修基本农田和引水灌溉,其功能是贮水拦沙、改善生产条件和合理利用水土.生物措施包括栽种乔木、灌木和草木,其功能是蓄水保土和发展多种经营;农业技术措施包括深耕改土、科学施肥、选育良种,地膜覆盖和轮作套种,其功能是蓄水保土、提高肥力和充分利用光和热.用结构图把“小流域综合治理”的措施与功能表示出来.19.(本小题12分)为研究大气污染与人的呼吸系统疾病是否无关,对重污染地区和轻污染地区作跟踪调查,得如下数据:20.(本小题12分)求证:对于任意的正实数a ,b ,c ,31a +1b +1c ≤a +b +c 3(当且仅当a=b =c 时取等号).21.(本小题12分)已知f (x )=bx +1(ax +1)2⎝⎛⎭⎫x ≠-1a ,a >0,且f (1)=log 162,f (-2)=1. (1)求函数f (x )的表达式;(2)已知数列{x n }的项满足x n =[1-f (1)]·[1-f (2)]·…·[1-f (n )],试求x 1,x 2,x 3,x 4; (3)猜想{x n }的通项.22.(本小题12分)某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日至12月5日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如下资料:归方程,再对被选取的2组数据进行检验.(1)求选取的2组数据恰好是不相邻2天数据的概率;(2)若选取的是12月1日与12月5日的两组数据,请根据12月2日至12月4日的数据,求出y 关于x 的线性回归方程y ^=b ^x +a ^;(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?答案1.解析:选C 因为(z -1)i =1+i ,所以z =1+ii+1=2-i.2.解析:选D 复数z =z 1z 2=2+i 1+3i =(2+i )(1-3i )(1+3i )(1-3i )=12-12i ,z 对应的点的坐标为⎝⎛⎭⎫12,-12位于第四象限.3.解析:选D 因为“a >b ”的反面就是“a <b 或a =b ”,所以选D. 4.解析:选D 由“三段论”的推理形式可知D 正确. 5.解析:选C P 2=2a +7+2a 2+7a , Q 2=2a +7+2a 2+7a +12, 由于a 2+7a <a 2+7a +12, 所以2a 2+7a <2a 2+7a +12, 从而P 2<Q 2,即P <Q .6.解析:选B 由题可知若x 0=x ,y 0=y ,由回归直线的性质可知(x 0,y 0)满足回归方程y ^=b ^x +a ^,但满足回归方程y ^=b ^x +a ^的除(x ,y )外,可能还有其他样本点.7.解析:选A 由程序框图知,当输入a =11π6,b =5π3时,tan a =-33,tan b =-3,则tan a >tan b .故输出c =|tan a |=33. 8.解析:选B 由于1有1个,2有2个,3有3个,…,则13有13个,所以1~13的总个数为13(1+13)2=91,故第100个数为14.9.解析:选D 由归纳推理,知a =n n .10.解析:选C 因为复数z 中,|z |2为实数,z 2不一定为实数,所以|z |2≠z 2,故②错;当方程az 2+bz +c =0(a ,b ,c ∈C )有两个不同复数根时,应设出复数根的表达式,利用复数相等的条件列关系式,故③错.11.解析:选D 由f (x +y )=f (x )+f (y )且f (1)=2,知f (2)=f (1)+f (1)=2f (1),f (3)=f (2)+f (1)=3f (1),…,f (n )=nf (1),∴f (1)+f (2)+…+f (n )=(1+2+…+n )f (1)=n (n +1)2f (1)=n (n +1).12.解析:选B 法一:若AB 之间不相互调动,则A 调出10件给D ,B 调出5件给C ,C 再调出1件给D ,即可满足调动要求,此时共调动的件次n =10+5+1=16;若AB 之间相互调动,则B 调动4件给C ,调动1件给A ,A 调动11件给D ,此时共调动的件次n =4+1+11=16.所以最少调动的件次为16,故应选B.法二:设A 调动x 件给D (0≤x ≤10),则调动了(10-x )件给B ,从B 调动了5+10-x =(15-x )件给C ,C 调动出了15-x -4=(11-x )件给D ,由此满足调动需求,此时调动件次n =x +(10-x )+(15-x )+(11-x )=36-2x ,当且仅当x =10时,n 取得最小值16.13.解析:z = m +i 1+i =(m +i )(1-i )2=m +12+(1-m )i2,∴m +12=0,且1-m2≠0. ∴m =-1. 答案:-114.解析:因为(x ,y )必在直线y ^=0.95x +a 上, 又x =0+1+3+44=2,y =2.2+4.3+4.8+6.74=92,所以92=0.95×2+a ,所以a =2.6.答案:2.6 15.解析:将侧面面积类比为直角三角形的直角边,截面面积类比为直角三角形的斜边,可得S 24=S 21+S 22+S 23.答案:S 24=S 21+S 22+S 2316.解析:通过观察已给出等式的特点,可知等式右边的43是个固定数,43后面第一个数是等式左边最后一个数括号内角度值分子中π的系数的一半,43后面第二个数是第一个数的下一个自然数,所以,所求结果为43×n ×(n +1),即43n (n +1).答案:43n (n +1)17.解:(1)设z =a +b i(a ,b ∈R ),由已知条件得:a 2+b 2=2,z 2=a 2-b 2+2abi , 所以2ab =2.所以a =b =1或a =b =-1, 即z =-1+i 或z =-1-i .(2)当z =1+i 时,z 2=(1+i )=2i ,z -z 2-1-i ,所以点A (1,1),B (0,2),C (1,-1),所以S △ABC =12|AC |×1=12×2×1=1;当z =-1-i 时,z 2=(-1-i )2=2i ,z -z 2=-1-3i. 所以点A (-1,-1),B (0,2),C (-1,-3), 所以S △ABC =12|AC |×1=12×2×1=1.即△ABC 的面积为1. 18.解:19.解:假设H 0:大气污染与人的呼吸系统疾病无关. 由公式得k =3 000×(103×1 487-1 397×13)2116×2 884×1 500×1 500≈72.636.因为72.636>10.828,所以拒绝H 0,即我们在犯错误的概率不超过0.001的前提下认为大气污染与人的呼吸系统疾病有关. 20.证明:对于任意正实数a ,b ,c , 要证31a +1b +1c ≤a +b +c 3成立,只需证9≤(a +b +c )⎝⎛⎭⎫1a +1b +1c , 即证9≤3+a b +a c +b a +b c +c a +c b ,即证6≤⎝⎛⎭⎫a b +b a +⎝⎛⎭⎫a c +c a +⎝⎛⎭⎫b c +c b (*) 因为对于任意正实数a ,b ,c ,有a b +b a ≥2a b ·ba=2, 同理a c +c a ≥2,b c +cb≥2,所以不等式(*)成立,且要使(*)的等号成立必须b a =a b 且c a =a c 且b c =c b .即当且仅当a =b =c 时等号成立.21.解:(1)把f (1)=log 162=14,f (-2)=1代入f (x )=bx +1(ax +1)2,得⎩⎪⎨⎪⎧b +1(a +1)2=14,-2b +1(1-2a )2=1,整理,得⎩⎪⎨⎪⎧4b +4=a 2+2a +1,-2b +1=4a 2-4a +1,解得⎩⎪⎨⎪⎧a =1,b =0,所以f (x )=1(x +1)2(x ≠-1).(2)x 1=1-f (1)=1-14=34,x 2=34×⎝⎛⎭⎫1-19=23, x 3=23×⎝⎛⎭⎫1-116=58, x 4=58×⎝⎛⎭⎫1-125=35, (3)由(2),得x 1=34,x 2=23,x 3=58,x 4=35,可变形为34,46,58,610,…,从而可归纳出{x n }的通项x n =n +22(n +1).22.解:(1)设事件A 表示“选取的2组数据恰好是不相邻2天的数据”,则A 表示“选取的数据恰好是相邻2天的数据”.基本事件总数为10,事件A 包含的基本事件数为4. 所以P (A )=410=25,所以P (A )=1-P (A )=35.(2)x =12,y =27,∑i =13x i y i =977,∑i =13x 2i =434,所以b ^=∑i =13x i y i -3x -y-∑i =13x 2i -3x -2=977-3×12×27434-3×122=2.5,a ^=y -b ^x -=27-2.5×12=-3, 所以y ^=2.5x -3.(3)由(2)知:当x =10时,y ^=22,误差不超过2颗; 当x =8时,y ^=17,误差不超过2颗. 故所求得的线性回归方程是可靠的.。
2016-2017学年高二数学苏教版选修1-1模块综合测评1
正确.
【答案】 ②⑤ 3.(2016·常州高二检测)已知函数 y=f(x)的图象在点(1,f(1))处的切线方程是 x-2y+1=0,则 f(1)+2f′(1)的值是________.
【导学号:24830095】
【解析】 ∵函数 y=f(x)的图象在点(1,f(1))处的切线方程是
2
1
x-2y+1=0,
因为 k=tan a,所以 1+k2=1+tan2α=sin2α.
2p 所以 AB=sin2α,当 a=90°时,即 AB 垂直于 x 轴时,AB 取得最小值,最
小值是 AB=2p.
【答案】 2p 14.(2016·芜湖高二检测)定义在 R 上的函数 f(x)满足:f′(x)>1-f(x),f(0) =6,f′(x)是 f(x)的导函数,则不等式 exf(x)>ex+5(其中 e 为自然对数的底数) 的解集为________. 【解析】 设 g(x)=exf(x)-ex,(x∈R),
1 【解析】 由a<1 得:当 a>0 时,有 1<a,即 a>1;当 a<0 时,不等
式恒成立.
1
1
所以a<1⇔a>1 或 a<0,从而 a>1 是a<1 的充分不必要条件.
【答案】 充分不必要 x2 y2
6.已知双曲线a2-b2=1(a>0,b>0)的一条渐近线方程是 y= 3x,它的一 个焦点与抛物线 y2=16x 的焦点相同.则双曲线的方程为________.
x2 y2 16.(本小题满分 14 分)过椭圆16+ 4 =1 内一点 M(2,1)引一条弦,使弦被 M 点平分,求这条弦所在直线的方程.
【导学号:24830096】 【解】 设直线与椭圆的交点为 A(x1,y1)、B(x2,y2),∵M(2,1)为 AB 的中 点 ∴x1+x2=4,y1+y2=2,∵又 A、B 两点在椭圆上,则 x21+4y21=16,x2+4y2=16, 两式相减得(x21-x2)+4(y21-y2)=0, 于是(x1+x2)(x1-x2)+4(y1+y2)(y1-y2)=0,
福建省福州第一中学2024-2025学年高二上学期第一学段模块考试数学试卷
福建省福州第一中学2024-2025学年高二上学期第一学段模块考试数学试卷一、单选题1.若直线20x ay +-=与直线210a x y ++=垂直.则a =()A .1B .1-C .0D .0或1-2.已知向量()2,1,3a =- ,()1,4,2b =-- ,()1,3,c λ= ,若a ,b ,c 共面,则λ=()A .4B .2C .3D .13.直线1:3470l x y ++=,2:210l x y -+=,经过1l 与2l 的交点,且与1l 垂直的直线的方程是()A .4350x y --=B .4310x y -+=C .4310x y ++=D .4370x y ++=4.已知椭圆221113x y m m +=--的焦点在y 轴上,且焦距为4,则m =()A .5B .6C .9D .105.棱长均为2的正三棱柱111ABC A B C -中,顶点1C 到平面1B AC 的距离是()A B .37C D .476.若实数x ,y 满足22410x y x +-+=,则|2|x ++的取值范围是()A .[]2,4B .[]2,7C .[]1,7D .[]2,47.已知(2,0),(2,0),A B P -是圆22(6)9x y +-=上一点,G 是PAB 的重心,则22||||GA GB +的取值范围是()A .[]5,7B .[]5,13C .[]10,14D .[]10,268.三棱锥A BCD -中,底面是边长为2的正三角形,,AC BC AD BD ⊥⊥,直线AC 与BD 所成角为45︒,则三棱锥A BCD -外接球表面积为()A .6πB .19π3C .8πD .25π3二、多选题9.已知正方体1111ABCD A B C D -,则()A .直线1BC 与1DA 所成的角为90︒B .直线1BC 与1CA 所成的角为90︒C .直线1BC 与平面11BBD D 所成的角为45︒D .直线1BC 与平面ABCD 所成的角为45︒10.如图所示,“嫦娥五号”月球探测器飞行到月球附近时,首先在以月球球心F 为圆心的圆形轨道I 上绕月球飞行,然后在P 点处变轨进入以F 为一个焦点的椭圆轨道II 绕月球飞行,最后在Q 点处变轨进入以F 为圆心的圆形轨道III 绕月球飞行,设圆形轨道I 的半径为R ,圆形轨道III 的半径为r ,则()A .轨道II 的长轴长为R r +B .轨道II 的短轴长为R r-C .若R 不变,r 越小,轨道II 的短轴长越大D .若r 不变,R 越大,轨道II 的离心率越大11.关于曲线C 1+=,下列说法正确的是()A .曲线C 关于直线y x =对称B .曲线C 上的点到11,22⎛⎫ ⎪⎝⎭的距离与它到直线y x =-的距离相等C .曲线C 上的点到原点距离的取值范围是2⎤⎢⎥⎣⎦D .曲线C 和坐标轴围成的图形的面积小于π14-三、填空题12.直三棱柱111ABC A B C -中,1,,AB AC AA AB AC D ==⊥是1BB 中点,则1AC 与CD 所成角的余弦值为.13.直线60x y ++=与x 轴,y 轴分别交于M ,N 两点,圆22:20C x y x m +-+=,若对圆C 上任意一点,P MPN ∠都是锐角,则实数m 的取值范围是.四、单选题14.矩形OABC 中,O 为坐标原点,()8,6B ,光线从OA 边上一点()04,0P 发出,到AB 边上的点1P ,被AB 反射到BC 上的点2P ,再被BC 反射到OC 上的点3P ,最后被OC 反射到x 轴上的点()4,0P t ,若()4,8t ∈,则01P P 与x 轴夹角的正切值的取值范围是.五、解答题15.平面直角坐标系Oxy 中,射线1:2(0)l y x x =≥,2:2(0)l y x x =-≤,过(0,1)M 作直线l 分别与12l l 、交于A ,B 两点.(1)若2AM MB = ,求直线l 的方程;(2)求AOB V 面积的最小值.16.如图,四边形ABCD 为菱形,四边形BDEF 为正方形,平面ABCD ⊥平面BDEF ,且60DAB ︒∠=.(1)求证://AE 平面BCF ;(2)求二面角A EF C --的余弦值.17.如图,为保护河上古桥OA ,规划建一座新桥BC ,同时设立一个圆形保护区.规划要求:新桥BC 与河岸AB 垂直;保护区的边界为圆心M 在线段OA 上并与BC 相切的圆,且古桥两端O 和A 到该圆上任意一点的距离均不少于160m.经测量,点A 位于点O 正北方向120m 处,点C 位于点O 正东方向340m 处(OC 为河岸),4tan 3∠=BCO .(1)求新桥BC 的长;(2)当OM 多长时,圆形保护区的面积最大?18.如图,在四棱锥P ABCD -中,四边形ABCD 是梯形,其中//,60AB CD BCD ︒∠=,224AB BC CD ===,平面PBD ⊥平面ABCD .(1)证明:AD PD ⊥;(2)若,AB PD M ⊥是棱PC 上的动点,且PC 与平面ABCD(i )求二面角B PA D --的余弦值;(ii )当直线BM 与平面PAD 所成角最大时,求CM 长.19.在空间直角坐标系Oxyz 中三元方程可表示曲面.例如,方程2221x y z ++=表以O 为球心,1为半径的球面.已知曲面Γ的方程为222312240,x y z +-+-=Γ与坐标平面Oxy 的交线为C ,平面α过点A ,且法向量为n = .(1)求平面α的方程;(2)若,P Q 在曲线C 上,求|PQ |的最大值,并说明理由.(3)空间中是否存在定点M ,使得C 上任意一点到M 的距离与到平面α的距离之比为定值?若存在,求出所有满足条件的点M 的坐标,若不存在,请说明理由.。
高二数学文科综合练习一
高二模块测试数学试题(文科)一、选择题:(本题共10个小题,每小题5分,共50分)1.设zz i i z 2),(12+-=则为虚数单位= (A )i --1 (B )i +-1 (C )i -1 (D )i +1 2.数列2,5,11,20,,47,x …中的x 等于(A )28 (B )32 (C )33 (D )273. 若复数12z i=+,则z 在复平面内对应的点位于 ( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限4. 若()sin cos f x x α=-,则'()f α等于 (A )sin α(B )cos α (C ) sin cos αα+ (D )2sin α5.对相关系数r ,下列说法正确的是 ( )A .||r 越大,线性相关程度越大B .||r 越小,线性相关程度越大C .||r 越大,线性相关程度越小,||r 越接近0,线性相关程度越大D .||1r ≤且||r 越接近1,线性相关程度越大,||r 越接近0,线性相关程度越小6. ()f x 与()g x 是定义在R 上的两个可导函数,若()f x ,()g x 满足''()()f x g x =, 则()f x 与()g x 满足(A) ()f x =()g x (B ) ()f x -()g x 为常数函数 (C) ()f x =()0g x =( D) ()f x +()g x 为常数函数7. 曲线x x y 43-=在点(1,3)- 处的切线倾斜角为(A )4π (B )3π (C )43π (D )2π8. 若幂函数)(x f 的图象经过点)21,41(A ,则它在A 点处的切线方程为(A ) 0144=++y x (B )0144=+-y x(C )02=-y x (D )02=+y x9. 若函数2()f x x bx c =++的图象的顶点在第四象限,则函数'()f x 的图象可能是10. 设)(x f 是定义在R 上的奇函数,2)2(=f ,当0>x 时,有)()(x f x x f >恒成立,则不等式x x f >)(的解集是 (A ) (2-,0)∪(2,∞+) (B ) (2-,0)∪(0,2)(C ) (∞-,2-)∪(2,∞+) (D ) (∞-,2-)∪(0,2)二、填空题:(本题共4个小题,每小题4分,共16分)11. 若(2)a i i b i -=-,其中a 、b R ∈,i 是虚数单位,则22a b +=_________。
高二数学选修1-2模块测试题一
高二数学选修1-2模块测试题一参考公式或数据:1122211()()ˆ()ˆˆnni i i ii i n ni i i i x x y y x y nx yb x x x nxay bx ====⎧---⎪⎪==⎪⎨--⎪⎪=-⎪⎩∑∑∑∑一、选择题:每题4分,共64分。
1、由数列1,10,100,1000,……猜测该数列的第n 项可能是( )。
A .10n ;B .10n-1;C .10n+1;D .11n. 2.数列2,5,11,20,,47,x …中的x 等于 ( )A .28B .32C .33D .273. 设1234,23z i z i =-=-+,则12z z -在复平面内对应的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限 4.复数534+i的共轭复数是( ) A .34-i B .3545+i C .34+iD .3545-i 5.0=a 是复数)(R b a bi a z ∈+=,为纯虚数的( )A .充分但不必要条件B .必要但不充分条件C .充要条件D .既不充分也不必要条件 6则A .(2,2) B .(1,2) C .(1.5,0)D .(1.5,4)7.用反证法证明命题:“三角形的内角中至少有一个不大于60度”时,反设正确的是 ( ) A .假设三内角都不大于60度; B .假设三内角都大于60度; C .假设三内角至多有一个大于60度; D .假设三内角至多有两个大于60度 8.下列表述正确的是( )①归纳推理是由部分到整体的推理; ②归纳推理是由一般到一般的推理; ③演绎推理是由一般到特殊的推理; ④类比推理是由特殊到一般的推理; ⑤类比推理是由特殊到特殊的推理。
A .①②③;B .②③④;C .②④⑤;D .①③⑤。
9.下面几种推理是类比推理的是( )A..两条直线平行,同旁内角互补,如果∠A 和∠B 是两条平行直线的同旁内角,则∠A +∠B =1800B .由平面三角形的性质,推测空间四边形的性质C .某校高二级有20个班,1班有51位团员,2班有53位团员,3班有52位团员,由此可以推测各班都超过50位团员.D .一切偶数都能被2整除,1002是偶数,所以1002能被2整除.10、若大前提是:任何实数的平方都大于0,小前提是:a R ∈,结论是:20a >,那么这个演绎推理出错在:A 、大前提B 、小前提C 、推理过程D 、没有出错11.已知数列1121231234,,,,2334445555++++++ 则这个数列的第100项为: A 、49 B 、49.5 C 、50 D 、50.5 12.黑白两种颜色的正六形地面砖块按如图的规律拼成若干个图案,则第五个图案中有白色地面砖( )块.A.21B.22C.20D.2313.根据右边程序框图,当输入10时,输出的是( ) A .12 B .19 C .14.1 D .-3014、若(m 2-m )+(m 2-3m +2)i 是纯虚数,则实数m 的值为( ) (A )1 (B )1或2 (C )0 (D )-1, 1, 2 二、填空题:每题4分,共24分。
高中数学人教a版高二选修1-2模块综合测评1
模块综合测评(一)(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(2015·湖北高考)i为虚数单位,i607的共轭复数....为()A.i B.-iC.1D.-1【解析】因为i607=i4×151+3=i3=-i,所以其共轭复数为i,故选A.【答案】 A2.根据二分法求方程x2-2=0的根得到的程序框图可称为()A.工序流程图B.程序流程图C.知识结构图D.组织结构图【解析】由于该框图是动态的且可以通过计算机来完成,故该程序框图称为程序流程图.【答案】 B3.利用独立性检测来考查两个分类变量X,Y是否有关系,当随机变量K2的值()【导学号:19220070】A.越大,“X与Y有关系”成立的可能性越大B.越大,“X与Y有关系”成立的可能性越小C.越小,“X与Y有关系”成立的可能性越大D.与“X与Y有关系”成立的可能性无关【解析】由K2的意义可知,K2越大,说明X与Y有关系的可能性越大.【答案】 A4.(2016·安庆高二检测)用反证法证明命题“a,b∈N,如果ab可被5整除”,那么a,b 至少有一个能被5整除.则假设的内容是()A.a,b都能被5整除B.a,b都不能被5整除C.a不能被5整除D.a,b有一个不能被5整除【解析】“至少有一个”的否定为“一个也没有”,故应假设“a,b都不能被5整除”.【答案】 B5.有一段演绎推理是这样的“有些有理数是真分数,整数是有理数,则整数是真分数”结论显然是错误的,是因为()A.大前提错误B.小前提错误C.推理形式错误D.非以上错误【解析】一般的演绎推理是三段论推理:大前提——已知的一般原理;小前提——所研究的特殊情况;结论——根据一般原理对特殊情况作出的判断.此题的推理不符合上述特征,故选C.【答案】 C6.(2015·安徽高考)设i是虚数单位,则复数2i1-i在复平面内所对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【解析】2i1-i=2i(1+i)(1-i)(1+i)=2(i-1)2=-1+i,由复数的几何意义知-1+i在复平面内的对应点为(-1,1),该点位于第二象限,故选B.【答案】 B7.(2016·深圳高二检测)在两个变量的回归分析中,作散点图是为了()A.直接求出回归直线方程B.直接求出回归方程C.根据经验选定回归方程的类型D.估计回归方程的参数【解析】散点图的作用在于判断两个变量更近似于什么样的函数关系,便于选择合适的函数模型.【答案】 C8.给出下面类比推理:①“若2a<2b,则a<b”类比推出“若a2<b2,则a<b”;②“(a+b)c=ac+bc(c≠0)”类比推出“a+bc=ac+bc(c≠0)”;③“a,b∈R,若a-b=0,则a=b”类比推出“a,b∈C,若a-b=0,则a=b”;④“a,b∈R,若a-b>0,则a>b”类比推出“a,b∈C,若a-b>0,则a>b(C为复数集)”.其中结论正确的个数为()A .1B .2C .3D .4【解析】 ①显然是错误的;因为复数不能比较大小,所以④错误,②③正确,故选B. 【答案】 B9.(2015·全国卷Ⅰ)执行如图1的程序框图,如果输入的t =0.01,则输出的n =( )图1A .5B .6C .7D .8【解析】 运行第一次:S =1-12=12=0.5,m =0.25,n =1,S >0.01; 运行第二次:S =0.5-0.25=0.25,m =0.125,n =2,S >0.01; 运行第三次:S =0.25-0.125=0.125,m =0.062 5,n =3,S >0.01; 运行第四次:S =0.125-0.062 5=0.062 5,m =0.031 25,n =4,S >0.01; 运行第五次:S =0.031 25,m =0.015 625,n =5,S >0.01; 运行第六次:S =0.015 625,m =0.007 812 5,n =6,S >0.01;运行第七次:S =0.007 812 5,m =0.003 906 25,n =7,S <0.01. 输出n =7.故选C. 【答案】 C10.已知a 1=3,a 2=6,且a n +2=a n +1-a n ,则a 33为( ) A .3 B .-3 C .6D .-6【解析】 a 1=3,a 2=6,a 3=a 2-a 1=3,a 4=a 3-a 2=-3,a 5=a 4-a 3=-6,a 6=a 5-a 4=-3,a 7=a 6-a 5=3,a 8=a 7-a 6=6,…观察可知{a n }是周期为6的周期数列,故a 33=a 3=3. 【答案】 A11.(2016·青岛高二检测)下列推理合理的是( ) A .f (x )是增函数,则f ′(x )>0B .因为a >b (a ,b ∈R ),则a +2i >b +2i(i 是虚数单位)C .α,β是锐角△ABC 的两个内角,则sin α>cos βD .A 是三角形ABC 的内角,若cos A >0,则此三角形为锐角三角形【解析】 A 不正确,若f (x )是增函数,则f ′(x )≥0;B 不正确,复数不能比较大小;C 正确,∵α+β>π2,∴α>π2-β,∴sin α>cos β;D 不正确,只有cos A >0,cos B >0,cos C >0,才能说明此三角形为锐角三角形.【答案】 C12.有人收集了春节期间平均气温x 与某取暖商品销售额y 的有关数据如下表:根据以上数据,用线性回归的方法,求得销售额y 与平均气温x 之间线性回归方程y ^=b ^x +a ^的系数b ^=-2.4,则预测平均气温为-8℃时该商品销售额为( )A .34.6万元B .35.6万元C .36.6万元D .37.6万元【解析】 x =-2-3-5-64=-4,y =20+23+27+304=25,所以这组数据的样本中心点是(-4,25). 因为b ^=-2.4,把样本中心点代入线性回归方程得a ^=15.4,所以线性回归方程为y ^=-2.4x +15.4. 当x =-8时,y =34.6.故选A. 【答案】 A二、填空题(本大题共4小题,每小题5分,共20分.将答案填在题中的横线上.) 13.已知复数z =m 2(1+i)-m (m +i)(m ∈R ),若z 是实数,则m 的值为________.【导学号:19220071】【解析】 z =m 2+m 2i -m 2-m i =(m 2-m )i , ∴m 2-m =0, ∴m =0或1. 【答案】 0或114.某电视台在一次对收看文艺节目和新闻节目观众的抽样调查中,随机抽取了100名电视观众,相关的数据如下表所示:“否”).【解析】 因为在20至40岁的58名观众中有18名观众收看新闻节目,而大于40岁的42名观众中有27名观众收看新闻节目,即b a +b =1858,dc +d=2742,两者相差较大,所以经直观分析,收看新闻节目的观众与年龄是有关的.【答案】 是15.(2016·天津一中检测)观察下列等式:13+23=32,13+23+33=62,13+23+33+43=102,…,根据上述规律,第五个等式为________.【解析】 已知等式可改写为:13+23=(1+2)2;13+23+33=(1+2+3)2;13+23+33+43=(1+2+3+4)2,由此可得第五个等式为13+23+33+43+53+63=(1+2+3+4+5+6)2=212.【答案】13+23+33+43+53+63=21216.(2016·江西吉安高二检测)已知等差数列{a n}中,有a11+a12+…+a2010=a1+a2+…+a3030,则在等比数列{b n}中,会有类似的结论________.【解析】由等比数列的性质可知,b1b30=b2b29=…=b11b20,∴10b11b12 (20)30b1b2 (30)【答案】10b11b12 (20)30b1b2…b30三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤.)17.(本小题满分10分)(2016·哈三中模拟)设z=(1-4i)(1+i)+2+4i3+4i,求|z|.【解】z=1+i-4i+4+2+4i3+4i=7+i3+4i,∴|z|=|7+i||3+4i|=525= 2.18.(本小题满分12分)我校学生会有如下部门:文娱部、体育部、宣传部、生活部、学习部.请画出学生会的组织结构图.【解】学生会的组织结构图如图.19.(本小题满分12分)给出如下列联表:(参考数据:P (K 2≥6.635)=0.010,P (K 2≥7.879)=0.005) 【解】 由列联表中数据可得 k =110×(20×50-10×30)230×80×50×60≈7.486.又P (K 2≥6.635)=0.010,所以在犯错误的概率不超过0.010的前提下,认为高血压与患心脏病有关系.20.(本小题满分12分)已知非零实数a ,b ,c 构成公差不为0的等差数列,求证:1a ,1b ,1c 不能构成等差数列.【导学号:19220072】【证明】 假设1a ,1b ,1c 能构成等差数列,则2b =1a +1c ,因此b (a +c )=2ac . 而由于a ,b ,c 构成等差数列,且公差d ≠0,可得2b =a +c , ∴(a +c )2=4ac ,即(a -c )2=0,于是得a =b =c , 这与a ,b ,c 构成公差不为0的等差数列矛盾. 故假设不成立,即1a ,1b ,1c 不能构成等差数列.21.(本小题满分12分)已知a 2+b 2=1,x 2+y 2=1,求证:ax +by ≤1(分别用综合法、分析法证明).【证明】 综合法:∵2ax ≤a 2+x 2,2by ≤b 2+y 2, ∴2(ax +by )≤(a 2+b 2)+(x 2+y 2). 又∵a 2+b 2=1,x 2+y 2=1, ∴2(ax +by )≤2,∴ax +by ≤1. 分析法:要证ax +by ≤1成立, 只要证1-(ax +by )≥0, 只要证2-2ax -2by ≥0, 又∵a 2+b 2=1,x 2+y 2=1,∴只要证a 2+b 2+x 2+y 2-2ax -2by ≥0, 即证(a -x )2+(b -y )2≥0,显然成立.22.(本小题满分12分)某班5名学生的数学和物理成绩如下表:(1)(2)求物理成绩y 对数学成绩x 的回归直线方程; (3)一名学生的数学成绩是96,试预测他的物理成绩. 附:回归直线的斜率和截距的最小二乘法估计公式分别为:b ^=∑i =1nx i y i -n x -y -∑i =1n x 2i -n x 2,a ^=y -b ^x -.【解】 (1)散点图如图,(2)x =15×(88+76+73+66+63)=73.2, y =15×(78+65+71+64+61)=67.8.∑i =15x i y i =88×78+76×65+73×71+66×64+63×61=25 054.∑i =15x 2i =882+762+732+662+632=27 174.所以b ^=∑i =15x i y i -5x -y -∑i =15x 2i -5x-2=25 054-5×73.2×67.827 174-5×73.22≈0.625.a ^=y -b ^x -≈67.8-0.625×73.2=22.05.所以y对x的回归直线方程是y^=0.625x+22.05.(3)x=96,则y^=0.625×96+22.05≈82,即可以预测他的物理成绩是82分.。
人教新课标版数学高二-选修1-2模块综合检测卷
数学·选修1-2(人教A版)模块综合检测卷(测试时间:120分钟评价分值:150分)一、选择题(本大题共10小题,每小题5分,共50分;在每小题给出的四个选项中,只有一项是符合题目要求的)1.对于自变量x和因变量y,当x取值一定时,y的取值带有一定的随机性,x,y间这种非确定的关系叫做()A.函数关系B.线形关系C.相关关系D.回归关系答案:C2.下列是关于出生男婴与女婴调查的2×2列联表,那么表中m,n的值分别是()A.58,60 B.答案:D3.△ABC三个顶点对应的复数分别是z1,z2,z3,若复数z满足|z-z1|=|z-z2|=|z-z3|,则z对应的点是△ABC的() A.内心B.重心C.垂心D.外心答案:D4.用反证法证明命题“若整系数方程ax2+bx+c=0(a≠0)有有理根,那么a,b,c中至少有一个偶数”时,下列假设正确的是() A.假设a,b,c都是偶数B.假设a,b,c都不是偶数C .假设a ,b ,c 至多有一个偶数D .假设a ,b ,c 至多有两个偶数 答案:B5.定义运算⎪⎪⎪⎪⎪⎪a b c d =ad -bc ,则函数f (x )=⎪⎪⎪⎪⎪⎪⎪⎪2cos x ,1,1,cos x 的图象的一条对称轴方程是( )A .x =π2B .x =π3C .x =π4D .x =π6解析:依题意得:f (x )=2cos 2x -1=cos 2x ,∴选A. 答案:A6.复数(a 2-a )+(|a -1|-1)i(a ∈R)不是纯虚数,则有( ) A .a ≠0 B .a ≠0且a ≠1 C .a ≠1 D .a ≠0且a ≠2 答案:C7.在“由于任何数的平方都是非负数,所以(2i)2≥0”这一推理中,产生错误的原因是( )A .推理的形式不符合三段论的要求B .大前提错误C .小前提错误D .推理的结果错误解析:大前提错误,应为“任何实数的平方都是非负数”.故选B.答案:B8.如图(1)、(2),它们都表示的是输出所有立方小于1 000的正整数的程序框图,那么应分别补充的条件为( )A.(1)n3≥1 000?(2)n3<1 000?B.(1)n3≤1 000?(2)n3≥1 000?C.(1)n3<1 000?(2)n3≥1 000?D.(1)n3<1 000?(2)n3<1 000?答案:C9.有一堆形状、大小相同的珠子,其中只有一粒重量比其他的轻,某同学经过思考,他说根据科学的算法,利用天平,三次肯定能找到这粒最轻的珠子,则这堆珠子最多有几粒()A.21 B.24 C. 27 D. 30答案:C10.如下面两图,已知命题:若矩形ABCD的对角线BD与边AB和BC所成角分别为α,β,则cos2α+cos2β=1.若把它推广到长方体ABCD-A1B1C1D1中,对角线BD1与棱AB,BB1,BC所成的角分别为α,β,γ,则相应的命题形式()A.cos2α+cos2β+cos2γ=1 B.sin2α+sin2β+sin2γ=1C.cos2α+cos2β+cos2γ=2 D.sin2α+sin2β+sin2γ=2答案:A二、填空题(本大题共4小题,每小题5分,共20分;将正确答案填在题中的横线上)11.设复数z=1+i,ω=z-2|z|-4,则ω=_______________.答案:-3-22+i12.数列{an}中,a1=2,an+1=an3an+1(n∈N*),依次计算a2,a3,a4,然后归纳、猜想an=_______________.答案:26n-513.为解决四个村庄用电问题,政府投资在已建电厂与四个村庄之间架设输电线路,现已知这四个村庄及电厂之间的距离如图(距离单位:km),则能把电力输送到这四个村庄的输电线路最短总长度应该是________.解析:要使电厂与四个村庄相连,则需四条线路,注意最短的四条线路能使电厂与四个村庄相连,∴4+5+5.5+6=20.5 km.答案:20.5 km14.蜜蜂被认为是自然界中最杰出的建筑师,单个蜂巢可以近似地看作是一个正六边形,右图一组蜂巢的截面图中,第一个图有1个蜂巢,第二个图有7个蜂巢,第三个图有19个蜂巢,按此规律,以f(n)表示第n幅图的蜂巢总数,则f(4)=______,f(n)=______.解析:f (4)=4+5+6+7+6+5+4=37,f (n )=n +(n +1)+…+(2n -1)+…+(n +1)+n =2×n [n +(2n -1)]2-(2n -1)=3n 2-3n +1.答案:37 3n 2-3n +1三、解答题(本大题共6小题,共80分;解答时应写出必要的文字说明、证明过程及演算步骤)15.(12分)计算(1)(1+2i )2+3(1-i )2+i ;(2)1-3i (3+i )2.解析:(1)(1+2i )2+3(1-i )2+i =-3+4i +3-3i 2+i =i 2+i =i (2-i )5=15+25i ; (2)1-3i(3+i )2=(3+i )(-i )(3+i )2=-i3+i=(-i )(3-i )4=-14-34i.16.(12分)某班主任对全班50名学生进行了作业量多少的调查,数据如下表:认为作业多认为作业不多 总计喜欢玩电脑游戏 18 9 27 不喜欢玩电脑游戏8 15 23 总计262450是否相关.解析:根据公式计算,K 2的观测值k =50(18×15-8×9)226×24×27×23≈5.059,∵5.059>5.024,∴约有97.5%的把握认为喜欢玩电脑游戏和认为作业量的多少有关.17.(14分)某人早晨起床后泡茶的过程可用流程图表示为:这种安排方式耗时多少分钟?还可以有其他的安排方法吗?试用流程图表示你准备采用的方式,并计算按你的方式耗时多少分钟.解析:按照题中流程图的安排,总耗时数为2+15+3+2+1=23(min).由于洗茶杯、取放茶叶可在烧开水时进行,故工作流程图也可以这样安排:18.(14分)如图,已知四棱锥P-ABCD中,底面ABCD是直角梯形,AB∥DC,∠ABC=45°,DC=1,AB=2,PA⊥平面ABCD,PA=1.求证:(1)AB∥平面PCD.(2)BC⊥平面PAC.证明:(1)∵AB∥DC,且AB⊄平面PCD,CD⊂平面PCD,∴AB∥平面PCD.(2)在直角梯形ABCD中,过C作CE⊥AB于点E(如图),则四边形ADCE为矩形.∴AE=DC=1,又AB=2,∴BE=1,在Rt△BEC中,∠ABC=45°,∴CE=BE=1,CB= 2.∴AD=CE=1,则AC=AD2+DC2= 2.∴AC2+BC2=AB2,∴BC⊥AC.又∵PA⊥平面ABCD.∴PA⊥BC.又∵PA∩AC=A,∴BC⊥平面PAC.19.(14分)在关于人体脂肪含量y(百分比)和年龄x(岁)关系的研究中,得到如下一组数据:年龄(x)232739414550脂肪含量(y)9.517.821.225.927.528.2(1)画出散点图,判断x与y是否具有相关关系;(2)通过计算可知b^=0.651 2,â=-2.737 9,请写出y对x的回归直线方程,并计算出23岁和50岁的残差.解析:(1)涉及两个变量,年龄与脂肪含量.因此选取年龄为自变量x,脂肪含量为因变量y.散点图如图所示,从图中可以看出x与y具有相关关系.(2)y对x的回归直线方程为y^=0.651 2x-2.737 9.当x=23 时,y^=12.239 7,y-y^=9.5-12.239 7=-2.739 7.当x =50 时,y ^=29.822 1,y -y ^=28.2-29.822 1=-1.622 1. 所以23岁和50岁的残差分别为-2.739 7和-1.622 1.20.(14分)设数列{}a n 的首项a 1=a ≠14,且a n +1=⎩⎪⎨⎪⎧ 12a n ,n 为偶数,a n +14,n 为奇数.记b n =a 2n -1-14,n =1,2,3,…. (1)求a 2,a 3,a 4,a 5;(2)判断数列{}b n 是否为等比数列,并证明你的判断.解析:(1)a 2=a 1+14=a +14,a 3=12a 2=12a +18, a 4=a 3+14=12a +38,a 5=12a 4=14a +316. (2)由(1)可得 b 1=a 1-14=a -14,b 2=a 3-14=12⎝ ⎛⎭⎪⎫a -14,b 3=a 5-14=14⎝ ⎛⎭⎪⎫a -14. 猜想:{}b n 是公比为12的等比数列. 证明如下:因为 b n +1=a 2n +1-14=12 a 2n -14=12⎝ ⎛⎭⎪⎫a 2n -1-14=12b n (n ∈N *),又 a ≠14, 所以 b 1=a -14≠0. 所以数列{}b n 是首项为a -14,公比为12的等比数列.。
高中数学 模块综合测试(一)(含解析)新人教A版高二选修1-1数学试题
选修1-1模块综合测试(一)(时间120分钟 满分150分)一、选择题(本大题共12小题,每小题5分,共60分) 1.若命题p :∀x∈R,2x 2+1>0,则¬p 是( ) A .∀x ∈R,2x 2+1≤0 B .∃x ∈R,2x 2+1>0 C .∃x ∈R,2x 2+1<0 D .∃x ∈R,2x 2+1≤0 解析:¬p :∃x ∈R,2x 2+1≤0. 答案:D2.不等式x -1x>0成立的一个充分不必要条件是( )A. -1<x <0或x >1B. x <-1或0<x <1C. x >-1D. x >1解析:本题主要考查充要条件的概念、简单的不等式的解法.画出直线y =x 与双曲线y =1x 的图象,两图象的交点为(1,1)、(-1,-1),依图知x -1x>0⇔-1<x <0或x >1 (*),显然x >1⇒(*);但(*)x >1,故选D.答案:D3.[2014·某某模拟]命题“若a >b ,则a +1>b ”的逆否命题是( ) A .若a +1≤b ,则a >b B .若a +1<b ,则a >b C .若a +1≤b ,则a ≤b D .若a +1<b ,则a <b解析:“若a >b ,则a +1>b ”的逆否命题为“若a +1≤b ,则a ≤b ”,故选C. 答案:C4.[2014·某某省日照一中模考]下列命题中,为真命题的是( ) A. ∀x ∈R ,x 2-x -1>0B. ∀α,β∈R ,sin(α+β)<sin α+sin βC. 函数y =2sin(x +π5)的图象的一条对称轴是x =45πD. 若“∃x 0∈R ,x 20-ax 0+1≤0”为假命题,则a 的取值X 围为(-2,2)解析:本题主要考查命题的判定及其相关知识的理解.因为x 2-x -1=(x -12)2-54,所以A 错误;当α=β=0时,有sin(α+β)=sin α+sin β,所以B 错误;当x =4π5时,y =0,故C 错误;因为“∃x 0∈R ,x 20-ax 0+1≤0”为假命题,所以“∀x ∈R ,x 2-ax +1>0”为真命题,即Δ<0,即a 2-4<0,解得-2<a <2,即a 的取值X 围为(-2,2).故选D.答案:D5.已知△ABC 的顶点B 、C 在椭圆x 23+y 2=1上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长是( )A .2 3B .6C .4 3D .12解析:设椭圆的另一焦点为F ,由椭圆的定义知 |BA |+|BF |=23,且|CF |+|AC |=23, 所以△ABC 的周长=|BA |+|BC |+|AC | =|BA |+|BF |+|CF |+|AC |=4 3. 答案:C6.过点(2,-2)与双曲线x 2-2y 2=2有公共渐近线的双曲线方程为( ) A.x 22-y 24=1 B.x 24-y 22=1 C.y 24-x 22=1 D. y 22-x 24=1解析:与双曲线x 22-y 2=1有公共渐近线方程的双曲线方程可设为x 22-y 2=λ,由过点(2,-2),可解得λ=-2. 所以所求的双曲线方程为y 22-x 24=1.答案:D7.若双曲线x 2a 2-y 2b2=1(a >0,b >0)的右支上到原点和右焦点距离相等的点有两个,则双曲线离心率的取值X 围是( )A .e > 2B .1<e < 2C .e >2D .1<e <2解析:由题意,以原点及右焦点为端点的线段的垂直平分线必与右支交于两个点,故c2>a ,∴c a>2.答案:C8.把一个周长为12 cm 的长方形围成一个圆柱,当圆柱的体积最大时,该圆柱的底面周长与高的比为( )A. 1∶πB. 2∶πC. 1∶2D. 2∶1解析:设圆柱高为x ,底面半径为r ,则r =6-x 2π,圆柱体积V =π(6-x 2π)2x =14π(x 3-12x 2+36x )(0<x <6),V ′=34π(x -2)(x -6). 当x =2时,V 最大.此时底面周长为6-x =4, (6-x )∶x =4∶2=2∶1. 答案:D9.设双曲线x 2a 2-y 2b2=1(a >0,b >0)的渐近线与抛物线y =x 2+1相切,则该双曲线的离心率等于( )A. 3 B .2 C. 5D. 6解析:双曲线x 2a 2-y 2b 2=1的渐近线方程为y =±b ax ,因为y =x 2+1与渐近线相切,故x2+1±bax =0只有一个实根,∴b 2a 2-4=0,∴c 2-a 2a 2=4, ∴c 2a2=5,∴e = 5. 答案:C10.[2014·某某五校联考]设函数f (x )=e x(sin x -cos x )(0≤x ≤2012π),则函数f (x )的各极小值之和为( )A. -e 2π1-e2012π1-e 2πB. -e 2π1-e1006π1-eπC. -e 2π1-e1006π1-e2πD. -e 2π1-e2010π1-e2π解析:f ′(x )=(e x)′(sin x -cos x )+e x(sin x -cos x )′=2e xsin x ,若f ′(x )<0,则x ∈(π+2k π,2π+2k π),k ∈Z ;若f ′(x )>0,则x ∈(2π+2k π,3π+2k π),k ∈Z .所以当x =2π+2k π,k ∈Z 时,f (x )取得极小值,其极小值为f (2π+2k π)=e2k π+2π[sin(2π+2k π)-cos(2π+2k π)]=e2k π+2π×(0-1)=-e2k π+2π,k ∈Z .因为0≤x ≤2012π,又在两个端点的函数值不是极小值,所以k ∈[0,1004],所以函数f (x )的各极小值构成以-e 2π为首项,以e 2π为公比的等比数列,共有1005项,故函数f (x )的各极小值之和为S 1005=-e 2π-e 4π-…-e2010π=e2π1-e2010π1-e2π.答案:D11.已知抛物线C :y 2=8x 的焦点为F ,准线与x 轴的交点为K ,点A 在C 上且|AK |=2|AF |,则△AFK 的面积为( )A .4B .8C .16D .32解析:∵抛物线C :y 2=8x 的焦点为F (2,0),准线为x =-2,∴K (-2,0). 设A (x 0,y 0),如下图所示,过点A 向准线作垂线,垂足为B ,则B (-2,y 0).∵|AK |=2|AF |,又|AF |=|AB |=x 0-(-2)=x 0+2, ∴由|BK |2=|AK |2-|AB |2,得y 20=(x 0+2)2, 即8x 0=(x 0+2)2,解得x 0=2,y 0=±4.∴△AFK 的面积为12|KF |·|y 0|=12×4×4=8,故选B.答案:B12.[2013·某某高考]如图,F 1、F 2是椭圆C 1:x 24+y 2=1与双曲线C 2的公共焦点,A 、B 分别是C 1、C 2在第二、四象限的公共点.若四边形AF 1BF 2为矩形,则C 2的离心率是( )A. 2B. 3C. 32D.62解析:本题考查椭圆、双曲线的定义和简单的几何性质.设双曲线的方程为x 2a 2-y 2b2=1(a >0,b >0) ①,点A 的坐标为(x 0,y 0).由题意a 2+b 2=3=c 2②,|OA |=|OF 1|=3,∴⎩⎪⎨⎪⎧x 20+y 20=3x 20+4y 20=4,解得x 20=83,y 20=13,又点A 在双曲线C 2上,代入①得,83b 2-13a 2=a 2b2③,联立②③解得a =2,所以e =c a =62,故选D. 答案:D二、填空题(本大题共4小题,每小题5分,共20分)13.函数y =13ax 3-12ax 2(a ≠0)在区间(0,1)上是增函数,则实数a 的取值X 围是________.解析:y ′=ax 2-ax =ax (x -1),∵x ∈(0,1),y ′>0,∴a <0. 答案:a <014.已知命题p :∃x ∈R ,x 2+2ax +a ≤0,若命题p 是假命题,则实数a 的取值X 围是__________.解析:p 是假命题,则¬p 为真命题,¬p 为:∀x ∈R ,x 2+2ax +a >0,所以有Δ=4a 2-4a <0,即0<a <1.答案:(0,1)15.[2014·某某质检]已知a ∈R ,若实数x ,y 满足y =-x 2+3ln x ,则(a -x )2+(a +2-y )2的最小值是________.解析:(a -x )2+(a +2-y )2≥x -a +a +2-y22=x +x 2-3ln x +222.设g (x )=x+x 2-3ln x (x >0),则g ′(x )=1+2x -3x=2x +3x -1x,易知g (x )在(0,1)上为减函数,在(1,+∞)上为增函数,故g (x )≥g (1)=2,(a -x )2+(a +2-y )2≥2+222=8.答案:816.[2013·某某省某某一中月考]F 1、F 2分别是双曲线x 216-y 29=1的左、右焦点,P 为双曲线右支上一点,I 是△PF 1F 2的内心,且S △IPF 2=S △IPF 1-λS △IF 1F 2,则λ=________.解析:本题主要考查双曲线定义及标准方程的应用.设△PF 1F 2内切圆的半径为r ,则S △IPF 2=S △IPF 1-λS △IF 1F 2⇒12×|PF 2|×r =12×|PF 1|×r -12λ×|F 1F 2|×r ⇒|PF 1|-|PF 2|=λ|F 1F 2|,根据双曲线的标准方程知2a =λ·2c ,∴λ=a c =45.答案:45三、解答题(本大题共6小题,共70分)17.(10分)已知全集U =R ,非空集合A ={x |x -2x -3<0},B ={x |(x -a )(x -a 2-2)<0}.命题p :x ∈A ,命题q :x ∈B .(1)当a =12时,p 是q 的什么条件?(2)若q 是p 的必要条件,某某数a 的取值X 围. 解:(1)A ={x |x -2x -3<0}={x |2<x <3}, 当a =12时,B ={x |12<x <94},故p 是q 的既不充分也不必要条件.(2)若q 是p 的必要条件,即p ⇒q ,可知A ⊆B , 由a 2+2>a ,故B ={a |a <x <a 2+2},∴⎩⎪⎨⎪⎧a ≤2a 2+2≥3,解得a ≤-1或1≤a ≤2.18.(12分)已知c >0,设p :y =c x为减函数;q :函数f (x )=x +1x >1c 在x ∈[12,2]上恒成立,若“p ∨q ”为真命题,“p ∧q ”为假命题,求c 的取值X 围.解:由y =c x为减函数,得0<c <1.当x ∈[12,2]时,由不等式x +1x ≥2(x =1时取等号)知:f (x )=x +1x 在[12,2]上的最小值为2,若q 真,则1c <2,即c >12.若p 真q 假,则0<c <1且c ≤12,所以0<c ≤12.若p 假q 真,则c ≥1且c >12,所以c ≥1.综上:c ∈(0,12]∪[1,+∞).19.(12分)[2014·海淀期末]已知函数f (x )=(x +a )e x,其中a 为常数. (1)若函数f (x )是区间[-3,+∞)上的增函数,某某数a 的取值X 围; (2)若f (x )≥e 2在x ∈[0,2]时恒成立,某某数a 的取值X 围. 解:(1)f ′(x )=(x +a +1)e x,x ∈R .因为函数f (x )是区间[-3,+∞)上的增函数,所以f ′(x )≥0,即x +a +1≥0在[-3,+∞)上恒成立. 因为y =x +a +1是增函数,所以满足题意只需-3+a +1≥0,即a ≥2. (2)令f ′(x )=0,解得x =-a -1,f (x ),f ′(x )的变化情况如下:f (0)≥e 2,解得a ≥e 2,所以此时a ≥e 2;②当0<-a -1<2,即-3<a <-1时,f (x )在[0,2]上的最小值为f (-a -1), 若满足题意只需f (-a -1)≥e 2,求解可得此不等式无解, 所以a 不存在;③当-a -1≥2,即a ≤-3时,f (x )在[0,2]上的最小值为f (2),若满足题意只需f (2)≥e 2,解得a ≥-1,所以此时a 不存在.综上讨论,所某某数a 的取值X 围为[e 2,+∞).20.(12分)已知椭圆x 29+y 25=1,F 1、F 2分别是椭圆的左、右焦点,点A (1,1)为椭圆内一点,点P 为椭圆上一点.求|PA |+|PF 1|的最大值.解:由椭圆的定义知|PF 1|+|PF 2|=2a =6, 所以|PF 1|=6-|PF 2|,这样|PA |+|PF 1|=6+|PA |-|PF 2|.求|PA |+|PF 1|的最大值问题转化为6+|PA |-|PF 2|的最大值问题, 即求|PA |-|PF 2|的最大值问题, 如图在△PAF 2中,两边之差小于第三边,即|PA |-|PF 2|<|AF 2|,连接AF 2并延长交椭圆于P ′点时, 此时|P ′A |-|P ′F 2|=|AF 2|达到最大值, 易求|AF 2|=2,这样|PA |-|PF 2|的最大值为2, 故|PA |+|PF 1|的最大值为6+ 2.21.(12分)已知椭圆M 的对称轴为坐标轴,且抛物线x 2=-42y 的焦点是椭圆M 的一个焦点,又点A (1,2)在椭圆M 上.(1)求椭圆M 的方程;(2)已知直线l 的方向向量为(1,2),若直线l 与椭圆M 交于B 、C 两点,求△ABC 面积的最大值.解:(1)由已知抛物线的焦点为(0,-2),故设椭圆方程为y 2a 2+x 2a 2-2=1.将点A (1,2)代入方程得2a 2+1a 2-2=1,整理得a 4-5a 2+4=0,解得a 2=4或a 2=1(舍去). 故所求椭圆方程为y 24+x 22=1.(2)设直线BC 的方程为y =2x +m , 设B (x 1,y 1),C (x 2,y 2),代入椭圆方程并化简得4x 2+22mx +m 2-4=0, 由Δ=8m 2-16(m 2-4)=8(8-m 2)>0, 可得m 2<8.由x 1+x 2=-22m ,x 1x 2=m 2-44,故|BC |=3|x 1-x 2|=3×16-2m22.又点A 到BC 的距离为d =|m |3,故S △ABC =12|BC |·d =m216-2m24≤142×2m 2+16-2m22= 2.因此△ABC 面积的最大值为 2.22.(12分)[2014·某某质检]已知函数f (x )=x -1+ae x (a ∈R ,e 为自然对数的底数).(1)若曲线y =f (x )在点(1,f (1))处的切线平行于x 轴,求a 的值; (2)求函数f (x )的极值;(3)当a =1时,若直线l :y =kx -1与曲线y =f (x )没有公共点,求k 的最大值. 解:(1)由f (x )=x -1+a e x ,得f ′(x )=1-aex ,又曲线y =f (x )在点(1,f (1))处的切线平行于x 轴,所以f ′(1)=0,即1-ae =0,解之得a =e.(2)f ′(x )=1-aex ,①当a ≤0时,f ′(x )>0,f (x )为(-∞,+∞)上的增函数,所以函数f (x )无极值. ②当a >0时,令f ′(x )=0,得e x=a ,x =ln a .当x ∈(-∞,ln a )时,f ′(x )<0;当x ∈(ln a ,+∞)时,f ′(x )>0, 所以f (x )在(-∞,ln a )上单调递减,在(ln a ,+∞)上单调递增, 故f (x )在x =ln a 处取得极小值,且极小值为f (ln a )=ln a ,无极大值.综上,当a ≤0时,函数f (x )无极值;当a >0时,f (x )在x =ln a 处取得极小值ln a ,无极大值.(3)当a =1时,f (x )=x -1+1e x .令g (x )=f (x )-(kx -1)=(1-k )x +1ex ,则直线l :y =kx -1与曲线y =f (x )没有公共点,等价于方程g (x )=0在R 上没有实数解.当k >1时,g (0)=1>0,g (1k -1)=-1+1e 1k -1<0, 又函数g (x )的图象在定义域R 上连续,由零点存在定理,可知g (x )=0至少有一实数解,与“方程g (x )=0在R 上没有实数解”矛盾,故k ≤1.当k =1时,g (x )=1e x >0,知方程g (x )=0在R 上没有实数解.所以k 的最大值为1.。
高中数学 模块综合测评 新人教B版高二选修1-1数学试题
模块综合测评(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设a ,b 是实数,则“a >b ”是“a 2>b 2”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件【解析】 设a =1,b =-2,则有a >b ,但a 2<b 2,故a >bD a 2>b 2;设a =-2,b =1,显然a 2>b 2,但a <b ,即a 2>b 2Da >b .故“a >b ”是“a 2>b 2”的既不充分也不必要条件.【答案】 D2.过点P (1,-3)的抛物线的标准方程为( ) A .x 2=13y 或x 2=-13yB .x 2=13yC .y 2=-9x 或x 2=13yD .x 2=-13y 或y 2=9x【解析】P (1,-3)在第四象限,所以抛物线只能开口向右或向下,设方程为y 2=2px (p >0)或x 2=-2py (p >0),代入P (1,-3)得y 2=9x 或x 2=-13y .故选D.【答案】 D3.下列命题中,正确命题的个数是( )①命题“若x 2-3x +2=0,则x =1”的逆否命题为“若x ≠1,则x 2-3x +2≠0”; ②“p ∨q 为真”是“p ∧q 为真”的充分不必要条件; ③若p ∧q 为假命题,则p ,q 均为假命题;④对命题p :∃x 0∈R ,使得x 20+x 0+1<0,则綈p :∀x ∈R ,均有x 2+x +1≥0. A .1 B .2 C .3D .4【解析】①正确;②由p ∨q 为真可知,p ,q 至少有一个是真命题即可,所以p ∧q 不一定是真命题;反之,p ∧q 是真命题,p ,q 均为真命题,所以p ∨q 一定是真命题,②不正确;③若p ∧q 为假命题,则p ,q 至少有一个假命题,③不正确;④正确.【答案】 B4.函数f (x )=x 2+2xf ′(1),则f (-1)与f (1)的大小关系为( ) A .f (-1)=f (1) B .f (-1)<f (1) C .f (-1)>f (1)D .无法确定【解析】f ′(x )=2x +2f ′(1),令x =1,得f ′(1)=2+2f ′(1),∴f ′(1)=-2. ∴f (x )=x 2+2x ·f ′(1)=x 2-4x ,f (1)=-3,f (-1)=5.∴f (-1)>f (1). 【答案】 C5.命题“∀x ∈[0,+∞),x 3+x ≥0”的否定是( ) A .∀x ∈(-∞,0),x 3+x <0 B .∀x ∈(-∞,0),x 3+x ≥0 C .∃x 0∈[0,+∞),x 30+x 0<0 D .∃x 0∈[0,+∞),x 30+x 0≥0【解析】 故原命题的否定为:∃x 0∈[0,+∞),x 30+x 0<0.故选C. 【答案】 C6.已知中心在原点的椭圆C 的右焦点为F (1,0),离心率等于12,则C 的方程是( )A.x 23+y 24=1B.x 24+y 23=1 C.x 24+y 22=1 D.x 24+y 23=1 【解析】 右焦点为F (1,0)说明两层含义:椭圆的焦点在x 轴上;c =1.又离心率为c a =12,故a =2,b 2=a 2-c 2=4-1=3,故椭圆的方程为x 24+y 23=1,故选D.【答案】 D7.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的两条渐近线与抛物线y 2=2px (p >0)的准线分别交于A ,B 两点,O 为坐标原点.若双曲线的离心率为2,△AOB 的面积为3,则p =( ) 【导学号:25650148】A .1 B.32C .2D .3【解析】 因为双曲线的离心率e =c a=2,所以b =3a ,所以双曲线的渐近线方程为y=±b a x =±3x ,与抛物线的准线x =-p 2相交于A ⎝ ⎛⎭⎪⎫-p 2,32p ,B ⎝ ⎛⎭⎪⎫-p 2,-32p ,所以△AOB的面积为12×p2×3p =3,又p >0,所以p =2.【答案】 C8.点P 在曲线y =x 3-x +3上移动,过点P 的切线的倾斜角的取值X 围为( )A .[0,π) B.⎣⎢⎡⎭⎪⎫0,π2∪⎣⎢⎡⎭⎪⎫3π4,πC.⎣⎢⎡⎭⎪⎫0,π2∪⎝ ⎛⎦⎥⎤π2,3π4D.⎣⎢⎡⎦⎥⎤0,π4∪⎣⎢⎡⎭⎪⎫3π4,π【解析】f ′(x )=3x 2-1≥-1,即切线的斜率k ≥-1,所以切线的倾斜角的X 围为⎣⎢⎡⎭⎪⎫0,π2∪⎣⎢⎡⎭⎪⎫3π4,π.【答案】 B9.若直线mx +ny =4与圆x 2+y 2=4没有交点,则过点P (m ,n )的直线与椭圆x 29+y 24=1的交点个数为( )A .至少一个B .2个C .1个D .0个 【解析】 圆心到直线的距离为d =4m 2+n 2>2,∴m 2+n 2<2,∴m 2+n 2<4. 将P (m ,n )代入x 29+y 24得:m 29+n 24=4m 2+9n 236<9m 2+n 236<1.∴P (m ,n )在椭圆内部,∴一定有两个交点. 【答案】 B10.若函数f (x )=kx 3+3(k -1)x 2-k 2+1在区间(0,4)上是减函数,则k 的取值X 围是( )A.⎝⎛⎭⎪⎫-∞,13B.⎝ ⎛⎦⎥⎤0,13 C.⎣⎢⎡⎭⎪⎫0,13D.⎝⎛⎦⎥⎤-∞,13【解析】f ′(x )=3kx 2+6(k -1)x . 由题意知3kx 2+6(k -1)x ≤0,即kx +2k -2≤0在(0,4)上恒成立, 得k ≤2x +2,x ∈(0,4), 又13<2x +2<1,∴k ≤13. 【答案】 D11.若直线y =2x 与双曲线x 2a 2-y 2b2=1(a >0,b >0)有公共点,则双曲线的离心率的取值X围为( )A .(1, 5)B .(5,+∞)C .(1, 5]D .[5,+∞)【解析】 双曲线的两条渐近线中斜率为正的渐近线为y =b a x .由条件知,应有b a>2,故e =c a =a 2+b 2a=1+⎝ ⎛⎭⎪⎫b a 2> 5.【答案】 B12.若0<x 1<x 2<1,则( ) A .e x 2-e x 1>ln x 2-ln x 1 B .e x 2-e x 1<ln x 2-ln x 1 C .x 2e x 1>x 1e x 2 D .x 2e x 1<x 1e x 2【解析】 设f (x )=e x-ln x (0<x <1), 则f ′(x )=e x-1x =x e x -1x.令f ′(x )=0,得x e x-1=0.根据函数y =e x与y =1x的图象,可知两函数图象交点x 0∈(0,1),因此函数f (x )在(0,1)上不是单调函数,故A ,B 选项不正确.设g (x )=e xx(0<x <1),则g ′(x )=e xx -1x 2. 又0<x <1,∴g ′(x )<0.∴函数g (x )在(0,1)上是减函数. 又0<x 1<x 2<1,∴g (x 1)>g (x 2), ∴x 2e x 1>x 1e x 2. 【答案】 C二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上)13.已知a ,b ,c ∈R ,命题“若a +b +c =3,则a 2+b 2+c 2≥3”的否命题是________. 【解析】a +b +c =3的否定是a +b +c ≠3,a 2+b 2+c 2≥3的否定是a 2+b 2+c 2<3.【答案】 若a +b +c ≠3,则a 2+b 2+c 2<3 14.曲线y =x e x+2x +1在点(0,1)处的切线方程为 ________. 【导学号:25650149】【解析】y ′=e x +x e x +2,k =y ′|x =0=e 0+0+2=3, 所以切线方程为y -1=3(x -0),即3x -y +1=0. 【答案】 3x -y +1=015.如图1为函数f (x )=ax 3+bx 2+cx +d 的图象,f ′(x )为函数f (x )的导函数,则不等式xf ′(x )<0的解集为________.图1【解析】 当x <0时,f ′(x )>0,此时f (x )为增函数, 由图象可知x ∈(-∞,-3);当x >0时,f ′(x )<0,此时f (x )为减函数,由图象可知x ∈(0, 2). ∴xf ′(x )<0的解集为(-∞,-3)∪(0, 2). 【答案】 (-∞,-3)∪(0, 2)16.若O 和F 分别是椭圆x 24+y 23=1的中心和左焦点,点P 为椭圆上的任意一点,则OP →·FP→的最大值为________.【解析】 由椭圆x 24+y 23=1可得点F (-1,0),点O (0,0),设P (x ,y ),-2≤x ≤2,则OP →·FP →=x 2+x +y 2=x 2+x +3⎝ ⎛⎭⎪⎫1-x 24=14x 2+x +3=14(x +2)2+2,当且仅当x =2时,OP →·FP →取得最大值6.【答案】 6三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分10分)设命题p :方程x 21-2m +y 2m +4=1表示的曲线是双曲线;命题q :∃x ∈R,3x 2+2mx +m +6<0.若命题p ∧q 为假命题,p ∨q 为真命题,某某数m 的取值X 围.【解】 对于命题p ,因为方程x 21-2m +y 2m +4=1表示的曲线是双曲线,所以(1-2m )(m+4)<0,解得m <-4或m >12,则命题p :m <-4或m >12.对于命题q ,因为∃x ∈R,3x 2+2mx +m +6<0,即不等式3x 2+2mx +m +6<0在实数集R 上有解,所以Δ=(2m )2-4×3×(m +6)>0, 解得m <-3或m >6. 则命题q :m <-3或m >6.因为命题p ∧q 为假命题,p ∨q 为真命题,所以命题p 与命题q 有且只有一个为真命题. 若命题p 为真命题且命题q 为假命题, 即⎩⎪⎨⎪⎧ m <-4或m >12,-3≤m ≤6,得12<m ≤6; 若命题p 为假命题且命题q 为真命题, 即⎩⎪⎨⎪⎧-4≤m ≤12,m <-3或m >6,得-4≤m <-3.综上,实数m 的取值X 围为[-4,-3)∪⎝ ⎛⎦⎥⎤12,6.18.(本小题满分12分)设函数f (x )=x 3+bx 2+cx (x ∈R ),已知g (x )=f (x )-f ′(x )是奇函数.(1)求b ,c 的值;(2)求g (x )的单调区间与极值. 【解】 (1)∵f (x )=x 3+bx 2+cx , ∴f ′(x )=3x 2+2bx +c . 从而g (x )=f (x )-f ′(x ) =x 3+bx 2+cx -(3x 2+2bx +c ) =x 3+(b -3)x 2+(c -2b )x -c ∵g (x )是奇函数,∴-x 3+(b -3)x 2-(c -2b )x -c =-[x 3+(b -3)x 2+(c -2b )x -c ] 得(b -3)x 2-c =0对x ∈R 都成立.∴⎩⎪⎨⎪⎧b -3=0,c =0,得b =3,c =0.(2)由(1)知g (x )=x 3-6x ,从而g ′(x )=3x 2-6,由此可知,(-∞,-2)和(2,+∞)是函数g (x )的单调递增区间;(-2, 2)是函数g (x )的单调递减区间.g (x )在x =-2时,取得极大值,极大值为42,g (x )在x =2时,取得极小值,极小值为-4 2.19.(本小题满分12分)已知抛物线y 2=4x 截直线y =2x +b 所得的弦长为|AB |=3 5. (1)求b 的值;(2)在x 轴上求一点P ,使△APB 的面积为39.【解】 (1)联立方程组⎩⎪⎨⎪⎧y 2=4x ,y =2x +b ,消去y ,得方程:4x 2+(4b -4)x +b 2=0,设A (x 1,y 1),B (x 2,y 2),x 1+x 2=1-b ,x 1x 2=b 24,|AB |=5x 1+x 22-4x 1x 2=51-b 2-b 2=35,解得b =-4.(2)将b =-4代入直线y =2x +b ,得AB 所在的直线方程为2x -y -4=0, 设P (a,0),则P 到直线AB 的距离为d =|2a -4|5.△APB 的面积S =12×|2a -4|5×35=39,则a =-11或15,所以P 点的坐标为(-11,0)或(15,0).20.(本小题满分12分)某商品每件成本9元,售价30元,每星期卖出432件.如果降低价格,销售量可以增加,且每星期多卖出的商品件数与商品单价的降低值x (单位:元,0≤x ≤30)的平方成正比,已知商品单价降低2元时,一星期多卖出24件.(1)将一个星期的商品销售利润表示成x 的函数; (2)如何定价才能使一个星期的商品销售利润最大?【解】 (1)设商品降低x 元时,多卖出的商品件数为kx 2,若记商品在一个星期的销售利润为f (x ),则依题意有f (x )=(30-x -9)·(432+kx 2) =(21-x )·(432+kx 2),又由已知条件24=k ·22,于是有k =6,所以f (x )=-6x 3+126x 2-432x +9 072,x ∈[0,30]. (2)根据(1),有f ′(x )=-18x 2+252x -432 =-18(x -2)(x -12).当x 变化时,f (x )与f ′(x )的变化情况如下表:故x =因为f (0)=9 072,f (12)=11 664,所以定价为30-12=18(元)能使一个星期的商品销售利润最大. 21.(本小题满分12分)已知函数f (x )=12x 2+a ln x (a <0).(1)若a =-1,求函数f (x )的极值;(2)若∀x >0,不等式f (x )≥0恒成立,某某数a 的取值X 围. 【解】 由题意,x >0.(1)当a =-1时,f (x )=12x 2-ln x ,f ′(x )=x -1x,令f ′(x )=x -1x>0,解得x >1,所以f (x )的单调增区间为(1,+∞);f ′(x )=x -1x<0,得0<x <1,所以f (x )的单调减区间为(0,1),所以函数f (x )在x =1处有极小值f (1)=12.(2)因为a <0,f ′(x )=x +a x. 令f ′(x )=0,所以x =-a , 列表:这时f (=-a2+a ln -a ,因为∀x >0,不等式f (x )≥0恒成立, 所以-a2+a ln -a ≥0,所以a ≥-e ,所以a 的取值X 围为[-e,0).22.(本小题满分12分)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)过点A ⎝ ⎛⎭⎪⎫1,32,且离心率e =12.(1)求椭圆C 的标准方程;(2)若直线l :y =kx +m (k ≠0)与椭圆交于不同的两点M 、N ,且线段MN 的垂直平分线过定点G ⎝ ⎛⎭⎪⎫18,0,求k 的取值X 围. 【导学号:25650150】【解】 (1)由题意e =12,即e =c a =12,∴a =2c .∴b 2=a 2-c 2=(2c )2-c 2=3c 2.∴椭圆C 的方程可设为x 24c 2+y 23c2=1.代入A ⎝ ⎛⎭⎪⎫1,32,得14c 2+⎝ ⎛⎭⎪⎫3223c 2=1. 解得c 2=1,∴所求椭圆C 的方程为x 24+y 23=1,(2)由方程组⎩⎪⎨⎪⎧x 24+y 23=1,y =kx +m ,消去y ,得(3+4k 2)x 2+8kmx +4m 2-12=0. 由题意,Δ=(8km )2-4(3+4k 2)(4m 2-12)>0, 整理得:3+4k 2-m 2>0,① 设M (x 1,y 1),N (x 2,y 2),MN 的中点为P (x 0,y 0), x 0=x 1+x 22=-4km3+4k 2,y 0=kx 0+m =3m3+4k2. 由已知,MN ⊥GP ,即k MN ·k GP =-1, 即k ·3m3+4k2-0-4km 3+4k 2-18=-1,整理得:m =-3+4k28k .代入①式,并整理得:k 2>120, 即|k |>510,∴k ∈⎝ ⎛⎭⎪⎫-∞,-510∪⎝ ⎛⎭⎪⎫510,+∞.。
测控设计高二数学人教A选修 模块综合测评一 含解析
模块综合测评(一)(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.已知复数z1=2+i,z2=1+3i,则复数z=在复平面内所对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限解析:复数z=i,z对应的点的坐标为位于第四象限.答案:D2.等于()A. B.C. D.1解析:∵i,∴.答案:B3.下列说法错误的是()A.球的体积与它的半径具有相关关系B.计算误差、测量误差都将影响到残差的大小C.在回归分析中R2的值越接近于1,说明拟合效果越好D.在独立性检验中,K2的观测值k越大,说明确定两个分类变量有关系的把握越大解析:A中球的体积与球的半径是函数关系,不是相关关系.B,C,D都正确.答案:A4.在△ABC中,=a,=b,且a·b>0,则△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰直角三角形解析:由于a·b>0,即|a||b|cos(π-∠ABC)>0,即cos∠ABC<0.又∵0<∠ABC<π,∴∠ABC是钝角.∴△ABC是钝角三角形.答案:C5.设回归方程=7-3x,当变量x增加两个单位时()A.y平均增加3个单位B.y平均减少3个单位C.y平均增加6个单位D.y平均减少6个单位解析:由回归方程可知,y与x是负相关,x每增加2个单位,y平均减少6个单位.答案:D6.在如图所示的程序框图中,输入a=,b=,则输出c=()A. B.C.1D.0解析:由程序框图知,当输入a=,b=时,tan a=-,tan b=-,则tan a>tan b.故输出c=|tan a|=.答案:A7.观察数列1,2,2,3,3,3,4,4,4,4,…的特点,第100项为()A.10B.14C.13D.100解析:由于1有1个,2有2个,3有3个,…,则13有13个,所以1~13的总个数为=91,故第100个数为14.答案:B8.设△ABC的三边长分别为a,b,c,△ABC的面积为S,内切圆半径为r,则r=;类比这个结论可知:四面体S-ABC的四个面的面积分别为S1,S2,S3,S4,内切球的半径为r,四面体S-ABC的体积为V,则r=()A.B.C.D.解析:设四面体S-ABC的内切球球心为O,那么由V S-ABC=V O-ABC+V O-SAB+V O-SAC+V O-SBC, 即V=S1r+S2r+S3r+S4r,可得r=.答案:C9.等于()A.2iB.-1+iC.1+iD.-1解析:∵=i,∴=i2014=(i2)1007=-1.答案:D10.已知两条直线m,n,两个平面α,β.给出下面四个命题:①m∥n,m⊥α⇒n⊥α;②α∥β,m⊂α,n⊂β⇒m∥n;③m∥n,m∥α⇒n∥α;④α∥β,m∥n,m⊥α⇒n⊥β.其中正确命题的序号是()A.①③B.②④C.①④D.②③解析:由α∥β,m⊂α,n⊂β⇒m∥n或m,n异面,∴②错;由m∥n,m∥α⇒n∥α或n⊂α,∴③错.故选C.答案:C11.已知f(x+y)=f(x)+f(y)且f(1)=2,则f(1)+f(2)+…+f(n)不等于()A.f(1)+2f(1)+…+nf(1)B.fC.n(n+1)D.n(n+1)f(1)解析:由f(x+y)=f(x)+f(y)且f(1)=2,知f(2)=f(1)+f(1)=2f(1),f(3)=f(2)+f(1)=3f(1),…,f(n)=nf(1), ∴f(1)+f(2)+…+f(n)=(1+2+…+n)f(1)=f(1)=n(n+1).答案:D12.如图是某汽车维修公司的维修点环形分布图.公司在年初分配给A,B,C,D四个维修点某种配件各50件,在使用前发现需将A,B,C,D四个维修点的这批配件分别调整为40,45,54,61件,但调整只能在相邻维修点之间进行.那么要完成上述调整,最少的调动件次(n件配件从一个维修点调整到相邻维修点的调动件次为n)为()A.15B.16C.17D.18解析:方法一:若AB之间不相互调动,则A调出10件给D,B调出5件给C,C再调出1件给D,即可满足调动要求,此时共调动的件次n=10+5+1=16;若AB之间相互调动,则B调动4件给C,调动1件给A,A调动11件给D,此时共调动的件次n=4+1+11=16.所以最少调动的件次为16,故应选B.方法二:设A调动x件给D(0≤x≤10),则调动了(10-x)件给B,从B调动了5+10-x=(15-x)件给C,C调动出了15-x-4=(11-x)件给D,由此满足调动需求,此时调动件次n=x+(10-x)+(15-x)+(11-x)=36-2x,当且仅当x=10时,n取得最小值16,故应选B.答案:B二、填空题(本大题共4小题,每小题4分,共16分)13.已知复数z=(m∈R,i是虚数单位)是纯虚数,则m的值是.解析:z=,∴=0,且≠0.∴m=-1.答案:-114.按如图所示的程序框图运算,若输入x=8,则输出k=.解析:输入x=8时,k=0,第一次循环,x=2×8+1=17,k=1,x<115;第二次循环,x=2×17+1=35,k=2,x<115;第三次循环,x=2×35+1=71,k=3,x<115;第四次循环,x=2×71+1=143,k=4,x>115,输出x=143,k=4.答案:415.观察下列式子1+,1+,1+,…,则可归纳出.解析:根据三个式子的规律特点进行归纳可知,1++…+(n∈N*).答案:1++…+(n∈N*)16.已知x,y取值如下表:x0 1 4 5 6 8y1.3 1.8 5.6 6.1 7.4 9.3从所得的数点图分析可知,y与x线性相关,且=0.95x+,则的值为.解析:×(0+1+4+5+6+8)=4,×(1.3+1.8+5.6+6.1+7.4+9.3)=5.25,又=0.95x+必过样本中心点(),即(4,5.25),于是有5.25=0.95×4+a,解得a=1.45.答案:1.45三、解答题(本大题共6小题,共74分)17.(12分):采桑不采桑总计患者人数18 12健康人数 5 78总计利用独立性检验估计“患桑毛虫皮炎病与采桑”是否有关,并求出认为两者有关系犯错误的概率是多少.(注:K2=,其中n=a+b+c+d.P(K2≥k) 0.005 0.001k7.879 10.828)解:因为a=18,b=12,c=5,d=78,所以a+b=30,c+d=83,a+c=23,b+d=90,n=113, 所以K2的观测值k==≈39.6>10.828.所以有99.9%的把握认为“患桑毛虫皮炎病与采桑”有关系,认为两者有关系会犯错误的概率是0.1%.18.(12分)已知x2-(3-2i)x-6i=0,i为虚数单位.(1)若x∈R,求x的值;(2)若x∈C,求x的值.分析:(1)利用复数相等的充要条件可直接求解;(2)中要求x的值,就应先设出x的代数形式再利用复数相等的充要条件求解.解:(1)当x∈R时,由已知方程,得(x2-3x)+(2x-6)i=0,则解得x=3.(2)当x∈C时,设x=a+b i(a,b∈R),将其代入已知方程,整理,得(a2-b2-3a-2b)+(2ab-3b+2a-6)i=0.则解得故x=-2i或x=3.19.(12分)已知△ABC的三边长为a,b,c,且其中任意两边长均不相等.若成等差数列.(1)比较的大小,并证明你的结论;(2)求证角B不可能是钝角.(1)解:大小关系为.证明如下:要证,只需证.∵a,b,c>0,∴只需证b2<ac.∵成等差数列,∴≥2.∴b2≤ac.又△ABC的任意两边长均不相等,即a,b,c任意两数不相等,∴b2<ac成立.故所得大小关系正确,即.(2)证明:假设角B是钝角,则cos B<0,而cos B=>0.这与cos B<0矛盾,故假设不成立,即角B不可能是钝角.20.(12分)已知f(x)=,且f(1)=log162,f(-2)=1.(1)求函数f(x)的表达式;(2)已知数列{x n}的项满足x n=[1-f(1)]·[1-f(2)]·…·[1-f(n)],试求x1,x2,x3,x4;(3)猜想{x n}的通项.解:(1)把f(1)=log162=,f(-2)=1代入f(x)=,得整理,得解得所以f(x)=(x≠-1).(2)x1=1-f(1)=1-,x2=,x3=,x4=.(3)由(2),得x1=,x2=,x3=,x4=,可变形为,…,从而可归纳出{x n}的通项x n=.21.(12分)某市公交车票价按下列规则定价:(1)5公里以内(包括5公里),票价2元;(2)5公里以上,每增加5公里,票价增加1元(不足5公里按5公里计算).已知相邻两个公共汽车站之间相距约1公里,如果沿途(包括起点站和终点站)共有16个汽车站,请设计一个算法求出某人坐车x公里所用的票价,画出程序框图.解:依题意得,某人坐车x公里所用的票价y=程序框图如下:22.(14分)设△ABC的两个内角A,B所对的边分别为a,b,复数z1=a+b i,z2=cos A+icos B,若复数z1·z2为纯虚数,试判断△ABC的形状,并说明理由.解:△ABC为等腰三角形或直角三角形.理由:∵z1=a+b i,z2=cos A+icos B,∴z1z2=(a cos A-b cos B)+i(a cos B+b cos A).又∵z1z2为纯虚数,∴由①及正弦定理,得sin A cos A=sin B cos B,即sin 2A=sin 2B.∵A,B为△ABC的内角,∴0<2A<2π,0<2B<2π,且2A+2B<2π.∴2A=2B或2A=π-2B,即A=B或A+B=,也就是A=B或C=.由②及正弦定理,得sin A cos B+sin B cos A≠0,即sin(A+B)≠0.∵A,B是△ABC的内角,∴0<A+B<π.∴sin(A+B)≠0成立.综上所述,知A=B或C=.∴△ABC为等腰三角形或直角三角形.。
高中数学 模块综合测评1(含解析)新人教B版选择性必修第三册-新人教B版高二选择性必修第三册数学试题
模块综合测评(一)(时间:120分钟 满分:150分)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.一个等差数列的第5项等于10,前3项的和等于3,那么( ) A .它的首项是-2,公差是3 B .它的首项是2,公差是-3 C .它的首项是-3,公差是2 D .它的首项是3,公差是-2A [由题意得⎩⎪⎨⎪⎧a 5=10,S 3=3,即⎩⎪⎨⎪⎧a 1+4d =10,3a 1+3×22×d =3,解得a 1=-2,d =3.]2.2+1与2-1的等比中项是( ) A .1 B .-1 C .±1 D.12C [设x 为2+1与2-1的等比中项,则x 2=(2+1)(2-1)=1,∴x =±1.] 3.一辆汽车按规律s =at 2+1做直线运动,若汽车在t =2时的瞬时速度为12,则a =( ) A.12 B.13C .2D .3 D [由s =at 2+1得v (t )=s ′=2at ,依题意v (2)=12,所以2a ·2=12,得a =3.] 4.曲线y =4x -x 3在点(-1,-3)处的切线方程是( ) A .y =7x +4 B .y =x -4 C .y =7x +2D .y =x -2D [y ′|x =-1=(4-3x 2)|x =-1=1,∴切线方程为y +3=x +1,即y =x -2.]5.在等差数列{a n }中,a 5,a 10是方程x 2-10x -6=0的两个根,则{a n }的前14项和为( ) A .55 B .60 C .65 D .70D [∵在等差数列{a n }中,a 5,a 10是方程x 2-10x -6=0的两个根,∴a 5+a 10=10, ∴{a n }的前14项和S 14=142(a 1+a 14)=7(a 5+a 10)=7×10=70.故选D.]6.已知等比数列{a n }(a 1≠a 2)的公比为q ,且a 7,a 1,a 4成等差数列,则q 等于( ) A .1或-32 B .-32 C.32 D .1B [在等比数列{a n }中,由a 1≠a 2,得q ≠1, 因为a 7,a 1,a 4成等差数列,所以a 7+a 4=2a 1,即a 4(q 3+1)=2a 4q 3,所以q 6+q 3-2=0,解得q 3=1(舍)或q 3=-2.所以q =-32.]7.下列函数中,x =0是其极值点的函数是( ) A .f (x )=-x 3 B .f (x )=-cos x C .f (x )=sin x -xD .f (x )=1xB [对于A ,f ′(x )=-3x 2≤0恒成立,在R 上单调递减,没有极值点;对于B ,f ′(x )=sin x ,当x ∈(-π,0)时,f ′(x )<0,当x ∈(0,π)时,f ′(x )>0,故f (x )=-cos x 在x =0的左侧区间(-π,0)内单调递减,在其右侧区间(0,π)内单调递增,所以x =0是f (x )的一个极小值点;对于C ,f ′(x )=cos x -1≤0恒成立,在R 上单调递减,没有极值点;对于D ,f (x )=1x 在x =0处没有定义,所以x =0不可能成为极值点.综上可知,答案选B.]8.设S n 为数列{a n }的前n 项和,且S n =32(a n -1)(n ∈N *),则a n =( )A .3(3n -2n )B .3n +2nC .3nD .3·2n -1C [由S n =32(a n -1)(n ∈N *)可得S n -1=32(a n -1-1)(n ≥2,n ∈N *),两式相减可得a n =32a n-32a n -1(n ≥2,n ∈N *),即a n =3a n -1(n ≥2,n ∈N *).又a 1=S 1=32(a 1-1),解得a 1=3,所以数列{a n }是以3为首项,3为公比的等比数列,则a n =3n .]二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分)9.若物体的运动规律是s =f (t ),则物体在时刻t 0的瞬时速度可以表示为( ) A .li m Δt →0f (t 0+Δt )-f (t 0)ΔtB .li m Δt →0f (t 0)-f (t 0+Δt )ΔtC .f ′(t 0)D .f ′(t )AC [物体在时刻t 0的瞬时速度,即为该点处的导数,故选AC.]10.已知S n 是等差数列{a n }的前n 项和,且S 3=2a 1,则下列结论正确的是( ) A .a 4=0 B .S 4=S 3C .S 7=0D .{a n }是递减数列ABC [设等差数列{a n }的公差为d ,由S 3=2a 1,得3a 1+3d =2a 1,即a 1+3d =0,所以a 4=0,S 4=S 3,S 7=7a 1+21d =7(a 1+3d )=0,故选项A ,B ,C 正确.]11.等差数列{a n }的公差d <0,且a 21=a 211,则数列{a n }的前n 项和S n 取最大值时的项数n可能是( )A .4B .5 C. 6 D .7BC [由题设可知a 1=-a 11,所以a 1+a 11=0,所以a 6=0.因为d <0,故a 5>0,a 7<0,所以n =5或6.]12.在平面直角坐标系中,横、纵坐标均为整数的点叫做格点.若函数图像恰好经过k 个格点,则称函数为k 阶格点函数.已知函数:①y =sin x; ②y =cos;③y =e x -1;④y =x 2.其中为一阶格点函数的序号有( ) A .① B .② C .③ D .④AC [对于①,注意到y =sin x 的值域是[-1,1];当sin x =0时,x =k π(k ∈Z ),此时相应的整数x =0;当sin x =±1时,x =k π+π2(k ∈Z ),此时没有相应的整数x ,因此函数y =sin x 仅过唯一的整点(0,0),该函数是一阶格点函数.同理可知,对于②,函数y =cos不是一阶格点函数.对于③,令y =e x -1=k (k ∈Z )得e x =k +1>0,x =ln(k +1),仅当k =0时,x =0∈Z ,因此函数y =e x -1是一阶格点函数.对于④,注意到函数y =x 2的图像经过多个整点,如点(0,0),(1,1),因此函数y =x 2不是一阶格点函数.综上所述知选AC.]三、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上) 13.已知S n 是等比数列{a n }的前n 项和,a 5=-2,a 8=16,则公比q =________,S 6等于________.(本题第1空2分,第2空3分)-2218 [∵{a n }为等比数列,∴a 8=a 5q 3,∴q 3=16-2=-8,∴q =-2. 又a 5=a 1q 4,∴a 1=-216=-18,∴S 6=a 1(1-q 6)1-q =-18[1-(-2)6]1+2=218.]14.已知f (x )=x (2 019+ln x ),f ′(x 0)=2 020,则x 0=________. 1 [f ′(x )=2 019+ln x +1=2 020+ln x ,又∵f ′(x 0)=2 020,∴f ′(x 0)=2 020+ln x 0=2 020,则ln x 0=0,x 0=1.]15.已知数列{a n }的通项公式a n =(-1)n (2n -1),则a 1+a 2+a 3+…+a 10=________. 10 [观察可知a 1+a 2=2,a 3+a 4=2,…,a 9+a 10=2,故a 1+a 2+a 3+…+a 10=10.] 16.定义域为R 的函数f (x )满足f (1)=1,且f (x )的导函数f ′(x )>12,则满足2f (x )<x +1的x 的集合为________.{x |x <1} [令g (x )=2f (x )-x -1.因为f ′(x )>12,所以g ′(x )=2f ′(x )-1>0.所以g (x )为单调增函数.因为f (1)=1,所以g (1)=2f (1)-1-1=0.所以当x <1时,g (x )<0,即2f (x )<x +1.]四、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)和为114的三个数是一个公比不为1的等比数列的连续三项,也是一个等差数列的第1项,第4项,第25项,求这三个数.[解] 由题意,设这三个数分别是a q ,a ,aq ,且q ≠1,则aq +a +aq =114.①令这个等差数列的公差为d ,则a =aq +(4-1)·d,∴d =13⎝⎛⎭⎫a -a q . 又有aq =a q +24×13×⎝⎛⎭⎫a -a q ,② 由②得(q -1)(q -7)=0,∵q ≠1,∴q =7, 代入①得a =14,则所求三个数为2,14,98.18.(本小题满分12分)已知函数f (x )=a 23x 3-2ax 2+bx ,其中a 、b ∈R ,且曲线y =f (x )在点(0,f (0))处的切线斜率为3.(1)求b 的值;(2)若函数f (x )在x =1处取得极大值,求a 的值.[解] (1)f ′(x )=a 2x 2-4ax +b ,由题意得f ′(0)=b =3.∴b =3. (2)∵函数f (x )在x =1处取得极大值, ∴f ′(1)=a 2-4a +3=0,解得a =1或a =3.①当a =1时,f ′(x )=x 2-4x +3=(x -1)(x -3), x 、f ′(x )、f (x )的变化情况如下表:由上表知,函数f (x )在x =1处取得极大值,符合题意. ②当a =3时,f ′(x )=9x 2-12x +3=3(3x -1)(x -1), x 、f ′(x )、f (x )的变化情况如下表:由上表知,函数f (x )在x =1处取得极小值,不符合题意. 综上所述,若函数f (x )在x =1处取得极大值,a 的值为1. 19.(本小题满分12分)求数列1,3a,5a 2,7a 3,…,(2n -1)·a n -1的前n 项和.[解] 当a =0时,S n =1.当a =1时,S n =1+3+5+7+…+(2n -1)=(1+2n -1)n 2=n 2.当a ≠0且a ≠1时,S n =1+3a +5a 2+…+(2n -3)a n -2+(2n -1)a n -1, aS n =a +3a 2+5a 3+…+(2n -3)a n -1+(2n -1)a n , 两式相减,有(1-a )S n =1+2a +2a 2+…+2a n -1-(2n -1)a n =1+2a (1-a n -1)1-a -(2n -1)a n ,此时S n =2a (1-a n -1)(1-a )2+a n +1-2na n1-a .当a =0时,也满足此式.综上,S n=⎩⎪⎨⎪⎧n 2,a =1,2a (1-an -1)(1-a )2+a n +1-2na n1-a,a ≠1.20.(本小题满分12分)某个体户计划经销A ,B 两种商品,据调查统计,当投资额为x (x ≥0)万元时,在经销A ,B 商品中所获得的收益分别为f (x )万元与g (x )万元,其中f (x )=a (x -1)+2,g (x )=6ln(x +b )(a >0,b >0).已知投资额为零时收益为零.(1)求a ,b 的值;(2)如果该个体户准备投入5万元经销这两种商品,请你帮他制定一个资金投入方案,使他能获得最大利润.[解] (1)由投资额为零时收益为零,可知f (0)=-a +2=0,g (0)=6ln b =0, 解得a =2,b =1.(2)由(1)可得f (x )=2x ,g (x )=6ln (x +1).设投入经销B 商品的资金为x 万元(0<x ≤5),则投入经销A 商品的资金为(5-x )万元, 设所获得的收益为S (x )万元,则S (x )=2(5-x )+6ln (x +1)=6ln (x +1)-2x +10(0<x ≤5). S ′(x )=6x +1-2,令S ′(x )=0,得x =2.当0<x <2时,S ′(x )>0,函数S (x )单调递增; 当2<x ≤5时,S ′(x )<0,函数S (x )单调递减.所以,当x =2时,函数S (x )取得最大值,S (x )max =S (2)=6ln 3+6≈12.6万元. 所以,当投入经销A 商品3万元,B 商品2万元时,他可获得最大收益,收益的最大值约为12.6万元.21.(本小题满分12分)已知数列{a n }的前n 项和为S n ,a 1=-2,且满足S n =12a n +1+n +1(n ∈N *).(1)求数列{a n }的通项公式; (2)若b n =log 3(-a n +1),设数列的前n 项和为T n ,求证:T n <34.[解] (1)由S n =12a n +1+n +1(n ∈N *),得S n -1=12a n +n (n ≥2,n ∈N *),两式相减,并化简,得a n +1=3a n -2,即a n +1-1=3(a n -1). 因为a 1-1=-2-1=-3≠0,所以{a n -1}是以-3为首项,3为公比的等比数列, 所以a n -1=(-3)·3n -1=-3n ,故a n =-3n +1.22.(本小题满分12分)已知函数f (x )=x 3+3ax 2+3x +1. (1)当a =-2时,讨论f (x )的单调性;(2)若x ∈[2,+∞)时,f (x )≥0,求a 的取值范围.[解] (1)当a =-2时,f (x )=x 3-32x 2+3x +1,f ′(x )=3x 2-62x +3. 令f ′(x )=0,得x 1=2-1,x 2=2+1.当x ∈(-∞,2-1)时,f ′(x )>0,f (x )在(-∞,2-1)上是增函数; 当x ∈(2-1,2+1)时,f ′(x )<0,f (x )在(2-1,2+1)上是减函数; 当x ∈(2+1,+∞)时,f ′(x )>0,f (x )在(2+1,+∞)上是增函数. (2)由f (2)≥0,得a ≥-54.当a ≥-54,x ∈[2,+∞)时, f ′(x )=3(x 2+2ax +1)≥3⎝⎛⎭⎫x 2-52x +1=3⎝⎛⎭⎫x -12·(x -2)>0, 所以f (x )在[2,+∞)上是增函数,于是当x ∈[2,+∞)时,f (x )≥f (2)≥0. 综上,a 的取值范围是⎣⎡⎭⎫-54,+∞.。
高中数学 模块综合测评(含解析)北师大版高二选修1-1数学试题
选修1-1 模块综合测评(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列说法中正确的是( )A.一个命题的逆命题为真,则它的逆否命题一定为真B.“a>b”与“a+c>b+c”不等价C.“a2+b2=0,则a,b全为0”的逆否命题是“若a,b全不为0,则a2+b2≠0”D.一个命题的否命题为真,则它的逆命题一定为真【解析】否命题和逆命题是互为逆否命题,有着一致的真假性.【答案】 D2.设a,b∈R,则“(a-b)·a2<0”是“a<b”的( )A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【解析】由(a-b)a2<0⇒a≠0且a<b,∴充分性成立;由a<b⇒a-b<0,当0=a<b时⇒/(a-b)·a2<0,必要性不成立.【答案】 A3.曲线y=x3+11在点P(1,12)处的切线与y轴交点的纵坐标是( )A.-9 B.-3C.9 D.15【解析】y′=3x2,故曲线在点P(1,12)处的切线斜率是3,故切线方程是y-12=3(x -1),令x=0得y=9.【答案】 C4.如果命题“﹁p且﹁q”是真命题,那么下列结论中正确的是( )A.“p或q”是真命题 B.“p且q”是真命题C.“﹁p”为真命题 D.以上都有可能【解析】若“﹁p且﹁q”是真命题,则﹁p,﹁q均为真命题,即命题p、命题q都是假命题.【答案】 C5.下列命题的否定为假命题的是( )A.对任意x∈R,都有-x2+x-1<0成立B.对任意x∈R,都有|x|>x成立C .对任意x ,y ∈Z ,都有2x -5y ≠12成立D .存在x ∈R ,使sin 2x +sin x +1=0成立【解析】 对于A 选项命题的否定为“存在x ∈R ,使-x 2+x -1≥0成立”,显然,这是一个假命题.【答案】 A6.抛物线y 2=12x 的准线与双曲线x 29-y 23=1的两条渐近线所围成的三角形面积等于( )A .33B .2 3C .2 D. 3【解析】 抛物线y 2=12x 的准线为x =-3,双曲线的渐近线为y =±33x ,则准线与渐近线交点为(-3,-3)、(-3, 3).∴所围成三角形面积S =12×3×23=3 3.【答案】 A7.过抛物线x 2=4y 的焦点F 作直线,交抛物线于P 1(x 1,y 1),P 2(x 2,y 2)两点,若y 1+y 2=6,则|P 1P 2|的值为( )A .5B .6C .8D .10【解析】 抛物线x 2=4y 的准线为y =-1,因为P 1(x 1,y 1),P 2(x 2,y 2)两点是过抛物线焦点的直线与抛物线的交点,所以P 1(x 1,y 1),P 2(x 2,y 2)两点到准线的距离分别是y 1+1,y 2+1,所以|P 1P 2|的值为y 1+y 2+2=8.【答案】 C8.已知F 1,F 2是椭圆x 216+y 23=1的两个焦点,P 为椭圆上一点,则|PF 1|·|PF 2|有( )A .最大值16B .最小值16C .最大值4D .最小值4【解析】 由椭圆的定义知a =4,|PF 1|+|PF 2|=2a =2×4=8.由基本不等式知|PF 1|·|PF 2|≤⎝ ⎛⎭⎪⎫|PF 1|+|PF 2|22=⎝ ⎛⎭⎪⎫822=16,当且仅当|PF 1|=|PF 2|=4时等号成立,所以|PF 1|·|PF 2|有最大值16.【答案】 A9.如图1所示,四图都是在同一坐标系中某三次函数及其导函数的图像,其中一定不正确的序号是( )图1A .①② B.③④ C.①③ D.②④【解析】 因为三次函数的导函数为二次函数,其图像为抛物线,观察四图,由导函数与原函数的关系可知,当导函数大于0时,其函数为增函数;当导函数小于0时,其函数为减函数,由此规律可判定③④不正确.【答案】 B10.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,若在双曲线的右支上存在一点P ,使得|PF 1|=3|PF 2|,则双曲线的离心率e 的取值X 围为( )A .[2,+∞) B.[2,+∞) C .(1,2] D .(1,2] 【解析】 由双曲线的定义知, |PF 1|-|PF 2|=2a ,又|PF 1|=3|PF 2|,∴|PF 2|=a .即双曲线的右支上存在点P 使得|PF 2|=a . 设双曲线的右顶点为A ,则|AF 2|=c -a . 由题意知c -a ≤a , ∴c ≤2a .又c >a ,∴e =c a≤2且e >1,即e ∈(1,2]. 【答案】 C11.设f (x )是一个三次函数,f ′(x )为其导函数,如图2所示的是y =x ·f ′(x )的图像的一部分,则f (x )的极大值与极小值分别是( )图2A .f (1)与f (-1)B .f (-1)与f (1)C .f (-2)与f (2)D .f (2)与f (-2)【解析】 由图像知,f ′(2)=f ′(-2)=0.∵x >2时,y =x ·f ′(x )>0,∴f ′(x )>0, ∴y =f (x )在(2,+∞)上单调递增;同理f (x )在(-∞,-2)上单调递增;在(-2,2)上单调递减.∴y =f (x )的极大值为f (-2),极小值为f (2),故选C. 【答案】 C12.设斜率为2的直线l 过抛物线y 2=ax (a ≠0)的焦点F ,且和y 轴交于点A ,若△OAF (O 为坐标原点)的面积为4,则抛物线方程为( )A .y 2=±4x B .y 2=±8x C .y 2=4x D .y 2=8x 【解析】a >0时,F ⎝ ⎛⎭⎪⎫a 4,0,直线l 方程为y =2⎝⎛⎭⎪⎫x -a 4,令x =0得y =-a2.∴S △OAF =12·a 4·⎪⎪⎪⎪⎪⎪-a 2=4.解得a =8.同理a <0时,得a =-8. ∴抛物线方程为y 2=±8x . 【答案】 B二、填空题(本大题共4小题,每小题5分,共20分,请把正确答案填在题中的横线上)13.若双曲线x 24-y 2b 2=1(b >0)的渐近线方程为y =±12x ,则右焦点坐标为________.【解析】 由x 24-y 2b 2=1得渐近线方程为y =±b2x ,∴b 2=12,b =1, ∴c 2=a 2+b 2=4+1=5, ∴右焦点坐标为(5,0). 【答案】 (5,0)14.函数f (x )=x 3-15x 2-33x +6的单调减区间为________. 【解析】f ′(x )=3x 2-30x -33=3(x -11)(x +1), 当x <-1或x >11时,f ′(x )>0,f (x )增加; 当-1<x <11时,f ′(x )<0,f (x )减少. 【答案】 (-1,11)15.已知命题p :对任意x ∈[0,1],都有a ≥e x成立,命题q :存在x ∈R ,使x 2+4x +a =0成立,若命题“p 且q ”是真命题,则实数a 的取值X 围是____________.【解析】 因为对任意x ∈[0,1],都有a ≥e x成立,所以a ≥e.由存在x ∈R ,使x 2+4x +a =0成立,可得判别式Δ=16-4a ≥0,即a ≤4.若命题“p 且q ”是真命题,所以p 、q 同为真,所以e≤a ≤4.【答案】 [e,4]16.已知椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)的右焦点与抛物线C 2:y 2=4x 的焦点F 重合,椭圆C 1与抛物线C 2在第一象限的交点为P ,|PF |=53.则椭圆C 1的方程为________.【解析】 抛物线C 2的焦点F 的坐标为(1,0),准线为x =-1,设点P 的坐标为(x 0,y 0),依据抛物线的定义,由|PF |=53,得1+x 0=53,解得x 0=23.因为点P 在抛物线C 2上,且在第一象限,所以y 0=263.所以点P 的坐标为⎝ ⎛⎭⎪⎫23,263.因为点P 在椭圆C 1:x 2a 2+y 2b 2=1上,所以49a 2+83b 2=1.又c =1,所以a 2=b 2+1,联立解得a 2=4,b 2=3.所以椭圆C 1的方程为x 24+y 23=1.【答案】x 24+y 23=1三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分10分)求与⊙C 1:(x +1)2+y 2=1相外切,且与⊙C 2:(x -1)2+y 2=9相内切的动圆圆心P 的轨迹方程.【解】 设动圆圆心P 的坐标为(x ,y ),半径为r , 由题意得,|PC 1|=r +1,|PC 2|=3-r ,∴|PC 1|+|PC 2|=r +1+3-r =4>|C 1C 2|=2,由椭圆定义知,动圆圆心P 的轨迹是以C 1,C 2为焦点,长轴长为2a =4的椭圆,椭圆方程为x 24+y 23=1.18.(本小题满分12分)已知函数f (x )=ax 2+1(a >0),g (x )=x 3+bx .若曲线y =f (x )与曲线y =g (x )在它们的交点(1,c )处具有公共切线,求a ,b 的值.【解】f ′(x )=2ax ,g ′(x )=3x 2+b .∵曲线y =f (x )与曲线y =g (x )在它们的交点(1,c )处具有公共切线,∴⎩⎪⎨⎪⎧f ′1=g ′1f 1=g 1,即⎩⎪⎨⎪⎧2a =3+b a +1=1+b =c ,解得⎩⎪⎨⎪⎧a =3b =3.∴a ,b 的值分别为3,3.19.(本小题满分12分)已知命题p :函数f (x )=x 3+ax +5在区间(-2,1)上不单调,若命题p 的否定是一个真命题,求a 的取值X 围.【解】 考虑命题p 为真命题时a 的取值X 围,因为f ′(x )=3x 2+a ,令f ′(x )=0,得到x 2=-a3,当a ≥0时,f ′(x )≥0,函数f (x )在区间(-2,1)上是增加的,不合题意; 当a <0时,由x 2=-a3,得到x =±-a3,要使函数f (x )=x 3+ax +5在区间(-2,1)上不单调,则-a3<1或--a3>-2,即a >-12, 综上可知-12<a <0,故命题p 的否定是一个真命题时,a 的取值X 围是a ≤-12或a ≥0.20.(本小题满分12分)某厂生产某种电子元件,如果生产出一件正品,可获利200元,如果生产出一件次品,则损失100元.已知该厂制造电子元件过程中,次品率p 与日产量x 的函数关系是:p =3x4x +32(x ∈N +). (1)将该厂的日盈利额T (元)表示为日产量x (件)的函数; (2)为获最大盈利,该厂的日产量应定为多少件?【解】 (1)由题意可知次品率p =日产次品数/日产量,每天生产x 件,次品数为xp ,正品数为x (1-p ).因为次品率p =3x4x +32,当每天生产x 件时,有x ·3x4x +32件次品,有x ⎝ ⎛⎭⎪⎫1-3x 4x +32件正品. 所以T =200x ⎝ ⎛⎭⎪⎫1-3x 4x +32-100x ·3x 4x +32 =25·64x -x2x +8(x ∈N +).(2)T ′=-25·x +32x -16x +82,由T ′=0,得x =16或x =-32(舍去). 当0<x <16时,T ′>0; 当x >16时,T ′<0; 所以当x =16时,T 最大.即该厂的日产量定为16件,能获得最大盈利.21.(本小题满分12分)设函数f (x )=x 2-2tx +4t 3+t 2-3t +3,其中x ∈R ,t ∈R ,将f (x )的最小值记为g (t ).(1)求g (t )的表达式;(2)讨论g (t )在区间[-1,1]内的单调性;(3)若当t ∈[-1,1]时,|g (t )|≤k 恒成立,其中k 为正数,求k 的取值X 围. 【解】 (1)f (x )=(x -t )2+4t 3-3t +3,当x =t 时,f (x )取得其最小值g (t ),即g (t )=4t 3-3t +3.(2)∵g ′(t )=12t 2-3=3(2t +1)(2t -1), 列表如下:t ⎝ ⎛⎭⎪⎫-1,-12-12 ⎝⎛ -12,⎭⎪⎫12 12 ⎝ ⎛⎭⎪⎫12,1 g ′(t ) +0 -0 +g (t )极大值g ⎝ ⎛⎭⎪⎫-12极小值g ⎝ ⎛⎭⎪⎫12由此可见,g (t )在区间⎝ ⎛⎭⎪⎫-1,-2和⎝ ⎛⎭⎪⎫2,1上单调递增,在区间⎝ ⎛⎭⎪⎫-2,2上单调递减. (3)∵g (1)=g ⎝ ⎛⎭⎪⎫-12=4,g (-1)=g ⎝ ⎛⎭⎪⎫12=2,∴g (t )最大值=4,g (t )最小值=2, 又∵|g (t )|≤k 恒成立,∴-k ≤g (t )≤k 恒成立,∴⎩⎪⎨⎪⎧k ≥4,-k ≤2,∴k ≥4.22.(本小题满分12分)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的短轴长为23,右焦点F 与抛物线y 2=4x 的焦点重合,O 为坐标原点.(1)求椭圆C 的方程;(2)设A 、B 是椭圆C 上的不同两点,点D (-4,0),且满足DA →=λDB →,若λ∈⎣⎢⎡⎦⎥⎤38,12,求直线AB 的斜率的取值X 围.【解】 (1)由已知得b =3,c =1,a =2, 所以椭圆的方程为x 24+y 23=1.(2)∵DA →=λDB →,∴D ,A ,B 三点共线,而D (-4,0),且直线AB 的斜率一定存在,所以设AB 的方程为y =k (x +4),与椭圆的方程x 24+y 23=1联立得(3+4k 2)y 2-24ky +36k 2=0,由Δ=144k 2(1-4k 2)>0,得k 2<14.设A (x 1,y 1),B (x 2,y 2),y 1+y 2=24k3+4k 2,y 1·y 2=36k23+4k2,①又由DA →=λDB →得:(x 1+4,y 1)=λ(x 2+4,y 2), ∴y 1=λy 2②将②式代入①式得:⎩⎪⎨⎪⎧1+λy 2=24k3+4k2,λy 22=36k23+4k2,消去y 2得:163+4k2=1+λ2λ=1λ+λ+2.当λ∈⎣⎢⎡⎦⎥⎤38,12时,h (λ)=1λ+λ+2是减函数, ∴92≤h (λ)≤12124, ∴92≤163+4k 2≤12124,解得21484≤k 2≤536,又因为k 2<14,所以21484≤k 2≤536,即-56≤k ≤-2122或2122≤k ≤56. ∴直线AB 的斜率的取值X 围是 ⎣⎢⎡⎦⎥⎤-56,-2122∪⎣⎢⎡⎦⎥⎤2122,56.。
高二数学 模块综合检测 新人教A版选修1-2
模块综合检测一、选择题(本大题共10小题,每小题5分,共50分)1.复数z =i·(1+i)(i 为虚数单位)在复平面上对应的点位于( ) A .第一象限 B .第二象限 C .第三象限D .第四象限解析:选B z =i·(1+i)=-1+i ,在复平面上对应点的坐标为(-1,1),其在第二象限.2.设两个变量x 和y 之间具有线性相关关系,它们的相关系数是r ,y 关于x 的回归直线的斜率是b ,纵轴上的截距是a ,那么必有( )A .b 与r 的符号相同B .a 与r 的符号相同C .b 与r 的符号相反D .a 与r 的符号相反解析:选A 因为b >0时,两变量正相关,此时r >0;b <0时,两变量负相关,此时r <0,所以选A.3.下列平面图形中,与空间中的平行六面体作为类比对象较为合适的是( ) A .三角形B .梯形C .平行四边形D .矩形解析:选C 只有平行四边形与平行六面体较为接近.4.已知数列1,a +a 2,a 2+a 3+a 4,a 3+a 4+a 5+a 6,…,则数列的第k 项是( )A .a k+a k +1+…+a 2kB .a k -1+a k +…+a 2k -1C .ak -1+a k +…+a 2kD .ak -1+a k+…+a2k -2解析:选D 利用归纳推理可知,第k 项中第一个数为a k -1,且第k 项中有k 项,次数连续,故第k 项为ak -1+a k +…+a2k -2.5.实数系的结构图如图所示,其中1,2,3三个方格中的内容分别为( )A .有理数、零、整数B .有理数、整数、零C .零、有理数、整数D .整数、有理数、零解析:选B 由实数系的包含关系知B 正确.6.已知复数z 1=m +2i ,z 2=3-4i.若z 1z 2为实数,则实数m 的值为( ) A.83 B.32 C .-83D .-32解析:选D z 1z 2=m +2i 3-4i =m +2i 3+4i3-4i 3+4i=3m -8+6+4m i32+42.∵z 1z 2为实数,∴6+4m =0,∴m =-32. 7.观察(x 2)′=2x ,(x 4)′=4x 3,(cos x )′=-sin x ,由归纳推理可得:若定义在R 上的函数f (x )满足f (-x )=f (x ),记g (x )为f (x )的导函数,则g (-x )等于( ) A .f (x )B .-f (x )C .g (x )D .-g (x )解析:选D 由给出的例子可以归纳推理得出:若函数f (x )是偶函数,则它的导函数是奇函数,因为定义在R 上的函数f (x )满足f (-x )=f (x ),即函数f (x )是偶函数,所以它的导函数是奇函数,即有g (-x )=-g (x ).8.观察下列各式:55=3 125,56=15 625,57=78 125,…,则52 011的末四位数字为( )A .3 125B .5 625C .0 625D .8 125解析:选D ∵55=3 125,56=15 625,57=78 125,58=390 625,59=1 953 125,510=9 765 625,…,∴5n(n ∈Z ,且n ≥5)的末四位数字呈周期性变化,且最小正周期为4.记5n(n ∈Z ,且n ≥5)的末四位数为f (n ),则f (2 011)=f (501×4+7)=f (7), ∴52 011与57的末四位数相同,均为8 125.9.执行如图所示的程序框图,则输出的k 的值是( )A .3B .4C .5D .6解析:选C 第一次运行得s =1+(1-1)2=1,k =2;第二次运行得s =1+(2-1)2=2,k =3;第三次运行得s =2+(3-1)2=6,k =4;第四次运行得s =6+(4-1)2=15,k =5;第五次运行得s =15+(5-1)2=31,满足条件,跳出循环,所以输出的k 的值是5,故选C. 10.某车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了5次试验.根据收集到的数据(如表),由最小二乘法求得回归方程为y ^=0.67x +54.9.现发现表中有一个数据模糊不清,经推断可知该数据为( )零件数x (个) 10 2030 40 50 加工时间y (min)62758189A .70B 解析:选B 依题意得,x -=15×(10+20+30+40+50)=30.由于直线y ^=0.67x +54.9必过点(x -,y -),于是有y -=0.67×30+54.9=75,因此表中的模糊数据是75×5-(62+75+81+89)=68.二、填空题(本大题共4小题,每小题5分,共20分) 11.复数z =-3+i2+i的共轭复数为________.解析:z =-3+i 2+i =-3+i2-i 2+i 2-i =-5+5i 5=-1+i ,所以z -=-1-i.答案:-1-i 12.图1有面积关系:S △PA ′B ′S △PAB =PA ′·PB ′PA ·PB ,则图2有体积关系:V P -A ′B ′C ′V P -ABC=________.解析:把平面中三角形的知识类比到空间三棱锥中,得V P -A ′B ′C ′V P -ABC =PA ′·PB ′·PC ′PA ·PB ·PC. 答案:PA ′·PB ′·PC ′PA ·PB ·PC13.读下面的流程图,当输入的值为-5时,输出的结果是________.解析:①A =-5<0,②A =-5+2=-3<0,③A =-3+2=-1<0,④A =-1+2=1>0,⑤A =2×1=2.答案:214.蜜蜂被认为是自然界中最杰出的建筑师,单个蜂巢可以近似地看做是一个正六边形,右图为一组蜂巢的截面图.其中第一个图有1个蜂巢,第二个图有7个蜂巢,第三个图有19个蜂巢,按此规律,以f (n )表示第n 个图的蜂巢总数,则用n 表示的f (n )=________.解析:由于f (2)-f (1)=7-1=6,f (3)-f (2)=19-7=2×6,推测当n ≥2时,有f (n )-f (n -1)=6(n -1),所以f (n )=[f (n )-f (n -1)]+[f (n -1)-f (n -2)]+…+[f (2)-f (1)]+f (1)=6[(n -1)+(n -2)+…+2+1]+1=3n 2-3n +1.又f (1)=1=3×12-3×1+1, 所以f (n )=3n 2-3n +1. 答案:3n 2-3n +1三、解答题(本大题共4小题,共50分.解答时应写出文字说明,证明过程或运算步骤.) 15.(本小题满分12分)小流域综合治理可以有3个措施:工程措施、生物措施和农业技术措施.其中,工程措施包括打坝建库、平整土地、修基本农田和引水灌溉,其功能是贮水拦沙、改善生产条件和合理利用水土;生物措施包括栽种乔木、灌木和草木,其功能是蓄水保土和发展多种经营;农业技术措施包括深耕改土、科学施肥、选育良种、地膜覆盖和轮作套种,其功能是蓄水保土、提高肥力和充分利用光和热.试画出小流域综合治理开发模式的结构图.解:根据题意,3个措施为结构图的第一层,每个措施中具体的实现方式为结构图的第二层,每个措施实施所要达到的治理功能为结构图的第三层,各类功能所体现的具体内容为结构图的第四层.小流域综合治理开发模式的结构图如图所示.16.(本小题满分12分)某商品在销售过程中投入的销售时间x 与销售额y 的统计数据如下表:销售时间x (月) 1 2 3 4 5 销售额y (万元)0.40.50.60.60.4用线性回归分析的方法预测该商品6月份的销售额.(参考公式:b =∑ni =1x i -x-y i -y-∑ni =1x i -x-2,a =y --b x -,其中x -,y -表示样本平均值)解:由已知数据可得x -=1+2+3+4+55=3,y -=0.4+0.5+0.6+0.6+0.45=0.5,所以∑5i =1(x i -x -)(y i -y -)=(-2)×(-0.1)+(-1)×0+0×0.1+1×0.1+2×(-0.1)=0.1,∑5i =1(x i -x -)2=(-2)2+(-1)2+02+12+22=10,于是b =0.01,a =y --b x -=0.47.故y ^=0.01x +0.47令x =6,得y ^=0.53.即该商品6月份的销售额约为0.53万元.17.(本小题满分12分)先解答(1),再通过结构类比解答(2):(1)求证:tan ⎝⎛⎭⎪⎫x +π4=1+tan x 1-tan x ;(2)设x ∈R ,a 为非零常数,且f (x +a )=1+f x1-f x ,试问:f (x )是周期函数吗?证明你的结论.解:(1)根据两角和的正切公式得tan ⎝⎛⎭⎪⎫x +π4=tan x +tanπ41-tan x tanπ4=tan x +11-tan x =1+tan x 1-tan x ,即tan ⎝⎛⎭⎪⎫x +π4=1+tan x 1-tan x ,命题得证. (2)猜想f (x )是以4a 为周期的周期函数.因为f (x +2a )=f [(x +a )+a ]=1+f x +a1-f x +a =1+1+fx 1-f x 1-1+fx 1-f x=-1f x , 所以f (x +4a )=f [(x +2a )+2a ] =-1fx +2a=f (x ).所以f (x )是以4a 为周期的周期函数.18.(本小题满分14分)某企业有两个分厂生产某种零件,按规定内径尺寸(单位:mm)的值落在(29.94,30.06)上的零件为优质品.从两个分厂生产的零件中各抽出500件,量其内径尺寸,得结果如下表:甲厂:分组[29.86,29.90) [29.90,29.94) [29.94,29.98) [29.98,30.02) [30.02,30.06) [30.06,30.10)[30.10,30.14) 频数 12638618292614分组[29.86,29.90) [29.90,29.94) [29.94,29.98) [29.98,30.02) [30.02,30.06) [30.06,30.10) [30.10,30.14) 频数297185159766218(1)试分别估计两个分厂生产的零件的优质品率;(2)由以上统计数据填下面2×2列联表,并问能否在犯错误的概率不超过0.010的前提下认为“两个分厂生产的零件的质量有差异”?甲厂 乙厂 总计 优质品 非优质品 总计附:K 2=n ad -bc 2a +bc +d a +cb +d,其中n =a +b +c +d .P (K 2≥k 0)0.05 0.01 k 03.8416.635解:(1)甲厂抽查的产品中有360件优质品,从而甲厂生产的零件的优质品率估计为360500=72%.乙厂抽查的产品中有320件优质品,从而乙厂生产的零件的优质品率估计为320500=64%.(2)甲厂 乙厂 总计 优质品 360 320 680 非优质品 140 180 320 总计5005001 000K 2的观测值k =2500×500×680×320≈7.35>6.635,所以在犯错误的概率不超过0.010的前提下认为“两个分厂生产的零件的质量有差异”.。
高二数学 选修2-1 模块综合测评1
模块综合测评(一)选修1-2(A版)第Ⅰ卷(选择题,共50分)一、选择题:本大题共10小题,共50分.1.可作为四面体的类比对象的是()A.四边形B.三角形C.棱锥D.棱柱答案:B2.在回归分析中,相关指数R2越接近1,说明()A.两个变量的线性相关关系越强B.两个变量的线性相关关系越弱C.回归模型的拟合效果越好D.回归模型的拟合效果越差答案:C3.已知i1=i,i2=-1,i3=-i,i4=1,i5=i ,由此可猜想i2 006等于()A.1 B.-1C.i D.-i答案:B4.用反证法证明命题“三角形中最多只有一个内角是钝角”时,结论的否定是()A.没有一个内角是钝角B.有两个内角是钝角C.有三个内角是钝角D.至少有两个内角是钝角答案:D5.已知(x+y)+(x-y)i=-2+4i,则实数x,y的值分别是()A .-2,4B .4,-2C .-3,1D .1,-3答案:D6.复数z =(a 2+1)-(b 2+1)i(a ,b ∈R )对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限答案:D7.设复数z 1=1-i ,z 2=-1+x i(x ∈R ) ,若z 1·z 2为纯虚数,则x 的值是( )A .-1B .-2C .1D .2 答案:C8.若复数z 满足1-z =z ·i ,则z 等于( ) A .-12-12i B .-12+12i C.12-12i D.12+12i 答案:C9.若根据10名儿童的年龄 x (岁)和体重 y (kg)数据用最小二乘法得到用年龄预报体重的回归方程是 y = 2x +7 ,已知这10名儿童的年龄分别是 2、3、3、5、2、6、7、3、4、5,则这10名儿童的平均体重是( )A .14 kgB .15 kgC .16 kgD .17 kg 答案:B10.下面三段话可组成 “三段论”,则“小前提”是( )①因为指数函数y =a x (a >1 )是增函数;② 所以y =2x 是增函数;③而y =2x 是指数函数.A .①B .②C .①②D .③答案:D第Ⅱ卷(非选择题,共70分)二、填空题:本大题共4小题,每小题5分,共20分. 11.若a 1,a 2,a 3,a 4∈R +,有以下不等式成立:a 1+a 22≥a 1a 2,a 1+a 2+a 33≥3a 1a 2a 3,a 1+a 2+a 3+a 44≥4a 1a 2a 3a 4.由此推测成立的不等式是______________________________.(要注明成立的条件)答案:a 1+a 2+a 3+…+a n n≥n a 1a 2a 3…a n (a 1,a 2,a 3,…,a n ∈R +)12.完成下面的三段论:大前提:互为共轭复数的乘积是实数, 小前提:x +y i 与x -y i 是互为共轭复数, 结论:________________. 答案:(x +y i)·(x -y i)是实数13.若复数z =(m -1)+(m +2)i 对应的点在直线2x -y =0上,则实数m 的值是__________.答案:414.若一组观测值(x 1,y 1),(x 2,y 2),…,(x n ,y n )之间满足y i =a +bx i +e i (i =1,2,…,n ),若e i 恒为0,则R 2等于__________.解析:由于e i 恒为0,即解释变量与预报变量成函数关系,此时两变量间的相关指数R2=1.答案:1三、解答题:本大题共4小题,满分50分.15.(12分)已知a,b∈R,求证2(a2+b2)≥(a+b)2.证明:证法1:要证2(a2+b2)≥(a+b)2只要证2a2+2b2≥a2+2ab+b2(2分)只要证a2+b2≥2ab(6分)而a2+b2≥2ab显然成立(10分)所以2(a2+b2)≥(a+b)2成立.(12分)证法2:因为2(a2+b2)-(a+b)2=2a2+2b2-(a2+2ab+b2)(4分)=a2+b2-2ab=(a-b)2≥0(10分)所以2(a2+b2)≥(a+b)2.(12分)16.(12分)已知x∈R,a=x2-1,b=2x+2,求证a,b中至少有一个不小于0.证明:假设a,b都小于0,即a<0,b<0,(2分)所以a+b<0,(4分)又a+b=x2-1+2x+2=x2+2x+1=(x+1)2≥0,(10分)这与假设所得结论矛盾,故假设不成立所以a,b中至少有一个不小于0.(12分)17.(12分)给出如下列联表:(参考数据:P (K 2≥6.635)=0.010,P (K 2≥7.879)=0.005 ) 解:由列联表中的数据可得K 2=110×(20×50-10×30)30×80×50×60=7.486(6分)又P (K 2≥6.635)=0.010,(10分)所以有99%的把握认为高血压与患心脏病有关. (12分)18.(14分)先阅读下列结论的证法,再解决后面的问题: 已知a 1,a 2∈R ,a 1+a 2=1.求证:a 21+a 22≥12.证明:构造函数f (x )=(x -a 1)2+(x -a 2)2,则f (x )=2x 2-2(a 1+a 2)x +a 21+a 22 =2x 2-2x +a 21+a 22.∵对一切x ∈R ,恒有f (x )≥0,∴Δ=4-8(a 21+a 22)≤0.从而得a 21+a 22≥12.(1)若a 1,a 2,…,a n ∈R ,a 1+a 2+…+a n =1,试写出上述结论的推广式;(2)参考上述证法,对你推广的结论加以证明. 解:(1) 若a 1,a 2,…,a n ∈R ,a 1+a 2+…+a n =1. 求证:a 21+a 22+…+a 2n≥1n .(6分) (2) 构造函数f (x )=(x -a 1)2+(x -a 2)2+…+(x -a n )2=nx 2-2(a 1+a 2+…+a n )x +a 21+a 22+…+a 2n .(8分)因为对∀x ∈R ,恒有f (x )≥0,所以Δ=4(a 1+a 2+…+a n )2-4n (a 21+a 22+…+a 2n )≤0,(10分) 从而得:a 21+a 22+…+a 2n ≥(a 1+a 2+…+a n )2n=1n . (14分)。
高二数学线上模块考试试题
智才艺州攀枝花市创界学校育才二零二零—二零二壹高二数学4月线上模块考试试题第一卷〔一共60分〕一、单项选择题:此题一共8小题,每一小题5分,一共40分。
在每一小题给出的四个选项里面,只有一项符合题目要求的。
1.集合{|A x y ==,{|lg(21)}x B x y ==-,那么A ∩B 等于〔〕.A .1{|0}2x x ≤<B .1{|0}2x x <≤C .D .1{|0}2x x <<2.复数z 在复平面上对应的点为()1,1-,那么〔〕A .1+z 为实数B .1+z 为纯虚数C .i z +为实数D .i z +为纯虚数 3.32,10x R xx ∀∈-+≤〞的否认是〔〕A .存在32,10oo o x R x x ∈-+>B .存在32,10o o o x R x x ∈-+≤C .不存在32,10oo o x R x x ∈-+≤D .对任意的32,10x R xx ∀∈-+>4.随机变量X 服从正态分布2(2,)N σ()0σ>,且(0)0.9P X >=,那么(24)P X <<=A .B .C .D .5.把4个不同的小球全部放人3个不同的盒子中,使每个盒子都不空的放法总数为( ) A.1333C A B.3242C A C.132442C C C D.2343C A6.甲、乙、丙三人到三个景点旅游,每人只去一个景点,设事件A 为“三个人去的景点不一样〞,B 为“甲单独去一个景点〞,那么概率P (A |B )等于() A .B .C .D .7.设b a ,都是正实数,那么“4≤+b a 〞是“4≤ab 〞成立的〔〕A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件8.红海行动是一部现代海HY 题材影片,该片讲述了中国海HY“蛟龙突击队〞奉命执行撤侨任务的故事.撤侨过程中,海HY 舰长要求队员们依次完成六项任务,并对任务的顺序提出了如下要求:重点任必须A 须排在前三位,且任务E 、F 必须排在一起,那么这六项任务的不同安排方案一共有〔〕A .240种B .188种C .156种D .120种二、多项选择题:此题一共4小题,每一小题5分,一共20分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
模块综合检测卷(一)(测试时间:120分钟 评价分值:150分)一、选择题(每小题共12个小题,每小题共5分,共60分,在每小题给出的四个选项中,只有一项符合题目要求)1.已知集合M ={x |x 2<4},N ={x |x 2-2x -3<0},则集合M ∩N 等于( )A .{x |x <-2}B .{x |x >3}C .{x |-1<x <2}D .{x |2<x <3}解析:M ={x |-2<x <2},N ={x |-1<x <3}, 故M ∩N ={x |-1<x <2}. 答案:C2.某人投资10 000万元,如果年收益利率是5%,按复利计算,5年后能收回本利和为( )A .10 000×(1+5×5%)B .10 000×(1+5%)5C .10 000×1.05×(1-1.054)1-1.05D .10 000×1.05×(1-1.055)1-1.05解析:注意与每年投入10 000万元区别开来. 答案:B3.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,C = 30°,c =5,a =8,则cos A 等于( )A.35 B .±35 C .-35 D.45解析:由正弦定理得5sin 30°=8sin A ,所以sin A =45.又a =8>c =5,所以A >30°.所以cos A =±35,故选B.答案:B4.若a <b <0,d >c >0,则不等式①ad >bc ;②c a >cb ;③a 2>b 2;④a -d <b -c 中正确的个数是( ) A .1个 B .2个 C .3个 D .4个解析:①错,②③④正确.将a <b <0转化为-a >-b >0,可得(-ad )>(-bc ),即ad <bc ,故知①错;由a <b <0⇒1a >1b ,c >0,故②正确;因为函数y =x 2在(-∞,0)上单调递减,故③正确;由d >c >0,得-d <-c <0,故知a -d <b -c ,故④正确.答案:C5.设x ,y ∈R +,且xy -(x +y )=1,下列结论中正确的是( ) A .x +y ≥22+2 B .xy ≤2+1 C .x +y ≤(2+1)2D .xy ≥22+2解析:因为1+x +y =xy ≤⎝ ⎛⎭⎪⎫x +y 22,所以(x +y )2-4(x +y )-4≥0,即x +y ≥2(1+2)(当x =y =1+2时等号成立),x +y 的最小值为2(1+2).答案:A6.数列{a n }的通项公式为a n =n cosn π2,其前n 项和为S n ,则S 2 015等于()A .1 006B .1 008C .-1 006D .-1 008 解析:由a n =n cosn π2可得 S 2 015=1×0-2×1+3×0+4×1+…-2 014×1+2 015×0=-2+4-6+…-2 010+2 012-2 014=2×503-2 014=-1 008.答案:D7.已知方程x 2+(m +2)x +m +5=0有两个正实根,则实数m 的取值范围是( )A .(-∞,-2)B .(-∞,-4]C .(-5,+∞)D .(-5,-4]解析:方程两根为正,则⎩⎪⎨⎪⎧Δ≥0,-(m +2)>0,⇒-5<m ≤-4m +5>0.答案:D8.已知-1<a +b <3且2<a -b <4,则2a +3b 的取值范围是( )A.⎝ ⎛⎭⎪⎫-132,172 B.⎝⎛⎭⎪⎫-72,112 C.⎝⎛⎭⎪⎫-72,132D.⎝⎛⎭⎪⎫-92,132 解析:用待定系数法可得 2a +3b =52(a +b )-12(a -b ),由⎩⎪⎨⎪⎧-1<a +b <3,2<a -b <4⇒⎩⎪⎨⎪⎧-52<52(a +b )<152,-2<-12(a -b )<-1.两式相加即得-92<2a +3b <132.答案:D9.△ABC 的三内角A ,B ,C 所对边的长分别为a ,b ,c ,设向量p =(a +c ,b ),q =(b -a ,c -a ),若p ∥q ,则角C 的大小为( )A.π6B.π3C.π2D.2π3解析:p ∥q ⇒(a +c )(c -a )-b (b -a )=0, 即c 2-a 2-b 2+ab =0,得a 2+b 2-c 22ab =12,即cos C =12,所以C =π3.答案:B10.已知x =a +1a -2(a >2),y =⎝ ⎛⎭⎪⎫12b 2-2(b <0),则x 、y 之间的大小关系是( )A .x >yB .x <yC .x =yD .不能确定解析:x =a +1a -2=a -2+1a -2+2≥4(a >2),当且仅当a -2=1a -2,即a =3时取“=”. y =⎝ ⎛⎭⎪⎫12b 2-2.因为b <0,所以b 2-2>-2.所以y <4.所以x >y . 答案:A11.设正实数x ,y ,z 满足x 2-3xy +4y 2-z =0,则当zxy取得最小值时,x +2y -z 的最大值为( )A.0 B.98C.2 D.94解析:因为x2-3xy+4y2-z=0,所以z=x2-3xy+4y2,又x,y,z为正实数,所以zxy=xy+4yx-3≥2xy·4yx-3=1(当且仅当x=2y时取“=”),即x=2y(y>0),所以x+2y-z=2y+2y-(x2-3xy+4y2)=4y-2y2=-2(y-1)2+2≤2.所以x+2y-z的最大值为2.答案:C12.在△ABC中,若三边a,b,c的倒数成等差数列,则边b所对的角为()A.锐角B.直角C.钝角D.不能确定解析:因为2b=1a+1c≥21ac,所以b2≤ac.所以cos B=a2+c2-b22ac≥a2+c2-ac2ac≥ac2ac=12.所以B为锐角.二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)13.在△ABC中,角A,B,C所对的边分别为a,b,c.若sin2B +sin2C-sin2A+sin B sin C=0,则tan A的值是______.解析:依题意及正弦定理可得,b2+c2-a2=-bc,则由余弦定理得cos A=b2+c2-a22bc=-bc2bc=-12,又0<A<π,所以A=2π3,tan A=tan 2π3=- 3.答案:-314.观察下列等式:12=1,12-22=-3,12-22+32=6,12-22+32-42=-10,…,照此规律,第n 个等式可为_______________.解析:当n 为偶数时,(12-22)+(32-42)+…+[(n -1)2-n 2]=-n (n +1)2;当n 为奇数时,(12-22)+(32-42)+…+[(n -2)2-(n -1)2]+n 2=-(n -1)n 2+n 2=n (n +1)2.答案:12-22+32-42+…+(-1)n +1n 2=(-1)n +1n (n +1)215.(2015·课标全国Ⅱ卷)若x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +1≥0,x -2y ≤0,x +2y -2≤0,则z =x +y 的最大值为________.解析:在平面直角坐标系中画出可行域如图中阴影部分所示,易得在点A ⎝⎛⎭⎪⎫1,12处z 取得最大值,且z max =32.答案:3216.在R 上,定义运算⊗:x ⊗y =x (1-y ),若不等式(x -a )⊗(x +a )<1对任意实数x 成立,则a 的取值范围是______.解析:(x -a )⊗(x +a )=(x -a )[1-(x +a )]=(x -a )·(1-x -a ). 则(x -a )⊗(x +a )<1⇒(x -a )(1-x -a )<1.又(x -a )(1-x -a )<1对x ∈R 恒成立,即x 2-x -a 2+a +1>0对x ∈R 恒成立,所以Δ=1-4(1+a -a 2)<0,即4a 2-4a -3<0,解得-12<a <32. 答案:⎝ ⎛⎭⎪⎫-12,32三、解答题(本题共6小题,共70分.解答题应写出文字说明、证明过程或推演步骤)17.(本小题满分10分)在△ABC 中,BC =7,AB =3,且sin Csin B =35. (1)求AC ; (2)求角A .解:(1)由正弦定理,得AC sin B =ABsin C .所以AB AC =sin C sin B =35. 所以AC =AB ·sin B sin C =5×33=5.(2)由余弦定理,得cos A =AB 2+AC 2-BC 22AB ·AC =9+25-492×3×5=-12.又0°<A <180°, 所以A =120°.18.(本小题满分12分)若a <1,解关于x 的不等式axx -2>1. 解:不等式axx -2>1可化为(a -1)x +2x -2>0. 因为a <1,所以a -1<0.故原不等式可化为x -21-ax -2<0.故当0<a <1时,原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪2<x <21-a .当a <0时,原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪21-a <x <2. 当a =0时,原不等式的解集为∅.19.(本小题满分12分)设S n 是等差数列{a n }的前n 项和,已知13S 3,14S 4的等比中项为15S 5;13S 3,14S 4的等差中项为1,求数列{a n }的通项公式.解:设等差数列{a n }的首项a 1=a ,公差为d ,则S n =na +n (n -1)2d ,依题意,有 ⎩⎨⎧13⎝ ⎛⎭⎪⎫3a +3×22d ×14⎝ ⎛⎭⎪⎫4a +4×32d =125⎝ ⎛⎭⎪⎫5a +5×42d 2,13⎝ ⎛⎭⎪⎫3a +3×22d +14⎝ ⎛⎭⎪⎫4a +4×32d =1×2,整理得⎩⎨⎧3ad +5d 2=0,2a +52d =2.所以a =1,d =0或a =4,d =-125. 所以a n =1或a n =325-125n , 经检验,a n =1和a n =325-125n 均合题意.所以所求等差数列的通项公式为a n =1或a n =325-125n .20.(本小题满分12分)某营养师要为某个儿童预订午餐和晚餐.已知一个单位的午餐含12个单位的碳水化合物、6个单位的蛋白质和6个单位的维生素C ;一个单位的晚餐含8个单位的碳水化合物、6个单位的蛋白质和10个单位的维生素C.另外,该儿童这两餐需要的营养中至少含64个单位的碳水化合物、42个单位的蛋白质和54个单位的维生素C.如果一个单位的午餐、晚餐的费用分别是2.5元和4元,那么要满足上述的营养要求,并且花费最少,应当为该儿童分别预订多少个单位的午餐和晚餐?解:法一:设需要预订满足要求的午餐和晚餐分别为x 个单位和y 个单位,所花的费用为z 元,则依题意得:z =2.5x +4y ,且x ,y 满足⎩⎪⎨⎪⎧x ≥0,y ≥0,12x +8y ≥64,6x +6y ≥42,6x +10y ≥54即⎩⎪⎨⎪⎧x ≥0,y ≥0,3x +2y ≥16,x +y ≥7,3x +5y ≥27.z 在可行域的四个顶点A (9,0),B (4,3),C (2,5),D (0,8)处的值分别是z A =2.5×9+4×0=22.5, z B =2.5×4+4×3=22, z C =2.5×2+4×5=25, z D =2.5×0+4×8=32.比较之,z B 最小,因此,应当为该儿童预订4个单位的午餐和3个单位的晚餐,就可满足要求.法二:设需要预订满足要求的午餐和晚餐分别为x 个单位和y 个单位,所花的费用为z 元,则依题意得z =2.5x +4y ,且x ,y 满足⎩⎪⎨⎪⎧x ≥0,y ≥0,12x +8y ≥64,6x +6y ≥42,6x +10y ≥54,即⎩⎪⎨⎪⎧x ≥0,y ≥0,3x +2y ≥16,x +y ≥7,3x +5y ≥27.作出可行域如下图所示.让目标函数表示的直线2.5x +4y =z 在可行域上平移,由此可知z =2.5x +4y 在B (4,3)处取得最小值.因此,应当为该儿童预订4个单位的午餐和3个单位的晚餐,就可满足要求.21.(本小题满分12分)如右图所示,某观测站C 在城A 南偏西20°的方向上,由A 城出发有一条公路,走向是南偏东40°,在C 处测得距C 为31千米的公路上B 处有一人正沿公路向A 城走去,走了20千米后,到达D 处,此时C 、D 间距离为21千米,问这人还需走多少千米到达A 城?解:根据题意,可得下图,其中BC=31千米,BD=20千米,CD=21千米,∠CAD=60°.设∠ACD=α,∠CDB=β.在△CDB中,由余弦定理得:cos β=CD2+BD2-BC22CD·BD=212+202-3122×21×20=-17,sinβ=1-cos2β=43 7.sin α=sin(180°-∠CAD-∠CDA)=sin(180°-60°-180°+β)=sin(β-60°)=sin βcos 60°-cos βsin 60°=437×12+17×32=53 14.在△ACD中,由正弦定理得:AD=CDsin A·sin α=21sin 60°×5314=15.此人还得走15千米到达A城.22.(本小题满分12分)数列{a n}中,a1=8,a4=2且满足a n+2=2a n+1-a n,n∈N*.(1)求数列{a n}的通项公式;(2)设S n=|a1|+|a2|+…+|a n|,求S n;(3)设b n =1n (12-a n )(n ∈N *),T n =b 1+b 2+…+b n (n ∈N *),是否存在最大的整数m ,使得对任意n ∈N *,均有T n >m 32成立?若存在,求出m 的值;若不存在,请说明理由.解:(1)由a n +2=2a n +1-a n ⇒a n +2-a n +1=a n +1-a n ,可知{a n }成等差数列,d =a 4-a 14-1=-2, 所以a n =8+(n -1)·(-2)=10-2n (n ∈N *).(2)由a n =10-2n ≥0得n ≤5,所以当n ≤5时,S n =-n 2+9n .当n >5时, S n =|a 1|+|a 2|+…+|a n |=a 1+a 2+…+a 5-a 6-a 7-…-a n=2(a 1+a 2+…+a 5)-(a 1+a 2+…+a n )=n 2-9n +40.故S n =⎩⎪⎨⎪⎧-n 2+9n ,1≤n ≤5,n 2-9n +40,n ≥5. (3)因为b n =1n (12-a n )=1n (2n +2)=12⎝ ⎛⎭⎪⎫1n -1n +1. 所以T n =b 1+b 2+…+b n=12⎣⎢⎡⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+⎝ ⎛⎭⎪⎫13-14+…+ ⎦⎥⎤⎝ ⎛⎭⎪⎫1n -1-1n +⎝ ⎛⎭⎪⎫1n -1n +1 =12⎝ ⎛⎭⎪⎫1-1n +1 =n 2(n +1)>n -12n=T n-1>T n-2> (1)所以要使T n>m32总成立,需m32<T1=14恒成立,即m<8(m∈Z).故适合条件的m的最大值为7.。