定积分的概念与性质
定积分的概念与性质
x
区间长度为: xi xi xi 1 , i 1,2,
,n
将曲边 梯形AabB 分成 n 个小曲边梯形,
si 表示第 i 个小曲边梯形的面积, 用s 表示曲边梯形 AabB 的面积, 则有: n s s1 s2 sn si
i 1
(2)近似求和 在每个小区间[ xi 1 , xi ] 上任取一点 i ( xi 1 i xi ),
n
当 0 时,和 总有共同的极限 I ,则称 I 为函数 b f ( x ) 在 [a , b] 上的定积分, 记为 f ( x )dx , 即
b
a
f ( x )dx I lim f ( i )xi
0
i 1
n
a
积分上限
[a , b] 称为积分区间
a
积分下限
s
i 1
n
i
si v ( i )t i
并作和:
( i 1,2, , n)
i
sn
v( )t
i 1 i n
n
则有 s sn v ( i )t i
i 1
n
(3)求极限 记 max{t i }, 当 0 时, 1 i n 有: s lim v ( i )t i
匀速直线运动: s v t 变速直线运动:
O
v(t )
T1
.
T2
.
t
用类似的方法解决如下: (1)分割
OT
1
t0
t1 t 2
ti
t i 1 tn T2
t
用 si 表示第 i 个小时间段行驶的距离, 则 s (2)近似求和 在每个时间段 [t i 1 , t i ] 上任取一时刻 i ,
第5.1节 定积分的概念及性质
§5.1 定积分的概念及性质一、定积分的定义5.1.1 定积分: 设)(x f 是定义在],[b a 上的有界函数,在],[b a 上任取一组分点b x x x x x a n i i =<<<<<<=−L L 110,这些分点将],[b a 分为n 个小区间],[10x x ,],[21x x ,…,],[1n n x x −记每个小区间的长度为:),,2,1(1n i x x x i i i L =−=∆−,并记},,,max{21n x x x ∆∆∆=L λ再任取点),,2,1(],[1n i x x i i i L =∈−ξ,作和式:∑=∆ni i i x f 1)(ξ,若和式的极限∑=→∆ni i i x f 1)(lim ξλ存在,则称)(x f 在区间],[b a 上可积,并称该极限为)(x f 在区间],[b a 上的定积分,记为∫b adx x f )(,即∑∫=→∆=ni i i bax f dx x f 1)(lim )(ξλ其中)(x f 称为被积函数,x 称为积分变量,a 称为积分下限,b 称为积分上限,],[b a 称为积分区间。
注:(1)定积分∫b adx x f )(表示一个常数值,它与被积函数)(x f 和积分区间],[b a 有关;(2)定积分的本质是一个和式的极限,该极限与区间的划分以及点i ξ的取法无关;5.1.2 函数可积的条件:(1)若)(x f 在],[b a 上连续,则)(x f 在],[b a 上可积; (2)若)(x f 在],[b a 上有界,且只有有限个间断点,则)(x f 在],[b a 上可积; (3)若)(x f 在],[b a 上单调有界,则)(x f 在],[b a 上可积; (4)有界不一定可积,可积一定有界,无界函数一定不可积。
5.1.3 定积分的几何意义:∫b adx x f )(表示以)(x f y =为曲边,以b x a x ==,为侧边,x 轴上区间],[b a 为底边的曲边梯形面积的代数和。
定积分的概念及性质
定积分的概念、微积分基本定理及其简单应用一. 定积分的定义A )定义: 设函数f(x)在[a,b]上有界,在[a,b]中任意插入若干个分点,把区间[a,b]分成n 个小区间,记},......,,max{,,......2,1,211n i i i x x x n i x x x ∆∆∆==-=∆-λ在[i i x x ,1-]上任意取一点i ξ,作和式:)1.......()(1ini ix f ∆∑=ξ 如果无论[a,b]作怎样分割,也无论i ξ在[i i x x ,1-]怎样选取,只要0→λ有→∆∑=ini ixf 1)(ξI (I 为一个确定的常数),则称极限I 是f(x)在[a,b]上的定积分,简称积分,记做⎰b adx x f )(即I=⎰badx x f )(其中f(x)为被积函数,f(x)dx 为积分表达式,a 为积分下限,b 为积分上限,x 称为积分变量,[a,b]称为积分区间。
例:求曲边图形面积:3x y =的图像在[]1,0∈x 间与1=x 及x 轴围成的图形面积。
注:1、有定义知道⎰ba dx x f )(表示一个具体的数,与函数f(x)以及区间[a,b]有关,而与积分变量x 无关,即⎰badx x f )(=⎰badu u f )(=⎰badt t f )(2、定义中的0→λ不能用∞→n 代替3、如果ini ix f Lim∆∑=→1)(ξλ存在,则它就是f(x)在[a,b]上的定积分,那么f(x)必须在[a,b]上满足什么条件f(x)在[a,b]上才可积分呢?经典反例:⎩⎨⎧=中的无理点,为,中的有理点,为]10[0]10[,1)(x x x f 在[0,1]上不可积。
可见函数f(x)在什么情况下可积分并不是一件容易的事情。
以下给出两个充分条件。
定理1 设f(x)在区间[a,b]上连续,则f(x)在[a,b]上可积。
定理2 设f(x)在区间[a,b]上有界,且只有有限个间断点,则f(x)在[a,b]上可积。
定积分的概念、性质
三、定积分的性质
§5.1 定积分的概念与性质
一、定积分问题举例
演讲人姓名
二、定积分定义
一、定积分问题举例
曲边梯形 设函数yf(x)在区间[a, b]上非负、连续. 由直线xa、xb、y0及曲线yf (x)所围成的图形称为 曲边梯形, 其中曲线弧称为曲边.
曲边梯形的面积
*
观察与思考
定积分的定义
*
二、定积分定义
例1 用定积分表示极限 解 定积分的定义
*
二、定积分定义
定积分的定义
注: 设f (x)在[0, 1]上连续, 则有
*
定积分的几何意义
这是因为 曲边梯形面积 曲边梯形面积的负值
*
定积分的几何意义
各部分面积的代数和 曲边梯形面积 曲边梯形面积的负值
*
例2
在曲边梯形内摆满小的矩形, 当小矩形的宽度减少时, 小矩形面积之和与曲边梯形面积之间的误差将如何变化? 怎样求曲边梯形的面积?
*
(2)近似代替:
求曲边梯形的面积
(1)分割:
ax0< x1< x2< < xn1< xn b, Dxi=xi-xi1;
小曲边梯形的面积近似为f(xi)Dxi (xi1<xi<xi);
如果在区间[a b]上 f (x)g(x) 则
如果在区间[a b]上 f (x)0 则
性质5
推论2
性质6
设M及m分别是函数f(x)在区间[a b]上的最大值及最小值 则
例4 试证:
证明 设 则在 上, 有 即 故 即
*
性质7(定积分中值定理)
如果函数f(x)在闭区间[a b]上连 续 则在积分区间[a b]上至少存在一个点x 使下式成立 这是因为, 由性质6 ——积分中值公式 由介值定理, 至少存在一点x[a, b], 使 两端乘以ba即得积分中值公式.
定积分的概念和性质
a
性质1 函数的和(差)的定积分等于它们的定 积分的和(差)。即
∫ [ f ( x) ± g ( x)]dx = ∫
a
b
b
a
f ( x ) dx ± ∫ g ( x ) dx
a
b
• 证
∫ [ f ( x) ± g ( x)]dx = lim ∑ [ f (ξ ) ± g (ξ )]∆x λ
a →0 i =1 n i i
y y=f(x)
0
a=x0 x1 x2 x3 xi −1
xi
xn −1 x = b n
x
(2)取近似:将这些细长条近似地看作一个个小矩形
在第 i个小曲边梯形的底 [ x i −1 , x i ]上任取一点 ξ i x i −1 ≤ ξ ≤ x i ), ( 它所对应的函数值是 f (ξ i ).用相应的宽为 ∆x i , 长为 f (ξ i )的小矩形 面积来近似代替这个小 曲边梯形的面积,即 ∆Ai ≈ f (ξ i ) ∆x i
• 证
b
a
kf ( x)dx = k ∫ f ( x)dx
a
b
(k为常数)
∫
b
a
kf ( x)dx = lim ∑ kf (ξ i )∆xi
λ →0
i =1 n b
n
= k lim ∑ f (ξ i )∆xi = ∫ f ( x)dx
λ →0
i =1 a
• 性质3 (定积分的区间可加性) 若a < c < b,则
f (ξ i ) ∆ x i .
f(ξ) i
0
a=x0 x1
x2 xi −1ξixi
xn −1 x = b n
x
定积分的概念与性质
定积分的概念与性质在数学中,定积分是一种重要的数学工具,用于求解曲线下的面积以及计算函数的平均值和总和。
本文将介绍定积分的概念与性质,帮助读者更好地理解和应用该概念。
一、定积分的概念定积分是微积分中的一种方法,用于计算曲线下的面积。
它是对函数在给定区间上的求和过程。
我们将一个区间划分成无穷小的小区间,并在每个小区间上选择一个点,然后将每个小区间的函数值和小区间长度相乘,再将这些乘积相加,最终得到定积分的值。
定积分的表示方法是∫[a, b] f(x)dx,其中a和b是积分区间的边界,f(x)是要进行积分的函数。
定积分代表了函数f(x)在[a, b]区间上的总和或者面积。
二、定积分的计算方法1. 用基本定积分公式计算定积分。
对于一些简单的函数,我们可以直接使用基本定积分公式进行计算。
例如,∫x^2 dx = 1/3x^3 + C,其中C是常数。
2. 使用不定积分和积分区间上的定义进行计算。
如果我们已知函数f(x)在区间[a, b]上的原函数F(x),那么定积分的值就等于F(b) - F(a)。
这是因为定积分可以看作是函数在两个边界上的累积变化量。
3. 利用定积分的性质进行计算。
定积分具有线性性质,即∫[a, b] (f(x) + g(x))dx = ∫[a, b] f(x)dx + ∫[a, b] g(x)dx。
此外,如果函数f(x)在区间[a,b]上连续,且f(x)≥0,则定积分的值表示了曲线下的面积。
三、定积分的性质1. 定积分与原函数的关系。
如果函数f(x)在区间[a, b]上连续,且F(x)是f(x)的一个原函数,则∫[a, b] f(x)dx = F(b) - F(a)。
这个公式可以用来计算一些不易积分的函数。
2. 定积分的加法性质。
对于两个函数f(x)和g(x),以及一个常数k,有∫[a, b] (f(x) + g(x))dx = ∫[a, b] f(x)dx + ∫[a, b] g(x)dx,以及∫[a, b] kf(x)dx = k∫[a, b] f(x)dx。
定积分的基本概念与性质
定积分的基本概念与性质定积分是微积分的重要概念之一,它在数学和物理学等领域中有着广泛的应用。
本文将介绍定积分的基本概念、计算方法以及一些重要性质。
一、定积分的基本概念定积分是指在给定区间上某一函数的积分运算。
具体来说,设函数f(x)在区间[a, b]上有定义,将区间[a, b]划分成n个小区间,每个小区间的长度为Δx。
在每个小区间上取一个样本点ξi,并计算出该点的函数值f(ξi)。
然后,将每个小区间的函数值与对应的Δx乘积相加,得到Σf(ξi)Δx。
当其中的Δx趋近于0且取样本点数n趋向于无穷大时,得到的极限值即为函数f(x)在区间[a, b]上的定积分,记为∫[a, b]f(x)dx。
二、定积分的计算计算定积分可以利用定积分的性质以及一些基本积分公式。
其中,常用的计算方法有:几何法、分部积分法、换元积分法等。
几何法是通过对定积分的几何意义进行理解来进行计算。
例如,计算函数f(x)=x在区间[a, b]上的定积分,可以将其表示为对应曲线下方的面积。
根据不同曲线形状,可以将区间划分成不同的几何图形,计算各个图形的面积,并将其相加得到结果。
分部积分法是利用积分运算的乘法规则,将待求的定积分转化为另一个不定积分的形式。
通过选择适当的u(x)和v(x),利用公式∫u(x)v'(x)dx = u(x)v(x) - ∫v(x)u'(x)dx,可以将原定积分转化为带有初等函数的不定积分。
换元积分法是通过引入新的变量进行变换,使得求解定积分问题简化。
假设有一个函数f(g(x)),利用链式法则可以得到d[f(g(x))]/dx =f'(g(x))*g'(x)。
通过令u=g(x),则有du=g'(x)dx,可以将定积分∫f(g(x))g'(x)dx 转换为∫f(u)du,此时就可以利用基本的不定积分公式进行计算。
三、定积分的性质定积分具有一些重要的性质,下面将介绍其中的几个性质。
定积分的概念及性质
一、定积分的概念及性质定积分是研究分布在某区间上的非均匀量的求和问题,必须通过“分割、近似、求和、求极限”四个步骤完成,它表示了一个与积分变量无关的常量。
牛顿—莱布尼兹公式揭示了定积分与原函数的关系,提供了解决定积分的一般方法。
要求解定积分,首先要找到被积函数的原函数,而求原函数是不定积分的内容,由此,大家也可以进一步体会上一章内容的重要性。
被积函数在积分区间有界是可积的必要条件,在积分区间连续是可积的充分条件。
定积分具有线性性质、比较性质以及中值定理等,这些性质在定积分的计算和理论研究上具有重要意义,希望大家认真领会。
二、定积分的计算定积分的计算主要依靠牛顿—莱布尼兹公式进行。
在被积函数连续的前提下,要计算定积分一般需要先计算不定积分(因而不定积分的计算方法在定积分的计算中仍然适用),找出被积函数的原函数,但在具体计算时,定积分又有它自身的特点。
定积分计算的特点来自于定积分的性质,来自于被积函数在积分区间上的函数特性,因此有时定积分的计算比不定积分更简洁。
尽管定积分在求原函数的指导思想上与不定积分没有差别,但实际上它们又不完全一样。
例如用换元法来计算定积分⎰22cos sin πxdx x ,如果计算过程中出现了新的变元:x u sin =,则上下限应同时相应改变,微分同样如此,即⎰202cos sin πxdx x x u sin =313110312==⎰u du u 。
可以看出,在进行换元时的同时改变了积分的上下限,这样就无须象不定积分那样回代了。
但如果计算过程中不采用新变元,则无需换限,即=⎰202cos sin πxdx x 31sin 31sin sin 203202==⎰ππx x xd 。
在前一种方法(也称为定积分的第二换元法)中,一定要注意三个相应的变换:积分上、下限、微分,否则必然出现错误。
后一种方法(定积分的第一换元法)可以解决一些相对简单的积分,实际上是换元的过程可以利用凑微分来替代,由于没有出现新的变元,因而也就无须改变积分上下限及微分。
定积分的概念及性质
o a x1
xi1 xi
Ai ≈ f (ξi )xi
(xi = xi xi1 )
ξi
3) 近似和 近似和.
A = ∑Ai ≈ ∑ f (ξi )xi
i=1 i=1
n
n
4) 取极限 令 取极限.
则曲边梯形面积
A = lim ∑Ai
λ→0 i=1
n
n
y
= lim ∑ f (ξi )xi
λ→0 i=1
∑ f (ξ i )xi = ∑ f (ξ i )xi + ∑ f (ξ i )xi
[a, b] [a, c]
[c, b]
令λ →0
∫a f (x) dx = ∫a f (x) dx + ∫c f (x) dx
b
c
b
当 a , b , c 的相对位置任意时, 例如
a < b < c,
a
c b c
b
第五章 五
第一节 定积分的概念及性质
一、定积分问题举例 二、 定积分的定义 三、 定积分的性质
一、定积分问题举例
矩形面积 梯形面积 1. 曲边梯形的面积 设曲边梯形是由连续曲线 以及两直线 所围成 , 求其面积 A .
y = f (x) y = f (x)
A=?
解决步骤 : 1) 大化小 在区间 [a , b] 中任意插入 n –1 个分点 大化小.
a a a
b
b
b
即
∫a f (x) dx ≤ ∫a
[a, b]
b
b
f (x) dx
7. 设 M = max f (x), m = min f (x) , 则
[a, b]
(a < b)
定积分的概念与性质
(2)取近似:取每个小区间的右端点i n
为ξi(
i=
1,2,…,n),
作乘积
f
(i )xi
( i )2 n
(3)求和:
n
i 1
f (i )xi
n i2 ()
i1 n
1 n
n i 1
i2 n3
Байду номын сангаас
1 n3
(12
22
n2)
=
1 n3
1 6
n(n
1)(2n
1)
1 6
(1
1 )(2 n
1 n
)
例1.1 用定积分的定义计算 1 x2dx 0
1
2e 4
2 ex2 xdx 2e2
0
证明:
函数在闭区间[0, 2]上的最大值为 e2
最小值为
1
e4
所以由积分估值定理可知
1
性质6(定积分估值定理) 设m, M 是f(x) 在区间 [a,b] 上最 小值和最大值,则
b
m(b a) a f (x)dx M (b a)
性质7(定积分中值定理) 如果函数f(x) 在闭区间 [a,b] 上 连续,则在 [a,b] 上至少存在一点ξ使
b
a f (x)dx f ( )(b a)
b
dx
b1 dx 高为1、底为b a的矩形面积=b a
a
a
a xdx 高为a、底为a的直角三角形面积= 1 a2
0
2
R R2 x2 dx 半径为R的上半圆面积= 1 R2
R
2
2 sin xdx (0 正负面积相消后的代数面积为0) 0
例1.1 用定积分的定义计算 1 x2dx 0
定积分的概念及性质
两端分别相加, 得
(n 1)3 1 3(12 22 n2 ) 3(1 2 n) n
即
n3 3n2 3n 3
n
i2 3
n(n1) 2
n
n
i1
i 216 n(n 1)(2n 1)
i1
[a , b]
[a , b]
(a b) 证 由m f ( x) M , 得
b
b
b
m(b a) m d x f ( x)d x M d x M(b a)
a
a
a
例4
估计 I 2ex2 d x 的值.
1
解 由e1 ex2 e4,
得
1 e 2ex2 d x e4 1
定积分 与 积分区间 有关
与积分变量用什么字母表示无关:
b
b
f ( x)dx f (t)dt
a
a
y
y f (x)
y
y f (t)
Oa
bx O a
“面积相同”
bt
三、定积分的几何意义
(曲边梯形面积)
y
A1
a
A2
(曲边梯形面积的负值)
A3
A5
A4
bx
b a
f
(x)d
x
A1
A2
3
f ( )
611 6
定积分中值定理的几何意义: (f (ξ ) :平均高度)
曲边梯形面积 = 某矩形面积
y y f (x)
定积分中值定理的数学意义:
3.4 定积分的概念和性质
的平均值,且
b
a
f ( x ) dx = f (x) (b - a).
其中 f (x ) 称为连续函数y=f (x)在[a, b]上
b 1 f (x ) f ( x )dx ba a
证
因为 b – a > 0,由估值定理得
y a b x
轴下方,此时该定积分为 负值,它在几何上表示 x 轴下方的曲边梯形面积的 负值,即 f ( x )dx A.
a b
O
A
y=f (x)
B
当 f (x) 在 [a, b] 上有正有负时, f ( x )dx a
b
在几何上表示 x 轴上方的曲边梯形面积减去
x 轴下方的曲边梯形面积:
a
b
三、定积分的性质
下面各性质中的函数都假设是可积的. 性质 1 (线性性质)
Af ( x ) Bg( x )dx A
b a
b
a
f ( x ) dx B g( x )dx
a
b
(其中A、B为常数) 性质1可推广到有限个函数代数和的情形,即
A f ( x ) A
b a 1 1
A
x1
x2
xi
x i- 1 x i
xn
x n= b x
O a = x 0 x1
(3) 求和(“积零为整”)
得 f (x i ) xi , 把 n 个小矩形面积相加,
i 1
n
它就是曲边梯形面积的近似值, 即
A Ai f (x i ) xi .
i 1 i 1 n n
定积分的定义和性质
定积分的定义和性质定积分是微积分中的重要概念,用以计算曲线下的面积或曲线所围成的图形的面积。
在本文中,我们将介绍定积分的定义和性质,并探讨其在数学和实际问题中的应用。
一、定积分的定义定积分是将曲线下的面积分成无穷多个无穷小的矩形,并对它们进行求和的过程。
它可用以下形式进行定义:设f(x)在区间[a, b]上连续,将[a, b]分成n个小区间,每个小区间的长度为Δx = (b - a)/n。
选择每个小区间上的任意一个点ξi,计算出相应的函数值f(ξi),然后将这些函数值与Δx相乘并求和,即可得到定积分的值:∫[a, b]f(x)dx = lim(n→∞)Σf(ξi)Δx二、定积分的性质1. 可加性:对于函数f(x)在区间[a, b]上可积分,并且c位于该区间内,则有∫[a, b]f(x)dx = ∫[a, c]f(x)dx + ∫[c, b]f(x)dx。
这意味着可以将区间进行分割,根据不同段的定积分值进行求和。
2. 线性性质:对于函数f(x)和g(x)在区间[a, b]上可积分,以及任意实数k,则有∫[a, b](kf(x) + g(x))dx = k∫[a, b]f(x)dx + ∫[a, b]g(x)dx。
这表明可以将函数进行线性组合后再进行积分。
3. 区间可变性:如果函数f(x)在区间[a, b]上可积分,并且在区间[a,b']上也连续(其中b' > b),则有∫[a, b']f(x)dx = ∫[a, b]f(x)dx + ∫[b,b']f(x)dx。
这意味着可以扩展区间并计算新增部分的定积分值。
三、定积分的应用定积分在数学和实际问题中具有广泛的应用。
下面列举一些典型的应用场景:1. 面积计算:通过计算定积分可以求得曲线和坐标轴所围成图形的面积。
例如,可以利用定积分计算圆的面积、椭圆的面积等。
2. 弧长计算:通过计算定积分可以求得曲线的弧长。
这在工程学、物理学和几何学等领域中都有应用。
定积分的概念与性质
x x0
1 f ( x )dx f ( x0 )( ) 0 2 当 x0 a, 或b ,同理可证原不等式成立.
思考:P178 (B)部分第4题
注意:
f 1、 如果 f ( x)在[a, b] 上 连续,且 ( x) 0,
那么 f ( x)dx 0 f ( x) 0.
1 n( n 1)(2n 1) 3 n 6
o
i n
1x
利用定义或几何意义计算定积分是非常有限的,
为了寻求定积分的有效算法,我们先介绍定积分的 性质,首先对定积分作以下两点补充规定
(1) ( 2)
a f ( x )dx 0. a f ( x )dx b
b a
a
f ( x )dx.
i
二、定积分定义 ( P171 定义1.1 )
任一种分法
a x0 x1 x2 xn b ,
n i 1
任取
f ( i ) xi
在区间
总趋于确定的极限 I , 则称此极限 I 为函数
上的定积分, 记作 f ( x) d x
a b
即
a f ( x) d x lim0 i f ( i ) xi 1
a
(四个小矩形)
b
a
(九个小矩形)
b
显然,小矩形越多,矩形总面积越接近 曲边梯形面积.
解决步骤 : 1) 大化小. 在区间 [a , b] 中任意插入 n –1 个分点
a x0 x1 x2 xn1 xn b 用直线 x xi 将曲边梯形分成 n 个小曲边梯形;
sin x x [ , ],当 x ( , ) 时, 解 令 f ( x) , 4 2 4 2 x x cos x sin x cos x ( x tan x ) 则 f ( x ) 0, 2 2 x x
5.1 定积分的概念与性质
形的面积的相反数。 例:设 y f ( x) x 。
(1) 下图中的阴影部分正是由三条直线 x 0 ,x 1 ,y 0 , 以及曲线 y x 所 围成的曲边梯形。注意到该曲边梯形全部在 x 轴上方。于是有
b
a
f ( x)dx 该曲边梯形的面积的相反数
y f ( x)
f ( x) dx 面积
b a
b
a
f ( x)dx 面积
y f ( x)
(3)设在区间 [a, b] 上, f ( x) 既可取到正数,也可取到负数。于是,在由三条直 线 x a , x b , y 0 (即 x 轴) ,以及曲线 y f ( x) 所围成的图形中,一部分 在 x 轴上方,一部分在 x 轴下方。从而有
第一节 定积分的概念与性质
1. 定积分: f ( x)dx
a
b
其中 f ( x) 为被积函数, x 为积分变量, a 为积分下限,b 为积分上限,[a, b] 为积 分区间。
注 1: 定积分与不定积分的区别在于: (1) 定积分多了积分上限与积分下限; (2) 不定积分的结果是某些函数,而定积分的结果是某个具体的常数。
y 1 yx
0
x
(3) 下图中的阴影部分正是由三条直线 x 1 , x 2 , y 0 ,以及曲线 y x 所围成的曲边梯形。注意到该曲边梯形一部分在 x 轴上方,一部分在 x 轴下方。 于是有
2
1
xdx x轴上方图形的面积 x轴下方图形的面积 1 1 1 3 2 2 1 1 2 2 2 2 2
定积分的概念和性质公式
定积分的概念和性质公式定积分是微积分的重要概念之一,用于计算曲线下面的面积或者曲线围成的面积,以及求解一些几何体的体积。
本文将介绍定积分的概念、性质以及相关的公式。
一、定积分的概念在数学中,定积分可以看作是无穷小量的累加,它的计算结果是一个数值。
定积分的概念可以通过求解函数和坐标轴之间的面积来解释。
设对于连续函数y=f(x)在区间[a,b]上,我们将它与x轴围成的平面区域分割成多个无穷小的矩形,其宽度为Δx。
我们分别计算每个矩形的面积,将这些面积相加,然后取极限得到的结果就是函数f(x)在区间[a,b]上的定积分。
表示为:∫[a,b]f(x) dx = limΔx→0 Σf(x_i)Δx其中,Σ表示求和,f(x_i)表示在每个小矩形的高度,Δx表示每个小矩形的宽度。
二、定积分的性质1.线性性质:设函数f(x)和g(x)在区间[a,b]上可积,k为常数,则有:∫[a,b](f(x)+g(x))dx = ∫[a,b]f(x)dx + ∫[a,b]g(x)dx∫[a,b]k*f(x)dx = k*∫[a,b]f(x)dx2.区间可加性质:设函数f(x)在区间[a,b]和[b,c]上可积,则:∫[a,c]f(x)dx = ∫[a,b]f(x)dx + ∫[b,c]f(x)dx3.估值性质:设f(x)在区间[a,b]上非负可积,c是[a,b]上的任意一点,则有:f(c)*(b-a) ≤ ∫[a,b]f(x)dx ≤ M*(b-a)其中,M为f(x)在[a,b]上的最大值。
4.小于等于零性质:设函数f(x)在区间[a,b]上非负可积并且在[a,b]上恒大于等于0,则有:∫[a,b]f(x)dx ≤ 0 当且仅当f(x)恒为零。
5.平均值定理:设函数f(x)在区间[a,b]上可积,则存在一个点c使得:∫[a,b]f(x)dx = f(c)*(b-a)三、定积分的计算公式1.基本积分法则:∫k dx = kx + C (k为常数)∫x^n dx = (x^(n+1))/(n+1) + C (n≠-1)2.叠加性质:∫[a,b]f(x)dx = ∫[a,c]f(x)dx + ∫[c,b]f(x)dx3.替换法则:设F(x)在区间[a,b]上可导,f(g(x))g'(x)在区间[g(a),g(b)]上连续,则有:∫[a,b]f(g(x))g'(x)dx = ∫[g(a),g(b)]f(u)du ,其中u=g(x)4.分部积分法则:设u(x)和v(x)是具有连续导数的函数,则有:∫u(x)v'(x)dx = u(x)v(x) - ∫u'(x)v(x)dx5.换元法则:设F(x)在区间[a,b]上可导,f(u)u'(x)在区间[u(a),u(b)]上连续,则有:∫[a,b]f(u(x))u'(x)dx = ∫[u(a),u(b)]f(u)du6.常用积分表:∫sin(x)dx = -cos(x) + C∫cos(x)dx = sin(x) + C∫1/(1+x^2)dx = arctan(x) + C∫1/√(1-x^2)dx = arcsin(x) + C∫e^x dx = e^x + C∫ln(x) dx = xln(x)-x + C总结:定积分是微积分的关键概念之一,通过对函数和坐标轴之间的面积进行累加,计算结果为一个数值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用直线
将曲边梯形分成 n 个小曲边梯形;
2) 常代变.
在第i 个窄曲边梯形上任取
作以
为底 ,
为高的小矩形,
并以此小
矩形面积近似代替相应
窄曲边梯形面积
得
3) 近似和.
4) 取极限.
令
则曲边梯形面积
2. 变速直线运动的路程
设某物体作直线运动,
已知速度
求在运动时间内物体所经过的路程 s.
解决步骤: 1) 大化小.
定积分
换元积分法 分部积分法
一、定积分的换元法 二、定积分的分部积分法
一、定积分的换元法
定理1. 设函数
单值函数
满足:
1)
2) 在
上
则
证: 所证等式两边被积函数都连续, 且它们的原函数也存在 .
则
是
的原函数 ,
因此积分都存在 , 因此有
n 个小段
过的路程为
2) 常代变.
且
将它分成 在每个小段上物体经
得
3) 近似和.
4) 取极限 .
上述两个问题的共性:
• 解决问题的方法步骤相同 :
“大化小 , 常代变 , 近似和 , 取极限 ”
• 所求量极限结构式相同:
特殊乘积和式的极限
二、定积分定义 (P225 )
任一种分法 任取
总趋于确定的极限 I , 上的定积分,
可积的充分条件:
定理1. 定理2.
例1. 利用定义计算定积分 解: 将 [0,1] n 等分, 分点为
取
且只有有限个间断点
(证明略)
注 注. 当n 较大时, 此值可作为
的近似值
注
例2. 用定积分表示下列极限:
解:
三、定积分近似计算 例1
可得如下近似计算方法: 将 [a , b] 分成 n 等份:
备用题
1. 设
求
解: 定积分为常数 , 设
故应用积分法定此常数 . ,则
2. 设
时, = o( ) .
证:
洛
试证: 当
所以 = o( ) .
目录 上页 下页 返回 结束
3. 求
解: 由于
所以 其中
的递推公式(n为正整数) . 因此
第三节
第五章
定积分的换元法和
分部积分法
不定积分
换元积分法 分部积分法
定理2. 函数 , 则
( 牛顿 - 莱布尼茨公式)
证: 根据定理 1,
故
因此
得
记作
或
例4. 计算
解:
例5. 计算正弦曲线 的面积 .
解:
例6. 汽车以每小时 36 km 的速度行驶 ,到某处需要减
速停车, 设汽车以等加速度
刹车, 问从开始刹
车到停车走了多少距离? 解: 设开始刹车时刻为
则此时刻汽车速度
第二节
第二节
第五章
微积分的基本公式
一、引例 二、积分上限的函数及其导数 三、牛顿 – 莱布尼茨公式
一、引例
在变速直线运动中, 已知位置函数 之间有关系:
物体在时间间隔
内经过的路程为
与速度函数
这种积分与原函数的关系在一定条件下具有普遍性 .
二、积分上限的函数及其导数
定理1. 若
则变上限函数
证:
则有
连续函数在区间上的平均值公式
思考与练习
1. 用定积分表示下述极限 :
解:
或
思考: 如何用定积分表示下述极限
提示:
极限为 0 !
2. P235 题3
题13(4) 解: 设
3. P236 题13 (2) , (4)
则
即
作业
P235 *2 (2) ; 6 ; 7 ; 10 (3) , (4) ; 12(3) ; 13 (1) , (5)
性质7
说明:
• 积分中值定理对 • 可把
因
故它是有限个数的平均值概念的推广.
例5. 计算从 0 秒到 T 秒这段时间内自由落体的平均
速度. 解: 已知自由落体速度为
故所求平均速度
内容小结
1. 定积分的定义
2. 定积分的性质 3. 积分中值定理
— 乘积和式的极限
近似计算
矩形公式 梯形公式 抛物线法公式
根据定积分定义
1. 左矩形公式 2. 右矩形公式
3. 梯形公式
4. 抛物线法公式
推导
例3. 用梯形公式和抛物线法公式
计算定积分
的近似值.
(取 n = 10, 计算时取5位小数)
解:计算yi(见右表) 用梯形公式得 用抛物线法公式得 积分准确值为
i xi 0 0.0 1 0.1 2 0.2 3 0.3 4 0.4 5 0.5 6 0.6 7 0.7 8 0.8 9 0.9 10 1.0
第一节
第五章
定积分的概念及性质
一、定积分问题举例 二、 定积分的定义 三、 定积分的近似计算 四、 定积分的性质
一、定积分问题举例
矩形面积 梯形面积
1. 曲边梯形的面积 设曲边梯形是由连续曲线
以及两直线
所围成 ,
求其面积 A .
解决步骤 :
1) 大化小.
在区间 [a , b] 中任意插入 n –1 个分点
yi 4.00000 3.96040 3.84615 3.66972 3.44828 3.20000 2.94118 2.68456 2.43902 2.20994 2.00000
四、定积分的性质 (设所列定积分都存在)
( k 为常数) 证:
= 右端
证: 当
因
在
时, 上可积 ,
所以在分割区间时, 可以永远取 c 为分点 ,
于是
当 a , b , c 的相对位置任意时, 例 如
则有
6. 若在 [a , b] 上
则
证:
推论1. 若在 [a , b] 上
则
推论2.
证:
即
7. 设
则
例4. 试证:
证: 设
则在
上, 有
即 故 即
8. 积分中值定理
则至少存在一点
使
证: 则由性质7 可得
根据闭区间上连续函数介值定理, 使
因此定理成立.
刹车后汽车减速行驶 , 其速度为
当汽车停住时,
即
得
故在这段时间内汽车所走的距离为
内容小结
1. 微积分基本公式
则有
积分中值定理
微分中值定理
2. 变限积分求导公式
牛顿 – 莱布尼茨公式
作业
P243 3 ; 4 ; 5 (3) ; 6 (8) , (11) , (12) ; 9 (2) ; 12
第三节
则称此极限 I 为函数 记作
即
此时称 f ( x ) 在 [ a , b ] 上可积 .
在区间
积分上限
积分下限
被 积 函 数
被 积 表 达 式
积 分 变 量
定积分仅与被积函数及积分区间有关 ,
变量用什么字母表示无关 ,
即
积 分 和 而与积分
定积分的几何意义:
曲边梯形面积 曲边梯形面积的负值
各部分面积的代数和
说明:
1) 定理 1 证明了连续函数的原函数是存在的.
通过原函数计算定积分开辟了道路 . 2) 其他变限积分求导:
同时为
例1. 求
解:
原式 洛
例2. 确定常数 a , b , c 的值, 使
解:
原式 = 洛
c ≠0 , 故
又由
~
,得
说明
例3.
在 证:
内为单调递增函数 .
证明 只要证
三、牛顿 – 莱布尼茨公式