射流管式电液伺服阀与喷嘴挡板式电液伺服阀比较
电液伺服阀
• 这是个流量控制型伺服阀:由于功率
阀芯台肩控制棱边与阀套窗孔的相应棱边 的轴向尺寸是按零遮盖状态精密配合的, 所以输出流量的方向取决于控制电流的极 性,而输出流量的大小在负载压力恒定的 条件下与控制电流的大小成比例。
相关性能参数见上表
2、vickers喷嘴挡板阀
图5-26 SM4型阀内部结构 1-滤油器 2-喷嘴 3-衔铁 4-线圈 5-永久磁铁 6-导磁体 7-弹簧管 8-挡板
英国道蒂公司
6、DOWT型三级电液流量伺服阀
三级伺服阀通常是以通用型两级伺服 阀为前置级并以滑阀式控制阀为功率 级所构成。第三级的功率滑阀(或称 主滑阀)依靠位置反馈定位,一般为 电气反馈或力反馈。
电反馈调节方便,改变额定流量 及频率响应容易,适应性大,灵活性 好,是三级阀的主要优点。英国道蒂 公司制造的前置级采用两级双喷嘴挡 板力反馈伺服阀或射流管力反馈伺服 阀。
• 输入的控制电流越大,阀芯的位移量也越 大,节流边开度就越大,输出的流量就越 多,执行机构运动的速度就越快(流量型 控制伺服阀)。如果输入控制电流的极性 相反,则衔铁作顺时针方向偏转,使阀芯 右移,压力油P由B腔进入执行机构,使其 向相反方向运动。
3、Abex400型射流管式伺服阀
美国阿贝克斯400 型射流管式伺服阀
射流管的侧面装有弹簧板及反馈弹簧丝5,其末端插入阀芯中间的小槽内,阀芯推动 反馈弹簧丝5,构成对力矩马达的力反馈。
力矩马达借助薄壁弹簧片实现对液压部件的密封隔离。
射流管伺服阀优点: ① 射流管阀的最小通流尺寸约为0.2mm,而喷嘴挡板式伺服阀
为0.025~0.10mm。因此射流管的抗污染能力强,可靠性高、寿 命长。 • 伺服阀的抗污染能力,一般是由其结构中的最小通流尺寸所决定的。 而在多级伺服阀中,前置级油路中的最小尺寸成为决定性因素。 • ② 射流管阀的压力效率和容积效率高,可以产生较大的控制压力和 流量,这就提高了功率阀的驱动力,增大了功率阀的抗污染能力。 • ③ 从前置级磨蚀对性能的影响来看,射流管喷嘴端面和接受端面的 磨损,对性能的影响小,因此工作稳定,零漂小,寿命长。 射流管阀的缺点:是频率响应低,零位泄漏流量大,低温特性差,加工
3_电液伺服阀
V0 p
2e
dpLp dt
7)滑阀阀芯的动力学方程
pLp Av
mv
d 2 xv dt 2
Bv
dxv dt
Kf
r b
xv 0.43w ps
pL xv
2 力反馈两级伺服阀的数学建模
8)方块图
PL
P139
K f r b
0 .43 wx v 0
I c
Kt
+
+ -
-
1
J a s 2 B a s K mf
第3章 电液伺服阀
两级电液伺服阀
永磁动铁式力矩马达控制 两级液压放大器; 前置级:喷嘴挡板阀; 功率输出级:滑阀; 位置力反馈型; 流量伺服阀;
三、电液伺服阀工作原理
a
N
1
g
4
2
S
a 3
g N2
gx gx
S
1 永磁动铁式力矩马达工作原理 它由永久磁铁、上导磁体、下导磁体、衔铁、控制线圈、弹
簧管等组成。衔铁固定在弹簧管上端,由弹簧管支承在上、下 导磁体的中间位置,可绕弹簧管的转动中心作微小的转动。衔 铁两端与上、下导磁体(磁极)形成四个工作气隙①、②、⑤、 ①。两个控制线圈套在衔铁之上。
Xf
Q Lp
r
K qp
+
-+
-
1
PLp
V0 p 2
s C tp
Av
e
++
-
1
X v
m v s 2 B v s K f 0 .43 wp s
K cp rA N
Av s
K f r b
2 力反馈两级伺服阀的数学建模
电液伺服阀论述
电液伺服阀论述1.概述电液伺服阀是电液伺服系统中的核心元件。
它既是电液转换元件,又是功率放大元件。
在系统中将输入的小功率电信号转换为大功率的液压能(压力与能量)输出,其性能对系统特性影响很大。
电液伺服阀在电厂中被广泛使用,伺服阀是电液伺服控制系统中的重要控制元件,在系统中起着电液转换和功率放大作用。
电液伺服阀的性能和可靠性将直接影响系统的性能和安全,是电液伺服控制系统中引人瞩目的关键元件。
20 世纪70 年代以来,国内开始了对电液伺服系统的研究和应用。
近年来,随着国内机械工业的高速发展,对于高精度金属成型装备的需求大大增加,大规格电液伺服系统在锻压机械、轧钢机械、折弯机中的应用越来越广泛。
而电液伺服阀的发展可以追溯到二战末期,1940 年前后,在飞机上最早出现了电液伺服控制系统。
电液伺服阀将输入的小功率电信号转换为大功率液压输出形式( 压力和流量) ,具有控制精度高和响应速度快的特点。
电液伺服阀结构精密,对油液介质要求高,价格昂贵。
典型结构有喷嘴挡板式和射流管式,喷嘴挡板式动态响应快,灵敏度高,但是零位泄漏量大,喷嘴易堵塞。
与喷嘴挡板式电液伺服阀相比,射流管式电液伺服阀抗污染能力强,但是响应速度略慢。
为使电液伺服系统能够可靠并廉价地应用到实际工业生产中,20 世纪60 年代末,出现了电液比例阀。
电液比例阀是阀内比例电磁铁根据输入的电压信号产生相应动作,使阀芯产生位移,阀口尺寸发生改变并以此完成与输入电压成比例的压力、流量输出的元件。
后来又经过了一系列的发展,20 世纪末,伺服技术与比例技术相结合,伺服比例阀应运而生。
与电液伺服阀相比,电液比例阀抗污染能力强,成本低,但是其直线性和响应速度均不及电液伺服阀。
电液伺服阀和电液比例阀有其独有的特点和优势,但也因其自身结构特点的原因,有一些先天的劣势。
特别是当要求输出的液压功率较大,而电-机械转换元件输出功率较小,无法直接驱动功率级主阀时,需要增加液压先导级,无疑使阀的结构更加复杂,稳定性降低。
射流管式电液伺服阀
CSDY1 CSDY2电液伺服阀是目前国际电液伺服阀中的最新产品。
采用干式力矩马达,整体焊接,射流管为先导级,主滑阀作功放,是一种高性能力反馈两级方向、流量控制阀。
它接受微小电信号并转换为液压功率放大,输出流量大小与控制电信号大小成比例。
其特点:(1)结构牢固。
可抗Ⅰ级振动、Ⅰ级颠振和400g加速度攻击;(2)零位稳定优于双喷嘴挡板型阀,安全可靠;(3)分辨率极高;(4)抗污染能力极强,可使用NAS1638的7-8级油液;(5)寿命长,使用次数可达107次(约5000小时);(6)控制精度高。
适用于遍及各个领域中的高精度电液伺服系统。
如:造船工业、航天工业、航空工业、重工业、轻、纺工业,以及农业机械液压伺服系统。
主要技术指标 1.型号CSDY1-2、4、8、10、15、20、30、40 (CSDY2-60、80、100、120)2.额定电流±8mA 3.线圈电阻1000±100Ω 4.绝缘电阻>50MΩ 5.额定压力206×105Pa 6.使用压力(20~309)×105Pa 7.额定流量2、4、8、10、15、20、30、40L/min (CSDY2型:60、80、100、120)8.滞环<3% 9.线性度<7.5% 10.对称度10% 11.静耗流量<0.45+3%Qn 12.压力增益>30%Ps/1%△i 13.分辨率<0.25% 14.零偏<2% 15.种类零漂指标2% 16.频率特性(-3db)>70Hz(-90°角)>90Hz 17.温度范围-40C~+85C 18.工作液粘度10-100cst 19.系统过滤精度10~20u 工作原理高压油Ps一路通过滤油器进入射流管喷嘴,另一路进入阀芯和阀套组成的通路。
当无信号电流时,阀处于零位,无流量输出。
当有控制信号电流输入时,使射流管喷嘴偏转(设顺时针),接受器左腔压力上升,右腔压力下降,阀芯在压差作用下右移,其油路Ps-A-1负载-2-C-P。
电液伺服与比例控制简介
7
回首页
2、射流管式电液伺服阀 图10-3是MOOG公司D661-G系列位移电反 馈射流管式伺服阀的结构示意图,本书以该阀为 例介绍射流管阀的工作原理。
图10-3 射流管式二级电液伺服阀 1—力矩马达;2—射流管;3—放大器;4—位置反馈 传感器;5—主阀芯
指令信号和 反馈信号的差值 通过电流负反馈 放大器3放大作 用在先导阀的力 矩马达1上,如 果差值不为零, 这样产生的转矩 驱动射流管2发 生偏转,使得主 阀芯5两端产生 压降而发生移动。 同时,位置反馈 传感器4与主阀 一起移动,
11
回首页
1、电液比例方向阀
1. 直动式的比例方向阀 图10-4是最普通的直动式比例方向阀的典型结构。
图10-4 直动式比 例方向阀 1—阀体 2—控制 阀芯 3、4—弹簧 5、6—电磁铁 7— 丝堵
工作原理:电磁铁5和6不带电时,弹簧3和4将控制阀 芯2保持在中位。比例电磁铁得电后,直接推动控制阀芯2, 例如,电磁铁b(6)得电,控制阀芯2被推向左侧,压在 弹簧3上,位移与输入电流成比例。这时,P口至A口及B 口至T口通过阀芯与阀体形成的节流通道。电磁铁6失电, 2被3重新推回中位。弹簧3,4有两个任务:①电磁铁5和 6不带电时,将控制阀芯2推回中位;②电磁铁5或6得电时, 其中一个作为力—位移传感器,与输入电磁力相平衡,从 而确定阀芯的位置。 12
3
回首页
电气伺服放大器、电液伺服阀均属于此类元件。 执行元件——将产生调节动作的液压能量加 于控制对象上的元件,如液压缸和液压马达。 控制对象——各类生产设备,如机器工作台、刀 架等。 比例控制元件的也包括上述六部分组成,所 不同的是放大、能量转换元件为比例放大器和电 液比例阀。
4
回首页
电液伺服阀
输入正向信号电流时,动圈向下移动,一级阀芯随之下移。这时,上控制窗口的过 流面积减小,下控制窗口的过流面积增大。所以上控制腔压力升高而下控制腔的压力 降低,使作用在主阀芯(二级阀芯)两端的液压力失去平衡。主阀芯在这一液压力作 用下向下移动。主阀芯下移,使上控制窗口的过流面积逐渐增大,下控制窗口的过流 面积逐渐缩小。当主阀芯移动到上、下控制窗口过流面积重新相等的位置时,作用于 主阀芯两端的液压力重新平衡。主阀芯就停留在新的平衡位置上,形成一定的开口。 这时,压力油由P腔通过主阀芯的工作边到A腔而供给负载。回油则通过B腔,主阀芯 的工作边到T腔回油箱。
电液伺服阀
由于采用了力反馈,力矩马达基本上在零位 附近工作,只要求其输出电磁力矩与输入电流成 正比(不象位置反馈中要求力矩马达衔铁位移和 输入电流成正比),因此线性度易于达到。另外 滑阀的位移量在电磁力矩一定的情况下,决定于 反馈弹簧的刚度,滑阀位移量便于调节,这给设 计带来了方便。
采用了衔铁式力矩马达和喷嘴挡板使伺服阀 结构极为紧凑,并且动特性好。但这种伺服阀工 艺要求高,造价高,对于油的过滤精度的要求也 较高。所以这种伺服阀适用于要求结构紧凑,动 特性好的场合。
输入信号电流反向时,阀的动作过程与此相反。油流反向为P→B,A→T。 上述工作过程中,动圈的位移量,一级阀芯(先导阀芯)的位移量与主阀芯的位移 量均相等。因动圈的位移量与输入信号电流成正比,所以输出的流量和输入信号电流 成正比。
电液伺服阀
二级滑阀型位置反馈式伺服阀的方框图如图所示。 该型电液伺服阀具有结构简单,工作可靠,
容易维护,可在现场进行调整,对油液清洁度要 求不太高。
射流管电液伺服阀专题讲座 (1)
然而液压伺服系统对油液的清洁度要求较高, 一 般喷嘴挡 板伺服 阀要求 油液的 清洁 度等级 为 NAS6 级, 射流管伺服阀为 NAS8 级。而一般液压系统的油 液清洁度等级为 NA S9级 [ 7 ] 。对于普通工业级用户来 说, 伺服阀的使用和维护相当困难, 系统极易因阀喷嘴 堵塞、阀芯卡死而引起故障 [ 5] 。此外, 伺服阀相对于比 例阀来讲价格相对较高。目前, 国外电液伺服阀在保持 原基本性能与技术指标的前提下, 已向着结构简化、降 低制造成本、提高抗污染能力和高可靠性方向发展 [ 6] 。
阀 1和 2, 就可以在系统正常运行的情况下更换滤油器。
图 4. 3 过滤模块原理图
该过滤模块的优点: 在油液进阀前增加了一道过 滤保护, 延长阀的使用寿命, 增强系统的可靠性和稳定 性; 具有在线更换滤芯的功能, 方便系统的工作和 维护。
射流管伺服比例阀采用伺服阀的加工精度和阀芯 阀套的配合要求, 故其性能和控制精度等同于伺服阀。 同时, 其维修性和系统的使用维护性较伺服阀进一步 提高, 抗污染能力等同于比例阀。
毫瓦到一、二百毫瓦。伺服放大器价 格低廉、故障率 低。动圈式伺服阀控制电流相对较大, 从几十毫安到 上百毫安。 2. 2 加工精度
比例阀结构相对简单, 同时考虑到加工成本问题, 加工精度要求较低, 一般为 10 级, 一般没有阀套, 且 其零位死区和滞环大, 频响较低, 比较适合用在控制精 度不高的开环控制工业场合。伺服阀一般加工精度为
表 4. 1 阀芯驱动力对比
阀芯驱动方式
阀芯驱动力
比例电磁铁 (力控制 )
电液伺服阀分类
电气—机械转换器:利用电磁原理工作的。它由永久磁铁或激磁
线圈产生极化磁场。电气控制信号通过控制线圈产生控制磁场,两个磁场 之间相互作用产生与控制信号成比例并能反应控制信号极性的力或力矩, 从而使其运动部分产生直线位移或角位移的机械运动,因而也称为力:
1)根据可动件运动:直线位移式和角位移式(力马达、力矩马达)。 2)按可动件结构:动铁式和动圈式(可动件是衔铁、、控制线圈)。 3)按极化磁场:非激磁式、固定电流激磁和永磁式三种。
按第一级阀的结构形式分类:
滑阀、单喷嘴挡板阀、双喷嘴挡板阀 射流管阀和偏转板射流阀。
按反馈形式分类:
可分为滑阀位置反馈、负载流量反馈和负载压力反馈三种。
按力矩马达是否浸泡在油中分类:
湿式:可使力矩马达受到油液的冷却,但油液中存在的铁污物使力 短马达持性变坏; 干式:则可使力矩马达不受油液污染的影响,目前的伺服阀都采用 干式的。
射流管式电液压力伺服阀技术研究
射 流管 式 电液 压 力伺 服 阀技 术研 究
何 学工 ,黄增 ,金瑶 兰。 ,闵丽 4
( 1 .西安航 空制动科 技 有限公 司,陕 西西安 7 1 0 0 6 5 ;2 .中船 重工 第七零 四研 究所 ,上海 2 0 0 0 7 0 )
摘要 :喷嘴挡板式 电液压力 电液伺服 阀是 目前 防滑刹车系统 中运用最普遍 的一种两级压力 控制伺服 阀。为提 高其抗污 染能力 ,研制出一种射流管式电液压 力伺 服阀。比较 了两种 阀的结构 、工作原 理及特点 ,并对射 流管式压力伺 服阀在 防滑 刹车系统 中应用进行 了验证 ,为射流管技术在压力伺服阀中应用提供 了参 考依据 。 关键词 :喷嘴挡板 ;射流管 ;压 力伺 服阀 ;力矩 马达 ;先导级 ;滑阀 中图分类号 :T H1 3 7 . 5 2+1 文献标识码 :A 文章编 号:1 0 0 1— 3 8 8 1( 2 0 1 3 )1 0— 压
MACHI NE TOOL & HYDRAULI CS
Ma v 2 01 3 Vo 1 . 41 No . 1 0
第4 l卷 第 1 0 期
DOI : 1 0 . 3 9 6 9 / j . i s s n . 1 0 0 1—3 8 8 1 . 2 0 1 3 . 1 0 . 0 2 0
第七次课-典型二级电液伺服阀的工作分析
工作原理: 滑阀位移通过反馈杆产生机械力矩反馈到力
矩马达衔铁组件
射流盘 偏转板
V型导流口
性能特点
结构简单,工作可靠 特点与射流管伺服阀性能类似 动态响应优于射流管阀(偏转板的质量比射流管
轻)
位置直接反馈式电液伺服阀的常用类型 (1)滑阀式位置直接反馈 二级电液伺服阀
在位置反馈伺服阀的基础上引入负载压力负反馈 特点: 1)流量-压力系数大 2)增加了系统的阻尼,降低了系统的静刚度,刚性差 3)通常用在负载惯性大,外负载力小或带谐振负载的 伺服系统
压力流量控制伺服阀典型结构
动压反馈伺服阀
工作原理:由弹簧活塞和液阻(固定节流孔)组 成压力微分网络 特点: 1)增加系统阻尼,不降低系统静刚度 2)动态时:压力-流量伺服阀;稳态时:流量伺 服阀 3)适用于大惯量负载的伺服系统
二级电液伺服阀的主要类型
二级电液伺服阀
位置反馈式 位置力反馈式 位置直接反馈式 位置电反馈式
压力反馈式 压力流量反馈式
动压反馈式 电液压力反馈式
1 位置反馈式电液伺服阀
控制对象为主阀芯的位置,即主阀的开口量。
又叫做流量控制伺服阀,表示在负载压差一定 时,阀的输出流量与信号电流成比例。
可采用不同的传感器对被控量进行检测、反馈, 实现各种被控量的闭环控制,应用最广泛。
S
S
N
N
性能特点
阀的输出位移与控制电流成正比 在负载压差一定时,阀的输出负载流量与信号电
流成比例 当阀的输入信号电流反向时,阀的输出负载流量
也反向 滑阀的位置是通过弹性反馈杆的变形力反馈到衔
铁组件上使诸力矩平衡而决定的 线性好(因衔铁和挡板同处中位),输出流量大,
电液伺服阀及电液伺服系统(1)
pS 0
2° pL
2 3
pS
pS pL
1 p
3S
34
§ 3 电液伺服阀的主要性能指标
3、空载流量特性(No-load flow c流h与ara输c出ter流ist量ic)的:关p系L=。0,输入电 1°名义流量曲线流量曲线中点 连线 2°名义流量增益线 flow gain °从零流量点向两个方向各作与 名义流量曲线误差最小之直线 °其斜率(均值)即为名义流量 增益 °额定流量与额定电流之比即为 额定流量增益。
电液伺服阀广泛地应用于电液位置、速度、加速
度、力伺服系统,以及伺服振动发生器中。它具有体
积小、结构紧凑、功率放大系数高、控制精度高、直
线性好、死区小、灵敏度高、动态性能好以及响应速
度快等优点。
3
(1)电液伺服阀按用途、性能和结构特征可分为 通用型和专用型;
防 爆 型 伺 服 阀
4
(2)按输出量可分为流量控制伺服阀和压力控制 伺服阀;
液压伺服系统
电液伺服阀及电液伺服系统
1
六、电液伺服阀及电液伺服系统
液压与气压用伺服阀是电液或电气 联合控制的多级伺服元件,它能将微弱 的电气输入信号放大成大功率的液压或 气压能量输出,以实现对流量和压力的 控制。它接受一种模拟量电控信号,输 出液压模拟量随电控信号的大小及极性 变化。电液或电气伺服阀具有控制精度 高和放大倍数大等优点,在液压与气压 控制系统中得到了广泛的应用。
这种伺服阀结构 紧凑,外形尺寸小,响应 快.但喷嘴挡板的工作 间隙较小,对油液的 清洁度要求较高.
13
14
15
(3)射流管式伺服阀
该阀采用衔铁式力矩 马达带动射流管,两个接 收孔直接和主阀两端面连 接,控制主阀运动。主阀 靠一个板簧定位,其位移 与主阀两端压力差成比例. 这种阀的最小通流尺寸 (射流管口尺寸)比喷嘴 挡板的工作间隙大4~10倍, 故对油液的清洁度要求较 低。缺点是零位泄漏量大; 受油液粘度变化影响显著, 低温特性差;力矩马达带 动射流管,负载惯量大, 响应速度低于喷嘴挡板阀。
电液伺服控制系统及其在TRT中的应用
维普资讯
20 年 2月 第一期 05
电液伺服控制 系统及其在 T T中的应 用 R
4 3
负载压力、 负载流量和消耗功率间的关系, 从而为
1
2频宽( ) 幅频宽和相频宽) 伺服阀通常以幅 值比为 一3B时的频率区间作为幅频宽, d 以相位滞 后 9。 0的频率区间为相频宽。频宽是伺服阀动态响 应速度的度量。根据系统执行元件的频率选择伺
阀的磨损程度。
122 动态特性 ..
1频率 响应 电液伺服 阀的频率 响应是 , ) 输入 电流在某一频率 范 围内作 等 幅变频正 弦变化 时空
载流量 与输 入 电流 的复数 比。频率 响应 用 幅值 比
用第一级静叶可调控制 , 一级静叶可做到全关 且第
闭, 并确保透平机调速 、 网 、 并 调功率和控制炉顶压
0 概述
在现代电子学 和计算机控制与液压传动密切 结合的条件下 , 电液伺服阀在 自动控制技术中得到
了广泛的应用 , 起着精确地控制执行机构的工作位
喷嘴或单喷嘴) 和射流管式三种; 4功率放大器( ) 滑阀放大器)由放大器输出的 ,
液体具有一定的压力, 驱动执行元件进行工作。 T T机组采用了 C D 3 0 R S Y —10型射流管电液 伺服阀。射 流管电液伺服同典型结构示意见图 1 。
标准的 5 级 , ~6 射流管式伺服阀要求为 N S68 A 13
标准 的 8 。 级
3射流管阀的压力效率和容积效率高, ) 可以产
生较大 的控制压力 和流量 , 就提高 了驱 动力 , 这 增
启动 、 常运行 和 紧急停 机时 , 正 可根据 各过程 的控 制要求 , 通过设 定不 同的给定值 , 实现 各个过程 的
喷嘴挡板式伺服阀比较
射流管式电液伺服阀与喷嘴挡板式电液伺服阀比较黄增方群王学星(中国船舶重工集团公司第七O四研究所上海200072)摘要:射流管式电液伺服阀与喷嘴挡板式电液伺服阀是目前世界上运用最普遍的典型两级流量控制伺服阀。
该文对两种阀的结构、工作原理及特点作了比较与介绍。
并着重分析了射流管式伺服阀在可靠性及工作性能方面的一些优势。
关键词:射流管、喷嘴挡板、伺服阀、力矩马达、先导级、滑阀1 序言射流管式电液伺服阀与喷嘴挡板式电液伺服阀是目前世界上运用最普遍的典型两级流量控制伺服阀。
由于射流管式电液伺服阀在国外属高端产品,主要运用于航空、航天、军事等行业,对国内引进实行限制,目前国内除少数电厂随设备引进较大流量的射流管阀外,一般很少见到该型阀。
国内成规模生产该型阀的单位也只有中国船舶重工集团公司第七O四研究所。
而喷嘴挡板式电液伺服阀国内外运用得比较普遍,国内生产该型阀的单位也比较多。
本文将对两种阀的构造与特点作一简单介绍。
2 工作原理2.1喷嘴挡板式伺服阀的原理图1为喷嘴挡板式伺服阀的原理图。
它主要由力矩马达、喷嘴挡板式液压放大器、滑阀式功率级及反馈杆组件构成。
其工作过程为:输入到力矩马达线圈的电气控制信号在衔铁两端产生磁力,使衔铁挡板组件偏转。
挡板的偏移将一侧喷嘴挡板可变节图1 双喷嘴挡板式力反馈电液流量伺服阀流口减小,液流阻力增大,喷嘴的背压升高;而另一侧的可变节流口增大,液流阻力减小,液流的背压降低。
这样可得到与挡板位置变化相对应的喷嘴背压,此背压加到与与喷嘴腔相通的阀芯端部,推动阀芯移动。
而阀芯又推动反馈杆端部的小球,产生反馈力矩作用在衔铁挡板组件上。
当反馈力矩逐渐等于电磁力矩时,衔铁挡板组件被逐渐移回到对中的位置。
于是,阀芯停留在某一位置。
在该位置上,反馈杆的力矩等于输入控制电流产生的的力矩,因此,阀芯位置与输入控制电流大小成正比。
当供油压力及负载压力为一定时,输出到负载的流量与阀芯位置成正比。
2.2 射流管式伺服阀的原理图2为射流管式伺服阀的原理图。
电液伺服控制及其应用
第2章电液伺服控制技术及应用电液伺服系统是一种采用电液伺服机构,根据液压传动原理建立起来的自动控制系统。
在这种系统中,执行元件的运动随着控制信号的改变而改变。
2.1 电液伺服阀伺服阀通过改变输入信号,连续的、成比例地控制液压系统的流量或压力。
电液伺服阀输入信号功率很小(通常仅有几十毫瓦),功率放大系数高;能够对输出流量和压力进行连续双向控制。
其突出特点是:体积小、结构紧凑、直线性好、动态响应好、死区小、精度高,符合高精度伺服控制系统的要求。
电液伺服阀是现代电液控制系统中的关键部件,它能用于诸如位置控制、速度控制、加速度控制、力控制等各方面。
因此,伺服阀在各种工业自动控制系统中得到了越来越多的应用。
2.1.1 工作原理及组成1 基本组成与控制机理电液伺服阀是一种自动控制阀,它既是电液转换组件,又是功率放大组件,其功用是将小功率的模拟量电信号输入转换为随电信号大小和极性变化、且快速响应的大功率液压能[流量(或)和压力]输出,从而实现对液压执行器位移(或转速)、速度(或角速度)、加速度(或角加速度)和力(或转矩)的控制。
电液伺服阀通常是由电气一机械转换器、液压放大器(先导级阀和功率级主阀)和检测反馈机构组成的(见图2-1)。
图2-1 电液伺服阀的组成2 电气—机械转换器电气—机械转换器包括电流—力转换和力—位移转换两个功能。
典型的电气—机械转换器为力马达或力矩马达。
力马达是一种直线运动电气一机械转换器,而力矩马达则是旋转运动的电气—机械转换器。
力马达和力矩马达的功用是将输入的控制电流信号转换为与电流成比例的输出力或力矩,再经弹性组件(弹簧管、弹簧片等)转换为驱动先导级阀运动的直线位移或转角,使先导级阀定位、回零。
通常力马达的输入电流为150~300mA,输出力为3~5N。
力矩马达的输入电流为10~30mA,输出力矩为0.02~0.06N·m。
伺服阀中所用的电气一机械转换器有动圈式和动铁式两种结构。
航宇机电提醒注意电液伺服阀选择、使用、保养方法
航宇机电提醒注意电液伺服阀选择、使用、保养方法襄阳航宇机电液压应用技术有限公司(以下简称航宇)是中国液压伺服阀行业的知名企业,专业从事电液伺服阀及伺服系统的研发、生产、销售及维修。
航宇有雄厚的技术实力和研发团队,研发中心拥有多位国内外知名行业专家。
航宇掌握了电液伺服核心技术,拥有自主创新的知识产权。
自主开发有HY系列电液流量伺服阀、电液压力伺服阀、电液压力-流量伺服阀、动压反馈电液伺服阀、长寿命电磁液压锁、高精度伺服马达、伺服油缸、多功能伺服控制器、伺服泵站及伺服系统等光机电一体化产品。
广泛应用于航空航天、冶金加工、船舶制造、石油化工、工程机械、科研实验以及兵器工业等领域。
还可对进口电液伺服阀进行全面维修及国产化开发。
航宇先后获得“重点高新技术企业”“国家重点新产品”等多项荣誉。
襄阳航宇机电液压应用技术有限公司有多年电液伺服阀生产维修经验。
电液伺服阀是电气一液压伺服系统中关键的精密控制元件,价格昂贵,所以伺服阀的选择,应用、保养要特别仔细。
本文介绍电液伺服阀选择、使用和保养的一些基本方法。
在伺服阀选择中常常考虑的因素有:A:阀的工作性能、规格;B:工作可靠、性能稳定、一定的抗污染能力;C:价格合理;D:工作液、油源;E:电气性能和放大器;F:安装结构,外型尺寸等等。
一、按控制精度等要求选用伺服阀系统控制精度要求比较低时,还有开环控制系统、动态不高的场合,都可以选用工业伺服阀甚至比例阀。
只有要求比较高的控制系统才选用高性能的电液伺服阀,当然它的价格亦比较高。
二、按用途选用伺服阀电液伺服阀有许多种类,许多规格,分类的方法亦非常多,而只有按用途分类的方法对我们选用伺服阀是比较方便的。
按用途分:有通用型阀和专用型阀。
专用型阀使用在特殊应用的场合,例如:高温阀、防爆阀、高响应阀、多余度阀、特殊增益阀、特殊重叠阀、特殊尺寸、特殊结构阀、特殊输入、特殊反馈的伺服阀等等。
还有特殊的使用环境对伺服阀提出特殊的要求,例如:抗冲击、震动、三防、真空……。
电液压力伺服阀简介
关键词: 压力伺服阀; 喷嘴挡板; 射流; 直接驱动
中图分类号: TH137 52+1
Brief Introduction of Electro⁃hydraulic Pressure Servo Valve
CHEN Yuanzhang 1,2
(1 Aviation Key Laboratory of Science and Technology on Aero Electromechanical System Integration,
Nanjing Engineering Institute of Aircraft Systems, Nanjing Jiangsu 210061, China; 2 AVIC Nanjing
Servo Control System Co., Ltd., Nanjing Jiangsu 210061, China)
Abstract: Electro⁃hydraulic servo valves can be divided into flow servo valves and pressure servo valves according to functions,
pressure servo valves are commonly used in force application systems, and flow servo valves are more widely used in force system or po⁃
力输出特性
现在一般采用图 5 所示的压力电液伺服阀, 但更
多的是采用一个压力控制腔的形式, 如图 9—图 11
所示 [3-5] 。 这种一个控制腔的伺服阀, 滑阀一侧通常
双喷嘴挡板电液伺服阀主要参数的优化
双喷嘴挡板电液伺服阀主要参数的优化黄浩;周渊;陈奎生;雷辉虎【摘要】以国产双喷嘴挡板电液伺服阀为研究对象,推导出其数学模型.根据电液伺服阀的实际结构参数,运用Simulink仿真软件对数学模型进行仿真,得到电液伺服阀闭环阶跃的响应图和伯德图.通过改变目标参数Kvf、ωmf、ξmf的大小,得到不同的电液伺服阀伯德图;通过分析电液伺服阀动态性能的变化,从而达到其参数优化的目的.%In this paper, a certain home-made dual nozzle flapper electro hydraulic servo valve is studied and its mathematic model is deduced. According to the actual structure parameters, with Simulink software simulation, the closed loop order servo valves step response figures and Bode figures are obtained from the simulation. By changing the main target parameter Kvf, wmf, ζmf, different Bode figures are obtained. To achieve the parameter optimization of the servo valve, the alteration of the servo valve dynamic performance is analyzed.【期刊名称】《武汉科技大学学报(自然科学版)》【年(卷),期】2011(034)006【总页数】3页(P455-457)【关键词】双喷嘴挡板电液伺服阀;Simulink仿真;参数优化【作者】黄浩;周渊;陈奎生;雷辉虎【作者单位】武汉科技大学机械自动化学院湖北武汉 430081;武汉科技大学机械自动化学院湖北武汉 430081;武汉科技大学机械自动化学院湖北武汉 430081;武汉科技大学机械自动化学院湖北武汉 430081【正文语种】中文【中图分类】TH137.52电液伺服阀是液压伺服系统中的核心控制器件,起着连接液压和电气的纽带作用,其代表性产品有喷嘴挡板式、射流管式、射流式和动圈滑阀式等类型。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
射流管式电液伺服阀与喷嘴挡板式电液伺服阀比较
1 序言
射流管式电液伺服阀与喷嘴挡板式电液伺服阀是目前世界上运用最普遍的典型两级流量控制伺服阀。
由于射流管式电液伺服阀在国外属高端产品,主要运用于航空、航天、军事等行业,对国内引进实行限制,目前国内除少数电厂随设备引进较大流量的射流管阀外,一般很少见到该型阀。
国内成规模生产该型阀的单位也只有中国船舶重工集团公司第七O四研究所。
而喷嘴挡板式电液伺服阀国内外运用得比较普遍,国内生产该型阀的单位也比较多。
本文将对两种阀的构造与特点作一简单介绍。
2 工作原理
2.1喷嘴挡板式伺服阀的原理
图1为喷嘴挡板式伺服阀的原理图。
它主要由力矩马达、喷嘴挡板式液压放大器、滑阀式功率级及反馈杆组件构成。
其工作过程为:输入到力矩马达线圈的电气控制信号在衔铁两端产生磁力,使衔铁挡板组件偏转。
挡板的偏移将一侧喷嘴挡板可变节流口减小,液流阻力增大,喷嘴的背压升高;而另一侧的可变节流口增大,液流阻力减小,液流的背压降低。
这样可得到与挡板位置变化相对应的喷嘴背压,此背压加到与与喷嘴腔相通的阀芯端部,推动阀芯移动。
而阀芯又推动反馈杆端部的小球,产生反馈力矩作用在衔铁挡板组件上。
当反馈力矩逐渐等于电磁力矩时,衔铁挡板组件被逐渐移回到对中的位置。
于是,阀芯停留在某一位置。
在该位置上,反馈杆的力矩等于输入控制电流产生的的力矩,因此,阀芯位置与输入控制电流大小成正比。
当供油压力及负载压力为一定时,输出到负载的流量与阀芯位置成正比。
2.2 射流管式伺服阀的原理
图2为射流管式伺服阀的原理图。
力矩马达采用永磁结构,弹簧管支承着衔铁射流管组件,并使马达与液压部分隔离,所以力矩马达是干式的。
前置级为射流放大器,它由射流管与接受器组成。
当马达线圈输入控制电流,在衔铁上生成的控制磁通与永磁磁通相互作用,于是衔铁上产生一个力矩,促使衔铁、弹簧管、喷嘴组件偏转一个正比于力矩的小角度。
经过喷嘴的高速射流的偏转,使得接受器
一腔压力升高,另一腔压力降低,连接这两腔的阀芯两端形成压差,阀芯运动直到反馈组件产生的力矩与马达力矩相平衡,使喷嘴又回到两接受器的中间位置为止。
这样阀芯的位移与控制电流的大小成正比,阀的输出流量就比例于控制电流了。
3主要特点
射流管式与喷嘴挡板式最大差别在于喷嘴挡板式以改变流体回路上所通过的阻抗来进行力的控制。
相反,射流管式是靠射流喷嘴喷射工作液,将压力能变成动能,控制两个接受孔获得能量的比例来进行力的控制。
这种方式的阀与喷嘴挡板式相比因射流喷嘴大,由污粒等工作液中杂物引起的危害小,抗污染能力强。
且射流管式液压放大器的压力效率及容积效率高,一般为70%以上,有时也可达到90%以上的高效率。
输出控制力(滑阀驱动力)大,进一步提高了抗污染能力。
同样其灵敏度、分辨率及低压工作性能大大优于喷嘴挡板阀。
另外,由于射流管式由于在喷嘴的下游进行力控制,当喷嘴被杂物完全堵死时,因两个接受孔均无能量输入,滑阀阀芯的两端面也没有油压的作用,反馈弹簧的弯曲变形力会使阀芯回到零位上,伺服阀可避免过大的流量输出,具有“失效对中”能力,并不会发生所谓的“满舵”现象。
但射流管式液压放大器及整个阀的性能不易理论计算和预计,力矩马达的结构及工艺复杂,加工难度大。
喷嘴挡板式的阀与射流管阀相比增益特性比较平坦、整阀性能可计算及预测、并能做得比射流管式小。
但按其特性,喷嘴与挡板的间隙不能超过喷嘴直径的
1/4,这就决定了该阀的最小尺寸较小,易被污物卡住,使用时必须保持油液的清洁度。
一般情况下使用喷嘴挡板阀的油液清洁度要求达到NAS6级,并要在阀的进油口前设置过滤精度小于10µm的滤器。
而在使用射流管阀的场合下,用NAS8级已经足够,且滤器用25µm也够了。
并且,由于喷嘴挡板式伺服阀是利用两个喷嘴的背压作为控制力,在工作时如有一侧发生杂物堵塞喷嘴挡板的情况,会造成一侧压力上升,使阀芯向一边移动,阀芯的偏移会形成单方向的流量输出,使执行机构(如舵机)向一边偏移直到最大位置,即所谓的“满舵”现象。
另外,喷嘴挡板阀的压力效率和容积效率约为50%,比射流管低,其控制力较小,因此,其灵敏度、分辨率及低压工作性能不及射流管阀。
4 结构与可靠性
4.1 先导级最小尺寸
伺服阀抗工作液污染的能力一般由其最小尺寸所决定,特别对于先导级型的伺服阀,其先导部分油路中的最小尺寸往往成为决定性的因素。
因为从外部来的输入电控信号是在先导部分进行转换的,输出部分滑阀的动作是由先导级的动作`决定的。
射流管阀中的最小尺寸在先导级射流管式液压放大器中的喷嘴处。
喷嘴挡板式伺服阀的最小尺寸在先导级喷嘴与挡板的间隙,约为0.03mm~0.05mm,污染颗粒往往很容易在此堵塞、卡死。
而射流管阀的最小尺寸在喷嘴处为0.2mm~0.4mm,是喷嘴挡板阀的最小尺寸的5~10倍,0.2mm的颗粒很容易通过,所以说射流管式比喷嘴挡板式抗污染能力提高了一个数量级。
4.2 先导级的磨蚀
伺服阀的先导级在工作时会产生磨蚀,但射流管式与喷嘴挡板式比较,其磨蚀的产生与性能变化的程度低于喷嘴挡板阀。
这是因为在射流管场合下,喷嘴端面与接受孔间的距离为喷嘴直径的1.5~2.5倍,从特性上讲,此距离达到喷嘴直径的3.5倍也完全可以使用。
与此相反,在喷嘴挡板场合下,喷嘴挡板间的间隙在特性上的上限为直径的1/16,要想增大最小尺寸,只能做到1/16的极限值上,因此容易产生磨蚀及特性变化。
而且在双喷嘴挡板式的场合下,两个喷嘴及挡板左右侧所产生的磨蚀不一定对称,容易产生零位偏移。
而射流管式的喷射流是由单喷嘴喷射的,且被接受孔分成两股,磨蚀的产生一般是对称的,产生的磨蚀量也比喷嘴挡板式少。
再加上其接受器的尖边即使经高压油长期冲刷凹陷下去,但仍其着分水岭的作用,只要其与喷嘴的距离不大于喷嘴直径的3.5倍,对伺服阀性能的影响非常小,故其稳定性、可靠性高于双喷嘴挡板阀。
4.3 力矩马达的结构
射流管式伺服阀的力矩马达零件全部采用压配及焊接结合成一体,并经严格的时效处理消除内应力,结构牢固稳定,零位漂移小,更能承受强冲击及振动。
而双喷嘴挡板阀的力矩马达只靠4个M3的小螺钉固定,在螺钉应力疏散和受到强冲击、振动、颠振后,零位漂移大。
另外,射流管式力矩马达的衔铁处有一对支撑簧片,衔铁偏转时只有转角,没有挠度,大大改善了弹簧管的受力,抗疲劳
性能大大增强,保证了伺服阀的长寿命使用。
4.4滑阀级尺寸
由于射流管式先导级比喷嘴挡板式的控制力大,所以射流管式伺服阀阀芯的直径和行程,比喷嘴挡板式的大而长。
表1为同级别先导级时,其输出部分阀芯的直径、行程及驱动力比较。
表1阀芯尺寸比较表
射流管式喷嘴挡板式
阀芯直径mm6.993.96
阀芯行程mm0.640.13
驱动力kg
(在端面压力40kg/cm2时)15.354.92
从上表可以看出射流管阀的阀芯直径明显大于喷嘴挡板阀,而阀芯直径越大,其驱动力也越大,即使有一点杂物和污粒,滑阀级也能顺利工作,从而提高了可靠性。
此外,阀芯行程的加长也能提高伺服阀的寿命。
因为伺服阀工作时其高速流动的油液会磨蚀滑阀级工作窗口的棱边,从而引起流量特性的变化。
在加长行程后,磨蚀量相对于行程量所占的比例减小,所以工作窗口流通面积的变化减小。
这样,流量特性的变化与伺服阀使用时间的比值减小了,能比阀芯行程短的伺服阀维持更长时间的稳定性。
5 工作性能
5.1分辨率
喷嘴挡板阀的先导级在工作时存在压力负反馈(即挡板靠向一测喷嘴,由于喷嘴的压力升高,会增大对挡板的推力,阻碍其靠近),影响其灵敏度及分辨率指标。
射流管阀的先导级不存在压力负反馈,而且其射流管放大器的流量效益最高可达90%,压力效益亦可达到80%以上。
所以射流管放大器推动阀芯的力比双喷嘴放大器高许多,射流管伺服阀的分辨率一般可达到小于0.1%的程度。
5.2 低压工作性能
根据前文所述,射流管阀的阀芯驱动力明显大于双喷嘴阀,故其低压工作性能亦优于双喷嘴挡板阀。
通过试验可得:射流管伺服阀在供油压力为1MPa条件下,其流量曲线的重复性也非常好;在供油压力为0.5MPa的情况下,也能正常工作;
在额定供油压力时,只输入±3%的额定电流其阀芯位移特性曲线的线性度和重复性都非常好。
而所有这些都是双喷嘴挡板阀在同样条件下无法达到的。
另外,双喷嘴阀在许多场合需加颤振信号来提高分辨率,而射流管阀在绝大多数应用场合均不需要加颤振信号。
5.3 动态响应
一般认为射流管阀的动态响应比较低,其实有所误解。
根据MOOG公司的观点:射流管式先导级具有很高的无阻尼自然频率,一般可达500Hz~700Hz以上,只要有足够的先导放大级流量增益,射流管阀也可达到较高的动态响应。
之所以一般射流管阀产品的增益较低,是因为在国外射流管阀往往应用于航空、航天等高端场合,其对内泄漏要求较高,喷嘴直径较小,造成频率特性比双喷嘴阀稍低一些。
而在一般使用场合,只要适当增加喷嘴直径,就能大大提高射流管阀的动态响应。
在国内额定流量在30L/min左右的射流管伺服阀其频率响应亦能达到
160Hz以上。
另外对于同样规格的伺服阀,射流管阀的阀芯和行程往往设计得比较大,这也是造成它动态低于喷嘴挡板阀的一个原因。