镧系和锕系元素的价电子构型特点
无机化学 第二十二章:镧锕系元素
7
双峰效应
8
离子半径: Ln3+半径单调下降,其它价态的离子半径变化也和
Ln3+相似。在Gd3+处,出现离子半径减小幅度变小 的现象, 叫钆断效应。 ( Gd3+: 4f 7 )
Gd3+
9
6. 离子颜色
8
f-f 跃迁:由于f轨道深埋在原子内部,受到屏蔽而同环 境相隔绝,即外场对光谱分裂作用的影响很小,因而吸 收光谱带特别窄。对过渡元素来说,环境对d轨道影响 很大,因而d-d光谱吸收带很宽。
13
8. 化学性质
(1)单质 镧系金属在酸、碱性介质中,都是较强的还 原剂,其还原能力仅次于碱金属和碱土金属,
Ln3+/Ln < -2.2V, Ln(OH)3 /Ln < -2.7V, 金属活泼性:Sc<Y<La, LaLu 依次递减, La最活泼
a. 在空气中很容易失去光泽,在氧气中加热时,它们都生
b. +Ⅲ氧化态最常见,同时也是最稳定的氧化态。它
反映了ⅢB族元素的氧化态特点,但也有+Ⅱ,+Ⅳ氧 化态 (f 0, f 7, f 14), 如:Sm2+, Eu2+, Tm2+,Yb2+,Ce4+, Pr4+, Tb4+
c. 对于Ce2+, Dy4+,不能完全从全空、全满、 半空等情况来考虑,还有其它热力学因素和动力 学因素,如离子水合热
d. 溶液中稳定氧化态有:Ln3+、Eu2+(4f 7)、
Yb2+(4f 14)、Ce(IV)(4f 0)
5
5. 原子半径和离子半径
6
镧系收缩 镧系元素的原子半径和离子半径在总的趋势上都
镧系和锕系元素
镧系元素的原子半径、离子半径
原子 元素 金属原子 离子半径/ pm 序数 符号 半径/pm RE2+ RE3+ RE4+
57 La 187.7
106.1
58 Ce 182.4
103.4 92
59 Pr 182.8 60 Nd 182.1 61 Pm 181.0
101 96.4 63 Eu 204.2 109 95.0
25.2.2 镧系收缩 镧系元素的原子半径和离子半径,随着原子序数的增大而缩小。①相邻
元素原子半径只差1pm左右,即在镧系内原子半径呈缓慢减少的趋势。②但 14种元素的原子半径递减累积减少14pm,使镧系后边Hf和Ta的原子半径和 同族的Zr和Nb的原子半径极为相近。
原子半径的收缩比离子半径的收缩小得多。由于镧系收缩,Y3+半径( 88pm)落在Er3+(88.1pm)附近,Sc3+的半径接近Lu3+,在自然界中Y,Sc常 同镧系元素共生,成为稀土元素成员。
Lu 4f145d1.
另3 镧一系方元面素,的另激氧发一化的态结方果面增加,了一激个发成键的电子结,果成键增时可加以多了释一放出个一份成成键键能电。子,成键时可以多释放出一份成
蓝镧Ce:系,键跃铕 元Pr激素,能 迁活(Tb。 ,的L,n但硅)D对y酸、常少盐钪大呈基数(现多质S出c原、)+数4铕、氧子激钇镧化活(,态Y系的),,如磷而共的酸SE1m7盐原种u,基元和E子质u素,Y总,T其bm称,,为成Y稀b由则键土显元于能示素4+(大2fR氧E于化轨)态。激道。 发处能于,半从满而和导全致满4的f 电稳子定向状态5d,电要子
f 区元素在周期表中的位置如图所示:
25.2 镧系元素的电子结构和通性
25.2.1 镧系元素的价电子层结构
黄冈师范学院-无机化学课外作业(第25章)
无机化学课外作业(第25章)黄冈师范学院出题人:夏海建一.选择题(选出一个最合适的答案,并将其代号写在答题纸上。
)1.下列元素分别属于镧系元素和锕系元素的是(D)A. La、Ce、Pr和Os、Ir、PtB. La、Ce、Pr和Ru、Rh、PdC. Cu、Ag、Hg和Ac、Th、PaD. La、Ce、Pr和Ac、Th、Pa2.下列镧系和锕系元素的电子构型有误的是(A)A.镧 La 4f16s2B.锕 Ac 6d17s2C.铈 Ce 4f15d16s2D.铀 U 5f36d17s23.玻璃中因含有三价铁的化合物而使玻璃呈现黄绿色对玻璃的透明度有很大影响为了改善玻璃的透明度工业上常用的脱色剂是(B)A. ThO2B.CeO2C. Ce2O3D.Ce4.下列说法不正确的是(C)A.金属铕和镱的密度较低、熔点也比较低、升华能也比相邻的元素低.B.镧系金属离子一般具有很漂亮的颜色.C.镧系金属元素一般能形成稳定的+Ⅱ、+Ⅲ氧化态.D.镧系元素的原子半径和离子半径随着原子序数的增加而保持较小的趋势变化。
5.下列稀土元素中能形成氧化数为 +2 的是(D)A.CeB.PrC.TbD.Yb二、填空题(在空白处填上你认为合理的答案。
)1.镧系和锕系分属第六周期和第七周期同属于ⅢB 族元素统称 f区或内过渡元素。
2.稀土元素是指周期表中镧系元素镧在内的 15 种元素和ⅢB 族中的钪(Sc)、钇(Y)共 17 种元素。
3.稀土元素的分离、提取的方法很多,其中有化学分离法、离子分离法、溶剂萃取法。
4.d 区金属元素中密度最大的是锇(Os),熔点最高的是钨(W),硬度最大的是铬(Cr),原子化热最大的是钨(W),展性较好的是金(Au),延性较好的是铂(Pt)。
5.铂系金属一般是优良的催化剂(易于变价)、生成配位化合物(d轨道未充满电子)、磁性(d轨道有未成对电子)。
三、问答题(按要求作答,合理就可。
)1. 为什么La3+的化学类似于轻镧系元素而Y3+的化学却反而类似于重镧系元素?答:ⅢB 族元素从上到下离子半径增大而因镧系收缩重镧系元素的离子半径都小于轻镧系元素的离子半径这样Y3+的离子半径与重镧系元素相似故其化学元素类似于重镧系元素La3+在镧系最前列半径与轻镧系离子相近故其化学类似于轻镧系元素。
元素周期表中的内过渡金属元素特性
元素周期表中的内过渡金属元素特性元素周期表是化学家们用来分类和组织化学元素的一张表格。
通过对元素周期表的研究,科学家们逐渐了解了不同元素的特性和行为。
在元素周期表中,内过渡金属元素是一类重要的元素,具有独特的特点和性质。
本文将介绍内过渡金属元素的特性,包括电子结构、化学反应和应用领域。
一、电子结构内过渡金属元素是指周期表中d区的元素,包括镧系和锕系元素。
它们的电子结构具有一定的特点,主要体现在d轨道的使用上。
内过渡金属元素的轨道层级为(n-2)f^(1-14)(n-1)d^0-10ns^0-2,其中n表示元素所在的主能级。
由于f轨道占据在d轨道之前,内过渡金属元素的电子结构复杂多样,使其具有丰富的化学行为和多种配位方式。
二、化学反应内过渡金属元素在化学反应中表现出独特的特性。
首先,内过渡金属元素的化合价较高,常见的化合价为+2和+3。
内过渡金属元素可以通过氧化还原反应改变氧化态,以适应不同环境的要求。
此外,内过渡金属元素还可以形成不同的配合物,与其他原子或离子形成稳定的配位化合物。
内过渡金属元素也具有良好的催化性能。
许多内过渡金属元素在化学反应中作为催化剂发挥重要作用。
例如,铁、铂和铑等元素被广泛应用于氢气的加氢反应和有机物的氧化反应。
内过渡金属元素的催化性能主要与其电子结构和配位方式有关。
三、应用领域内过渡金属元素具有广泛的应用领域,主要体现在以下几个方面。
1. 金属合金:内过渡金属元素具有良好的强度和耐腐蚀性,在金属合金中起到增加硬度和耐久性的作用。
例如,钛合金中的钛是一种重要的内过渡金属元素,具有轻质、高强度和耐热性的特点,被广泛应用于航空航天工业和生物医学领域。
2. 催化剂:如前所述,内过渡金属元素在化学反应中具有良好的催化性能。
它们可以提高反应速率、降低反应温度,并在合成化学、能源转化和环境保护等领域起到重要作用。
3. 发光材料:内过渡金属元素可以作为荧光粉等发光材料的组成部分。
例如,铑和镧被广泛用于制备LED、荧光灯等发光材料,具有高亮度和长寿命的特点。
课件无机化学25 f区金属 镧系与锕系金属
71
镥
Lu
4f14
5d1
6s2
第25章 f区金属—镧系与锕系金属
+III氧化值是所有Ln元素的特征氧化值。
+4
Hf4+ Pr La Tb
+3
Ce
Nd Pm
Gd
Dy Ho Er Tm
Lu
+2
Ba2+
Sm Eu Yb
第25章 f区金属—镧系与锕系金属
2. 轻希土和重希土元素分别指哪些元素? 稀土的英文是 Rare Earths,18 世纪得名, “稀”原指稀贵,“土” 是指其氧化物难溶 于水的 “土” 性. 其实稀土元素在地壳中的 含量并不稀少,性质也不象土,而是一组活泼 金属, “稀土” 之称只是一种历史的习惯 。 根据 IUPAC 推荐,把 57 至 71 的 15 个元 素称为镧系元素,用Ln 表示 ,它们再加上 39 号的 Y 称为稀土元素,用 RE 表示 。
第25章 f区金属—镧系与锕系金属
210 205 200 195 190
La Yb
Ln原子半径
Eu
Ln
185
Ce Pr Nd
180 175 170 La Ce Pr Nd
Pm
Sm
Gd Tb Dy Ho Er Tm
Lu
Pm
Sm
Eu
Gd
Tb
Dy
Ho
Er
Tm
Yb
Lu
第25章 f区金属—镧系与锕系金属
115 Ln离子半径 110 105 100 95
第25章 f区金属—镧系与锕系金属
磁光材料:指在紫外到红外波段,具有磁光 效应的光信息功能。如磁光光盘等。
镧系-锕系元素-2011.4
rM 3+
K稳
r/pm 97.9 △/pm 1.5
96.4 1.4
95.0
93.8 1.2
92.3 1.5
90.8 1.5
类似的现象还出现在镧系元素的配位
64Gd
化合物的稳定常数中。 这种现象被称之为Gd断效应。
原子序数
64Gd位于15个镧系元素所构成的序列的正中央,其+3价离 子有半充满的 f7 稳定结构,这种结构的电子屏蔽效应大,有效
镧系元素除以上原子半径的“双峰”变化外,还有一些规律 性
1、镧系元素存在的奇偶变化
镧系元素在地壳中的丰度随原子 序数的增加而出现奇偶变化的规律: 原子序数为偶数的元素,其丰度总 是比紧靠它的原子序数为奇数的大。
除丰度之外, 镧系元素的热中子
吸收截面也呈现类似的奇偶变化规 律性。
2、Gd断效应
在镧系元素的离子半径的变化中,在具有f7的中点64Gd3+处 微有不连续性, 由其相邻离子半径的差值的大小可以看出:
第二十二章
Chapter 22
镧系-锕系元素
The Lanthanide Series and
Actinide Elements (2010级使用)
本章教学要求
1. 掌握镧系元素的电子层结构及其与性质的关系; 2. 通过与镧系元素对比了解锕系元素的特性;
3. 掌握镧系收缩的实质及其影响;
4. 熟悉镧系元素的主要化合物; 5. 了解稀土元素的分布及其应用。
特点
原子半径缩小缓慢,相邻元素 递减1pm,总的缩小 约14pm。
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
第21章镧系元素和锕系元素
注:Tb3+略带淡粉红色。
① La3+,Lu3+和 Y3+离子是无色的
(可见光波长范围 400~760nm)
在可见光区没有吸收带,La3+(4f0)和 Lu3+(4f14)没有未成对电子之故。 ② Ce3+,Eu3+,Gd3+和 Tb3+的吸收带的波长全部或大部分在紫外区,无色; ③ Yb3+离子吸收带的波长在近红外区域,无色; ④ 其余 Ln3+离子在可见光区有明显吸收,离子有颜色,有些颜色非常漂亮(如 Pr3+,Nd3+,Er3+等) 。 5.标准电极电势 镧系金属是较强的还原剂,其还原能力仅次于碱金属 Li,Na,K 和碱土金属 Mg,Ca,Sr,Ba,且随着原子序数增加,其还原能力逐渐减弱。 Ln2+离子也是强还原剂。Ce4+是强氧化剂,能被水缓慢地还原。Pr4+是也很强 的氧化剂,Pr4+/Pr3+电对的标准电极电势值为+2.28V,这表明,Pr4+不能在水溶液 中存在。 21.1.2 镧系金属
6 7 13 14
+IV (Ce,Pr,Tb,Dy) Ce(4f0),Pr(4f1),Tb(4f7),Dy(4f8);
减小的现象称为镧系收缩。 原子半径:除 Eu 和 Yb 反常外,从 La---Lu 略有缩小。
Eu 和 Yb 反常
铕和镱的金属晶体 电子构型是半充满 4f7 和全充满 4f14。
中,它们仅仅给出 2 个电子形成金属键,原子之间结合力不像其它镧系元素那样 强。所以金属铕和镱的密度较低,熔点也较低。 离子半径:缩小快。 镧系收缩是无机化学的重要现象之一 ① 镧系收缩,使钇成为稀土元素的成员,Y 常与重稀土元素共生 ② 镧系收缩,使 IVB 族中的 Zr 和 Hf,VB 族中的 Nb 和 Ta,VIB 族中的 Mo 和 W,三对元素的半径接近,化学性质相似,分离困难。 4.离子的颜色 一些氧化数为+Ⅲ的镧系离子有很漂亮的颜色。如果负离子无色,在盐的晶 体和水溶液中都保持 Ln3+的特征颜色。 以 Gd3+离子为中心, 从 Gd3+到 La3+的颜色变化规律又在从 Gd3+到 Lu3+的顺序 中重现。这就是 Ln3+离子颜色的周期性变化。
第24章 镧系和锕系元素
4044
4193 3886
4f 145d16s2
6
第24章
镧系元素和锕系元素
24.1 镧系元素
镧系元素一般都能形成稳定的+3氧化 态,+3是镧系元素的常见氧化态,特征氧 化态。
7
第24章
镧系元素和锕系元素
价电子层结 构 4f 05d16s2 4f 15d16s2 4f 3 6s2 4f 4 6s2 4f 5 6s2 4f 6 6s2 4f 7 6s2 4f 75d16s2 4f 9 6s2 4f 10 6s2 4f 11 4f 12 4f 13 4f 14 6s2 6s2 6s2 6s2 +3 Ln3+ 4f 0 4f 1 4f 2 4f 3 4f 4 4f 5 4f 6 4f 7 4f 8 4f 9 4f 10 4f 11 4f 12 4f 13 4f 14
f区元素
§18. 2 锕系元素
3. 离子半径
由于5f电子对原子核的屏蔽作用比 较弱,随着原子序数的递增,有效核电 荷增加,锕系元素的离子半径也有与镧
系元素收缩类似的“锕系收缩”现象。
29
第十八章
f区元素
§18. 2 锕系元素
4. 离子的颜色
锕系 Ac3+ Th4+ PaO2+ Pa4+ Cm3+ 5f 0 5f 0 5f 0 5f 1 5f 7 颜色 无色 无色 无色 浅红色 绿色 镧系 La3+ Ce3+ Gd3+ Nd3+ Pr3+ 4f 0 4f 1 4f 7 4f 3 4f 2
ⅢB Y3+ 89.3 La3+ 106 ⅣB Zr4+ 80 Hf4+ 79 ⅤB Nb5+ 70 Ta5+ 69 ⅥB Mo6+ 62 W6+ 62
镧系和锕系——精选推荐
第二十三章镧系元素和锕系元素周期表中,ⅢB 族有32 种元素,包括钪、钇、镧、锕,其中镧这一格代表15 种镧系元素( 71 ~ 57 = Z ),锕这一格代表15 种锕系元素( 103 ~ 89 = Z ),下面分别讨论镧系和锕系元素。
23-1 镧系元素1、通性:(1)概念:镧系包括从Lu La ~ 的15 种元素,用Ln 表示,又由于Y 在矿物中的与镧系共生,其原子半径和离子半径与镧系元素接近,所以又把Y 和镧系元素合称希土元素,用RE 表示。
(2)电子层结构镧系内,自La 以后,增加的电子填充在f 4 亚层上, f 有t 个轨道,共可容纳14个电子,所以La 后出现14 种元素,称为第一内过渡系。
锕系后14 种元素称第二内过渡元素,92 号U 以后的元素又叫超铀元素。
镧系元素原子的最外面两层的电子结构相似,不同在于f 4 内层,因此化学性质非常相似,在周期表中占一格。
(3)氧化态:主要价态为+Ⅲ,+Ⅳ,但不及+Ⅱ稳定,+Ⅱ价态为很强的还原剂+ 2 Sm (钐),+Ⅳ为很强的氧化剂如: + 4 Ce (铈)(能存在于溶液中), + 2 Eu (铕), + 2 Yb (镱)能存在于溶液中。
它们的氧化态与电子层的构型有关,如14 7 0 , , f f f 特别稳定,另外还与其热力学和动力学因素有关。
(4)原子半径和离子半径:镧系元素的原子半径和离子半径随着原子序数的增加而逐渐减小的现象称为镧系收缩。
随着原子序数的增加,电子填入f 4 层,而f 4 电子对核的屏蔽不如内层电子,因而随着原子序数的增加,对外层电子吸引力增加,原子半径、离子半径逐渐减小。
其中铕(Eu )和镱(Yb )的原子半径变化趋势反常,是因为它们分别具有7 4 f 和14 4 f 的稳定结构,对原子核有较大的屏蔽作用。
另外,在它们的金属晶体中它们仅能给出2 个s 电子形成金属键,原子之间的结合力不像其他镧系元素那样强,所以金属铕和镱的密度较低,熔点也较低,升华能也比相邻的元素低。
掌握镧系和锕系元素的电子构型与性质的关系
第22章镧系元素和锕系元素[ 教学要求 ]1 .掌握镧系和锕系元素的电子构型与性质的关系。
2 .掌握镧系收缩的实质及其对镧系化合物性质的影响。
3 .了解镧系和锕系以及与d过渡元素在性质上的异同。
4 .一般了解它们的一些重要化合物的性质。
[ 教学重点 ]1 .镧系和锕系元素的电子构型与性质的关系2 .镧系收缩的实质及其对镧系化合物性质的影响。
[ 教学难点 ]镧系收缩的实质[ 教学时数 ] 4学时[ 教学内容 ]1 .镧系元素2 .锕系元素3 .钍和铀的化合物22-1 镧系元素22-1-1 镧系元素的通性镧系元素中是否包括镧(Z=57),至今还没有一致的意见。
一种意见认为镧原子基态不存在f电子(4f0),因此把镧排除在镧系元素之外,镧系元素只包括14个元素(Z=58—71);另一种意见认为虽然镧在基态时不存在f电子,但镧与它后面的14个元素性质很相似,所以应把镧作为镧系元素。
此外,第三副族镧之上的元素为钇(Z=39),由于镧系收缩(后面讨论)的影响,使得钇的原子半径(181pm)、三价离子半径(89.3pm)接近铽(Tb)和镝(Dy)的原子半径和三价离子半径,因此钇在矿物中与镧系共生。
通常把钇和镧系元素称为希土元素。
至于钪(Z=21),它的离子半径比较小(73.2pm),其化学性质介于铝和镧系元素之间。
一般不把它列入希土元素。
通常镧系元素用Ln表示希土元素用RE表示。
1、电子层结构IIIB族元素基态价电于层结构为:Sc Z=21 3d14s2Y Z=39 4d15s2La Z=57 5d16s2Ac Z=89 6d 17s2周期表中,这一副族中的四个元素是四个过渡系的第一个成员。
在Sc和Y之后,随着原于序数增加,电子相应地填充在3d和4d层,构成第一和第二过镀系(或称3d过渡系和4d过渡系)。
但在镧以后,增加的电子填充在4f层,当4f层填满以后,再填人5d层。
f有7个轨道,每个轨道可容纳二个电子,因此在镧以后会出现14个元素,称为第一内过渡系或4f过渡系。
镧系和锕系元素
镧系元素第一个f电子在铈原子出现,随着原子序数增 加,4f轨道中电子的填充出现两种类型:[Xe]4f n6s2和 [Xe]4fn-15d16s2 。 La 的 价 电 子 构 型 为 4f05d16s2 , Ce为 4f15d16s2,Gd为4f75d16s2,Lu为4f145d16s2,其余镧系 元素原子为4fn 6s2 。镧系元素原子的电子构型按照哪 一类型排列,符合洪特规则的特例。一般情况下,等 价轨道全充满、半满或全空的状态是比较稳定的。
镧系金属
镧系金属为银白色金属,比较软,有延展性,但抗拉 强度低。镧系金属的活泼顺序,从La到Lu递减,它们 的活泼性仅次于碱金属和碱土金属。当它们与潮湿空 气接触时易被氧化而变色。因此,镧系金属应在隔绝 空气条件下保存,可保存在煤油里。
镧系金属的密度基本上是随着原子序数的增大而 递增,从La(6.17g·cm-3)到 Lu(9.84 g·cm-3)逐渐 增加。但Eu(5.26 g·cm-3)和Yb(6.98 g·cm-3)的密 度比它们各自左右相邻的两种金属都小。这是由于Eu 和Yb的4f轨道分别处于半充满和全充满状态,对原子 核的屏蔽效应增大,有效核电荷降低,导致核对外层 电子的引力减小,使得它们的半径突然增大。
原子序数
铕和镱出现反常现象, 这是因为它们的电子 构型分别是半充满 4f7 和全充满4f14 ,这 两种结构比4f电子层 未充满的其他状态对 核电荷有更大的屏蔽 作用。
原子半径 /pm
镧系元素的原子半径除Eu和Yb反常外,从La到Lu略有 缩小的趋势,但缩小程度不如离子半径。这是由于镧系 元素原子的电子层比相应的离子多一层,它们的最外层 是6s2,4f居于倒数第三层,它对原子核的屏蔽作用很强 ,接近100 %,因而镧系元素原子半径收缩的效果就不 明显了。
镧系元素
● 与 f-f 跃迁有关 可以简单地认为离子的颜色与 4f 亚层中的电子跃迁有关:La3+ (4f 0) 和 Lu3+(4f 14) 离子为无色,因为不可能发生 f - f 跃迁;另一稳 定组态的离子 Gd3+(4f 7) 和接近稳定组态的离子Ce3+(4f 1) ,Eu3+(4f 6) , Tb3+(4f 7) 和 Yb3+(4f 13) 的吸收峰在紫外区或红外区,因而显示无色 或浅色.
61Pm 62Sm 63Eu 64Gd
钷
钐
铕
钆
64Gd 65Tb 66Dy 67Ho68Er69Tm70Yb71Lu 钆 铽 镝 钬 铒
铥
镱 镥
22-1-1价层电子构型和氧化数
镧系元素的电子层结构最外层和次外层基本相同, 符号 价层电子 氧化数 符号 价层电子 氧化数 只是4f上电子数不同,因而性质十分相似 构型 构型 La 5d16s2 +3 Gd 4f75d16s2 +3 Ce22-1-1价层电子构型和氧化数 4f15d16s2 +3、+4 Tb 4f96s2 +3、+4 Pr 4f36s2 +3、+4 Dy 4f106s2 +3、+4 Nd Pm Sm Eu 4f46s2 4f56s2 4f66s2 4f76s2 +3 +3 Ho Er 4f116s2 4f126s2 4f136s2 4f146s2 +3 +3 +2、+3 +2、+3
+2、+3 Tm +2、+3 Yb
氧化态特征 镧系元素全部都形成稳定的 + 3 氧化态,同一周期连续 15 个元 素形成同一种特征氧化态的现象在周期表中是绝无仅有的 . 非特征 氧化态与它们的电子组态稳定性有关 .
镧系元素和锕系元素
It is one of the most widely studied ceramic superconductors
5. 稀土元素的应用
玻璃陶瓷
加色例: Nd紫色 CeO2光学玻璃抛光剂(极细粉末磨料)
吸收光例:Pr、Nd吸收黄光,用于护目镜玻璃 相机镜头玻璃加Ln2O3 (高折射率,低散射率) 激光材料 储氢材料 微肥 医药 ……
吸附程度:La强 Lu弱
EDTA溶液
LnR3 + EDTA LnEDTA 络合物稳定性:La弱 Lu强
柱足够长时, 单一离子可达99.9%
④ 溶剂萃取法
应用最广泛
利用稀土离子配合物在水相和有机相中分配系数的差异
常用萃取剂 磷类萃取剂
中性正磷酸衍生物 (RO)3PO、R3PO、 (RO)R ́2PO等
La和La3+无f电子 La、Ce、Gd、Lu 填有5d电子
电子结构特点:
Ln最外层:6s2 →性质类似于碱土金属
Ln次外层:5d0-15s25p6 Ln3+:
最外层:5s25p6 稀有气体构型
4f0-14:深埋,对化学性质影 响很小 → Ln3+稳定,且性质相近
f – f 跃迁:线状光谱
F orbitals
序、名称、 元素符号,清楚它们在周期表中的位置, 能正确描述其电子结构特点。
知道什么是镧系收缩,能解释其产生的原因并指出 其后果。
能说出常见氧化态。知道非常见氧化态物种,并能 解释其存在的原因。清楚离子的电子结构特点。
能说出由矿物提取元素的方法,知道主要的分离提 纯方法。能描述重要化合物的性质。
了解镧系元素的光谱性质和磁性。
镧系元素
+II Sm(4f66s2) Sm(4f6)
Eu(4f76s2) Tm(4f136s2) Yb(4f146s2) Eu(4f7) Tm(4f13) Yb(4f14)
从4f电子层结构来看,其接近或保持全空、半满及全 满时的状态较稳定(也存在热力学及动力学因素)。
水溶液的稳定性:
Ce4+(4fo) > Pr4+(4f1) Sm2+(4f6) < Eu2+(4f7)
LnCl3
LnCl3·6H2
O
LnCl标3和准L溶nC解l3焓·6H2O的
镧系元素的单质
1. 镧系金属单质的化学性质
碱金属 Eo = -2.9左右 碱土金属 Eo = -2.3—2.9
Al E o = -1.96
Ln E o = -2.3左右
(1) 活泼性仅次于碱金属和Ca、Sr、Ba而与Mg 类似;
89 Ac 90 Th 91 Pa 92 U 93 Np 94 Pu 95Am 96 Cm 97 Bk 98 Cf 99 Es 100 Fm 101Md 102No 103 Lr
锕 钍 镤 铀镎 钚 镅 锔 锫 锎 锿 镄 钔 锘 铹
镧系元素的发现
镱 1879年 钇 1794年 镱 1878年
镥 1905-1907年 钇土1794年 铒 1843年 钪 1879年
不同点:
铈组
钇组
硫酸盐 碳酸盐 草酸盐
不溶于M2SO4溶液 不溶于CO32-溶液 不溶于C2O42-溶液
溶于M2SO4溶液 溶于CO32-溶液 溶于C2O42-溶液
2. +IV化合物
Ce(4f15d16s2),Pr(4f36s2),Tb(4f96s2),Dy(4f106s2)能形 成+IV氧化态即Ce(4f0),Pr(4f1),Tb(4f7),Dy(4f8) 。
25 镧系锕系元素习题解答
习题解答:1. 什么叫做“镧系收缩”?讨论出现这种现象的原因和它对第6周期中镧系后面各个元素的性质所发生的影响。
答:镧系元素的原子半径和离子半径,其总的趋势是随着原子序数的增大而缩小,这种现象称为“镧系收缩”。
由于镧系收缩的存在,使镧后面元素铪(Hf)、钽(Ta)、钨(W)等原子和离子半径,分别与同族上一周期的锆(Zr)、铌(Nb)、钼(Mo)等几乎相等,造成Zr-Hf、Nb-Ta、Mo-W化学性质非常相似,以致难以分离。
另外,在VIII族九种元素中,铁系元素(Fe、Co、Ni)性质相似,轻铂系元素(Ru、Rh、Pd)和重铂系元素(Os、Ir、Pt)性质相似,而铁系元素与铂系元素性质差别较大,这也是镧系收缩造成的结果。
镧系收缩的另一结果是使钇(Y3+)离子半径正好处于镧系正三价离子的范围之内,与Er3+(88.1 pm)的半径十分接近,因而在自然界中钇常同镧系元素共生,成为稀土元素的成员。
2. 镧系元素三价离子中,为什么La3+、Gd3+ 和Lu3+ 等是无色的,而Pr3+ 和Sm3+等却有颜色?答:镧系元素离子的颜色主要由4f轨道中的电子的跃迁即f-f跃迁所引起。
当4f轨道未充满时,可以出现多种能级,不同能级间的跃迁就会发生对电磁辐射的吸收。
镧系离子的颜色与f轨道中的未成对电子数有关。
La3+、Gd3+ 和Lu3+分别为f 0,f7,f 14离子,其4f轨道为全空、半充满和全充满的稳定结构,遇到可见光时,没有电子激发或者电子很难被激发,所以这些离子是无色。
而其它具有4f n(n = 2,3,4,5,9,10,11,12)电子的Ln3+都显示不同的颜色。
这里面就包括Pr3+(4f 2)和Sm3+(4f 5)离子。
3. 镧系元素的特征氧化态为+3,为什么铈、镨、铽、镝常呈现+4氧化态,而钐、铕、铥、镱却能呈现+2氧化态?答:镧系中有些元素还存在着除+3以外的稳定氧化态,即铈、镨、铽、镝常呈现+4氧化态,而钐、铕、铥、镱却能呈现+2氧化态,这是因为它们的离子电子结构保持或接近全空、半满或全充满的稳定状态。
《无机化学》第3版 宋天佑 23 镧系元素和锕系元素
Ln3+离子与软碱氮、硫、氯、 溴、碘的配位能力较差,只有在 适当极性的非水介质时,才能得 到含氮配位化合物。此外较为稳 定的配位化合物就是螯合物。
Ln3+ 离子的半径大、外层空 的轨道多,导致配位数一般比较 大,可以从 6 到 12 。
这些配位化合物的形成对于 镧系元素的分离和提取极其重要。
23. 1. 3 稀土的分离提纯
具有 f2 结构的 Pr3+ 和 f12 结构的 Tm3+ 离子主要显绿色;
具有 f3,f4,f5 和 f10,f11 结构的 +3 价离子呈现浅红色和黄色;
具有 f6,f7,f8 结构的 +3 价离子, 吸收峰全部或大部分在紫外区,所以 无色或略带粉红色。
镧系元素的一些简单化合物,如 Ln2O3 和 Ln(OH)3 等的颜色基本与对 应的 Ln3+ 相同,这是因为它们的显色 机理均为 f-f 跃迁。
从水溶液中析出的硫酸盐经 常带有结晶水,它们受热时脱水 形成无水盐。
镧系硫酸盐溶于水的热效应 较大,因此其溶解度随温度的变 化较为明显 。
镧系硫酸盐在水中的溶解度 规律性较强,
依 Ce,Pr,Nd,Sm,Eu 次序递减;
依 Gd,Tb,Dy,Ho,Er, Tm,Yb,Lu次序递增。
镧系硫酸盐能与碱金属或碱 土金属的硫酸盐形成复盐,不同 复盐溶解度的差别较大,这种差 别在分离中极为重要。
锕系元素与镧系元素的价层电子结构相似不仅其6d和7s电子可以作为价电子而且5f轨道上的电子也可以参与成键于是形成较稳定的高价态
第 23 章 镧系元素和锕系元素
镧系元素 锕系元素
23. 1 镧系元素
23. 1. 1 镧系元素的基本性质
周期表中第六周期 ⅢB 族,从 57 号元素镧 La 到 71 号元素镥 Lu 的共 15 种,统称镧系元素,用 Ln 表示。
镧系锕系课件
•配位化合物 •镧系元素生成配合物的能力比较:
镧系元素半径>过渡元素
镧系元素形成配合物能力<过渡元素形成配合物能力 Ln3+电荷>碱土金属
镧系元素形成配合物能力>碱土金属
•Ln3+电荷数高,属于硬酸,易与硬碱中的氟、氧等 配位原子成键,与氮、硫、卤素(氟除外)的配位 能力较差,只有在适当极性的非水溶剂中,可合成 含氮配位化合物。
•镧系金属的草酸盐的重要意义:难溶于水、稀酸,可将 镧系金属离子以草酸盐的形式与其它金属分离。
•制备:向硝酸盐或氯化物的溶液中加 6 mol ·dm−3 硝酸和 草酸,可得到草酸盐沉淀。
•草酸盐经灼烧得到的是相应的氧化物,但是无水草酸盐 首先要经过碳酸盐 如:
Ln2(C2O4)3 =加==热== Ln2(CO3)3 + 3 CO↑
Pr3+
2
黄绿 淡绿
12 Tm3+
Nd3+
3
红紫 淡红
11
Er3+
Pm3+ 4
粉红 淡黄
10 Ho3+
Sm3+
5
淡黄 浅黄绿 9
Dy3+
Eu3+
6 浅粉红 浅粉红 8
Tb3+
Gd3+
7
无
原子序 数
71 70 69 68 67 66 65
应用实例色散度;
“稀土”元素并不稀少
15种镧系元素(Ln),再加上第五周期的钪 (Sc)和钇(Y),共17种元素,称为稀土元素,用 RE表示。
其中,根据原子的电子层构型以及它们原子量的大 小把稀土元素分为铈组稀土和钇组稀土:
• 铈组稀土(轻稀土):镧(La)、铈(Ce)、 镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、 铕(Eu)
第21章 过渡金属(II) 第22章 镧系元素和锕系元素
过渡金属(II)§21-1 铁系元素一、概述铁系元素:Fe ---3d64s2;氧化态:+2,+3,+4,+5,+6Co---3d74s2;+2,+3,+4Ni---3d84s2;+2,+3,+4最高氧化数低于族数元素电势图(P1013):酸性条件下:Fe2+, Co2+, Ni2+最稳定,但Fe2+易被氧化Fe(VI), Co(III), Ni(IV)有强氧化性碱性条件下:M(II)的还原性增强4Fe(OH)2+O2+2H2O=4Fe(OH)3(快)4Co(OH)2+O2+2H2O=4Co(OH)3(慢)Ni(OH)2+O2→不反应单质性质:Fe Fe+2H+=Fe2++H2↑3Fe+4H2O(g) 850K Fe3O4+4H2Fe+NH3→Fe2NFe+O(S2,Cl2,P) 猛烈反应Co Co+2H+=Co2++H2↑(反应慢)Ni Ni+2H+=Ni2++H2↑Co、Ni在碱中的稳定性高于Fe;三者都在冷的浓HNO3中钝化;Fe在含有重铬酸盐的酸中也钝化。
二、铁的化合物1.氧化数为+2的化合物a.FeO和Fe(OH)2FeO的制备:FeC2O4隔绝空气ΔFeO+CO+CO2性质:碱性氧化物Fe(OH)2的制备:Fe2++2OH-=Fe(OH)2↓(白)性质:还原性+O2+2H2O=4Fe(OH)32酸碱性:主要呈碱性,酸性弱Fe(OH)2+4OH-(浓)=[Fe(OH)6]4-b.FeSO4制备:2FeS2(黄铁矿)+7O2+2H2O=2FeSO4+2H2SO4或Fe2O3+3H2SO4=Fe2(SO4)3+3H2OFe2(SO4)3+Fe=3FeSO4性质:热稳定性2FeSO4573K Fe2O3+SO2+SO3溶解性:易溶于水水解性:微弱水解Fe2++H2O=Fe(OH)-+H+还原性:4FeSO4+O2+2H2O=4Fe(OH)SO46FeSO4+K2Cr2O7+7H2SO4=3Fe2(SO4)3+K2SO4+Cr2(SO4)3+7H2O氧化性:Zn+Fe2+=Zn2++Fec.Fe(II)的配位化合物多为六配位的,配体如H2O、CN-、C5H5-等[Fe(H2O)6]2+淡绿色2KCN+FeS=Fe(CN)2+K2S4KCN+Fe(CN)2=K4[Fe(CN)6]K4[Fe(CN6).3H2O 即黄血盐K4[Fe(CN)6] 373K 4KCN+FeC2+N2K++Fe3++[Fe(CN)6]4-=KFe[Fe(CN)6 ]↓(普鲁士蓝)---检Fe3+2C5H5MgBr+FeCl2=(C5H5)2Fe(二茂铁)+MgBr2+MgCl22.氧化态为+3的铁的化合物a.氧化物及氢氧化物Fe2O3: α型---顺磁性由Fe(NO3)3或Fe2(C2O4)3分解制备γ型----铁磁性由Fe3O4氧化制得Fe3O4(FeO.Fe2O3):=Fe3O426FeO+O2=2Fe3O43Fe+4H2O=Fe3O4+4H2↑Fe(OH)3(即Fe2O3.nH2O): 两性偏碱性Fe(OH)3+3OH-(浓)=[Fe(OH)6]3-b.FeCl3共价分子,易升华,蒸气中双聚氧化性(酸性介质中):2Fe3++2I-=2Fe2++I22Fe3++H2S=2Fe2++S↓+2H+2Fe3++Sn2+=2Fe2++Sn4+水解性:Fe3++H2O=Fe(OH)2++H+Fe(OH)2++H2O=Fe(OH)2++H+H[Fe(H2O)5OH]2++[Fe(H2O)6]3+=[(H2O)5Fe-O-Fe(H2O)5]5++H2OOH 2[Fe(H2O)5OH]2+=[(H2O)4FeFe(H2O)4]4++2H2OOH当pH=0时[Fe(H2O)6]3+占99%pH=2-3时聚合度>2的多聚体pH>3 Fe(OH)3胶状↓Fe2(OH)24+、Fe2(OH)42+等聚合离子可与SO42-结合成一种浅黄色复盐晶体M2Fe6(SO4)4(OH)12 (M=K+, Na+,NH4+),例Na2Fe6(SO4)4(OH)12(黄铁矾)的制备过程如下:(SO4)3+6H2O=6Fe(OH)SO4+3H2SO424Fe(OH)SO4+4H2O=2Fe2(OH)4SO4+2H2SO 42Fe(OH)SO4+2Fe2(OH)4SO4+Na2SO4+2H2O=Na2Fe6(SO4)4(OH)12↓+H2SO4配合性:六配位,配体如H2O、CN-、F-、SCN-等2K4[Fe(CN)6]+Cl2=2KCl+2K3[Fe(CN)6](赤血盐)K3[Fe(CN)6]在碱性介质中有氧化性:4K3[Fe(CN)6]+4KOH=4K4[Fe(CN)6]+O2↑+2 H2OK++Fe2++[Fe(CN)6]3-=KFe[Fe(CN)6]↓(縢式蓝)---检Fe2+Fe3++nSCN-=[Fe(SCN)n]3-n(血红色)----检Fe3+还原性:2Fe3++10OH-+3ClO-=2FeO42-+3Cl-+5H2O3.氧化数为+6的铁的化合物FeO42-+8H++3e-= Fe3++4H2Oφo A=2.20VFeO42-+4H2O+3e-= Fe(OH)3+5OH-φo B=0.72VClO-+H2O+2e-=Cl-+2OH-φo B=0.89V2Fe(OH)3+3ClO-+4OH-=2FeO42-(紫红色)+3Cl-+5H2OFe2O3+3KNO3+4KOH=2K2FeO4+3K NO2+2H2OBa2++FeO42-=BaFeO4↓FeO42-在酸性条件下不稳定:4FeO42-+20H+=4Fe3++3O2↑+10H2O钴的化合物1.+2价的钴的化合物CoO(灰绿):由CoCO3(或CoC2O4、Co(NO3)2隔绝空气加热制得难溶于水,不溶于碱,溶于酸Co3O4(黑):由CoCO3(或CoC2O4、Co(NO3)2在空气中加热制得Co(OH)2:Co2++OH-+Cl-=Co(OH)Cl↓(蓝)Co(OH)Cl+OH-=Co(OH)2↓(粉红)弱两性,偏碱性Co(OH)2+2OH-(浓)=Co(OH)42-还原性:4Co(OH)2+O2+2H2O=4Co(OH)3↓(棕褐色)Co(OH)2+Br2(或Cl2, ClO-)→Co(OH)3 Co2+的配合性:易与NH3、CN-、SCN-、NO3-等形成配合物,配合物还原性强,不稳定CoCl2.6H2O 325K CoCl2.2H2OCoCl2.H2O 393K CoCl2粉红紫红蓝紫蓝[Co(NH3)6]3++e-=[Co(NH3)6]2+φo=0.10V4[Co(NH3)6]2++O2+2H2O=4[Co(NH3) ]3++4OH-64[Co(H2O)6]2++20NH3+4NH4++O2=4[ Co(NH3)6]3++26H2O2[Co(H2O)6]2++10NH3+2NH4++H2O2 =2[Co(NH3)6]3++14H2O2K4[Co(CN)6]+2H2O 微热2K3[Co(CN)6]+2KOH+H2↑Co2++4SCN- =[Co(SCN)4]2-(蓝色,在有机溶剂中较稳定,水中易解离)Hg2++[Co(SCN)4]2-=Hg[Co(SCN)4]↓(蓝)Co2++4NO3-=[Co(NO3)4]2-(八配位,NO3-为双齿配体)2.+3价的钴的化合物----氧化性O3.H2O 573K Co3O4+O2↑22Co(OH)3+6HCl=2CoCl2+Cl2↑+6H2OCo3+的配合性:配合物稳定,与NH3、CN-、NO2-、F-等形成六配位的配合物,只有F-的配合物为高自旋Co2++7NO2-+3K++2HAc ΔK3[Co(NO2)6]↓+NO↑+H2O+Ac-易通过OH-、NH2-、NH2-、O22-、O2-为桥形成多核配合物O2[(NH3)4CoCo(NH3)4]Cl3NH2配合物的异构体多,如:[(ONO)Co(NH3)5]Cl2红色[(NO2)Co(NH3)5]Cl2黄棕色四、镍的化合物+2价的镍的化合物NiO: 暗绿色,溶于酸,难溶于水,不溶于碱Ni(OH)2: 苹果绿,碱性还原性:2Ni(OH)2+Br2+2OH-=2Ni(OH)3↓(棕黑)+2Br-稳定性:在空气中稳定Ni2+的配合性:[NiCl4]2-四面体构型[Ni(CN)4]2-平面正方形构型Na2[Ni(C N)4].3H2O 黄色K2[Ni(CN )4].H2O 橙色[Ni(NH3)6]2+天蓝色[Ni(en)3]2+紫红色与丁二酮肟形成鲜红色的内配盐沉淀,用于鉴定Ni2+2.+3、+4价的镍的化合物------氧化性β-NiO(OH):黑色,碱性2Ni2++KBrO+4OH-=2 β-NiO(OH)+KBr+H2ONiO2.nH2O: 黑色,强氧化性,不稳定Ni2++ClO-+2OH-+(n-1)H2O=NiO2.nHO+Cl-2Ni(OH)3:2Ni(OH)2+Br2+2OH-=2Ni(OH)3↓(棕黑)+2Br-2Ni(OH)3+6HCl(浓)=2NiCl2+Cl2↑+6H2O五、铁、钴、镍的低氧化态的配合物如Fe(CO)5、HCo(CO)4存在反馈π键Ni+4CO 325K, 1atm Ni(CO)4(无色液体)Fe+5CO 373-473K, 2.02×107Pa Fe(CO)5淡黄液体)2CoCO3+2H2+8CO 393-473K,2.53-3.03×107Pa Co(CO)8+2CO2+2H2O2羰基配合物的特点:熔、沸点低,易挥发,易分解,有毒Fe(CO)5473-523K Fe+5COFe(CO)5+2NO=Fe(CO)2(NO)2+3 COCo2(CO)8+2NO=2Co(CO)3(NO) +2CO(NO为三电子配位体)§21-2 铂系元素一、概述Ru Rh Pd Os(蓝灰)Ir PtRu、Rh、Os、Ir不溶于王水Pt、Pd溶于王水Pd还溶于稀或浓硝酸及热的硫酸中室温下仅有粉末状的Os被氧化成挥发OsO4Ru+O2ΔRuO2Rh+O2炽热Rh2O3升温分解Pd+O2炽热PdO 升温分解Pt+O2ΔPtO Δ分解铂系金属不与N2作用,与S、P、Cl2、F2等在高温下反应Pt+Cl2(干燥) >523K PtCl2H2PtCl5+Cl2573K PtCl4(红棕色) 643-708K PtCl(暗绿)3708-854K PtCl2855K Pt苛性碱或Na2O2对Pt腐蚀严重Pt易与S, M2S, Se, Te, P4, M3PO4, 磷化物作用二、铂和钯的重要化合物1.H2[PtCl6] 及其盐PtCl4+2HCl=H2[PtCl6]H2[PtCl6].6H2O 橙红:两性4Pt(OH)4+6HCl=H2[PtCl6]+4H2OPt(OH)4+2NaOH=Na2[Pt(OH)6]PtCl4+2NH4Cl=(NH4)2[PtCl6]PtCl4+2KCl= K2[PtCl6]Na2[PtCl6]易溶于水、酒精(NH4)2[PtCl6]及M2[PtCl6] (M=K,Rb,Cs)均为难溶于水的黄色晶体氯亚铂酸盐:K2[PtCl6]+K2C2O4=K2[PtCl4]+2KCl+2CO2↑(NH4)2[PtCl6] ΔPt+2NH4Cl+2Cl2↑3(NH4)2[PtCl6] Δ3Pt+2NH4Cl+16HCl+2N2↑稳定性:[PtF6]2- < [PtCl6]2-< [PtBr6]2- < [PtI6]2-K盐颜色:黄深红黑Pt(II)-乙烯配位化合物[PtCl4]2-+C2H4 =[Pt(C2H4)Cl3]-+Cl-2[Pt(C2H4)Cl3]- =[Pt(C2H4)Cl2]2+2Cl-3.PdCl2PdCl2+CO+H2O=Pd↓+CO2↑+2HCl第二十二章镧系元素和锕系元素§22-1引言1.镧系元素2.稀土元素3.轻稀土(铈组稀土):La, Ce, Pr, Nd, Pm,Sm, Eu4.重稀土(钇组稀土):Gd,Tb,Dy,Ho,Er,Tm,Yb,Lu(Sc),Y§22-2镧系元素的电子层结构及通性一、镧系元素在周期表中的位置及其电子层结构电子层结构:P1070二、镧系收缩势是随着原子序数的增大而缩小,这个现象称“镧系收缩”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中国稀土储量曾占全球储量的约90%。中国稀土资源出 口量已占世界稀土资源出口总量的90%以上。中国稀土资源 储量占全球已探明稀土资源总储量的比重已从43%降至30%, 按照现在的开采速度,中国稀土资源仅能维持未来15至20年 的需求。 无 机 化 学 电 子 教 案 日本没有稀土资源,却是储备稀土资源最多的国家。日 本90%的稀土供应依赖中国。1993年起开始建立稀有金属储 备制度和基地。据估计,目前日本的稀土存量已经足够该 国使用至少20年。
从 1794 年芬兰化学家加多林 (Gadolin) 发现第一种稀土元
素(钇)到1972年在天然铀矿中发现了钷 (14361Pm,半衰期
2.7年),才确认17种稀土元素在自然界中均存在。锕系元素 都具有放射性。 稀土元素在地壳中的丰度大,但比较分散,且性质相近 ,分离提纯困难。镧系元素的化学性质相似,组成第一内 过渡系,它们不是同位素。镧系元素的电子排布复杂,光 谱复杂,价电子层是否有5d电子尚未解决。
1、镧系和锕系元素的价电子构型特点 2、镧系收缩的实质及其对镧系化合物性质的影响。
22.1 引言
1 氢 2
3
IA 1 H
元素周期表
IIIA IVA VA VIA VIIA 5 B 6 C 7 N 8 O 9 F
锂 铍 硼 碳 氮 氧 氟 无 13 Al 14 Si 15 P 16 S 17 Cl 11 Na 12 Mg 机 3 钠 镁 IIIB IVB VB VIB VIIB VIII IB IIB 铝 硅 磷 硫 氯 化 19 K 20 Ca 21 Sc 22 Ti 23 V 24 Cr 25 Mn 26 Fe 27 Co 28 Ni 29 Cu 30 Zn 31 Ga 32 Ge 33 As 34 Se 35 Br 学 4 钾 钙 钪 钛 钒 铬 锰 铁 钴 镍 铜 锌 镓 锗 砷 硒 溴 37 Rb 38 Sr 39 Y 40 Zr 41 Nb 42 Mo 43 Tc 44 Ru 45 Rh 46 Pd 47 Ag 48 Cd 49 In 50 Sn 51 Sb 52 Te 53 I 电 子 5 铷 锶 钇 锆 铌 钼 锝 钌 铑 钯 银 镉 铟 锡 锑 碲 碘 55 Cs 56 Ba 57-71 72 Hf 73 Ta 74 W 75Re 76 Os 77 Ir 78 Pt 79 Au 80 Hg 81 Tl 82 Pb 83 Bi 84 Po 85 At 教 6 铯 钡 LaLu - 铪 钽 钨 铼 锇 铱 铂 金 汞 铊 铅 铋 钋 砹 案 88 89 103 104 105 106 112 87 107 108 Hs 109 110 111
第二十二章 镧系和锕系元素
教学要求:
无 机 化 学 电 子 教 案 (3 课时) 1、掌握镧系和锕系元素的价电子构型特点与元 素性质的关系。 2、掌握镧系收缩的实质及其对镧系化合物性质 的影响。 3、了解镧系和锕系以及d过渡元素在性质上的 异同。 4、一般了解它们的一些重要化合物的性质。
重点与难点:
美国的稀土储量居世界第三位,为保护稀土资源,美国在 1997年就封存了国内最大的已探明稀土储量达430万吨的芒 廷帕斯矿。
无 机 化 学 电 子 教 案
无 机 化 学 电 子 教 案
22.2 镧系元素的电子结构和通性
22.2.1 镧系元素的价电子层结构
原子序数 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 元素 镧 铈 镨 钕 钷 钐 铕 钆 铽 镝 钬 铒 铥 镱 镥 符号 La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu 4f0 4f1 4f3 4f4 4f5 4f6 4f7 4f7 4f9 4f10 4f11 4f12 4f13 4f14 4f14 价电子层结构 5d1 6s2 5d1 6s2 6s2 6s2 6s2 6s2 6s2 5d1 6s2 6s2 6s2 6s2 6s2 6s2 6s2 5d1 6s2
IIA Li 4 Be
7 钫 镭
Fr
Ra
-
Ac-Lr
杜 钅 喜 钅 钅 卢钅 麦 Uun Uuu Uub 波 钅 黑 钅
La
Rf
Db
Sg
Bh
Mt
114
116
镧系 镨 镨 铕 铕钆 钆铽 铽镝镝 钬钬 铒铒 铥铥 镱 镧 镧 铈 铈 钕钕 钷钷 钐钐 镥 镧系 镥 镱 91 Pa 92 U 93Np 94 Pu 95Am 96Cm 97 Bk 98 Cf 99 Es 100Fm 101 89Ac 90 Th90 102 103 Lr Md No 91 Pa 92 U 93 Np 94 Pu 95Am 96 Cm 97 Bk 98 Cf 99 Es 100Fm 101 89 Ac Md 102No 103 L Th 锕系 锕 锕 钍 钍 镤 镤 铀铀 钚钚 镅镅 镎镎 锔 锔锫 锫锎锎 锿锿镄镄 钔钔 锘 锕系 铹 锘铹
无 机 化 学 电 子 教 案
无 机 化 学 电 子 教 案
镧系元素气态原子的 4f 轨道的充填呈现两种构 型 , 即 4 fn-15d16s2 和 4 fn6s2 ,这两种电子构型的相对 能量如图1所示: 其中 La、Ce、Gd的基 态处于4fn-15d16s2 时能量较 低,而其余元素皆为4fn6s2。 La、Gd、Lu的构型可以用f0、f7、f14(全空、半满和全满) 的洪特规则来解释,但Ce的结构尚不能得到满意的解释,
57La 57 58 Ce58 59
64 64 65 Tb 66 Dy 67Ho 68 Er 69Tm 71 Lu 63 Eu 70Yb Pm6162 Pr Nd6061 5960 62 Sm 63 EuGd 70 Yb 71 PmSm Ce Pr Nd Gd 65 Tb 66 Dy 67Ho 68 Er 69Ln)、钪(Sc)、钇(Y),共17种元素总称为 稀土元素(RE)。La(镧),Ce(铈),Pr(镨),Nd(钕) ,Pm( 钷) ,Sm(钐) ,Eu(铕)称为铈组稀土(轻稀土);Gd (钆) ,Tb (铽) ,Dy (镝) ,Ho (钬) ,Er (铒) ,Tm (铥) ,Yb (镱 ) ,Lu(镥),Sc,Y称为钇组稀土(重稀土)。