2钛及钛合金典型组织.pdf
钛合金及其应用ppt课件.ppt
■钛白粉:化学式TiO2,晶型有锐钛型(A-TiO2)和金红 石型(R-TiO2)两种工业产品。它是最好的白色颜料,还 是塑料、造纸业的重要原料。
■生产方法: ①硫酸法:既能生产金红石型钛白粉也能生产锐钛型钛白粉, 为传统工艺,废料(硫酸亚铁)处理问题尚未很好解决。 ②氯化法:只能生产金红石型钛白粉,目前世界上60% 以上 的钛白粉由此种发法生产,正在不断取代①。
目前使用最广泛的Ti-6Al-4V合金,是在20世纪40年代晚期 由美国开发出来的。现在,人们已经开发出了大量的钛合 金,从而开辟了轻合金在许多工业领域中得以广泛应用的 新局面。
认识到了贫困户贫困的根本原因,才 能开始 对症下 药,然 后药到 病除。 近年来 国家对 扶贫工 作高度 重视, 已经展 开了“ 精准扶 贫”项 目
认识到了贫困户贫困的根本原因,才 能开始 对症下 药,然 后药到 病除。 近年来 国家对 扶贫工 作高度 重视, 已经展 开了“ 精准扶 贫”项 目
■化学性能: 钛的耐腐蚀性很好,虽然钛是一种非常活泼的金属,其
平衡电位很低,在介质中的热力学腐蚀倾向大,但是因为钛 和氧的亲和力大,在空气或含氧介质中,钛表面生成一层致 密、附着力强、惰性大的氧化膜,保护了钛基体不受腐蚀, 即使受到机械磨损,也会很快自愈或再生,这表明钛是具有 强烈钝化倾向的金属。 对海水的抗腐蚀性很强。
2 工业纯钛(纯度约为99.5%)
2.1 基本性质
■物理性质:纯钛是银白色金属,位于周期表ⅣB族。
表2-1 钛的基本物理性能数据
名称 相对原子量 原子半径 溶化温度/℃ α-TiβTi相变 比密度/g/cm3
热导率 /[W/(m●K)] 超导转变温度/K
数值
47.9 0.145 1668±5(属难熔金属) 相变潜热:3.47KJ/mol, 相变温度:882 ℃, 结构:α(hcp), β(bcc) 4.505(20 ℃) ,4.35(870 ℃) ,4.32(900 ℃),约为纲的57% 22.08,只有铁的1/4,是铜的1/7
干货丨高清金相图谱之钛及钛合金
干货丨高清金相图谱之钛及钛合金来源:材易通。
初生α相(primary α)从α+β相区上部加热保留下来的α相。
一般初生α相多呈等轴状,而等轴状的α相几乎都是初生α相。
次生α相(secondary α)从α+β相区上部加热,冷却和时效过程中β相分解产生的α相。
一般次生α相多呈片层状,长宽比较大。
原始β晶粒(prior β grain)最后一次进入到β相区时形成的β晶粒,这些晶粒可能会在β转变点以下的加工时变形。
转变β组织(transformed β structure)从β转变点以上或α+β相区保温冷却过程中β相分解所形成的混合组织,通常由片状α和β交替排列组成。
集束(colonies)β在原始β晶粒内,α片取向几乎相同的区域。
不同方向的集束相互交错,构成了β转变组织。
α'相(α prime/hexagonal martensite phase)β相以非扩散转变形成的过饱和非平衡六方晶格α相。
形态为针状,长宽比高。
由于其形核不依赖于位置,形成的马氏体针常常交错排布,终止于晶界。
α'相(α double prime/orthorhombic martensite phase)由β相以非扩散转变形成的过包和非平衡斜方相,也可能是由于加工应变而引起的。
一般认为α'相是β相向α'相转变的过渡相,退火时效过程中,可以发生α'相向α'相的转变。
ω相(ω phase)在β相分解过程中,通过形核长大的一种非平衡显微相,是β相向α相转变的过渡相。
淬火、时效都可以形成ω相,淬火形成的是无热ω相,时效形成的是等温ω相。
有资料认为,应力应变也可以引发β相向ω相的相变。
ω相引起合金强度升高,塑韧性严重降低。
β'相(β' phase)溶质富化型亚稳定β钛合金中β相通过相分离反应形成的一种浓度较低的亚稳相,此时ω相形成受到抑制,和调幅分解的主要区别在于调幅分解没有形核,而β'相的生成是通过形核长大过程实现的。
钛合金的组织结构与性能研究
钛合金的组织结构与性能研究钛合金是一种广泛使用于工业制造中的高强度、低密度、高温耐受材料。
其在航空、航天、汽车、医疗等领域有着重要的应用。
由于钛合金的物理、化学和机械性能均优异,因此成为了二十世纪最重要的金属材料之一。
本文将主要介绍钛合金的组织结构与性能。
1. 钛合金的组成和分类钛合金以钛为基础,通过添加合金元素达到强度、耐腐蚀、耐高温等特殊要求。
常用的合金元素包括铝、钒、锆、铁、铬、镍、硅等。
根据合金元素的不同,钛合金可分为α型、β型、α+β型、其它型等各种不同类型。
α型钛合金主要由钛-铝、钛-锌、钛-锆-铜、钛-铝-锰等组成。
这种合金具有良好的高温强度和维氏硬度,且可在较高温度下通过时效处理进一步提高强度和塑性。
β型钛合金主要由钛-铝-钒等元素组成,具有较高的硬度和强度,但热加工性能较差。
α+β型钛合金对α型和β型钛合金做了合理的掺杂,具有良好的结构稳定性和加工性能。
其他型钛合金则是对以上各类合金元素的不同组合和调整。
2. 钛合金的组织结构钛合金的结晶方式和分布类型在很大程度上决定了其力学性能。
钛合金一般可以分为两种结构:α型和β型。
α型结构是在室温下形成的,它的晶粒尺寸比较大,通常要通过热处理进行成形。
β型结构则是在高温或加热下形成的,具有更加细小的晶粒。
钛合金的晶界数目、晶粒大小和晶粒的分布均影响着其力学性能。
晶界数量与材料强度和塑性的比较直接,用来衡量材料的韧性。
虽然细小晶粒的材料对强度有所提高,但会导致脆性的增加。
晶粒的分布对疲劳寿命和断裂韧性也有着巨大的影响。
3. 钛合金的性能钛合金具有优异的力学和化学性能。
具体表现在:(1)强度和韧性均优异,可达到其他工程金属的两倍以上。
(2)具有极高的抗腐蚀性,可以抵御环境中的大部分腐蚀介质。
(3)稳定性好,不会因温度、湿度、几何形状等因素的变化而对性能产生影响。
(4)重量轻,密度与钢相当。
(5)高温稳定性好,可以在高温下用于长时间和长期运行的设备上。
钛及钛合金金相图谱(下)
钛及钛合金金相图谱(下)β型钛合金β型钛合金中又分为稳定β合金、亚稳定β合金、近β合金。
稳定β合金含有大量β稳定元素,退火后全部为β相。
其室温强度较低,冷成形性好,在还原性介质中耐蚀性较好;典型合金有Ti40。
亚稳定β合金含有临界浓度以上的β稳定元素,少量的Al(一般不大于3%)和中性元素,从β相区固溶处理(水淬或空冷)后,几乎全部为亚稳定β相,这类合金冷加工性好,时效强度高。
近β合金含有临界浓度左右的β稳定元素,和一定量的中性元素及铝,从β相区固溶处理后有大量亚稳定β相及其他亚稳定相(α或ω相),时效后,主要是α相和β相,这类合金适合加工成锻件产品,具有优良的强韧性匹配。
1稳定β钛合金Ti40Ti40合金是90年代中期由西北有色金属院研制的一种Ti-Cr-V系阻燃钛合金,属于稳定β型钛合金,合金相变点约400℃。
应用于高性能航空发动机机匣等部位。
Ti40合金典型力学性能如表3-1表3-2所示。
图3-1~图3-9为Ti40合金常见的微观组织。
表3-1 Ti40合金室温力学性能表3-2 Ti40合金高温蠕变性能图3-1 Ti40合金热加工态组织:弯曲状β晶界图3-2 Ti40合金600℃退火组织:弯曲状β晶界少量加工流线图3-3 Ti40合金700℃退火组织:等轴β组织图3-4 Ti40合金800℃退火组织:等轴β组织(β晶界平直化)图3-5 Ti40合金固溶组织:等轴β组织图3-6 Ti40合金520℃/250MPa/100h蠕变后组织:等轴β组织图3-7 Ti40合金535℃/250MPa/100h蠕变后组织:等轴β组织及变形引起的孪晶图3-8 Ti40合金蠕变后形成的位错形貌(TEM)图3-9 Ti40合金蠕变后形成的位错形貌(TEM)2亚稳定β钛合金典型合金有TB2、TB3、Ti-15-3(TBS)、Ti26等。
2.1TB3合金TB3合金名义成分Ti3.5Al10Mo8V1Fe,是一种亚稳定β型钛合金,相变点730~750℃,该合金由西北有色金属研究院于20世纪80年代研制(原称Ti22合金),具有良好的冷加工性能(冷变形率大于90%),可加工制备成板、棒、管、丝、箔等多种类型半成品。
典型钛及钛合金的组织与性能综述
典型钛合金的组织与性能文献查阅总结1.α型钛合金α型钛合金中又分为全α型钛合金和近α型钛合金,工业纯钛属于α型钛合金,此外一般α合金含有6%左右的Al和少量中性元素,退火后几乎全部是α相,典型合金包括TA1~TA7合金等;近α型钛合金中除了含有Al和少量中性元素外,还有少量(不超过4%)的稳定元素,如TA15、TA16、TA17等。
1.1工业纯钛工业纯钛按杂质元素含量分为TA1、TA1ELI、TA1-1、TA2、TA2ELI、TA3、TA3ELI、TA4、TA4ELI9个牌号,相变点大约为900℃。
工业纯钛具有高塑性、适当的强度、良好地耐蚀性以及优良的焊接性能等特点,广泛应用于化工设备、滨海发电装置、海水淡化装置、舰船零部件等,其冷热加工性能好,可生产各种规格的板材、棒材、型材、带材、管材和丝材,一般在退火状态下交货使用。
典型的工业纯钛显微组织如图1-3所示:图1 TA1板材650℃/1h退火态组织:等轴α+少量晶间β图2 TA2大规格棒材600℃/1h退火态组织:等轴α图3 TA3板材800℃/1h退火态组织:等轴α+含有针状α转变的β1.1.1 TA1钛管的组织与性能[][]庞继明,李明利,李明强等. 退火温度对TA1钛管材组织和性能的影响[J]. 钛工业进展. 2011, 28(2): 26-28研究方法:TA1铸锭经过2500t水压机开坯锻造和1600t卧式挤压机热挤压,最终获得φ45×7mm的管坯。
管坯经两辊和三辊管材冷轧机轧制成φ12×1.25mm的管材。
将管材置于真空热处理炉中,分别加热至450,475,490,500,550,600,650,700℃,保温90min,随炉冷却。
a)TA1钛管的显微组织图1为冷加工态及不同的温度热处理后的TA1管材横向显微组织。
可以看出,冷加工态的TA1管材组织混乱且有部分晶粒破碎不完全;700℃下的组织已完全再结晶、等轴化,与650℃的相比晶粒已明显长大。
2钛及钛合金典型组织
3Ti合金组织观察
近α -Ti合金:Ti-6Al-5Zr-0.5Mo-0.3Si
工艺: 1050°C,1h,油淬 600°C,24h,时效.
组织:转变β相和 初始β晶界
浸蚀剂---氢氟酸:硝酸:水=1:1:7;
金相明场 320×; 金相相衬 320×; 电镜明场 5000×;
2.3 TC4,典型组织介绍 Ti-6Al-4V的六种组织状态
等轴α +晶间β
等轴+针状 α +晶间β 等轴α +针状 α( 转变态β)
少量等轴α +针状 α+ β( 转变态β)
片状α( 转变态β)+ β 初 片状α( 转变态β)+ β +
金相明场500×;
电镜明场20000×
浸蚀液: 氢氟酸 : 硝酸 : 水 = 1 : 1 : 3
TB2,800℃/30分 AC+500℃/8hr AC; 有弥散α相析出的β晶粒
金相明场 500×, 浸蚀㲸:氢氟酸:硝酸: 水=1:3:5;
金相偏光 500×, 浸蚀㲸:氢氟酸:硝酸: 水=1:12:18;
生β晶界α24
初生β晶界α
a 1050℃
b 1050℃
Ti-6Al-V合金的相转变图,MS:马氏体转 变 开 始 温 度 。 以 及 Ti-6Al-4V 合 金 从 1050℃、800℃和650℃炉冷和水淬后的 显微组织
c 800℃
d 800℃
e 650℃ 炉冷(50℃/h )
f 650℃ 水淬
Ti-6Al-4V 1020℃/20min/WQ 马氏体组织+晶界初生β
钛合金材料的组织与力学性能分析
钛合金材料的组织与力学性能分析钛合金是一种重要的结构材料,由于其高强度、低密度和良好的耐腐蚀性能,被广泛应用于航空航天、汽车、医疗和化工等领域。
钛合金的性能与其组织密切相关,因此对钛合金的组织与力学性能进行深入分析至关重要。
1. 钛合金的组织类型钛合金的组织类型包括α相、β相、α+β相和ω相等。
α相是一种密排六方晶系结构,具有良好的塑性和热稳定性;β相是一种密排体心立方结构,具有高硬度和较好的强化效果;α+β相则是α相和β相的混合体,具有综合性能较好的特点;而ω相是一种高温相,具有良好的高温强度。
2. 组织对力学性能的影响不同的组织类型对钛合金的力学性能有着不同的影响。
α相具有优良的塑性和韧性,能够减缓裂纹的扩展速度,并提高钛合金的抗拉强度、屈服强度和延伸率;β相则具有高硬度和较好的强度,能够提高钛合金的硬度和耐磨性;而α+β相则可以兼顾塑性和硬度,使得钛合金既具备了良好的延展性又具备一定的强度。
而ω相一般出现在高温条件下,能够提高钛合金的高温强度和耐热性能。
3. 组织控制方法为了调控钛合金的组织,提高其力学性能,可以采取一系列的组织控制方法。
其中,固溶处理是常用的方法之一,通过高温处理使得合金元素均匀固溶在α相或β相中,从而改善合金的塑性和韧性;时效处理则是将固溶处理后的合金在适当的温度下保温一段时间,形成更加均匀的相分布和细小的析出相,从而提高合金的硬度和强度。
此外,通过合金元素的调控也可以实现组织控制。
例如,通过添加合适的合金元素可以增加合金的固溶度区域,使得钛合金具备更好的热处理稳定性;同时,合适的合金元素还能够调节相转变温度和相转变形式,从而使钛合金具备更为优异的力学性能。
4.力学性能测试方法对钛合金的力学性能进行准确的测试是保证其质量和可靠性的重要手段。
常用的力学性能测试方法包括拉伸试验、硬度测试和冲击试验等。
拉伸试验可以判断钛合金的抗拉强度、屈服强度和延伸率等指标;硬度测试可以测量钛合金的硬度值,从而评估其耐磨性;而冲击试验则可以测试钛合金在受到冲击负荷时的韧性和断裂行为。
第3章 钛及钛合金2
美国军用飞机上各种材料用量占机体结构总量的百分比
机型 复合 材料 钛合金 铝合金 钢 F-16 3 2 83 5 YF-17 F/A-18 F/A-18 F/A-18 F/A-22 F-35 A/B C/D E/F 8 7 73 10 9.5 12 50 15 10 13 50 16 23 15 29 14 24 41 15 5 36 27 B-1 29 21 41 9 B-2 38 26 19 6 X-45A X-45B 50 90
第3章 钛及钛合金
3.1 概述 3.2 钛的提取和熔化 3.3 纯钛 3.4 钛合金
3.1 概述
钛源于Titans,即希腊神话中地球上大力士。 地壳中钛元素含量位列第四 (0.86%) ,居铝、铁、镁之后。 自然界中不存在纯钛,仅以氧化物存在,如FeTiO3、TiO2。 强度与钢相当,而密度几乎仅有钢的一半。
马赫数M>5时,蒙皮温度高达数千华氏 度,高超音速轰炸机用材问题非常突出。 即使早期研制的SR-71高空高速侦察机 (M=3),蒙皮温度已相当高,故钛合 金用量高达93%。
民用飞机的上各种材料用量的变化趋势:复合材料和钛合 金的用量不断增多。
典型钛及钛合金的组织与性能综述
典型钛及钛合金的组织与性能综述Newly compiled on November 23, 2020典型钛合金的组织与性能文献查阅总结1.α型钛合金α型钛合金中又分为全α型钛合金和近α型钛合金,工业纯钛属于α型钛合金,此外一般α合金含有6%左右的Al和少量中性元素,退火后几乎全部是α相,典型合金包括TA1~TA7合金等;近α型钛合金中除了含有Al 和少量中性元素外,还有少量(不超过4%)的稳定元素,如TA15、TA16、TA17等。
工业纯钛工业纯钛按杂质元素含量分为TA1、TA1ELI、TA1-1、TA2、TA2ELI、TA3、TA3ELI、TA4、TA4ELI9个牌号,相变点大约为900℃。
工业纯钛具有高塑性、适当的强度、良好地耐蚀性以及优良的焊接性能等特点,广泛应用于化工设备、滨海发电装置、海水淡化装置、舰船零部件等,其冷热加工性能好,可生产各种规格的板材、棒材、型材、带材、管材和丝材,一般在退火状态下交货使用。
典型的工业纯钛显微组织如图1-3所示:图1 TA1板材650℃/1h退火态组织:等轴α+少量晶间β图2 TA2大规格棒材600℃/1h退火态组织:等轴α图3 TA3板材800℃/1h退火态组织:等轴α+含有针状α转变的βTA1钛管的组织与性能[][]庞继明,李明利,李明强等. 退火温度对TA1钛管材组织和性能的影响[J]. 钛工业进展. 2011, 28(2): 26-28研究方法:TA1铸锭经过2500t水压机开坯锻造和1600t卧式挤压机热挤压,最终获得φ45×7mm的管坯。
管坯经两辊和三辊管材冷轧机轧制成φ12×的管材。
将管材置于真空热处理炉中,分别加热至450,475,490,500,550,600,650,700℃,保温90min,随炉冷却。
a)TA1钛管的显微组织图1为冷加工态及不同的温度热处理后的TA1管材横向显微组织。
可以看出,冷加工态的TA1管材组织混乱且有部分晶粒破碎不完全;700℃下的组织已完全再结晶、等轴化,与650℃的相比晶粒已明显长大。
钛及钛合金全解
2 纯钛
杂质元素对钛性能的影响 杂质元素主要有氧、氮、碳、氢、铁和硅。 前四种属间隙型元素,后二种属置换型元素,可以固溶在α相 或β相中,也可以化合物形式存在。 钛的硬度对间隙型杂质元素很敏感,杂质含量愈多,钛的硬 度就愈高。 综合考虑间隙元素对硬度的影响,引入氧当量:O当=O%+2N %十0.67%。 氧当量和硬度的关系为: HV=65+310·O0.5当。
氮、氧、碳都提高α+ β/β相变温度,扩大α相区,属α稳定 元素。均可提高强度,急剧降低塑性,其影响程度按氮、氧、碳 递减。为了保证合金的塑性和韧性,目前在工业钛合金中氢、氧、 氮、碳含量分别控制在0.015%、0.15%、0.05%,0.1%以下。低 温用钛及钛合金,由于氧、氮和碳提高塑-脆转化温度,应尽量 降低它们的含量,特别是氧含量。 微量铁和硅在固溶范围内与钛形成置换固溶体,它们对钛的 性能影响没有间隙杂质元素那样强烈。作为杂质时,铁和硅的含 量分别要求小于0.3%和0.15%,但有时也作为合金元素加入。
2 纯钛 纯钛组织基本形态: 形变再结晶退火后,α相呈等轴状,称等轴α; β相区缓慢冷却,α相以集束片状形式沿β晶界和晶 内有规则的析出,此类形态称魏氏α; β相区快冷,则发生马氏体转变,马氏体形态与纯度 有关:高纯钛中呈锯齿状,工业纯钛中呈片状,两者均属板 条状马氏体。
《钛及钛合金》课件
熔盐法是利用四氯化钛和镁在 高温下反应生成钛和镁的混合 物,再经分离、精炼得到纯钛
。
真空法是利用四氯化钛和氢气 在高温、真空条件下反应生成 钛和氯化氢,再经精炼得到纯
钛。
钛合金的熔炼工艺
钛合金的熔炼方法主要有真空熔 炼和电渣重熔两种。
真空熔炼是利用真空条件下的高 温熔炼技术,将各种金属元素熔
化并混合均匀,形成钛合金。
在此添加您的文本16字
轧制是将钛及钛合金的金属坯料在轧机中经过多道次的轧 制,使其逐渐变形、延伸,最终形成所需规格的板材、管 材等。
在此添加您的文本16字
挤压是将钛及钛合金的金属坯料放入挤压机中,通过施加 压力使其从模具孔中流出,形成所需形状和尺寸的型材。
在此添加您的文本16字
拉拔是将钛及钛合金的金属坯料在拉拔机中进行拉伸,使 其截面减小、长度增加,最终形成所需规格的棒材、动钛及钛合金领域的进步与发展。
感谢您的观看
THANKS
《钛及钛合金》ppt课件
目录
• 钛及钛合金简介 • 钛的物理与化学性质 • 钛合金的种类与特性 • 钛及钛合金的生产工艺 • 钛及钛合金的应用案例 • 未来展望与研究方向
01
钛及钛合金简介
钛的发现与特性
钛的发现
钛元素由英国化学家格雷戈尔于 1791年首先发现,而钛金属在19 世纪末才开始被用于工业生产。
钛的特性
钛是一种银白色的过渡金属,具 有低密度、高熔点、良好的耐腐 蚀性和优异的力学性能等特性。
钛合金的种类与特性
钛合金的种类
根据钛与其他元素的组合,钛合金可 以分为α型、β型和α+β型三类。
钛合金的特性
钛合金具有高强度、良好的耐腐蚀性 和疲劳性能,以及较低的弹性模量, 使其在航空、航天、医疗等领域得到 广泛应用。
钛及钛合金
高温和疲劳性能
在高温下,纯钛迅速软化,从20至250℃强度下降 三分之二,纯钛不宜制作高温承力构件。适当合 金化后,耐热性显著提高,高温钛合金长期使用 温度已达600℃,用于航空发动机的高压压气机部 件,蒸汽透平机的转子及其他高温工作的部件。 钛的疲劳性能特点与钢类似,有比较明显的物理 疲劳极限。纯钛的对称旋转弯曲疲劳极限约为 0.4—0.6σb , 反 复 弯 曲 疲 劳 极 限 为 0.6-0.8σb 。
30
时效的相变
亚稳定相在时效时可产生时效强化,可分为4种类 型:β相的分解、ω相分解、马氏体α′和α″的 分解和过饱α相分解。钛合金的时效温度一般为 450 -600℃, 4 -12h。含快共析β稳定元素的钛 合金时效时间较短。 亚稳定β相的分解要经历三个阶段:含金元素偏 聚分为贫化 β′ 和富化 β , β′ 中析出 α″ 或ω 相;α″或ω相分解为 α+β相。
25
钛的冶炼-制取海绵钛的方法
钠还原法是一种设备较简单、投资较低的海绵钛 生产方法,有一段法和二段法之分。
一段法工艺简单,操作方便,产品比较集中,呈坨状,为 间歇作业;
二段法具有半连续作业的优点,第一段连续作业,生产效 率高,结晶钛多,产品质量高,工艺较复杂。 从世界范围绝大部分海绵钛是用镁还原法生产的。还没有 找到经济地生产金属钛的方法,发展钛工业的第一大障碍。
4
第一个实用的钛合金
1954年美国研制成功的Ti-6Al-4V合金,由于耐热
性、强度、塑性、韧性、成形性、可焊性、耐蚀
性和生物相容性均较好,成为钛合金工业中的王
牌合金。
该合金使用量已占全部钛合金的75%~85%。其 他许多钛合金可看做是Ti-6Al-4V合金的改型。
5
2钛及钛合金典型组织.pdf
TC4,850℃/1hr 水淬;等轴初生α+马氏体 α′.
金相明场 500×;金相相衬 500×;电镜明场20000× 浸蚀剂:氢氟酸:硝酸:水 =1:4:45
TC4,850℃/1hr AC ;等轴初生α+转变β
TC4,950℃/1hr AC; 等轴初生α+舍有针状α的β转变组织.
金相明场 500×;金相相衬 500×;电镜明场 10000× 浸蚀剂:氢氟酸:硝酸:水 =1:4:45
TC4,950℃/1hr 炉冷;等轴α+晶间β
金相明场 500×;金相相衬 500×;电镜明场 5000× 浸蚀剂:氢氟酸:硝酸:水 =1:6:193
浸蚀剂--氢氟酸:硝酸:水=1:1:3;
金相明场 250×; 金相偏光 250×; 电镜明场 5000×
TA7,1040℃/30分,水淬;针状α+原始β晶界
浸蚀剂--氢氟酸:盐酸:甘油=1:1:7
金相明场 250×; 金相相衬 250×; 电镜明场 5000×;
TA7,1040℃/30’ AC;针状α+原始β晶界
TA2,1000℃/1hr,AC;锯齿α片及α片间保留的β相
浸蚀剂---氢氟酸:硝酸:水=2 : 1 : 17; 金相明场 250×; 金相偏光 250×; 电镜明场 5000×
TA2 ,700℃/1hr ,AC,等轴α相(某些晶粒内含孪晶)
浸蚀剂---氢氟酸:硝酸:水=2 : 1 : 17; 金相明场 250×; 金相偏光 250×; 电镜明场 5000×
ห้องสมุดไป่ตู้
TC11水冷
TC11水冷大变形
钛合金2-钛合金.
钛合金首先感谢大家的鼓励。
特别是严重感谢Zibao版主,“该出手时就出手”,才让俺这个系列文章从“与本版块定位不符已被管理员删除”的垃圾站中起死回生,出来透了口气儿。
多谢领导挽救!近年来,很多军迷正在从简单的“兵器对对碰”装备比拼,逐步走向动力体系、气动设计、电子体制等诸多装备要素的探讨,或者深入到材料、工艺、生产装备等基础研究的专业领域。
这是好事,也是兵器迷行文的目的。
军坛也似乎正在逐步从新闻表面的喧嚣,更多的扩展到专业底层——那些因枯燥、苦涩、沉重、默不作声而被忽视了很久的东西,那些骨灰级军迷和深切的爱国者需要学习和培养的东西。
第一篇对钛的性质和钛材的生产做了介绍。
钛虽然有很多优良的性质,但是,事物总是两面的——兵器迷经常“但是”后面做文章——纯钛也有很多弱点:首先,钛在高温时的化学活性比较高。
钛本身耐热,在500℃以下相对稳定。
不过,在大气中,钛250℃开始吸收氢,400℃开始吸收氧,600℃开始吸收氮,甚至,在钛在50 0-600℃的纯氧中可以自行燃烧。
杂质的增加,会破坏钛的强度和塑性。
这给钛的使用与热加工带来了很大的麻烦。
第三篇谈时,我们会再涉及这个话题。
再有,钛的导热性差,只有铁的1/3,铝的1/5,摩擦系数大(0.42),抗磨性也不高。
因此容易使刀具和工件的温度急剧升高,造成粘刀,降低刀具寿命,切削加工性差。
最后,钛的弹性模量低,抗变形能力差,只有铁的55%,影响制件的刚度,这也是为什么,我们在现实中看到很难看到细长的钛合金承力构件的原因。
为了在应用钛的时候扬长避短,人们采用了合金的方式。
即将钛与其他金属,或类金属元素固溶在一起,大幅度改善钛材性能的短板,以便更好的发挥钛的长处,这就是本篇的重点——钛合金。
这一篇的特点,是专业术语较多。
我们尽量绕开简要介绍一下,但无法完全避开。
感兴趣的朋友可以找专业论著研读,一起交流(兵器迷啃这些东西头大啊)。
不感兴趣的朋友,就当看个热闹罢了。
钛有两种同素异晶体,即α密集六方晶系,和β体心立方晶系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
金相明场 320×; 金相相衬 320×; 电镜明场 5000×;
2.3 TC4,典型组织介绍 Ti-6Al-4V的六种组织状态
等轴α +晶间β
等轴+针状 α +晶间β 等轴α +针状 α( 转变态β)
少量等轴α +针状 α+ β( 转变态β)
片状α( 转变态β)+ β 初 片状α( 转变态β)+ β +
TC11水冷
TC11水冷大变形
Ti-17
Ti-679
● 表达式:(α等+ α条+β转)组织
● 特征: α等≈10~20%, α条≈60~70%,且混乱交织 6
1.4 网篮组织
β锻后水冷 β锻水冷
β锻空冷,晶界破碎
β锻空冷
β锻空冷,断续的晶界
7
β锻空冷,连续的晶界α β锻空冷,断续的晶界α
β锻空冷,锻态
11
TA2不同加工状态下的组织
A原始锻态
B原始热轧态
C再结晶退火
D冷轧态
E再结晶退火
TA2不同冷速下组织 (保温温度:1000℃、保温时间:5min)
A :0.5℃\s
B:1℃\s
C :5℃\s
D:50℃\s
13
TA2,1000℃/1hr,WQ;针状α。
浸蚀剂---氢氟酸:硝酸:水=2 : 1 : 17; 金相明场 250×; 金相偏光 250×; 电镜明场 5000×
● 只要有β转,就有β残(残余β),但含量是不同 的,因此,不同类型组织的热稳定性也都不一 样的。
10
2 不同类型钛合金的典型组织
2.1 纯钛:TA1或TA2 为代表
A:885℃ ℃
B:890℃
C:895℃
D:900℃ G:915℃
E :905℃ ℃
F :910℃
TA2不同温度下的组织
(加热速率:10 ℃/s 、保温时间:0min 、 冷 却速率:50 ℃/s)
β锻空冷,大块α
β锻空冷,大块α
β锻空冷,大块α
● 表达式:(α条+ β转)组织,有断续晶界α,或有 连续晶界α,或有大块α
● 特征: α等≈0
8
1.5 魏氏组织
β锻,空冷,锻态
β锻,空冷,热处理
● 表达式:
(α针+ β转)组织 ● 特征: α针细长、平直,β晶粒粗大,并有
晶界α存在
9
总结
● 不管何种组织结构均有β转存在,总是在转变β 基体上析出不同形态的条状α。
生β晶界α24
初生β晶界α
a 1050℃
b 1050℃
Ti-6Al-V合金的相转变图,MS:马氏体转 变 开 始 温 度 。 以 及 Ti-6Al-4V 合 金 从 1050℃、800℃和650℃炉冷和水淬后的 显微组织
c 800℃
d 800℃
e 650℃ 炉冷(50℃/h )
f 650℃ 水淬
Ti-6Al-4V 1020℃/20min/WQ 马氏体组织+晶界初生β
TA2,1000℃/1hr,AC;锯齿α片及α片间保留的β相
浸蚀剂---氢氟酸:硝酸:水=2 : 1 : 17; 金相明场 250×; 金相偏光 250×; 电镜明场 5000×
TA2 ,700℃/1hr ,AC,等轴α相(某些晶粒内含孪晶)
浸蚀剂---氢氟酸:硝酸:水=2 : 1 : 17; 金相明场 250×; 金相偏光 250×; 电镜明场 5000×
Ti-6Al-4V 1020℃/20min/Байду номын сангаасC 魏氏组织α 相+晶界初生β相
Ti-6Al-4V 960℃/60min/WC 等轴α 相+转变β相
TC4,1020℃/1hr 水淬;马氏体α’+原始β晶界
浸蚀剂---氢氟酸:硝酸:水=1:6:193; 金相明场 250×; 金相相衬 250×; 电镜明场 5000×;
TC4,1020℃/1hr,AC;针状α+原始β晶界
TC4钛合金,1020℃/1hr 经空冷,针状+原始晶界. 金相明场 250×;相衬 250×;电镜明场 5000×. 浸蚀剂:氢氟酸:硝酸:水 =1:6:193
钛及钛合金组织特征
1 钛合金的组织类型
1.1 等轴组织 1.2 双态组织 1.3 三态组织 1.4 网篮组织 1.5 魏氏组织
2 不同类型钛合金的典型组织
2.1 纯钛:TA1或TA2 为代表 2.2 α钛合金:TA7钛合金 2.3 α+β钛合金TC4钛合金 2.4 近β钛合金:TB2亚稳型钛合金 2.5 β钛合金纯钛:
浸蚀剂--氢氟酸:硝酸:水=1:1:3;
金相明场 250×; 金相偏光 250×; 电镜明场 5000×
TA7,1040℃/30分,水淬;针状α+原始β晶界
浸蚀剂--氢氟酸:盐酸:甘油=1:1:7
金相明场 250×; 金相相衬 250×; 电镜明场 5000×;
TA7,1040℃/30’ AC;针状α+原始β晶界
浸蚀剂---氢氟酸:硝酸:水=1:1:7;
金相明场 250×; 金相相衬 250×; 电镜明场 5000×;
TA7,1040℃/30分,炉冷;片状α+原始β晶界
浸蚀剂---氢氟酸:硝酸:水=1:1:7;
金相明场 250×; 金相相衬 250×; 电镜明场 4000×;
TA7,800℃/1hr,AC; 等轴α
1、钛合金的组织类型 1.1 等轴组织
TC11合金
TC21合金
Ti-17合金
Ti-1023合金
BT20 (叶片)
等轴组织复型照片
3
● 表达式:
(α+β)组织,白色颗粒α等,交错分布的细条 领域β转(又称转变β基体)
或 (α等+β转) 或 (α等初+β转) β转基体中的细条魏氏α(α魏),
细条之间黑色底为残余β(β残)。 所以, β转(α魏+β残) 因此,等轴组织=(α等+ α魏+β残)
TA2 ,锻态,变形α晶粒
浸蚀剂: 氢氟酸:硝酸:水=2:1:17; 金相明场 250×; 电镜明场 5000×;
TA1,退火+焊接,热影响区:等轴α相
浸蚀剂--氢氟酸 : 硝酸 : 水 = 1 :1 :3;
金相明场 250×; 金相偏光 250×; 电镜明场 5000×
TA1,退火+焊接;焊缝区:片状α+原始β晶 界(晶内有孪晶)
● 特征: ● α等轴≈40%以上,甚至70~80%
● 等轴α,可能是球形的,又可能是椭圆、橄榄形、 棒锤形、长条形。
4
1.2 双态组织
TC11
BT20
Ti-17
● 表达式:
(α+β)组织,可以与等轴组织完全一样的表示。 ● 特征:等轴α<40%,锻后空冷,因之,转变β基体 中的α平直成束。
5
1.3 三态组织