连续离散系统频域分析
实验 (三) 项目名称:利用MATLAB分析连续系统及离散系统的复频域特性
广东技术师范学院实验报告实验 (三) 项目名称:利用MATLAB 分析连续系统及离散系统的复频域特性一.实验目的1.掌握 Laplace 变换的意义、基本性质及应用。
2.掌握拉普拉斯变换的三维可视化表示。
3.理解系统函数的零、极点分布(极、零图)决定系统时间原函数的特性。
4.掌握系统冲激响应。
5. H (z )部分分式展开的MA TLAB 实现6. H (z )的零极点与系统特性的MATLAB 计算二.实验原理1.Laplace 变换和逆变换定义为⎰⎰∞+∞-∞-==j j stst ds e s F jt f dte tf s F σσπ)(21)()()(0( 4 – 1 )在 Matlab 中实现 Laplace 变换有两个途径:直接调用指令 laplace 和ilaplace 进行;根据定义式 ( 4 – 1 ),利用积分指令 int 实现。
相较而言,直接利用 laplace 和 ilaplace 指令实现机器变换要简洁一些。
调用格式:L=laplace(F) F=ilaplace(L)2.实现拉普拉斯曲面图及其可视化的步骤如下:a .定义两个向量x 和y 来确定绘制曲面图的复平面横座标和纵座标的范围。
b .调用meshgrid 函数产生包含绘制曲面图的s 平面区域所有等间隔取样点的复矩阵。
c .计算复矩阵s 定义的各样点处信号拉氏变换F(s)的函数值,并调用abs 函数求其模。
d .调用mesh 函数绘出其幅度曲面图。
3.在连续系统的复频域分析中,系统函数起着十分重要的作用,它包含了连续系统的固有特性。
通过系统函数可以对系统的稳定性、时域特性、系统频率响应等系统特性进行分析。
若连续系统的系统函数的零极点已知,系统函数便可确定下来,即系统函数H (s )的零极点分布完全决定了系统的特性。
系统函数的零点和极点位置可以用matlab 的多项式求根函数roots()来求得。
用roots()函数求得系统函数H(s)的零极点后,就可以用plot 命令在复平面上绘制出系统函数的零极点图。
离散系统频域分析及matlab实现
《数字信号处理》课程设计报告离散系统的频域分析及matlab实现专业:通信工程班级:通信11级组次:姓名及学号:姓名及学号:离散系统的频域分析及matlab 实现一、设计目的1.熟悉并掌握matlab 软件的使用;2.掌握离散系统的频域特性;3.学会分析离散系统的频域特性的方法;二、设计任务1.设计一个系统函数系统的频率响应进行分析;2.分析系统的频域响应;3.分析系统的因果稳定性;4.分析系统的单位脉冲响应;三、设计原理1. 系统函数对于离散系统可以利用差分方程,单位脉冲响应,以及系统函数对系统进行描述。
在本文中利用系统函数H(z)进行描述。
若已知一个差分方程为∑∑==---=Mi Ni i i i n y a i n x b n 01)()()(y ,则可以利用双边取Z 变换,最终可以得到系统函数的一般式H(z),∑∑=-=-==Ni iiMi iiza zb z X z z H 00)()(Y )(。
若已知系统的单位脉冲响应,则直接将其进行Z变换就可以得到系统函数H(z)。
系统函数表征系统的复频域特性。
2.系统的频率响应:利用Z 变化分析系统的频率响应:设系统的初始状态为零,系统对输入为单位脉冲序列)(n δ的响应输出称为系统的单位脉冲响应h (n )。
对h(n)进行傅里叶变换,得到:∑∞∞∞-==-)(jw nj |)(|)(e H w j n n j e e H e n h ϕω)( 其中|)(|jwn e H 称为系统的幅频特性函数,)(ωϕ称为系统的相位特性函数。
)(jw e H 表示的是系统对特征序列jwn e 的响应特性。
对于一个系统输入信号为n )(ωj e n x =,则系统的输出信号为jwn e )(jw e H 。
由上可以知道单频复指数信号jwn e 通过频率响应函数为)(jw e H 后,输出仍为单频复指数信号,其幅度放大了|)(|jw e H ,相移为)(ωϕ。
对于系统函数H(z)与H(w)之间,若系统函数H(z)的收敛域包含单位圆|z|=1,则有jw e z jw z H e H ==|)()(,在MATLAB 中可以利用freqz 函数计算系统的频率响应。
第3章离散时间信号与系统的频域分析
结论: 结论:序列共轭对称分量 的傅里叶变换是序列傅里 叶变换的实数部分; 叶变换的实数部分; 序列共轭反对称分量的傅 里叶变换是序列傅里叶变 换的虚数部分。 换的虚数部分。
第3章 离散时间信号与系统的频域分析
5.时域卷积定理 时域卷积定理 如果 FT [ x( n)] = X (e jω ), FT [h( n)] = H (e jω ) 且有
第3章 离散时间信号与系统的频域分析
(1)有限长序列: 有限长序列:
序列x(n)只在有限区间 1≤n≤n2之内才具有非零的有限值,在此 只在有限区间n 之内才具有非零的有限值, 序列 只在有限区间 区间外,序列值皆为零。 区间外,序列值皆为零。 其Z变换为 变换为
X (z) =
n = n1
x ( n) z − n ∑
第3章 离散时间信号与系统的频域分析
常用的Z变换是一个有理函数,用两个多项式之比表示: 常用的 变换是一个有理函数,用两个多项式之比表示: 变换是一个有理函数
P(z) X (z) = Q( z )
分子多项式P 的根是X 的零点,分母多项式Q 分子多项式P(z)的根是X(z)的零点,分母多项式Q(z) 的根是X 的极点。在极点处Z变换不存在, 的根是X(z)的极点。在极点处Z变换不存在,因此收 敛域中没有极点, 收敛域总是用极点限定其边界。 敛域中没有极点, 收敛域总是用极点限定其边界。
X (z) =
n = −∞
RN ( n ) z − n = ∑ z − n ∑
n=0
∞
N −1
= 1 + z −1 + z − 2 + L + z − ( N −1 )
这是一个有限项几何级数之和。 这是一个有限项几何级数之和。因此
《信号、系统与数字信号处理》第五章 Z变换与离散系统的频域分析
同理
sinh0nun
1 2
e0n
e0n
un
1 z
2
z
e0
z z e0
z2
z sinh0 2z cosh0
1
z max e0 , e0
2、双边z变换的移位 n0 0
若 xn X z
RX
z
R X
则 x n n0 z n0 X z
RX
z
R X
证明: Z x n n0
n
xT t nT estdt
n
xnT esnT
n
令 z esT 引入新的复变量, 将上式写为
X s s xnT zn
n
此式是复变量 z 的函数(T 是常数),记为
X z xnzn
n
x 2z2 x 1z x0 x1z1 x2z2
Z xn 2un z2 X z z1x1 x 2
3) 若 xn 为因果序列 xnun X z
则 xn mun zm X z
m0
xn
mun
zm
X
z
m1 k 0
xk
z
k
例5-9 求周期序列的单边z变换
解: 周期序列 xn xn rN
m0
令 n 0 ~ N 1 的主值区序列为 x1 n ,
( z 1)
4、指数序列加权
若 xn X z RX z RX
则 an xn X a1z
RX a 1z RX
证:Z an xn an xnzn
n
xn a1z n X z / a
n
RX a 1z RX
a
R X
z
a
R X
利用
数字信号处理实验4 离散时间系统的频域分析
实验4 离散时间系统的频域分析一、实验目的(1)了解离散系统的零极点与系统因果性和稳定性的关系; (2)加深对离散系统的频率响应特性基本概念的理解; (3)熟悉MATLAB 中进行离散系统零极点分析的常用子函数; (4)掌握离散系统幅频响应和相频响应的求解方法。
二、知识点提示本章节的主要知识点是频率响应的概念、系统零极点对系统特性的影响;重点是频率响应的求解方法;难点是MATLAB 相关子函数的使用。
三、实验原理1.离散时间系统的零极点及零极点分布图设离散时间系统系统函数为NMz N a z a a z M b z b b z A z B z H ----++++++++==)1()2()1()1()2()1()()()(11 (4-1) MATLAB 提供了专门用于绘制离散时间系统零极点图的zplane 函数: ①zplane 函数 格式一:zplane(z, p)功能:绘制出列向量z 中的零点(以符号"○" 表示)和列向量p 中的极点(以符号"×"表示),同时画出参考单位圆,并在多阶零点和极点的右上角标出其阶数。
如果z 和p 为矩阵,则zplane 以不同的颜色分别绘出z 和p 各列中的零点和极点。
格式二:zplane(B, A)功能:绘制出系统函数H(z)的零极点图。
其中B 和A 为系统函数)(z H (4-1)式的分子和分母多项式系数向量。
zplane(B, A) 输入的是传递函数模型,函数首先调用root 函数以求出它们的零极点。
②roots 函数。
用于求多项式的根,调用格式:roots(C),其中C 为多项式的系数向量,降幂排列。
2.离散系统的频率特性MATLAB 提供了专门用于求离散系统频响特性的freqz 函数,调用格式如下: ①H = freqz(B,A,W)功能:计算由向量W (rad )指定的数字频率点上(通常指[0,π]范围的频率)离散系统)(z H 的频率响应)e (j ωH ,结果存于H 向量中。
第五章1-连续LTI系统频域分析
连续时间LTI系统的频域分析 离散时间LTI系统的频域分析 信号的幅度调制和解调
时域分析的要点是,以冲激函数为基本信号,
任意输入信号可分解为一系列冲激函数;而系统零 状态响应yzs(t) = x(t)*h(t)。 由单位冲激函数δ (t)所引起的零状态响应称为单位 冲激响应,简称冲激响应,记为h(t)。
解: 利用H(j)与h(t)的关系
H ( j) F[h(t)] 1 1 j 1 j 2
1
( j)2 3( j) 2
只有当连续系统是稳定的LTI系统时,才存在H(j), 且可以由h(t)计算出H(j)。
电路系统的频率响应:
分析电路系统的频率响应,主要有两种方法。
H ( j) Yzs ( j)
( j) 3
X ( j) ( j)2 3( j) 2
在实际应用中, 只有当连续系统是稳定的LTI系统时,
才存在H(j),且频响函数才有意义。
例 已知某LTI系统的冲激响应为
h(t) = (e-t-e-2t) u(t),求系统的频率响应H(j)。
vR (t) RiR (t)
VR ( jw) R IR ( jw)
ZR
VR ( IR(
jw) jw)
R
vL
(t)
L
diL (t) dt
VL ( jw) jwLIL ( jw)
ZL
VL ( jw) IL ( jw)
jwL
iC
(t)
C
d
vC (t) dt
IC ( jw) jwCVC ( jw)
例 已知某LTI系统的动态方程为 y"(t) + 3y'(t) + 2y(t) = x(t),
离散信号频域分析心得体会
离散信号频域分析心得体会离散信号频域分析是数字信号处理中的重要内容,通过将信号从时域转换到频域,可以获得信号在频率上的特性,进而对信号进行分析和处理。
在学习离散信号频域分析的过程中,我积累了以下一些心得体会。
首先,离散信号频域分析的核心是傅里叶变换。
傅里叶变换是一种将信号从时域转换到频域的数学工具,可以将一个信号分解成不同频率的频谱分量。
在学习傅里叶变换的时候,我深刻体会到信号的频域表示与时域表示是等价的,它们只是从不同的角度描述了信号的特性。
傅里叶变换可以将一个信号从时域转换到频域,它本质上是将信号分解成一系列复指数函数的和,每一个复指数函数对应一个频率的分量。
通过对频谱的分析,可以获取信号在不同频率上的能量分布情况,了解信号的频率组成,并根据不同的应用目的选择合适的频率范围进行分析和处理。
其次,离散信号的频域分析主要涉及到离散傅里叶变换(DFT)和快速傅里叶变换(FFT)等算法。
DFT是一种将离散时间域信号转换为离散频率域信号的变换,通常需要进行大量的计算,计算复杂度较高。
为了提高计算效率,人们提出了FFT算法,能够在O(NlogN)的时间复杂度内完成频域分析。
在学习FFT算法的过程中,我深刻感受到它的高效性和重要性。
FFT算法通过将原始信号的长度分解成多个小问题,并利用变位运算和加减运算进行计算,从而大大提高了计算速度。
掌握了FFT算法,可以极大地简化频域分析的计算过程,提高信号处理的效率。
此外,离散信号频域分析的应用十分广泛。
在通信领域,频域分析可以用于调制解调、信道估计、频谱分析等;在图像处理领域,频域分析可以用于图像压缩、滤波、增强等;在音频处理领域,频域分析可以用于音频合成、音乐分析等。
通过对信号进行频域分析,可以提取信号的关键特征,为后续的处理和应用打下基础。
在实际应用中,我们可以根据具体场景和需求,选择合适的频域分析方法和算法,对信号进行处理和优化。
最后,学习离散信号频域分析需要具备一定的数学基础和计算机编程能力。
《信号与系统》离散信号的频域分析实验报告
信息科学与工程学院《信号与系统》实验报告四专业班级电信 09-班姓名学号实验时间 2011 年月日指导教师陈华丽成绩实验名称离散信号的频域分析实验目的1. 掌握离散信号谱分析的方法:序列的傅里叶变换、离散傅里叶级数、离散傅里叶变换、快速傅里叶变换,进一步理解这些变换之间的关系;2. 掌握序列的傅里叶变换、离散傅里叶级数、离散傅里叶变换、快速傅里叶变换的Matlab实现;3. 熟悉FFT算法原理和FFT子程序的应用。
4. 学习用FFT对连续信号和离散信号进行谱分析的方法,了解可能出现的分析误差及其原因,以便在实际中正确应用FFT。
实验内容1.对连续信号)()sin()(0tutAetx taΩα-=(128.444=A,πα250=,πΩ250=)进行理想采样,可得采样序列50)()sin()()(0≤≤==-nnunTAenTxnx nTaΩα。
图1给出了)(txa的幅频特性曲线,由此图可以确定对)(txa采用的采样频率。
分别取采样频率为1KHz、300Hz和200Hz,画出所得采样序列)(nx的幅频特性)(ωj eX。
并观察是否存在频谱混叠。
图1 连续信号)()sin()(0tutAetx taΩα-=2. 设)52.0cos()48.0cos()(nnnxππ+=(1)取)(nx(100≤≤n)时,求)(nx的FFT变换)(kX,并绘出其幅度曲线。
(2)将(1)中的)(nx以补零方式加长到200≤≤n,求)(kX并绘出其幅度曲线。
(3)取)(nx(1000≤≤n),求)(kX并绘出其幅度曲线。
(4)观察上述三种情况下,)(nx的幅度曲线是否一致?为什么?3. (1)编制信号产生子程序,产生以下典型信号供谱分析用。
11,03()8,470,n nx n n nn+≤≤⎧⎪=-≤≤⎨⎪⎩其它2()cos4x n nπ=3()sin8x n nπ=4()cos8cos16cos20x t t t tπππ=++10.80.60.40.20100200300400500xa(jf)f /Hz(2)对信号1()x n ,2()x n ,3()x n 进行两次谱分析,FFT 的变换区间N 分别取8和16,观察两次的结果是否一致?为什么?(3)连续信号4()x n 的采样频率64s f Hz =,16,32,64N =。
离散时间系统频域分析
离散时间系统频域分析离散时间系统的频域分析是研究离散时间信号在频域上的性质和行为的方法。
在离散时间系统频域分析中,使用离散时间傅里叶变换(Discrete Fourier Transform,DFT),来将离散时间信号从时域转换到频域。
通过分析信号在频域上的频谱分布和频谱特性,可以得到离散时间系统的频率响应和频域特性,对信号的频域分布和频率区间进行评估和分析。
离散时间傅里叶变换是时域信号分析的重要工具,它可以将离散时间信号从时域转换到频域。
离散时间傅里叶变换的定义可以表示为:X(k) = Σ[x(n) * exp(-j*2πkn/N)]其中,X(k)是离散时间信号在频域的频谱,x(n)是离散时间信号,N是信号的长度,k是频谱的索引。
离散时间傅里叶变换将时域信号分解成多个频率成分,通过频谱的幅度和相位信息,可以得到信号在频域上的分布情况。
通过离散时间傅里叶变换可以得到离散时间信号的频谱,进而分析信号在频域上的频率响应和频域特性。
频谱可以反映信号在不同频率上的能量分布情况,通过观察频谱的幅度和相位,可以得到信号的频率成分、频带宽度和频率特性等信息。
在离散时间系统频域分析中,常用的分析工具有频谱图、功率谱密度、频率响应等。
频谱图可以将信号的频谱以图形形式展示出来,通过观察频谱图的形状和分布,可以得到信号在频域上的特点。
功率谱密度是指信号在不同频率上的功率分布情况,可以评估信号在不同频率上的能量分布情况。
频率响应是指系统对不同频率信号的响应情况,可以评估系统对不同频率信号的滤波和增益特性。
离散时间系统频域分析的应用包括信号处理、通信系统、控制系统等领域。
在信号处理中,通过频域分析可以对信号进行滤波、去噪、频域变换等操作,提高信号的质量和分析能力。
在通信系统中,通过频域分析可以评估信号传输和接收的性能,并对系统进行优化和改进。
在控制系统中,通过频域分析可以评估系统的稳定性和控制特性,提高系统的响应速度和稳定性。
时域离散信号和系统的频域分析
时域离散信号和系统的频域分析信号与系统的分析方法有两种:时域分析方法和频域分析方法。
在连续时间信号与系统中,信号一般用连续变量时间t 的函数表示,系统用微分方程描述,其频域分析方法是拉普拉斯变换和傅立叶变换。
在时域离散信号与系统中,信号用序列表示,其自变量仅取整数,非整数时无定义,系统则用差分方程描述,频域分析方法是Z 变换和序列傅立叶变换法。
Z变换在离散时间系统中的作用就如同拉普拉斯变换在连续时间系统中的作用一样,它把描述离散系统的差分方程转化为简单的代数方程,使其求解大大简化。
因此,对求解离散时间系统而言,Z变换是一个极重要的数学工具。
2.2 序列的傅立叶变换(离散时间傅立叶变换)一、序列傅立叶变换:正变换:DTFT[x(n)]=(2.2.1)反变换:DTFT-1式(2.2.1)级数收敛条件为||= (2.2.2)上式称为x(n)绝对可和。
这也是DTFT存在的充分必要条件。
当遇到一些绝对不可和的序列,例如周期序列,其DTFT可用冲激函数的形式表示出来。
二、序列傅立叶变换的基本性质:1、 DTFT的周期性,是频率的周期函数,周期为2。
∵ = 。
问题1:设x(n)=R N(n),求x(n)的DTFT。
====设N为4,画出幅度与相位曲线。
2、线性设=DTFT[x1(n)],=DTFT[x2(n)],则:DTFT[a x1(n)+b x2(n)]= = a+b3、序列的移位和频移设 = DTFT[x(n)],则:DTFT[x(n-n0)] ==DTFT[x(n)] == =4、 DTFT的对称性共轭对称序列的定义:设序列满足下式则称为共轭对称序列。
共轭对称序列的性质:共轭对称序列的实部是偶函数,虚部是奇函数证明:=+j(实部加虚部)∵∴+j=-j∴=(偶函数)∴=-(奇函数)一般情况下,共轭对称序列用表示:共轭反对称序列的定义:设序列满足下式则称为共轭反对称序列。
共轭反对称序列的性质:共轭反对称序列的实部是奇函数,虚部是偶函数证明:=+j(实部加虚部)∵∴+j=+j∴=(奇函数)∴=(偶函数)一般情况下,用来表示一个序列可用共轭对称序列与共轭反对称序列之和表示。
第五章 离散时间信号与系统的频域分析
❖ CTFT ( the Continuous -Time Fourier Transforms ): 连续时间傅立叶变换
❖ DTFT ( the Discrete -Time Fourier Transforms ): 离散时间傅立叶变换
第五章:离散时间信号与系统的频域分析
主讲教师:阎鸿森 教授 王 霞 副教授
RX (e j ) tg1 a sin 1 a cos
第五章:离散时间信号与系统的频域分析
主讲教师:阎鸿森 教授 王 霞 副教授
A eg
j 2 (k r )n N
k
n N
nN k N
Agk
j 2 (k r )n
eN
k N n N
j2 (kr)n N
Q eN
nN
0
k r
kr
第五章:离散时间信号与系统的频域分析
主讲教师:阎鸿森 教授 王 霞 副教授
g
Ar
1 N
j 2 rn
x(n)e N
nN
x(n)
离散时间周期信号的频谱具有周期性。
第五章:离散时间信号与系统的频域分析
主讲教师:阎鸿森 教授 王 霞 副教授
三 . DFS的收敛:
DFS是一个有限项的级数,确定
g
Ak
的关系式也
是有限项的和式,因而不存在收敛问题,也不会产生
Gibbs现象。
DFS表明:周期序列可以而且只能分解成 N 个独立 的复指数谐波分量。
Gibbs现象。
第五章:离散时间信号与系统的频域分析
主讲教师:阎鸿森 教授 王 霞 副教授
5.3 非周期信号与离散时间傅立叶变换:
(Aperiodic Signals & Discrete-Time Fourier Transform)
实验四 离散时间系统的频域分析
实验四 离散时间系统的频域分析1.实验目的(1)理解和加深傅里叶变换的概念及其性质。
(2)离散时间傅里叶变换(DTFT)的计算和基本性质。
(3)离散傅里叶变换(DFT)的计算和基本性质。
2.实验原理对离散时间信号进行频域分析,首先要对其进行傅里叶变换,通过得到的频谱函数进行分析。
离散时间傅里叶变换(DTFT ,Discrete-time Fourier Transform)是傅立叶变换的一种。
它将以离散时间nT (其中,T 为采样间隔)作为变量的函数(离散时间信号)f (nT )变换到连续的频域,即产生这个离散时间信号的连续频谱()iw F e ,其频谱是连续周期的。
设连续时间信号f (t )的采样信号为:()()()sp n f t t nT f nT d ¥=-=-å,并且其傅里叶变换为:()()(){}sp n iwt f t f nT t nT dt e d ¥¥-=---=åòF 。
这就是采样序列f(nT)的DTFT::()()iwTinwT DTFT n F ef nT e ¥-=-=å,为了方便,通常将采样间隔T 归一化,则有:()()iwinw DTFT n F ef n e ¥-=-=å,该式即为信号f(n)的离散时间傅里叶变换。
其逆变换为:()1()2iw DTFT inw F e dw f n e ppp-=ò。
长度为N 的有限长信号x(n),其N 点离散傅里叶变换为:1()[()]()knNN n X k DFT x n x n W -===å。
X(k)的离散傅里叶逆变换为:101()[()]()knN N k x n IDFT X k X k W N --===å。
DTFT 是对任意序列的傅里叶分析,它的频谱是一个连续函数;而DFT 是把有限长序列作为周期序列的一个周期,对有限长序列的傅里叶分析,DFT 的特点是无论在时域还是频域都是有限长序列。
离散信号与系统的时域和频域分析
h(k n) an1h(k n 1) an2h(k n 2) ... a0h(k ) 0 K>0时, n 齐次差分方程解: k
h(k ) [ ci ( ) ] (k )
离散信号与系统分析
开始
下一页
结束
本章说明
与连续信号与系统相比较,离散系统的数学描述是激励响应的差分方 程,其系统分析求响应实质是求解描述离散系统的差分方程。离散系 统的零状态响应可以用卷积和来求取。 时域分析: 1.掌握离散信号与系统的基本概念。 2.熟悉并掌握常用基本信号的描述、特性、运算与变换。 3.深刻理解采样定理的意义、内容及应用。 4.掌握离散系统的数学描述方法—差分方程及模拟图 5.掌握离散系统的时域分析—经典法求零输入响应、零状态响应。 6.熟悉卷积和法及其主要性质并会应用卷积和法求零状态响应。
4、图解法卷积
①变量代换 f1(n) 变成f1(k) f2(n) 变成f2( ②反折其中之一信号 ③将反折信号移位 m f2(-k) f2(m-k) 以k代n
④e将平移后的f2(m-k)与对应的f1(k)相乘 ⑤将各乘积值相加可画出全部y(m) ⑥重复步骤③到⑤可画出全部y(n) 5、系统零状态响应为
5、序列的运算
④差分:离散信号的差分运算 f (k ) f (k 1) f (k ) 前向差分: f (k ) f (k ) f (k 1) 后向差分: ⑤反折:将离散信号以纵轴为对称轴反折(转) ⑥压扩:将离散信号中f(k)的自变量k置换为ak得到的过程称为信号的尺 度变换 注意:不存在非整数ak的值! ⑦求和:离散信号的求和运算是对某一离散信号进行历史推演的求和过程。
LTI 离散系统的频域分析
实验二 LTI 离散系统的频域分析一、实验目的 1、 利用 Matlab 绘制 LTI 离散系统的零极图;2、 根据离散系统的零极点分布,分析系统单位响应 h(n) 的时域特性;3、 利用 Matlab 求解 LTI 离散系统的幅频特性和相频特性。
二、实验原理 1、离散系统的零极点LTI 离散系统可采用(4-1)所示的线性常系数差分方程来描述,其中y(n)为系统输出信号,x(n)为系统输入信号。
1()()NMkm k m ay n k b x n m ==-=-∑∑将上式两边进行z 变换得:10111(1)()()()/()()(1)MMjjm j j N Nikii i q zbzB z H z Y z X z KA z a zp z--==--==-====-∑∏∑∏上式中,A(z)和B(z)均为z 的多项式,可分别进行式因式分解。
c 为常数, q j (j =1,2,…,M)为H(z)的M 个零点, p i (i =1,2,…,N )为H(z)的N 个极点。
H(z)的零、极点的分布决定了系统的特性,若某离散系统的零、极点已知,则系统函数便可确定。
因此,通过对H(z)零极点的分析,可以分析离散系统以下几个方面的特性:离散系统的稳定性;系统单位响应h(n)的时域特性;离散系统的频率特性(幅频响应和相频响应)。
2、离散系统的因果稳定性离散系统因果稳定的充要条件:系统函数H(z)的所有极点均位于z 平面的单位圆内。
对于三阶以下的低阶系统,利用求根公式可方便地求出离散系统的极点位置,判断系统的因果稳定性。
对于高阶系统,手工求解极点位置则非常困难,这时可利用MATLAB 来实现。
3、离散系统的频率响应()j ωH e()()[()]()|()j j j j z e H e DTFT h n H z H e eωϕωωω====()j ωH e 称为离散系统的幅频响应,决定了输出序列与输入序列的幅度之比; ()ϕω称为离散系统的相频响应,决定了输出序列和输入序列的相位之差;()j H e ω随ω而变化的曲线称为系统的幅频特性曲线,()ϕω随ω而变化的曲线称为系统的相频特性曲线。
离散时间信号和系统的频域分析
离散时间信号和系统的频域分析离散时间信号与系统是研究数字信号与系统的频域分析,其中离散时间信号是对连续时间信号进行采样得到的,而离散时间系统是对连续时间系统进行离散化得到的。
频域分析是对信号与系统在频率域上的特性进行研究和分析。
对于离散时间信号,其离散化的过程是将连续时间信号在时间轴上进行均匀采样,得到指定的采样间隔,得到离散时间序列。
在频域上,其频谱是周期性的,并且频谱是以单位圆为单位周期的。
频域分析的目的是研究离散时间信号在频率域上的特性,包括频谱范围、频率分辨率、功率谱密度等。
离散时间信号的频域分析可以通过离散时间傅里叶变换(DTFT)来实现。
DTFT是信号在频域上的完全变换,将一个离散时间信号映射到一个连续的频率域函数。
DTFT是一个复数函数,表示信号在不同频率上的振幅和相位。
频谱的振幅可以表示信号在该频率上的能量大小,相位可以表示信号在该频率上的相对位置。
除了DTFT之外,还可以使用离散傅里叶变换(DFT)进行频域分析。
DFT是DTFT的一种计算方法,可以将离散时间信号转换为有限的频域信号。
DFT的计算是通过对离散时间信号进行有限长的时间窗口进行采样,并进行频域变换得到的。
DFT的结果是一个离散的频域信号,也称为频谱。
DFT通常使用快速傅里叶变换(FFT)算法来快速计算。
离散时间系统的频域分析主要是通过系统的频率响应函数来实现。
频率响应函数是系统在不同频率上对信号的响应情况的描述。
对于线性时不变系统,其频率响应函数是系统的传递函数的傅里叶变换。
频率响应函数拥有类似信号的频谱特性,可以描述系统对不同频率的信号的增益和相位。
频域分析在离散时间信号与系统中有着广泛的应用。
首先,频域分析可以帮助我们理解信号的频率构成和能量分布情况,有助于对信号进行合理的处理和分析。
其次,频域分析可以快速计算离散时间系统的响应,能够有效地评估系统的性能和稳定性。
此外,频域分析还可以进行滤波器设计、信号压缩、信号重构等应用。
数字信号处理实验三:离散时间信号的频域分析
实验三:离散时间信号的频域分析一.实验目的1.在学习了离散时间信号的时域分析的基础上,对这些信号在频域上进行分析,从而进一步研究它们的性质。
2.熟悉离散时间序列的3种表示方法:离散时间傅立叶变换(DTFT),离散傅立叶变换(DFT)和Z变换。
二.实验相关知识准备1.用到的MATLAB命令运算符和特殊字符:< > .* ^ .^语言构造与调试:error function pause基本函数:angle conj rem数据分析和傅立叶变换函数:fft ifft max min工具箱:freqz impz residuez zplane三.实验内容1.离散傅立叶变换在MATLAB中,使用fft可以很容易地计算有限长序列x[n]的离散傅立叶变换。
此函数有两种形式:y=fft(x)y=fft(x,n) 求出时域信号x的离散傅立叶变换n为规定的点数,n的默认值为所给x的长度。
当n取2的整数幂时变换的速度最快。
通常取大于又最靠近x的幂次。
(即一般在使用fft函数前用n=2^nextpow2(length(x))得到最合适的n)。
当x的长度小于n时,fft函数在x的尾部补0,以构成长为n点数据。
当x的长度大于n时,fft函数将序列x截断,取前n点。
一般情况下,fft求出的函数多为复数,可用abs及angle分别求其幅度和相位。
注意:栅栏效应,截断效应(频谱泄露和谱间干扰),混叠失真例3-1:fft函数最通常的应用是计算信号的频谱。
考虑一个由100hz和200hz正弦信号构成的信号,受零均值随机信号的干扰,数据采样频率为1000hz。
通过fft函数来分析其信号频率成分。
t=0:0.001:1;%采样周期为0.001s,即采样频率为1000hzx=sin(2*pi*100*t)+sin(2*pi*200*t)+1.5*rand(1,length(t));%产生受噪声污染的正弦波信号subplot(2,1,1);plot(x(1:50));%画出时域内的信号y=fft(x,512);%对x进行512点的fftf=1000*(0:256)/512;%设置频率轴(横轴)坐标,1000为采样频率subplot(2,1,2);plot(f,y(1:257));%画出频域内的信号实验内容3-2:频谱泄漏和谱间干扰假设现有含有三种频率成分的信号x(t)=cos(200πt)+sin(100πt)+cos(50πt)用DFT分析x(t)的频谱结构。
离散系统频域分析及matlab实现
离散系统频域分析及matlab实现
离散系统频域分析是对离散系统在频域上的特性进行研究的一种方法,主要包括幅频
特性和相频特性。
频域分析可以通过傅里叶变换、z变换等数学工具进行处理,并通过MATLAB等工具进行模拟实现。
幅频特性是指系统在不同频率下输出信号的幅度随输入信号幅度变化的特性。
幅频特
性通常用幅度响应函数来描述,它表示了系统对输入信号不同频率分量的增益或衰减程度。
以传递函数为基础的离散系统可以通过对其传递函数进行离散化得到差分方程和单位抽样
响应,然后通过对单位抽样响应进行傅里叶变换得到离散系统的频率响应函数。
在MATLAB 中,可以使用freqz函数计算离散系统的频率响应函数,并进一步计算幅度响应函数。
对于复杂的离散系统,可以通过级联、并联和反馈等方法进行分析和设计。
在MATLAB 中,可以使用series、parallel和feedback等函数进行组合模拟。
第6章离散信号与系统的频域分析
1 N
N1
e
j
2 kn N
N
k
e
2 ) n N1 1 ( ) N
1 e
j
2 n N
2 1 sin[ ( N1 )n] 1 N 2 n 0, N , 2 N , N sin( )n N 2 N1 1 n 0 , N , 2 N , N 7
1 2
n
( 2 n)
(k ) 1
j sin Sgn( k ) 1 cos
1 ( k ) [1 sgn(k ) (k )] 2
1 F [ ( k )] ( 2 n) j 1 e n
o (a) 2 ( - ) 2
k
- 2
o (b)
2
21
2013年8月13日8时9分
6.2 非周期信号的离散时间傅里叶变换 6.2.2 常用信号的离散时间傅里叶变换
6. 正负号函数Sgn(k)
Sgn ( k ) 1
1 k 0 Sgn( k ) 0 k 0 1 k 0
2013年8月13日8时9分
第6章 离散信号与系统的频域分析 学习目标:
学习本章,要求掌握离散信号的傅立叶级数和傅立叶变 换。了解离散系统的频域分析方法。
学习重点:
离散信号的傅立叶级数(DFS); 离散信号的傅立叶变换(DTFT); 离散傅里叶变换(DFT) 快速傅立叶变换(FFT); 离散系统的频域分析方法。
Fe
n
j
2 kn N
5
2013年8月13日8时9分
6.1 周期信号的离散时间傅里叶级数 6.1.1 离散时间傅里叶级数(DFS) 2 2 j kn j kn 1 N 1 Fn f (k )e N f (k ) Fn e N N k 0 n
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课程实验报告学年学期2015-2016学年第二学期课程名称信号与系统实验名称连续和离散系统的频域分析实验室北校区5号楼计算机房专业年级电气141学生姓名宋天绍学生学号2014011595提交时间2016.6.19成绩任课教师吴凤娇水利与建筑工程学院实验二:连续和离散系统的频域分析一:实验目的1:学习傅里叶正变换和逆变换,理解频谱图形的物理含义2:了解连续和离散时间系统的单位脉冲响应3:掌握连续时间系统的频率特性二:实验原理1. 傅里叶正变换和逆变换公式 正变换:()()j t F f t e dt ωω∞--∞=⎰逆变换:1()()2j t f t F e d ωωωπ∞-∞=⎰2. 频域分析t j tj e d d e t e ωωωπωωωπ⎰⎰∞∞-∞∞-E =E =)(21)(21)(将激励信号分解为无穷多个正弦分量的和。
⎰∞∞-H E =ωωωπωd e t r tj zs )()(21)(,R(ω)为)(t r zs 傅里叶变换;πωωd )(E 各频率分量的复数振幅激励单位冲激响应时的零状态响应→ )(t δ)(t h单位阶跃响应时的零状态响应激励→)(t u )(t g3 各函数说明:(1)impulse 冲激响应函数:[Y,X,T]=impulse(num,den);)1()2()1()1()2()1()()()(11++++++++==--n a s a s a m b s b s b s A s B s H n n m mnum 分子多项式系数; num=[b(1) b(2) … b(n+1)]; den 分母多项式系数; den=[a(1) a(2) … a(n+1)]; Y,X,T 分别表示输出响应,中间状态变量和时间变量; 如:352)(2+++=s s s s H ,等价于)(2)()(3)(5)(t e t e t r t r t r +=++ 定义den=[1 5 3];num=[1 2]; [Y,X,T]=impulse(num,den);(2)step 阶跃响应函数:[Y,X,T]=step(num,den);num 分子多项式;den 分母多项式 Y,X,T 分别表示输出响应,中间状态变量和时间变量; 如:352)(2+++=s s s s H ,den=[1 5 3];num=[1 2]; [Y,X,T]= step (num,den);(3)impz 数字滤波器的冲激响应 [h,t] = impz(b,a,n) b 分子多项式系数;a 分母多项式系数;n 采样样本h 离散系统冲激响应;t 冲激时间,其中t=[0:n-1]', n=length(t)时间样本数(4)freqs 频域响应 [h,w] = freqs(b,a,f) b,a 定义同上,f 频率点个数 h 频域响应,w 频域变量)1()2()1()1()2()1()()()(11++++++++==--m a s a s a n b s b s b s A s B s H m m n n三.实验内容1.周期信号傅里叶级数已知连续时间信号()()2/π8cos 3/π4cos cos )(321++++=t A t A t A t x ,其中321,,A A A 取值如下:(X 为学号的后两位)]10,1[,5.02321∈⎪⎩⎪⎨⎧===X X A X A X A ]20,11[,55321∈⎪⎩⎪⎨⎧+==-=X X A XA X A ⎪⎩⎪⎨⎧=-=-=X A X A X A 32151020,>X 要求画出信号的时域波形和频域波形(幅度谱和相位谱)。
分析该信号有几个频率成分,频率分别是多少,振幅为多少,相位为多大。
理解并体会连续信号可以分解为无穷多正弦波叠加。
(1)Command window 程序清单:%% 信号的频域成分表示法 例子:正弦波的叠加 t = 0:20/400:20;w1 = 1; w2 = 4; w3 = 8;fai1=0;fai2=pi/3;fai3=pi/2; %在命令窗口分别输入A1,A2,A3振幅值A1 = input('Input the amplitude A1 for w1 = 1: '); A2 = input('Input the amplitude A2 for w2 = 4: '); A3 = input('Input the amplitude A3 for w3 = 8: '); %连续时间信号形x(t)f1=A1*cos(w1*t+fai1);f2=A2*cos(w2*t+fai2);f3=A3*cos(w3*t+fai3); x = A1*cos(w1*t+fai1)+A2*cos(w2*t+fai2)+A3*cos(w3*t+fai3); figure(1);subplot(211),plot(t,f1,'r',t,f2,'g',t,f3,'b','linewidth',4) title('连续时间信号时域图形x(t)') ylabel('x(t)')xlabel('时间(秒)')legend({'f1=A1*cos(w1*t+fai1)','f2=A2*cos(w2*t+fai2)','f3=A3*cos(w3*t+fai3)'})subplot(212),plot(t,x,'linewidth',4) title('连续时间信号时域图形x(t)') ylabel('x(t)')xlabel('时间(秒)') figure(2)subplot(211),stem([w1 w2 w3],[A1 A2 A3])v = [0 10 0 1.5*max([A1,A2,A3])];axis(v); %限定XY 轴坐标范围 title('幅频特性') ylabel('振幅')xlabel('频率(弧度/ 秒)')subplot(212),stem([w1 w2 w3],2*pi*[fai1 fai2 fai3])fai = [0 10 0 1.5*max(2*pi*[fai1 fai2 fai3 ])];axis(fai); %限定XY轴坐标范围title('相频特性')ylabel('相位(度)')xlabel('频率(弧度/ 秒)')(2)M文件函数清单function FS(w1,w2,w3,A1,A2,A3)%调用格式: FS(1,4,8,10,5,30)%信号的频域成分表示法%例子:正弦波的叠加t = 0:20/400:20;fai1=0;fai2=pi/3;fai3=pi/2;%连续时间信号形x(t)f1=A1*cos(w1*t+fai1);f2=A2*cos(w2*t+fai2);f3=A3*cos(w3*t+fai3);x = A1*cos(w1*t+fai1)+A2*cos(w2*t+fai2)+A3*cos(w3*t+fai3);figure(1);subplot(211)plot(t,f1,'r',t,f2,'g',t,f3,'b','linewidth',2)title('连续时间信号时域图形x(t)')xlabel('时间(秒)')ylabel('x(t)')legend({'f1=A1*cos(w1*t+fai1)','f2=A2*cos(w2*t+fai2)','f3=A3*cos(w3*t+fai3)'})subplot(212)plot(t,x,'linewidth',4)title('连续时间信号时域图形x(t)')xlabel('时间(秒)')ylabel('x(t)')figure(2)subplot(211)stem([w1 w2 w3],[A1 A2 A3])v = [0 10 0 1.5*max([A1,A2,A3])];axis(v); %限定XY轴坐标范围title('幅频特性')xlabel('频率(弧度/ 秒)')ylabel('振幅')subplot(212)stem([w1 w2 w3],2*pi*[fai1 fai2 fai3])fai = [0 10 0 1.5*max(2*pi*[fai1 fai2 fai3 ])];axis(fai); %限定XY轴坐标范围title('相频特性')xlabel('频率(弧度/ 秒)')ylabel('相位(度)')实验代码及过程:%% 信号的频域成分表示法例子:正弦波的叠加t = 0:20/400:20;w1 = 1; w2 = 4; w3 = 8;fai1=0;fai2=pi/3;fai3=pi/2;%在命令窗口分别输入A1,A2,A3振幅值A1 = input('Input the amplitude A1 for w1 = 1: ');A2 = input('Input the amplitude A2 for w2 = 4: ');A3 = input('Input the amplitude A3 for w3 = 8: ');%连续时间信号形x(t)f1=A1*cos(w1*t+fai1);f2=A2*cos(w2*t+fai2);f3=A3*cos(w3*t+fai3);x = A1*cos(w1*t+fai1)+A2*cos(w2*t+fai2)+A3*cos(w3*t+fai3);figure(1);subplot(211),plot(t,f1,'r',t,f2,'g',t,f3,'b','linewidth',4)title('连续时间信号时域图形x(t)')ylabel('x(t)')xlabel('时间(秒)')legend({'f1=A1*cos(w1*t+fai1)','f2=A2*cos(w2*t+fai2)','f3=A3*cos(w3*t+fai3)'})subplot(212),plot(t,x,'linewidth',4)title('连续时间信号时域图形x(t)')ylabel('x(t)')xlabel('时间(秒)')figure(2)subplot(211),stem([w1 w2 w3],[A1 A2 A3])v = [0 10 0 1.5*max([A1,A2,A3])];axis(v); %限定XY轴坐标范围title('幅频特性')ylabel('振幅')xlabel('频率(弧度/ 秒)')subplot(212),stem([w1 w2 w3],2*pi*[fai1 fai2 fai3])fai = [0 10 0 1.5*max(2*pi*[fai1 fai2 fai3 ])];axis(fai); %限定XY轴坐标范围title('相频特性')ylabel('相位(度)')xlabel('频率(弧度/ 秒)')在弹出的命令行输入数值:Input the amplitude A1 for w1 = 1: 75——————学号85-10Input the amplitude A2 for w2 = 4: 80——————学号85-5Input the amplitude A3 for w3 = 8: 85——————学号85实验结果:2468101214161820-100-50050100连续时间信号时域图形x(t)x (t )时间(秒)2468101214161820-400-2000200400连续时间信号时域图形x(t)x (t )时间(秒)01234567891050100幅频特性振幅频率(弧度/ 秒)510相频特性相位(度)频率(弧度/ 秒)2 傅里叶的正变换和逆变换dx e x f w F x j ω⎰∞∞-=)()( 调用符号工具箱中 F=fourier(f)函数返回傅里叶变换F(w)f=ifourier(F)函数返回被积函数f(t)(1) 分别求)100sin()(t t f π=,()()()22f t E u t u t ττ⎡⎤=--+⎢⎥⎣⎦对应的傅里叶变换程序清单:%% 矩形脉冲的傅里叶变换syms t t0 E Fw tau f f=E*(heaviside(t-tau/2)- heaviside(t+tau/2));% heaviside 单位阶跃信号Fw=fourier(f);simplify (Fw) %简化函数计算过程,结果中的dirac 是单位冲击信号%% 正弦信号的傅里叶正变换syms t w f Fwf = A1*sin(100*pi*t);Fw1 =simplify(fourier(f)) %fourier 正变化函数,返回值频域F(w) 结果是:Fw1 =pi*(dirac(- 100*pi - w) - dirac(100*pi - w))*i (2) 分别求)2()(ττw sa E w F =,)()(0w w w F -=δ的原函数)(t f %% 傅里叶逆变换 Syms w F t f real E=1;tau=2;F=E*tau*sinc(w*tau/(2*pi));%定义F(w) f=ifourier(F);%傅里叶逆变换函数f=simple(f)%计算结果简化 返回值是f(x) heaviside(x)相当于阶跃函数u(t) 结果是:f =heaviside(x + 1) - heaviside(x - 1)%% 求频谱为冲激信号时的傅里叶逆变换f(t) syms w Fw w0 Fw=dirac(w-w0); f=ifourier(Fw); f=simple(f)结果是:f =exp(w0*x*i)/(2*pi)3 频谱分析正弦衰减信号的的表达式为)()sin()(t u t b e t x atπ-=,当a = 2; b = 2时,试求出正弦衰减信号的频谱的表达式,并画出信号的时域和频谱波形,并分析其幅频和相频特性。