中考数学综合提高题训练
2022-2023学年人教版中考数学复习 圆综合压轴题 专题提升训练
2022-2023学年人教版中考数学复习《圆综合压轴题》专题提升训练(附答案)1.锐角三角形△ABC的外心为O,外接圆直径为d,延长AO,BO,CO,分别与对边BC,CA,AB交于D,E,F.(1)求的值;(2)求证:.2.如图,AB是⊙O的直径,点C在⊙O上,CP是⊙O的切线.点P在AB的延长线上.(1)求证:∠COB=2∠PCB;(2)若M是弧AB的中点,CM交AB于点N,若AB=6.求MC•MN的值.3.如图,AC为⊙O的直径,CF切⊙O于点C,AF交⊙O于点D,点B在DF上,BC交⊙O于点E,且∠CAF=2∠BCF,BG⊥CF于点G,连接AE.(1)求∠AEB的度数;(2)求证:△CBG∽△ABE;(3)若∠F=60°,GF=2,求⊙O的半径长.4.如图,△ABC内接于⊙O,BC是⊙O的直径,E是上一点,弦BE交AC于点F,弦AD⊥BE于点G,连接CD、CG,且∠CBE=∠ACG.(1)求证:∠CAG=∠ABE;(2)求证:CG=CD;(3)若AB=4,BC=2,求GF的长.5.如图,△ABC为⊙O的内接三角形,AD⊥BC,垂足为D,直径AE平分∠BAD,交BC于点F,连结BE.(1)求证:∠AEB=∠AFD;(2)若AB=10,BF=5,求DF的长;(3)若点G为AB的中点,连结DG,若点O在DG上,求BF:FC的值.6.如图,△ABC为⊙O的内接等腰三角形,AB=AC,CD为⊙O的直径,DF∥AC交AB、BC于点E、F.(1)求证:DE=EF;(2)若sin∠B=,⊙O的半径为5,求CF的长.7.如图,⊙O为△ABC的外接圆,AB为⊙O直径,AC=BC,点D在劣弧BC上,CE⊥CD交AD于E,连接BD.(1)求证:△ACE≌△BCD.(2)若CD=2,BD=3,求⊙O的半径.8.如图,在△ABC中,∠ACB=90°,点D在BC边上(不包括端点B,C),过A,C,D三点的⊙O交AB于另一点E,连接AD,DE,CE,且CE⊥AD于点G,过点C作CF∥DE交AD于点F,连接EF.(1)求证:四边形DCFE是菱形;(2)当tan∠AEF=,AC=4时,求⊙O的直径长.9.如图,在△ABC中,以AB为直径的⊙O交BC于点D,交CA的延长线于点E,过点D作DH⊥AC于点H,且DH是⊙O的切线,连接DE交AB于点F,连接BE.(1)求证:DC=DE;(2)若AE=4,.求:①BE的长;②cos∠BDF的值.10.如图,AB是半圆的直径,AC为半圆的切线,AC=AB、在半圆上任取一点D,作DE⊥CD,交直线AB 于点F,BF⊥AB,交线段AD的延长线于点F.(1)设是x°的弧,并要使点E在线段BA的延长线上,则x的取值范围是;(2)不论D点取在半圆什么位置,图中除AB=AC外,还有两条线段一定相等,指出这两条相等的线段,并予证明.11.如图,AC是⊙O的直径,BC是⊙O的弦,点P是⊙O外一点,连接P A,PB,AB,已知∠PBA=∠C.(1)求证:PB是⊙O的切线;(2)连接OP,若OP∥BC,且OP=8,⊙O的半径为2,求BC的长.12.如图,点C是以AB为直径的圆O上一点,直线AC与过B点的切线相交于D,点E是BD的中点,直线CE交直线AB于点F.(1)求证:CF是⊙O的切线;(2)若ED=3,cos F=,求⊙O的半径.13.如图①,AB为⊙O的直径,AD与⊙O相切于点A,DE与⊙O相切于点E,点C为DE延长线上一点,且CE=CB.(1)求证:BC为⊙O的切线;(2)连接AE并延长与BC的延长线交于点G(如图②所示).若AB=,CD=9,求线段BC和EG 的长.14.如图,AB为⊙O的直径,AB=10,C为⊙O上一点,AD⊥CD,垂足为D,且交⊙O于E,C是的中点.(1)求证:DC是⊙O的切线;(2)若AC=8,请直接写出CD的长.(3)若DC+DE=6,求AE的长.15.如图,AB为⊙O的直径,点P是⊙O外一点,PD与⊙O相切于点C,与BA的延长线交于点D,DE ⊥PO,交PO的延长线于点E,连接PB,∠EDB=∠EPB.(1)求证:PB是⊙O的切线;(2)若PB=3,DB=4,求⊙O的半径.16.如图,点P是⊙O外一点,P A切⊙O于点A,AB是⊙O的直径,连接OP,过点B作BC∥OP交⊙O 于点C,连接AC交OP于点D.(1)求证:PC是⊙O的切线;(2)若PD=cm,AC=8cm,点E是的中点,连接CE,求CE的长.17.如图,点O是等腰△ABC的外心,AD是圆O的切线,切点为A,过点C作CD∥AB,交AD于点D.连接AO并延长交BC于点M,连接AD,交过点C的直线于点P,且∠BCP=∠ACD.(1)判断直线PC与⊙O的位置关系,并说明理由;(2)若AB=12,BC=8.求PC的长.18.如图,在Rt△ABC中,∠C=90°,以AC为直径作⊙O,交AB于D,过点O作OE∥AB,交BC于E.(1)求证:ED为⊙O的切线;(2)如果⊙O的半径为,ED=2,延长EO交⊙O于F,连接DF、AF,求△ADF的面积.19.如图1,AB是圆O的直径,O为圆心,AD、BD是半圆的弦,且∠PDA=∠PBD.延长PD交圆的切线BE于点E(1)判断直线PD是否为⊙O的切线,并说明理由;(2)如图2,如果∠BED=60°,PD=,求P A的长.20.如图,AB是⊙O的直径,点C是的中点,连接AC并延长至点D,使CD=AC,点E是OB上一点,且=,CE的延长线交DB的延长线于点F,AF交⊙O于点H,连接BH.(1)求证:BD是⊙O的切线;(2)当OB=2时,求BH的长.21.如图,AB是⊙O的直径,延长BA至点P,过点P作⊙O的切线PC,切点为C,过点B向PC的延长线作垂线BE交该延长线于点E,BE交⊙O于点D,已知P A=1,PC=OC,(1)求BE的长;(2)连接DO,延长DO交⊙O于F,连接PF,①求DE的长;②求证:PF是⊙O的切线.参考答案1.(1)解:由于AD,BE,CF交于点O,∴=,=,=,∴++=1;(2)证明:如图,延长AD交⊙O于M,设R为△ABC的外接圆半径,AD,BE,CF交于点O.∵==1﹣=1﹣,同理有:=1﹣,=1﹣,代入++=1,得(1﹣)+(1﹣)+(1﹣)=1,∴++=2,∴++==.2.(1)证明:∵CP是⊙O的切线,∴OC⊥CP,∴∠PCB+∠OCB=90°,∵AB是⊙O的直径,∴∠ACO+∠OCB=90°,∴∠ACO=∠PCB,∵OA=OC,∴∠A=∠ACO,∵∠PCB=∠A,∴∠COB=2∠A=2∠PCB;(2)解:如图2中,连接MA.∵点M是弧AB的中点,∴=,∴∠ACM=∠BAM,∵∠AMC=∠AMN,∴△AMC∽△NMA,∴=,∴AM2=MC•MN,∵AB是⊙O的直径,∴∠AMB=90°,∵AM=BM,AB=6.∴2AM2=62,∴AM2=18,∴MC•MN=18.3.解:(1)如图,∵AC是⊙O的直径,∴∠AEC=∠AEB=90°.(2)如图∵CF与⊙O相切,∴∠ACF=90°.∴∠BCF=90°﹣∠ACE=∠CAE.∵∠CAF=2∠BCF.∴∠CAF=2∠CAE.∴∠CAE=∠BAE.∴∠BCF=∠BAE.∵BG⊥BF,AE⊥BC,∴∠CGB=∠AEB=90°.∵∠BCF=∠BAE,∠CGB=∠AEB,∴△CBG∽△ABE.(3)连接BD,如图2所示.∵∠DAE=∠DCE,∠DAE=∠BCF,∴∠DCE=∠BCF.∵AC是⊙O的直径,∴∠ADC=90°.∴CD⊥AF.∵∠DCB=∠BCF,CD⊥AF,BGCBF,∴BD=BG.∵∠F=60°,GF=2,∠BGF=90°,∴tan∠F==BG=tan60°=,∵BG=2,∴BD=BG=2.∵∠AFC=60°,∠ACF=90°,∴∠CAF=30°.∵∠ADC=90°,∠CAF=30°,∴AC=2CD.∵∠CAE=∠BAE,∠AEC=∠AEB,∴∠ACE=∠ABE.∴AB=AC.设⊙O的半径为r,则AC=AB=2r,CD=r.∵∠ADC=90°,∴AD=r.∴DB=AB﹣AD=2r﹣r=(2﹣)r=2.∴r=4+6.∴⊙O的半径长为4+6.4.(1)证明:∵BC是⊙O的直径,∴∠CAB=90°,∴∠CAG+∠BAG=90°,∵AD⊥BE,∴∠AGB=90°,∴∠BAG+∠ABE=90°,∴∠CAG=∠ABE;(2)证明:∵∠CGD=∠CAG+∠ACG,∠ABC=∠ABE+∠CBE,由(1)知,∠CAG=∠ABE,∵∠CBE=∠ACG,∴∠CGD=∠ABC,∵∠ABC=∠D,∴∠DGC=∠D,∴CG=CD;(3)解:连接AE、CE,∵BC是直径,∴∠BEC=90°,∴∠AGE=∠BEC,∴AD∥CE,∵∠CAE=∠EBC,∠ACG=∠EBC,∴∠CAE=∠ACG,∴AE∥CG,∴四边形AGCE是平行四边形,∴AF=AC,∵AC2=BC2﹣AB2,∴AC2=﹣42,∴AC=6,∴AF=×6=3,∵BF2=AF2+AB2,∴BF2=32+42,∴BF=5,∵∠ABG=∠ABF,∠AGB=∠BAF,∴△BAG∽△BF A,∴BA:BF=BG:BA,∴4:5=BG:4,∴BG=,∵FG=BF﹣BG,∴FG=5﹣=.5.(1)证明:∵AE为⊙O的直径,∴∠ABE=90°,∴∠BAE+∠AEB=90°,∵AD⊥BC,∴∠ADF=90°,∴∠AFD+∠F AD=90°,∵AE平分∠BAD,∴∠BAE=∠F AD,∴∠AEB=∠AFD;(2)解:如图1,过点F作BM⊥AB于点M.则∠AMF=90°,∵∠AFD=∠BFE,∠AFD=∠AEB,∴∠BFE=∠AEB,∴BF=BE=5,∵∠ABE=∠AMF=90°,∠BAE=∠MAF,∴△AMF∽△ABE,∴,即,设MF=x,则AM=2x,∴BM=10﹣2x,∵BM2+MF2=BF2,∴(10﹣2x)2+x2=52,解得x=3,即MF=3,∵AE平分∠ABD,AD⊥BC,∴DF=MF=3;(3)解:∵∠ADB=90°,G为AB的中点,∴AG=DG=BG,OG⊥AB,∴∠BGD=∠AGD=90°,∴△ADG为等腰直角三角形,∴∠GAD=45°,∴∠ABD=45°,过点F作FH⊥AB于点H,如图2,∵AF平分∠BAD,∴FD=FH,∵∠ABD=45°,∴BF=FH=FD,∵∠AFD=∠AEB,∠AEB=∠C,∴∠AFD=∠C,∴AF=AC,又∵AD⊥BC,∴FD=DC,设FD=DC=x,则BF=x,∴.6.(1)证明:如图,连接DB,∵CD为⊙O的直径,∴∠DBC=90°,∵DF∥AC,AB=AC,∴∠ABC=∠ACB=∠DFB,∴EB=EF,∵∠DBF=90°,∴∠DBE+∠EBF=∠EDB+∠EFB,∴∠DBE=∠EDB,∴DE=EB,∴DE=EF;(2)解:如图,连接AO,EO,延长AO交BC于点G,∵AB=AC,∴AG⊥BC,∵OC=OD,DE=EF,∴OE∥FC,FC=2OE,∴∠AEO=∠B,∵OE⊥OA,在Rt△AEO中,sin∠AEO=,∵sin∠B=,⊙O的半径为5,∴=,∴AE=,∴OE===.∴CF=2OE=.7.解:(1)证明:∵AB为⊙O直径,∴∠ACB=90°,∵CE⊥CD,∴∠ECD=90°,∴∠ACE=90°﹣∠ECB=∠BCD,在△ACE和△BCD中,,∴△ACE≌△BCD(ASA);(2)∵△ACE≌△BCD,∴CE=CD,AE=BD,∵CE⊥CD,∴△ECD是等腰直角三角形,∵CD=2,BD=3,∴DE=2,AE=3,∴AD=5,∵AB为⊙O直径,∴∠ADB=90°,∴AB==2,∴⊙O的半径为.8.解:(1)证明:∵CE⊥AD,∴EG=CG,∵CF∥DE,∴∠DEG=∠FCG,∵∠FGC=∠DGE,∴△DEG≌△FCG(ASA),∴ED=FC,∴四边形DCFE为平行四边形,又∵CE⊥DF,∴四边形DCFE是菱形;(2)∵AG⊥EC,EG=CG,∴AE=AC=4,∵四边形AEDC内接于⊙O,∴∠BED=∠BCA=90°,∵四边形DCFE是菱形,∴EF∥DC,DE=DC,∴∠AEF=∠ABC,∴tan∠ABC=tan∠AEF=,在Rt△BED中,设DE=3a,则BE=4a,∴DC=3a,BD==5a,∵BC2+AC2=AB2,∴(5a+3a)2+42=(4a+4)2,解得a=或a=0(舍去),∴DE=DC=2,∴AD===2.即⊙O的直径长为2.9.解:(1)证明:连接OD,BE,∵OD⊥AC,且DH是⊙O的切线,∴∠ODH=∠DHA=90°,∴OD∥CA,∴∠C=∠ODB,∵OD=OB,∴∠OBD=∠ODB,∴∠OBD=∠C,∵∠OBD=∠DEC,∴∠C=∠DEC,∴DC=DE;(2)①由(1)可知:OD∥AC,∴∠AEF=∠ODF,∴∠AFE=∠OFD,∴△AFE∽△OFD,∴,∵AE=4,∴OD=6,∵AB为⊙O的直径,∴;∴BE的长为8;②在Rt△AEB中,,∵∠BDF=∠BAE,∴.10.解:(1)0<x<90,(2)连接BD,可证△BDF∽△ADB,得=,∵∠DBE=∠DAC,∴∠BDE=∠ADC=90°﹣∠ADE,∴△BDE∽△ADC,∴=,∴=,∴BE=BF.11.(1)证明:连接OB,如图所示:∵AC是⊙O的直径,∴∠ABC=90°,∴∠C+∠BAC=90°,∵OA=OB,∴∠BAC=∠OBA,∵∠PBA=∠C,∴∠PBA+∠OBA=90°,即PB⊥OB,∴PB是⊙O的切线;(2)解:∵⊙O的半径为2,∴OB=2,AC=4,∵OP∥BC,∴∠C=∠BOP,又∵∠ABC=∠PBO=90°,∴△ABC∽△PBO,∴=,即=,∴BC=2.12.(1)证明:连CB、OC,如图,∵BD为⊙O的切线,∴DB⊥AB,∴∠ABD=90°,∵AB是直径,∴∠ACB=90°,∴∠BCD=90°,∵E为BD的中点,∴CE=BE,∴∠BCE=∠CBE,而∠OCB=∠OBC,∴∠OBC+∠CBE=∠OCB+∠BCE=90°,∴OC⊥CF,∴CF是⊙O的切线;(2)解:CE=BE=DE=3,在Rt△BFE中,cos F=,tan F==,∴BF=4,∴EF==5,∴CF=CE+EF=8,在Rt△OCF中,tan F==,∴OC=6,即⊙O的半径为6.13.(1)证明:如图1,连接OE,OC;∵CB=CE,OB=OE,OC=OC∴△OEC≌△OBC(SSS)∴∠OBC=∠OEC又∵DE与⊙O相切于点E∴∠OEC=90°∴∠OBC=90°∴BC为⊙O的切线.(2)解:如图2,过点D作DF⊥BC于点F,则四边形ABFD是矩形,∵AD,DC,BG分别切⊙O于点A,E,B∴DA=DE,CE=CB,在Rt△DFC中,CF==1,设AD=DE=BF=x,则x+x+1=9,x=4,∵AD∥BG,∴∠DAE=∠EGC,∵DA=DE,∴∠DAE=∠AED;∵AD∥BG,∵∠AED=∠CEG,∴∠EGC=∠CEG,∴CG=CE=CB=5,∴BG=10,在Rt△ABG中,AG==6,∵AD∥CG,∴==,∴EG=×6=.14.(1)证明:连接OC.∵C是的中点,∴AC平分∠DAB,∴∠DAC=∠OAC,∵OA=OC,∴∠OCA=∠OAC,∴∠DAC=∠OCA,∴DA∥OC,∵AD⊥DC,∴∠ADC=90°,∴∠OCD=90°,即OC⊥DC,∵OC为半径,∴DC为⊙O的切线.(2)解:∵AB是⊙O的直径,∴AB=10,∠ACB=90°=∠ADC,∴BC==6,又∵∠DAC=∠OAC,∴△ACD∽△ABC,∴=,即=,解得:CD=4.8.(3)如图,连接EC,作CF⊥AB于F.∵CA平分∠BAD,CD⊥AD,CF⊥AB,∴CD=CF,∵=,∴CE=BC,∴Rt△CDE≌Rt△CFB,∴DE=BF,∴CF+BF=CD+DE=6,设BF=x,则CF=6﹣x,由△ACF∽△CBF,可得CF2=AF•BF,∴(6﹣x)2=(10﹣x)•x,解得x=2或9(舍弃),∴BF=DE=2,CD=CF=4,易证AF=AD=8,∴AE=AD﹣DE=6.15.(1)证明:∵∠EDB=∠EPB,∠DOE=∠POB,∴∠DEO=∠PBO,∵DE⊥PE,∴∠DEO=90°,∴∠PBO=90°,∴PB是⊙O的切线;(2)由(1)知,PB是⊙O的切线,∴∠PBD=90°,∵PB=3,DB=4,∴PD=5,∵PC和PB都是⊙O的切线,∴PC=PB=3,∠OCD=90°,∴CD=2,设⊙O的半径为x,则OC=x,OD=4﹣x,则22+x2=(4﹣x)2,解得,x=,即⊙O的半径是.16.(1)证明:如图,连接OC,∵P A切⊙O于A.∴OA⊥P A,∴∠P AO=90°,∵OP∥BC,∴∠AOP=∠OBC,∠COP=∠OCB,∵OC=OB,∴∠OBC=∠OCB,∴∠AOP=∠COP,在△P AO和△PCO中,∴△P AO≌△PCO(SAS),∴∠P AO=∠PCO=90°,∴OC⊥PC,∴PC是⊙O的切线;(2)解:连接EA、EB,作BH⊥CE于H,如图,∵AB是⊙O的直径,∴∠ACB=∠AEB=90°,∵OP∥BC,∴PO⊥AC,∴AD=CD=AC=4,在Rt△P AD中,P A===,∵∠APO=∠DP A,∴Rt△P AD∽Rt△POA,∴P A:PO=PD:P A,即:PO=:,解得PO=,∴OD=PO﹣PD=3,∵AO=BO,OD∥BC,∴BC=2OD=6,在Rt△ACB中,AB==10,∵点E是的中点,∴∠BCE=∠ACE=∠ACB=45°,∴AE=BE,∴△BCH和△ABE都是等腰直角三角形,∴CH=BH=BC=3,BE=AB=5,在Rt△BEH中,EH==4,∴CE=CH+EH=3+4=7.17.解:(1)直线PC与圆O相切,理由为:过C点作直径CE,连接EB,如图,∵CE为直径,∴∠EBC=90°,即∠E+∠BCE=90°,∵AB∥DC,∴∠ACD=∠BAC,∵∠BAC=∠E,∠BCP=∠ACD.∴∠E=∠BCP,∴∠BCP+∠BCE=90°,即∠PCE=90°,∴CE⊥PC,∴PC与圆O相切;(2)∵AD是⊙O的切线,切点为A,∴OA⊥AD,∵BC∥AD,∴AM⊥BC,∴BM=CM=BC=4,∴AC=AB=12,在Rt△AMC中,AM==8,设圆O的半径为r,则OC=r,OM=AM﹣r=8﹣r,在Rt△OCM中,OM2+CM2=OC2,即42+(8﹣r)2=r2,解得:r=,∴CE=2r==9,OM=8﹣=,∴BE=2OM=7,∵∠E=∠MCP,∴Rt△PCM∽Rt△CEB,∴=,即=∴PC=.18.解:(1)证明:连接OD,∵OE∥AB,∴∠COE=∠CAD,∠EOD=∠ODA,∵OA=OD,∴∠OAD=∠ODA,∴∠COE=∠DOE,在△COE和△DOE中,,∴△COE≌△DOE(SAS),∴∠ODE=∠OCE=90°,∴ED⊥OD,∴ED是圆O的切线;(2)连接CD,交OE于M,在Rt△ODE中,∵OD=,DE=2,∴OE===,∵OE∥AB,∴△COE∽△CAB,∴=,∴AB=5,∵AC是直径,∴∠ADC=90°,∴cos∠BAC===,∴AD=,∴CD==,∵EF∥AB,∴,∴CM=DM=CD=,∴EF=OE+OF=4,BD=AB﹣AD=5﹣=,∴S△ADF=S梯形ABEF﹣S梯形DBEF=(AB+EF)•DM﹣(BD+EF)•DM=×(5+4)×﹣×(+4)×=.∴△ADF的面积为.19.解:(1)直线PD是否为⊙O的切线.理由如下:连接OD,如图1,∵OD=OB,∴∠1=∠OBD,∵∠PDA=∠PBD,∴∠1=∠PDA,∵AB为直径,∴∠ADB=90°,即∠2+∠1=90°,∴∠PDA+∠2=90°,即∠PDO=90°,∴OD⊥PD,∴PD为⊙O的切线;(2)如图2,连接OD,∵ED和EB为⊙O的切线,∴ED=EB,而∠BED=60°,∴△EDB为等边三角形,∴∠EBD=60°,∴∠PBD=30°,∴∠PDA=30°,而∠ADB=90°,∴∠P=30°,在Rt△OAD中,OD=PD=×=1,OP=2OD=2,∴P A=PO﹣OA=2﹣1=1.20.证明:(1)连接OC,∵AB是⊙O的直径,点C是的中点,∴∠AOC=90°,∵OA=OB,CD=AC,∴OC是△ABD是中位线,∴OC∥BD,∴∠ABD=∠AOC=90°,∴AB⊥BD,∵点B在⊙O上,∴BD是⊙O的切线;解:(2)由(1)知,OC∥BD,∴△OCE∽△BFE,∴,∵OB=2,∴OC=OB=2,AB=4,,∴,∴BF=3,在Rt△ABF中,∠ABF=90°,根据勾股定理得,AF=5,∵S△ABF=AB•BF=AF•BH,∴AB•BF=AF•BH,∴4×3=5BH,∴BH=.21.解:(1)设圆的半径是r,则OP=P A+r=1+r,OC=r,PC=r.∵PC是圆的切线,∴∠PCO=90°,∴在直角△PCO中,PC2+OC2=OP2,即(r)2+r2=(1+r)2,解得:r=1或r=﹣(舍去负值).在直角△OPC中,cos∠POC==,∴∠POC=60°,∵∠PCO=90°,BE⊥BC,∴BE∥OC,∴△OPC∽△BPE,∠B=∠POC=60°,∴==,∴BE=OC=;(2)①在△OBD中,OB=OD,∠B=60°,∴△OBD是等边三角形,BD=OB=1,∠BOD=60°.∴DE=BE﹣BD=﹣1=;②∵在△OPC和△OPF中,,∴△OPC≌△OPF(SAS),∴∠OFP=∠OCP=90°,∴PF是⊙O的切线.。
中考数学总复习《拱桥问题(实际问题与二次函数)》专项提升训练题-附答案
中考数学总复习《拱桥问题(实际问题与二次函数)》专项提升训练题-附答案学校:___________班级:___________姓名:___________考号:___________ 1.如图,隧道的截面由抛物线和长方形构成,长方形的长为16m,宽为6m,抛物线的AA的距离为8m.最高点C离地面1(1)按如图所示的直角坐标系,求该抛物线的函数表达式.(2)一大型汽车装载某大型设备后,高为7m,宽为4m,如果该隧道内设双向行车道,那么这辆货车能否安全通过?2.如图,三孔桥横截面的三个孔都呈抛物线形,左右两个抛物线形是全等的.正常水PO=),小孔水面宽位时,大孔水面宽度AB为30m,大孔顶点P距水面10m(即10mQD=),建立如图所示的平面直角坐标系.度BC为12m,小孔顶点Q距水面6m(即6m(1)求大孔抛物线的解析式;(2)现有一艘船高度是6m,宽度是18m,这艘船在正常水位时能否安全通过拱桥大孔?并说明理由.(3)当水位上涨4m时,求小孔的水面宽度EF.3.如图是一座拱桥,图2是以左侧桥墩与水面接触点为原点建立的平面直角坐标系,OB=,拱顶A到水面的距离为5m.其抛物线形桥拱的示意图,经测量得水面宽度20m(1)求这条抛物线的表达式;(2)为迎接新年,管理部门在桥下悬挂了3个长为0.4m的灯笼,中间的灯笼正好悬挂在A 处,两边灯笼与最中间灯笼的水平距离为8m,为了安全,要求灯笼的最低处到水面的距离不得小于1m.根据气象局预报,过年期间将会有一定量的降雨,桥下水面会上升0.3m,请通过计算说明,现在的悬挂方式是否安全.4.上杭县紫金中学校园内未名湖中央有一座石拱桥,桥体呈抛物线形状,桥孔呈圆弧型,共同组成一个漂亮的轴对称图形.为进一步了解桥体,小明和小张同学带着一把皮尺和一根一端系着铅块的绳子(铅锤绳)来到石拱桥.首先他们利用皮尺测量了石拱桥点水平宽度(12AB=米),然后来到石拱桥最顶端O处,把铅锤绳的一端放在O处,含铅的一端自然下垂,经过调整让铅块落在直线AB 上的C 点处(此时OC AB ⊥),做好标记测量得到 3.6OC =米,用同样的方法测得0.6OD =米.圆弧与AB 交于M 、N 两点,在N 点处测得2PN =米(此时PN 垂直AB ).根据以上数据,请你帮助他们处理下列问题:(1)根据图形,建立恰当的平面直角坐标系,求出抛物线解析式; (2)根据数据,请判断圆弧MDN 是否为半圆?说明理由; (3)请求出圆弧MDN 所在圆的半径.5.某校想将新建图书楼的正门设计为一个抛物线型门,并要求所设计的拱门的跨度与拱高之积为248m ,还要兼顾美观、大方,和谐、通畅等因素,设计部门按要求给出了设计方案,现把这个方案中的拱门图形放入平面直角坐标系中,如图所示:抛物线型拱门的跨度12m ON =,拱高4m PE =,其中,点N 在x 轴上PE ON ⊥,OE EN =要在拱门中设置高为3m 的矩形框架,(框架的粗细忽略不计).矩形框架ABCD 的面积记为S ,点A 、D 在抛物线上,边BC 在ON 上,请你根据以上提供的相关信息,解答下列问题:(1)求抛物线的函数表达式;(2)当3mAB=时,求矩形框架ABCD的面积S.6.如图,隧道的截面由抛物线AED和矩形ABCD构成,矩形的长BC为8m,宽AB为2m,以BC所在的直线为x轴,线段BC的垂直平分线为y轴,建立平面直坐标系,y 轴也是抛物线的对称轴,顶点E到坐标原点O的距离为6m.(1)求抛物线的解析式..,宽为2.8m,它能从正中间通过该隧道吗?(2)现有一辆货运卡车,高为56mOA=米时,7.图1是一座拱桥,拱桥的拱形呈抛物线形状,在拱桥中,当水面宽度为12水面离桥洞最大距离为4米,如图2,以水平面为x轴,点O为原点建立平面直角坐标系.(1)求该拱桥抛物线的解析式;(2)当河水上涨,水面离桥洞的最大距离为2米时,求拱桥内水面的宽度.AB=,当水位上升8.如图,某市新建的一座抛物线型拱桥,在正常水位时水面宽20m3m时,水面宽10mCD=.(1)按如图所示的直角坐标系,此抛物线的函数表达式为.(2)有一条船以5km/h的速度向此桥径直驶来,当船距离此桥35km时,桥下水位正好在AB处,之后水位每小时上涨0.25m,当水位达到CD处时,将禁止船只通行.如果该船的速度不变继续向此桥行驶35km时,它能否安全通过此桥?9.有一座抛物线型拱桥,在正常水位时(AB所示),桥下水面宽度为20m,拱顶距水面4m.(1)在如图所示的直角坐标系中,求该抛物线的解析式;(2)突遇暴雨,当水面上涨1m时(CD所示),水面宽度减少了多少?(3)雨势还在继续,一满载防汛物资的货船欲通过此桥,已知该船满载货物时浮在水面部分的横截面可近似看成是宽6m,高2m的矩形.那么当水位又上涨了0.5m时,此船是否可以通过,说明理由.10.河上有一座桥孔为抛物线形的拱桥,水面宽为6米时,水面离桥孔顶部4米.如图1,桥孔与水面交于A、B两点,以点A为坐标原点,AB所在水平线为横轴,过原点的铅垂线为纵轴,建立如图所示的平面直角坐标系.(1)请求出此抛物线对应的二次函数表达式;(2)因降暴雨水位上升1.5米,一艘装满货物的小船,露出水面部分的高为0.5m,宽为4.5m(横截面如图2),暴雨后,这艘小船能从这座石拱桥下通过吗?请说明理由.11.某加工厂要加工一种抛物线型钢材构件,如图所示,该抛物线型构件的底部宽度12OM =米,顶点P 到底部OM 的距离为9米.将该抛物线放入平面直角坐标系中,点M 在x 轴上.其内部支架有两个符合要求的设计方案:方案一:“川”字形内部支架(由线段AB PN DC ,,构成),点B N C ,,在OM 上,且OB BN NC CM ===,点A D ,在抛物线上,AB PN DC ,,均垂直于OM ;方案二:“H ”形内部支架(由线段A B '',D C ''和EF 构成),点B ',C '在OM 上,且OB B C C M ''''==,点A ',D 在抛物线上,A B '',D C ''均垂直于OM E F ,,分别是A B '',D C ''的中点.(1)求该抛物线的函数表达式;(2)该加工厂要用某一规格的钢材来加工这种构件,那么哪一个方案的内部支架节省材料?请说明理由.12.如图,一座拱桥的轮廓呈抛物线型,拱高6m ,在高度为10m 的两支柱AC 和BD 之间,还安装了三根立柱,相邻两立柱间的距离均为5m ;(1)建立如图所示的平面直角坐标系,求拱桥抛物线的表达式; (2)求立柱EF 的长;(3)拱桥下地平面是双向行车道(正中间是一条宽2m 的隔离带),其中的一条行车道能否并排行驶宽2m 、高3.2m 的三辆汽车(汽车间的间隔忽略不计)?请说说你的理由.13.如图,有一条双向隧道,其横断面由抛物线和矩形ABCO 的三边组成,隧道的最大高度为4.9米;10AB =米, 2.4BC =米(1)在如图所示的坐标系中,求抛物线的解析式.(2)若有一辆高为4米,宽为2米装有集装箱的汽车要通过隧道,则汽车靠近隧道的一侧离开隧道壁m 米,才不会碰到隧道的顶部,又不违反交通规则,问m 的取值范围是多少?14.有一个抛物线形的拱形桥洞,当桥洞的拱顶(P 抛物线最高点)离水面的距离为4米时,水面的宽度OA 为12米.现将它的截面图形放在如图所示的直角坐标系中.(1)求这条抛物线的解析式.(2)当洪水泛滥,水面上升,水面的宽度小于5米时,则必须马上采取紧急措施.某日涨水后,观察员测得桥洞的拱顶P 到水面CD 的距离只有1.5米,问:是否要采取紧急措施?并说明理由.15.“卢沟晓月”是著名的北京八景之一,每当黎明斜月西沉,月色倒影水中,更显明媚饺洁.古时乾隆皇帝曾在秋日路过卢沟桥,赋诗“半钩留照三秋淡,一练分波平镜明”于此,并题“卢沟晓月”,立碑于桥头.卢沟桥主桥拱可以近似看作抛物线,桥拱在水面的跨度OB 约为20米,若按如图所示的方式建立平面直角坐标系,则主桥拱所在抛物线可以表示为()211016y x k =-++,求主桥拱最高点A 与其在水中倒影A '之间的距离.参考答案: 1.(1)21832y x =-+ (2)这辆货车能安全通过2.(1)221045y x =-+ (2)这艘船在正常水位时能安全通过拱桥大孔,(3)43m3.(1)2120y x x =-+ (2)安全4.(1)21 3.610y x =-+ (2)圆弧MDN 不是半圆(3)2565.(1)21493y x x =-+; (2)218m .6.(1)2164y x =-+ (2)这辆货运卡车不能从正中间通过该隧道.7.(1)该拱桥抛物线的解析式为()21y x 649=--+; (2)拱桥内水面的宽度62米.8.(1)2125y x =- (2)该船的速度不变继续向此桥行驶35km 时,它能安全通过此桥。
中考数学总复习《分配方案问题(一次函数的综合实际应用)》专项提升训练(附带答案)
中考数学总复习《分配方案问题(一次函数的综合实际应用)》专项提升训练(附带答案)学校:___________班级:___________姓名:___________考号:___________1.2023年12月甘肃积石山县发生6.2级地震,造成严重的人员伤亡和财产损失.为支援灾区的灾后重建,甲、乙两县分别筹集了水泥200吨和300吨支援灾区,现需要调往灾区A镇100吨,调往灾区B镇400吨.已知从甲县调运一吨水泥到A镇和B镇的运费分别为40元和80元;从乙县运一吨水泥到A镇和B镇的运费分别为30元和50元.(1)设从甲县调往A镇水泥x吨,求总运费y关于x的函数关系式;(2)求出总运费最低的调运方案,最低运费是多少?2.为响应政府低碳生活,绿色出行的号召,某公交公司决定购买一批节能环保的新能源公交车,计划购买A型和B型两种公交车,其中每辆的价格、年载客量如表:A型B型价格(万元/辆)a b年载客量(万人/年)60 100若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元.(1)求a,b的值;(2)计划购买A型和B型两种公交车共10辆,如果该公司购买A型和B型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客总和不少于640万人次,问有几种购买方案?(3)在(2)的条件下,请用一次函数的性质说明哪种方案使得购车总费用最少?最少费用是多少万元?3.为美化校园环境,石室联中计划分两次购进杜鹃花和四季海棠两种花卉.第一次购进60盆杜鹃花,80盆四季海棠,共花费1700元;第二次购进100盆杜鹃花,160盆四季海棠,共花费3100元,每次购进的单价相同.(1)求杜鹃花、四季海棠每盆的价格分别是多少元?(2)若计划购买杜鹃花、四季海棠共500盆,根据实际摆放,要求杜鹃花的盆数不少于四季海棠盆数的2倍,请你给出一种费用最省的方案,并求方案所需费用.4.已知甲种玩具的售价为每个16元,乙种玩具的售价为每个13元.若超市购进甲种玩具10个和乙种玩具4个需要110元,购进甲种玩具7个和乙种玩具8个需要103元.(1)求甲、乙两种玩具的进价;(2)该超市决定每天购进甲、乙两种玩具共100个,且投入资金不少于660元又不多于688元,设购买甲种玩具m个,求有几种购买方案?哪种方案下超市获得的利润最大?最大利润为多少?5.我校举办艺术节活动,对表现优秀的同学进行表彰奖励,计划购买甲、乙两种笔记本作为奖品.已知3本甲型笔记本和5本乙型笔记本共需50元,2本甲型笔记本和3本乙型笔记本共需31元.(1)求1本甲型笔记本和1本乙型笔记本的售价各是多少元?(2)学校准备购买这两种类型的笔记本共200本,要求甲型笔记本的本数不超过乙型笔记本的本数的3倍,请设计出最省钱的购买方案,并求出花费最低的钱数.6.随着生活水平的日益提高,人们的健康意识逐渐增强,越来越多的人把健身作为一种时尚的生活方式,某商家抓住机遇推出促销活动,向客户提供了两种优惠方案:方案一:买一件运动外套送一件卫衣;方案二:运动外套和卫衣均在定价的基础上打8折.运动外套每件定价300元,卫衣每件定价100元.在开展促销活动期间,某俱乐部要到该商场购买运动外套100件,卫衣x 件(100x ≥).(1)方案一需付款:______元,方案二需付款:______元;(2)当150x =时,请计算并比较这两种方案哪种更划算;(3)当300x =时,如果两种方案可以组合使用,你能帮助俱乐部设计一种最省钱的方案吗?请直接写出你的方案.7.某游泳馆夏季推出两种游泳付费方式.方式一:先购买会员证,每张会员证100元,只限本人当年使用,凭证游泳每次再付费15元;方式二:不购买会员证,每次游泳付费20元.设小明计划今年夏季游泳次数为x 次(x 为正整数).(1)根据题意,将表格填写完整.游泳次数 10 15 20… 采用方式一付费(元) 250 325__ … 采用方式二付费(元) 200 __ 400 …(2)设方式一的总费用为1y 元,方式二的总费用为2y 元,分别用x 表示1y 和2y ;(3)通过计算说明,当19x =和21x =时,分别应选择哪种付费方式较合算?8.某校组织八年级师生共420人参观纪念馆,学校联系租车公司提供车辆,该公司现有A ,B 两种座位数不同的车型,如果租用A 种车3辆,B 种车5辆,则空余15个座位:如果租用A 种车5辆,B 种车3辆,则有15个人没座位.(1)求该公司A ,B 两种车型各有多少个座位?(2)若A 种车型的日租金为260元/辆,B 种车型的日租金为350元/辆,有多少种租车方案?怎样租车能使得座位恰好坐满且租金最少?最少租金是多少?9.某校八年级举行数学知识应用竞赛,购买A ,B 两种笔记本作为奖品,这两种笔记本的单(1)1k=;购买“云VIP”需元;(2)两种方案的函数图象交于点A,请求出点A的坐标并解释点A的实际意义;(3)若王先生准备“云健身”25次,选择方案(选填“一”或“二” )所需费用较少;若王先生准备180元进行“云健身”,选择方案(选填“一”或“二” )可以获得更多的次数.13.2023年夏天,成都将举办第31届世界大学生夏季运动会,成都掀起了一股热爱体育的热潮,为响应积极锻炼的同学们,西川中学计划同时购进一批篮球和排球,若购进2个篮球和1个排球,共需要资金280元;若购进3个篮球和2个排球,共需要资金460元.(1)求篮球和排球的价格分别为多少元?(2)学校计划购进两种球类共20个,商场售出一个篮球,利润率为25%,一个排球的进价为50元,为了促销,商场决定每售出一个排球,返还现金m元,而篮球售价不变,要使商场所有购买方案获利相同,求m的值.14.4月23日是“世界读书日”,某书店在这一天举行了购书优惠活动,有两种优惠方案可以选择:方案一:享受当天购书按标价总额8折的普通优惠;方案二:50元购买一张“书香城市纪念卡”,当天凭卡购书,享受标价总额在普通优惠的基础上再打7.5折的优惠.设小明当天购书标价总额为x(50)x>元,方案一应付1y元,方案二应付2y元.x=时,请通过计算说明选择哪种购书方案更划算;(1)当150(2)直接写出12,y y与x的函数关系式;(3)小明如何选择购书方案才更划算?15.A城有某种农机30台,B城有该农机50台,现将这些农机全部运往C,D两乡,调运任务承包给某运输公司,已知C乡需要农机36台,D乡需要农机44台,从A城往C,D两乡运送农机的费用分别为220元/台和200元/台,从B城往C,D两乡运送农机的费用分别为180元/台和240元/台.(1)设A城运往C乡该农机x台,运送全部农机的总费用为W元,求W关于x的函数解析式,并写出自变量x的取值范围.(2)现该运输公司决定对A城运往C乡的农机,从运输费中每台减免a元(200a )作为优惠,其它费用不变,如何调运,才能使总费用最少?16.“南阳,一个值得三顾的地方”,南阳是中国月季之乡,南阳世界月季大观园是世界月季的中国舞台,也是中国月季的世界展示,月季花被称为花中皇后,又称“月月红”,树状月季,原产南阳,层次分明,高贵典雅,适应性强,观赏上佳,为加快省域副中心城市建设,南阳市政公司计划改造一片绿化地,种植A、B两种月季树,已知4棵A种月季树和3棵B种月季树的种植费用需要380元,3棵A种月季树和4棵B种月季树的种植费用需要320元.(1)A和B两种月季树每棵的种植费用各为多少元?(2)市政公司今年计划种植A和B两种月季树共300棵,如果A品种的数量不少于B品种数量的一半,应如何安排这两种月季树的种植数量,才能使今年的种植费用最低?答案: 1.(1)()20290000100y x x =-+≤≤(2)总运费最低的调运方案是从甲县调往A 镇水泥100吨,则从甲县调往B 镇水泥100吨,从乙县调往A 镇水泥0吨,从乙县调往B 镇水泥300吨.,最低运费是27000元.2.(1)a 的值为100,b 的值为150;(2)有4购买方案(3)购车总费用最少的方案是购买A 型公交车9辆,购买B 型公交车1辆,购车总费用为1050万元3.(1)杜鹃花每盆的价格是15元,四季海棠每盆的价格是10元(2)购买杜鹃花334盆,四季海棠166盆,费用最省,最省费用为6670元4.(1)甲种玩具进价为每个9元,乙种玩具进价为每个5元(2)有8种方案,当甲40个,乙60个时,利润最大,最大利润为720元5.(1)1本甲型笔记本的售价是5元,1本乙型笔记本的售价是7元(2)当购买甲型笔记本150本,乙型笔记本50本时最省钱,最低费用为1100元6.(1)10020000x + 8024000x +(2)方案一:35000元,方案二:36000元,方案一更划算.(3)方案一∶购买100件运动外套,方案二购买200件卫衣7.(1)400;300(2)110015y x =+ 220y x =(3)当19x =时,选择方式二,当21x =时,选择方式一8.(1)该公司A ,B 两种车型各由45个和60个座位(2)租车方案有3种;A 型租8辆,B 型车租1辆时座位恰好坐满且租金最少;最少租金是2430元同,均为200元(3)二;一13.(1)篮球的价格为100元,排球的价格为80元(2)10m =14.答案:(1)解:当150x =时方案一:1500.8120⨯=(元)方案二:501500.80.755090140+⨯⨯=+=(元)∵120140<∴小明用方案一购书更划算;(2)解:由题意得:方案一:10.8y x =;方案二:2500.80.750.650y x x =+⨯=+;∴1y 与x 的函数关系式为10.8y x =;2y 与x 的函数关系式为20.650y x =+;(3)解:当12y y >时,即0.80.650x x >+解得250x >;当12y y <时,即0.80.650x x <+解得250x <;当12y y =时,即0.80.650x x =+解得250x =.∴当250x <时,方案一更划算,当250x >时,方案二更划算,当250x =时,方案一和方案二一样划算.15.(1)()8015840030W x x =+≤≤(2)①当080a <<时,此时,从A 城调往C 城0台,调往D 城30台,从B 城调往C 城36台,调往D 城14台;②当80a =时,此时各种方案费用一样多,③当80200a <≤时,此时从A 城调往C 城30台,调往D 城0台,从B 城调往C 城6台,调往D 城44台.16.(1)8020x y =⎧⎨=⎩(2)安排A 种月季树种100棵,则B 种月季树种200棵。
2021年春九年级数学中考复习《几何图形的变换综合题》专题提升训练(附答案)
2021年春九年级数学中考复习《几何图形的变换综合题》专题提升训练(附答案)1.如图,在矩形ABCD中,AB=4,AD=4,点E为线段CD的中点,动点F从点C出发,沿C→B→A的方向在CB和BA上运动,将矩形沿EF折叠,点C的对应点为C',当点C'恰好落在矩形的对角线上时(不与矩形顶点重合),点F运动的距离为.2.如图,在平面直角坐标系中,已知点A、B、C的坐标分别为(﹣1,0),(5,0),(0,2).若点P从A点出发,沿x轴正方向以每秒1个单位长度的速度向B点移动,连接PC并延长到点E,使CE=PC,将线段PE绕点P顺时针旋转90°得到线段PF,连接FB.若点P在移动的过程中,使△PBF成为直角三角形,则点F的坐标是.3.如图,Rt△OAB∽Rt△BCD,斜边都在x轴上,tan∠AOB=2,AB=,双曲线(x >0)与AO交于点E、交BC于点F,且OE=2AE,CF=2BF,则反比例函数解析式是,点C的坐标是.4.矩形ABCD中,AB=4,AD=3,P,Q是对角线BD上不重合的两点,点P关于直线AD,AB的对称点分别是点E、F,点Q关于直线BC、CD的对称点分别是点G、H.若由点E、F、G、H构成的四边形恰好为菱形,则PQ的长为.5.如图①,在△ABC中,∠ACB=90°,AC=BC,以C为顶点作∠DCE=45°,且CD、CE分别与AB相交于D、E两点,将△ACD绕点C逆时针旋转90°得到△BCF.(1)求证:∠AEC=∠FEC;(2)若AD=6,EB=4,求DE的长;(3)若将∠DCE绕点C逆时针旋转使CD与AB相交于点D,边CE与AB的延长线相交于点E,而其他条件不变,如图②所示,猜想DE与AD、EB之间有何数量关系?证明你的猜想.6.如图,在平面直角坐标系xOy中,点A(4,0),M是线段OA上一动点,N为y轴正半轴上的点,且满足AM=ON.(1)若∠OMN=45°,求AM的长;(2)以MN为斜边在第一象限内作等腰直角△MNB,求点B的坐标;(3)在(2)的条件下,点B关于MN的对称点为E,当点E落在y轴上时,求AM的长.7.如图1,在△ABC中,AE⊥BC于E,AE=BE,D是AE上的一点,且DE=CE,连接BD,CD.(1)试判断BD与AC的位置关系和数量关系,并说明理由;(2)如图2,若将△DCE绕点E旋转一定的角度后,试判断BD与AC的位置关系和数量关系是否发生变化,并说明理由;(3)如图3,若将(2)中的等腰直角三角形都换成等边三角形,其他条件不变.①试猜想BD与AC的数量关系,请直接写出结论;②你能求出BD与AC的夹角度数吗?如果能,请直接写出夹角度数;如果不能,请说明理由.8.将两个全等的直角三角形ABC和DBE按图①方式摆放,其中∠ACB=∠DEB=90°,∠A=∠D=30°,点E落在AB上,DE所在直线交AC所在直线于点F.(1)连接BF,求证:CF=EF.(2)若将图①中的△DBE绕点B按顺时针方向旋转角α,且0°<α<60°,其他条件不变,如图②,求证:AF+EF=DE.(3)若将图①中的△DBE绕点B按顺时针方向旋转角β,且60°<β<180°,其他条件不变,如图③,你认为(2)中的结论还成立吗?若成立,写出证明过程;若不成立,请直接写出AF、EF与DE之间的数量关系.9.【问题情境】如图①,在△ABC中,若AB=10,AC=6,求BC边上的中线AD的取值范围.(1)【问题解决】延长AD到点E使DE=AD,再连接BE(或将△ACD绕着点D逆时针旋转180°得到△EBD),把AB、AC、2AD集中在△ABE中,利用三角形三边的关系即可判断出中线AD的取值范围是.【反思感悟】解题时,条件中若出现“中点”、“中线”字样,可以考虑构造以该中点为对称中心的中心对称图形,把分散的已知条件和所求证的结论集中到同个三角形中,从而解决问题.(2)【尝试应用】如图②,△ABC中,∠BAC=90°,AD是BC边上的中线,试猜想线段AB,AC,AD之间的数量关系,并说明理由.(3)【拓展延伸】如图③,△ABC中,∠BAC=90°,D是BC的中点,DM⊥DN,DM 交AB于点M,DN交AC于点N,连接MN.当BM=4,MN=5,AC=6时,请直接写出中线AD的长.10.观察猜想(1)如图①,在Rt△ABC中,∠BAC=90°,AB=AC=3,点D与点A重合,点E在边BC上,连接DE,将线段DE绕点D顺时针旋转90°得到线段DF,连接BF,BE与BF的位置关系是,BE+BF=;探究证明(2)在(1)中,如果将点D沿AB方向移动,使AD=1,其余条件不变,如图②,判断BE与BF的位置关系,并求BE+BF的值,请写出你的理由或计算过程;拓展延伸(3)如图③,在△ABC中,AB=AC,∠BAC=α,点D在边BA的延长线上,BD=n,连接DE,将线段DE绕着点D顺时针旋转,旋转角∠EDF=α,连接BF,则BE+BF的值是多少?请用含有n,α的式子直接写出结论.11.在△ABC中,∠BAC=90°,AB=AC.(I)如图,D为BC边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转90°得到AE,连接EC.求证:(1)△BAD≌△CAE;(2)BC=DC+EC.(Ⅱ)如图,D为△ABC外一点,且∠ADC=45°,仍将线段AD绕点A逆时针旋转90°得到AE,连接EC,ED.(1)△BAD≌△CAE的结论是否仍然成立?并请你说明理由;(2)若BD=9,CD=3,求AD的长.12.如图,在直角坐标系中,△ABC的三个顶点都在坐标轴上,A,B两点关于y轴对称,点C是y轴正半轴上一个动点,AD是角平分线.(1)如图1,若∠ACB=90°,直接写出线段AB,CD,AC之间数量关系;(2)如图2,若AB=AC+BD,求∠ACB的度数;(3)如图2,若∠ACB=100°,求证:AB=AD+CD.13.如图,在平面直角坐标系中,等边△ABC的顶点A,B,C均在坐标轴上,其中B(﹣4,0),C(4,0).(1)如图1,若将△AOC沿AC翻折得到△ACD,则A点坐标为,D点坐标为;(2)如图2,若点P为AO上一动点,作点P关于AC的对称点Q,连接QB,QC,是否存在这样的点P.使得△QBC的周长最小?如果存在,求出△QBC周长的最小值;如果不存在,请说明理由;(3)在(1)问的条件下,点E为y轴正半轴上一动点,是否存在点E使得△BDE为等腰三角形?如果存在,请直接写出△BDE的面积,若不存在,请说明理由.14.阅读下列材料,解答问题:定义:线段BE把等腰△ABC分成△ABE与△BCE(如图1),如果△ABE与△BCE均为等腰三角形,那么线段BE叫做△ABC的完美分割线.(1)如图1,已知△ABC中,AB=AC,∠BAC=36°,BE为△ABC的完美分割线,且CE<AE,则∠C=,∠AEB=;(2)如图2,已知△ABC中,AB=AC,∠BAC=108°,AC=CD,求证:AD为△ABC 的完美分割线;(3)如图3,已知△ABC是一等腰三角形纸片,AB=AC,AD是它的一条完美分割线,且BD>DC,将△ACD沿直线AD折叠后,点C落在点C1处,AC1交BD于点E.求证:BE=C1D.15.在等边△ABC中,点O在BC边上,点D在AC的延长线上且OA=OD.(1)如图1,若点O为BC中点,求证:∠COD的度数.(2)如图2,若点O为BC上任意一点,求证:AD=2BO+OC.(3)如图3,若点O为BC上任意一点,点D关于直线BC的对称点为点P,连接AP,OP,请判断△AOP的形状,并说明理由.16.在Rt△ABC中,AB=AC,OB=OC,∠A=90°,∠MON=α,分别交直线AB、AC于点M、N.(1)如图1,当α=90°时,求证:AM=CN;(2)如图2,当α=45°时,求证:BM=AN+MN;(3)当α=45°时,旋转∠MON至图3位置,请你直接写出线段BM、MN、AN之间的数量关系.17.人教版初中数学教科书八年级上册第84页探究了“三角形中边与角之间的不等关系”,部分原文如下:如图1,在△ABC中,如果AB>AC,那么我们可以将△ABC折叠,使边AC落在AB上,点C落在AB上的D点,折线交BC于点E,则∠C=∠ADE.∵∠ADE>∠B(想一想为什么),∴∠C>∠B.(1)请证明上文中的∠ADE>∠B;(2)如图2,在△ABC中,如果∠ACB>∠B,能否证明AB>AC?同学小雅提供了一种方法:将△ABC折叠,使点B落在点C上,折线交AB于点F,交BC于点G,再运用三角形三边关系即可证明,请你按照小雅的方法完成证明;(3)如图3,在△ABC中,∠C=2∠B,按照图1的方式进行折叠,得到折痕AE,过点E作AC的平行线交AB于点M,若∠BEA=110°,求∠DEM的度数.18.(1)如图1,在正方形ABCD中,∠F AG=45°,请直接写出DG,BF与FG的数量关系,不需要证明.(2)如图2,在Rt△ABC中,∠BAC=90°,AB=AC,E,F分别是BC上两点,∠EAF =45°.①写出BE,CF,EF之间的数量关系,并证明;②若将(2)中的△AEF绕点A旋转至如图3所示的位置,上述结论是否仍然成立?若不成立,直接写出新的结论,无需证明.(3)如图4,△AEF中,∠EAF=45°,AG⊥EF于G,且GF=2,GE=3,则S△AEF =.19.在△ABC中,AB=AC=6,∠BAC=90°,AD⊥BC于点D,E为线段AD上的一点,AE:DE=2:1,以AE为直角边在直线AD右侧构造等腰Rt△AEF,使∠EAF=90°,连接CE,G为CE的中点.(1)如图1,EF与AC交于点H,连接GH,求线段GH的长度.(2)如图2,将△AEF绕点A逆时针旋转,旋转角为α且45°<α<135°,H为线段EF的中点,连接DG,HG,猜想∠DGH的大小是否为定值,并证明你的结论;(3)如图3,连接BG,将△AEF绕点A逆时针旋转,在旋转过程中,请直接写出BG 长度的最大值.20.如图,在平面直角坐标系中,A(﹣6,0),B(0,8),AB=10,点C在线段OB上,现将△AOC翻折,使得线段AO的对应边AD落到AB上,点O的对应点是点D,折痕为AC.(1)求点C的坐标;(2)连接OD,过点O作OH⊥CD于点H,求OH的长;(3)在(2)的条件下,若点P从点C出发,沿着C﹣D﹣A运动,速度为每秒1个单位,时间为t,是否存在t值,使得△AOP的面积为12,若存在求出t的值;若不存在,请说明理由.参考答案1.解:分两种情况:①当点C′落在对角线BD上时,连接CC′,如图1所示:∵将矩形沿EF折叠,点C的对应点为点C′,且点C'恰好落在矩形的对角线上,∴CC′⊥EF,∵点E为线段CD的中点,∴CE=ED=EC′,∴∠CC′D=90°,即CC′⊥BD,∴EF∥BD,∴点F是BC的中点,∵在矩形ABCD中,AD=4,∴BC=AD=4,∴CF=2,∴点F运动的距离为2;②当点C′落在对角线AC上时,作FH⊥CD于H,则CC′⊥EF,四边形CBFH为矩形,如图2所示:在矩形ABCD中,AB=4,AD=4,∠B=∠BCD=90°,AB∥CD,∴BC=AD=4,tan∠BAC===,∴∠BAC=30°,∵EF⊥AC,∴∠AFE=60°,∴∠FEH=60°,∵四边形CBFH为矩形,∴HF=BC=4,∴EH===,∵EC=CD=2,∴BF=CH=CE﹣EH=2﹣=,∴点F运动的距离为4+;综上所述:点F运动的距离为2或4+;故答案为:2或4+.2.解:能;①若F为直角顶点,过F作FD⊥x轴于D,则BP=6﹣t,DP=2OC=4,在Rt△OCP中,OP=t﹣1,由勾股定理易求得CP2=t2﹣2t+5,那么PF2=(2CP)2=4(t2﹣2t+5);在Rt△PFB中,FD⊥PB,由射影定理可求得PB=PF2÷PD=t2﹣2t+5,而PB的另一个表达式为:PB=6﹣t,联立两式可得t2﹣2t+5=6﹣t,即t=,P点坐标为(,0),则F点坐标为:(,);②B为直角顶点,那么此时的情况与(2)题类似,△PFB∽△CPO,且相似比为2,那么BP=2OC=4,即OP=OB﹣BP=1,此时t=2,P点坐标为(1,0).FD=2(t﹣1)=2,则F点坐标为(5,2).故答案是:(5,2),(,).3.解:分别过点E、A、F、C作EN⊥x轴,AM⊥x轴,FQ⊥x轴,CS⊥x轴于点N,M,Q,S.∵Rt△OAB,tan∠AOB=2,∴==2,∵AB=,∴AO=3,∵OE=2AE,∴EO=2,设NO=x,则EN=2x,由勾股定理得出:x2+(2x)2=(2)2,解得:x1=2,x2=﹣2(不合题意舍去),则EN=4,故E点坐标为:(2,4),则xy=k=2×4=8,故双曲线为:y=;∵AO=3,AB=6,∴BO==15,∵Rt△OAB∽Rt△BCD,tan∠AOB=2,∴tan∠FBQ==2,设BQ=y,则FQ=2y,故BQ=15+y,FQ=2y,则QO×FQ=8,即(15+y)×2y=8,解得:y1=,y2=(不合题意舍去),则FQ=﹣15+,∵FQ∥CS,CF=2BF,∴===,∴CS=﹣45+3,BS=,则OS=15+=,故C点坐标为:.故答案为:y=,(,3﹣45).4.解:由矩形ABCD中,AB=4,AD=3,可得对角线AC=BD=5.依题意画出图形,如右图所示.由轴对称性质可知,∠P AF+∠P AE=2∠P AB+2∠P AD=2(∠P AB+∠P AD)=180°,∴点A在菱形EFGH的边EF上.同理可知,点B、C、D均在菱形EFGH的边上.∵AP=AE=AF,∴点A为EF中点.同理可知,点C为GH中点.连接AC,交BD于点O,则有AF=CG,且AF∥CG,∴四边形ACGF为平行四边形,∴FG=AC=5,即菱形EFGH的边长等于矩形ABCD的对角线长.∴EF=FG=5,∵AP=AE=AF,∴AP=EF=2.5.∵OA=AC=2.5,∴AP=AO,即△APO为等腰三角形.过点A作AN⊥BD交BD于点N,则点N为OP的中点.由S△ABD=AB•AD=AC•AN,可求得:AN=2.4.在Rt△AON中,由勾股定理得:ON===0.7,∴OP=2ON=1.4;同理可求得:OQ=1.4,∴PQ=OP+OQ=1.4+1.4=2.8.故答案为:2.8.5.(1)证明:如图①中,∵△CBF是由∠CAD旋转得到,∴∠ACD=∠BCF,CD=CF,∴∠ACB=∠DCF=90°,∵∠DCE=90°,∴∠ECF=∠ECD=45°,∵CE=CE,∴△ECD≌△ECF(SAS),∴∠CED=∠CEF.(2)解:如图①中,∵CA=CB,∠ACB=90°,∴∠A=∠ABC=45°,∵∠A=∠CBF=45°,∴∠EBF=90°,∵AD=BF=6,EB=4,∴EF===2,∵△ECD≌△ECF,∴DE=DF=2.(3)解:结论:DE2=AD2+BE2.理由:如图2中,连接EF.∵△CBF是由∠CAD旋转得到,∴∠ACD=∠BCF,CD=CF,AD=BF,∠A=∠CBF=45°,∴∠ACB=∠DCF=90°,∵∠DCE=90°,∴∠ECF=∠ECD=45°,∵CE=CE,∴△ECD≌△ECF(SAS),∴DE=EF,∵∠ABC=45°,∠CBF=45°,∴∠ABF=∠EBF=90°,∴BF2+BE2=EF2,∵BF=AD,EF=DE,∴DE2=AD2+BE2.6.解:(1)∵∠OMN=45°,∴OM=ON,∵AM=ON,∴AM=OM,∵A(4,0),∴OA=4,∴;(2)如图1,过点B作BF⊥x轴于F,BH⊥y轴于H,则∠BFM=∠BFO=∠BHN=90°,∴∠HBF=360°﹣∠NOM﹣∠BFO﹣∠BHN=90°,∵△MNB为等腰直角三角形,∴BM=BN,∠MBN=90°,∴∠FBM=∠HBN,∴△BFM≌△BHN(AAS),∴BF=BH,MF=NH,∴可设点B的坐标为(m,m),∴OF=OH=m,∵OM+ON=OM+AM=4,∴OF+OH=OM﹣MF+ON+HN=OM+ON或OF+OH=OM+MF+ON﹣HN=OM+ON,∴2m=4,解得m=2,∴点B的坐标为(2,2);(3)如备用图,(注:图形OMBN是正方形,为了更好的解决问题,图形画的偏差了一些),设BE交MN于G,则BG⊥MN,GB=GE,∵BM=BN,∴GM=GN,设OM=t,则ON=AM=4﹣t,过点G作GD⊥x轴于D,GC⊥y轴于C,连接OG,∵∠NOM=90°,∴,∴,,∴,∵B(2,2),同理,得E(t﹣2,2﹣t),∵点E在y轴上,∴t﹣2=0,解得t=2,∴AM=4﹣2=2.7.解:(1)BD=AC,BD⊥AC,理由是:延长BD交AC于F.∵AE⊥BC,∴∠AEB=∠AEC=90°,在△BED和△AEC中,,∴△BED≌△AEC,∴BD=AC,∠DBE=∠CAE,∵∠BED=90°,∴∠EBD+∠BDE=90°,∵∠BDE=∠ADF,∴∠ADF+∠CAE=90°,∴∠AFD=180°﹣90°=90°,∴BD⊥AC;(2)不发生变化.理由:∵∠BEA=∠DEC=90°,∴∠BEA+∠AED=∠DEC+∠AED,∴∠BED=∠AEC,在△BED和△AEC中,,∴△BED≌△AEC,∴BD=AC,∠BDE=∠ACE,∵∠DEC=90°,∴∠ACE+∠EOC=90°,∵∠EOC=∠DOF,∴∠BDE+∠DOF=90°,∴∠DFO=180°﹣90°=90°,∴BD⊥AC;(3)①如图3中,结论:BD=AC,理由是:∵△ABE和△DEC是等边三角形,∴AE=BE,DE=EC,∠EDC=∠DCE=60°,∠BEA=∠DEC=60°,∴∠BEA+∠AED=∠DEC+∠AED,∴∠BED=∠AEC,在△BED和△AEC中,,∴△BED≌△AEC,∴BD=AC.②能.∵△ABE和△DEC是等边三角形,∴AE=BE,DE=EC,∠EDC=∠DCE=60°,∠BEA=∠DEC=60°,∴∠BEA+∠AED=∠DEC+∠AED,∴∠BED=∠AEC,在△BED和△AEC中,,∴△BED≌△AEC,∴∠BDE=∠ACE,∴∠DFC=180°﹣(∠BDE+∠EDC+∠DCF)=180°﹣(∠ACE+∠EDC+∠DCF)=180°﹣(60°+60°)=60°,即BD与AC所成的角的度数为60°或120°.8.(1)证明:如图1,连接BF,∵△ABC≌△DBE,∴BC=BE,∵∠ACB=∠DEB=90°,在Rt△BCF和Rt△BEF中,,∴Rt△BCF≌Rt△BEF(HL),∴CF=EF;(2)如图2,连接BF,∵△ABC≌△DBE,∴BC=BE,∵∠ACB=∠DEB=90°,在Rt△BCF和Rt△BEF中,,∴Rt△BCF≌Rt△BEF(HL),∴EF=CF,∴AF+EF=AF+CF=AC=DE;(3)如图3,连接BF,∵△ABC≌△DBE,∴BC=BE,∵∠ACB=∠DEB=90°,∴△BCF和△BEF是直角三角形,在Rt△BCF和Rt△BEF中,,∴Rt△BCF≌Rt△BEF(HL),∴CF=EF,∵AC=DE,∴AF=AC+FC=DE+EF.9.解:(1)延长AD至E,使DE=AD,连接BE,如图①所示,∵AD是BC边上的中线,∴BD=CD,在△BDE和△CDA中,,∴△BDE≌△CDA(SAS),∴BE=AC=6,在△ABE中,由三角形的三边关系得:AB﹣BE<AE<AB+BE,∴10﹣6<AE<10+6,即4<AE<16,∴2<AD<8;故答案为:2<AD<8;(2)结论:AB2+AC2=4AD2.理由:延长AD至E,使DE=AD,连接BE,如图②所示,由(1)可知:△BDE≌△CDA,∴BA=AC,∠E=∠CAD,∵∠BAC=90°,∴∠E+∠BAE=∠BAE+∠CAD=∠BAC=90°,∴∠ABE=90°,∴AB2+BE2=AE2,∴AB2+AC2=4AD2.(3)如图,延长ND到E,使得DN=DE,连接BE、EM.∵BD=DC,∠BDE=∠CDN,DE=DN,∴△BDE≌△CDN,∴BE=CM.∠EBD=∠C,∵∠ABC+∠C=90°,∴∠ABD+∠DBE=90°,∵MD⊥EN,DE=DN,∴ME=MN=5,在Rt△BEM中,BE==3,∴CN=BE=3,∵AC=6,∴AN=NC,∵∠BAC=90°,BD=DC,∴AD=DC=BD,∴DN⊥AC,在Rt△AMN中,AM==4,∴AM=BM,∵DA=DB,∴DM⊥AB,∴∠AMD=∠AND=∠MAN=90°,∴四边形AMDN是矩形,∴AD=MN=5.10.解:(1)如图①中,∵∠EAF=∠BAC=90°,∴∠BAF=∠CAE,∵AF=AE,AB=AC,∴△BAF≌△CAE,∴∠ABF=∠C,BF=CE,∵AB=AC,∠BAC=90°,∴∠ABC=∠C=45°,∴∠FBE=∠ABF+∠ABC=90°,BC=BE+EC=BE+BF,故答案为:BF⊥BE,BC.(2)如图②中,作DH∥AC交BC于H.∵DH∥AC,∴∠BDH=∠A=90°,△DBH是等腰直角三角形,由(1)可知,BF⊥BE,BF+BE=BH,∵AB=AC=3,AD=1,∴BD=DH=2,∴BH=2,∴BF+BE=BH=2;(3)如图③中,作DH∥AC交BC的延长线于H,作DM⊥BC于M.∵AC∥DH,∴∠ACB=∠H,∠BDH=∠BAC=α,∵AB=AC,∴∠ABC=∠ACB∴∠DBH=∠H,∴DB=DH,∵∠EDF=∠BDH=α,∴∠BDF=∠HDE,∵DF=DE,DB=DH,∴△BDF≌△HDE,∴BF=EH,∴BF+BE=EH+BE=BH,∵DB=DH,DM⊥BH,∴BM=MH,∠BDM=∠HDM,∴BM=MH=BD•sin.∴BF+BE=BH=2n•sin.11.解:(Ⅰ)(1)∵∠BAC=∠DAE=90°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS);(2)∵△BAD≌△CAE∴BD=CE,∴BC=BD+CD=EC+CD;(Ⅱ)(1)△BAD≌△CAE的结论仍然成立,理由:∵将线段AD绕点A逆时针旋转90°得到AE,∴△ADE是等腰直角三角形,∴AE=AD,∵∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE,在△BAD与△CAE中,,∴△BAD≌△CAE(SAS);(2)∵△BAD≌△CAE,∴BD=CE=9,∵∠ADC=45°,∠EDA=45°,∴∠EDC=90°,∴DE==6,∵∠DAE=90°,∴AD=AE=DE=6.12.解:(1)如图1,过D作DM⊥AB于M,∵A,B两点关于y轴对称,∴CA=CB,∵∠ACB=90°,AD是角平分线,∴CD=MD,∠ABC=45°,∴∠BDM=45°,∴BM=DM,∴BM=CD,在RT△ADC和RT△ADM中,,∴RT△ADC≌RT△ADM(HL),∴AC=AM,∴AB=AM+BM=AC+CD,即AB=AC+CD;(2)设∠ACB=α,则∠CAB=∠CBA=90°﹣α,在AB上截取AK=AC,连结DK,∵AB=AC+BD,∴BK=BD,∵AD是角平分线,∴在△CAD和△KAD中,,∴△CAD≌△KAD(SAS),∴∠ACD=∠AKD=α,∴∠BKD=180°﹣α,∵BK=BD,∴∠BDK=180°﹣α,在△BDK中,180°﹣α+180°﹣α+90°﹣α=180°,∴α=108°,∴∠ACB=108°;(3)如图2,在AB上截取AH=AD,连接DH,∵∠ACB=100°,AC=BC,∴∠CAB=∠CBA=40°,∵AD是角平分线,∴∠HAD=∠CAD=20°,∴∠ADH=∠AHD=80°,在AB上截取AK=AC,连接DK,由(1)得,△CAD≌△KAD,∴∠ACB=∠AKD=100°,CD=DK,∴∠DKH=80°=∠DHK,∴DK=DH=CD,∵∠CBA=40°,∴∠BDH=40°,∴DH=BH,∴BH=CD,∵AB=AH+BH,∴AB=AD+CD.13.解:(1)如图1中,过点D作DH⊥x轴于H.∵B(﹣4,0),C(4,0),∴OB=OC=4,∵△ABC是等边三角形,∴AB=AC=BC=8,∠ACO=60°,∵∠AOC=90°,∴∠OAC=30°,∴AC=2OC=8,∴OA===4,∴A(0,4),∵将△AOC沿AC翻折得到△ACD,∴∠ACD=∠ACO=60°,CD=CO=4,∴∠DCH=180°﹣60°﹣60°=60°,∵DH⊥CH,∴∠DHC=90°,∴∠CDH=30°,∴CH=CD=2,∴DH===2,OH=OC+CH=6,∴D(6,2).故答案为:(0,4),(6,2).(2)如图2中,∵P,Q关于AC对称,点P在线段OA上,∴点Q在线段AD上,作点C关于直线AD的对称点C′,连接BC′交AD于Q′,连接CQ′,此时△BCQ′的周长最小,∵C(4,0),D(6,2),CD=DC′,∴C′(8,4),∵B(﹣4,0),∴BC′==8,∴△BCQ′的周长=BC+CQ′+BQ′=BC+C′Q′+BQ′=BC+BC′=8+8,∴△BCQ的周长的最小值为8+8.(3)存在.如图3中,设BD交y轴于F,E(0,m).由题意,∠BAC=60°,∠CAD=∠CAO=30°,∴∠BAD=90°,∵AB=8,AD=4,∴S△ABD=•AB•AD=•AF•(x D﹣x B),∴AF==,∴OF=4﹣=,①当EB=ED时,42+m2=62+(m﹣2)2,解得m=,∴E(0,),∴S△EBD=×(﹣)×10=.②当BD=BE′时,m2+42=102+(2)2,解得m=4或﹣4(舍弃),∴E′(0,4),∴S△BDE′=×(4﹣)×10=20﹣4.③当DB=DE″时,62+(m﹣2)2=102+(2)2,解得m=2+2或﹣2+2(舍弃),∴E(0,2+2),∴S△BDE″=×(2+2﹣)×10=10+6,综上所述,△BDE的面积为或20﹣4或10+6.14.解:(1)如图1,∵AB=AC,∠BAC=36°,∴∠ABC=∠C=72°,∵BE为△ABC的完美分割线,且CE<AE,∴△ABE与△BCE均为等腰三角形,∴∠BEC=∠C=72°,∴∠AEB=108°.故答案为:72°,108°;(2)如图2,∵AB=AC,∠BAC=108°,∴∠B=∠C=(180°﹣∠BAC)=36°,∵AC=CD,∴∠CAD=∠CDA=(180°﹣∠C)=72°,∴∠DAB=36°,∴∠BAD=∠B,∴DA=DB,∴△ABD、△ACD均为等腰三角形,∴AD为△ABC的完美分割线;(3)∵AD是△ABC的一条完美分割线,∴AD=CD,AB=BD,∴∠C=∠CAD,∠BAD=∠BDA,∵∠C+∠CAD+∠ADC=180°,∠ADC+∠BDA=180°,∴∠BDA=∠C+∠CAD=2∠CAD,∴∠BAD=2∠CAD,∵∠CAD=∠C1AD,∴∠BAD=2∠C1AD,∵∠BAD=∠C1AD+∠BAE,∴∠C1AD=∠BAE,∵AC=AB,∴∠C=∠B,∴∠C1=∠B,∵AC=AC1,∴AC1=AB,∴△AC1D≌△ABE(ASA),∴DC1=BE.15.解:(1)∵△ABC为等边三角形,∴∠BAC=60°,∵O为BC中点,∴,且AO⊥BC,∠AOC=90°,∵OA=OD,∴△AOD中,∠D=∠CAO=30°,∴∠AOD=180°﹣∠D﹣∠CAO=120°,∴∠COD=∠AOD﹣∠AOC=30°;(2)如图1,过O作OE∥AB,OE交AD于E,∵OE∥AB∴∠EOC=∠ABC=60°∠CEO=∠CAB=60°,∴△COE为等边三角形,∴OE=OC=CE∠AEO=180°﹣∠CEO=120°∠DCO=180°﹣∠ACB=120°,又∵OA=OD,∴∠EAO=∠CDO,在△AOE和△COD中,,∴△AOE≌△DOC(AAS),∴CD=EA,∵EA=AC﹣CE,BO=BC﹣CO,∴BO=CD,又∵AD=AC+CD,AB=BC,∴AD=AB+BO=BC+BO=BO+CO+BO=2BO+CO;(3)△AOP为等边三角形.证明:如图2,连接PC,PD,延长OC交PD于F,∵P、D关于OC对称,∴PF=DF,∠PFO=∠DFO=90°,在△OPE与△OPF中,,∴△OPE≌△OPF(SAS),∴∠POF=∠DOF,OP=OD,∴△AOP为等腰三角形,过O作OE∥AB,OE交AD于E,由(2)得△AOE≌△DOC∠AOE=∠DOC,∴∠AOE=∠POF,∴∠AOE+∠POE=∠POF+∠POE,即∠AOP=∠COE=60°,∴△AOP是等边三角形.16.证明:(1)如图1,连接OA,∵AB=AC,∠BAC=90°,OB=OC,∴AO⊥BC,OA=OB=OC,∠ABO=∠ACO=∠BAO=∠CAO=45°,∴∠MON=∠AOC=90°,∴∠AOM=∠CON,且AO=CO,∠BAO=∠ACO=45°,∴△AOM≌△CON(ASA)∴AM=CN;(2)证明:如图2,在BA上截取BG=AN,连接GO,AO,∵AB=AC,∠BAC=90°,OB=OC,∴AO⊥BC,OA=OB=OC,∠ABO=∠ACO=∠BAO=∠CAO=45°,∵BG=AN,∠ABO=∠NAO=45°,AO=BO,∴△BGO≌△AON(SAS),∴OG=ON,∠BOG=∠AON,∵∠MON=45°=∠AOM+∠AON,∴∠AOM+∠BOG=45°,∵∠AOB=90°,∴∠MOG=∠MON=45°,∵MO=MO,GO=NO,∴△GMO≌△NMO(SAS),∴GM=MN,∴BM=BG+GM=AN+MN;(3)MN=AN+BM,理由如下:如图3,过点O作OG⊥ON,连接AO,∵AB=AC,∠BAC=90°,OB=OC,∴AO⊥BC,OA=OB=OC,∠ABO=∠ACO=∠BAO=∠CAO=45°,∴∠GBO=∠NAO=135°,∵MO⊥GO,∴∠NOG=90°=∠AOB,∴∠BOG=∠AON,且AO=BO,∠NAO=∠GBO,∴△NAO≌△GBO(ASA),∴AN=GB,GO=ON,∵MO=MO,∠MON=∠GOM=45°,GO=NO,∴△MON≌△MOG(SAS),∴MN=MG,∵MG=MB+BG,∴MN=AN+BM.17.(1)证明:∵∠ADE=∠B+∠BED,∴∠ADE>∠B;(2)证明:由折叠知,BF=CF,在△ACF中,AF+FC>AC,∴AF+BF>AC,∴AB>AC;(3)由折叠知,∠MAE=∠EAC,∠ADE=∠C,∵∠C=2∠B,∴∠ADE=2∠B,∵∠ADE=∠B+∠BED,∴∠B=∠BED,∵ME∥AC,∴∠MEA=∠EAC,∵∠MAE=∠EAC,∴∠MAE=∠MEA,∵∠BEA=110°,∴∠B+∠BAE=180°﹣∠BEA=180°﹣110°=70°,∴∠BED+∠MEA=∠B+∠BAM=70°,∴∠DEM=∠BEA﹣(∠BED+∠MEA)=110°﹣70°=40°.18.解:(1)结论:FG=BF+DG.理由如下:如图1中,在正方形ABCD中,∵AB=AD,∠BAD=∠ADC=∠B=90°,把△ABF绕点A逆时针旋转90°得到△ADE,∵∠ADG=∠ADE=90°,∴点G、D、E共线,∴∠EAG=90°﹣45°=45°=∠F AG,在△AGF和△AGE中,,∴△AGF≌△AGE(SAS),∴FG=GE=DE+DG=BF+DG.(2)①BE、CF、EF之间的数量关系为:EF2=BE2+FC2.证明如下:∵∠BAC=90°,AB=AC,∴将△ABE绕点A顺时针旋转90°得△ACG,连FG,如图2,∴AG=AE,CG=BE,∠ACG=∠B,∠EAG=90°,∴∠FCG=∠ACB+∠ACG=∠ACB+∠B=90°,∴FG2=FC2+CG2=BE2+FC2;又∵∠EAF=45°,而∠EAG=90°,∴∠GAF=90°﹣45°=45°,而AG=AE,AF公共,∴△AGF≌△AEF(SAS),∴FG=EF,∴EF2=BE2+FC2.②如图3,将△AEB沿直线AE折叠,得△AED,连DF,∴△ADE≌△ABE,∴AD=AB,DE=EB,∠DAE=∠BAE,∠ADE=∠ABE=45°,又∵AB=AC,∴AD=AC,∵∠DAE=∠DAF+∠EAF=∠DAF+45°,∠BAE=∠BAC﹣∠EAC=90°﹣(∠EAF﹣∠F AC)=45°+∠F AC,∴∠DAF=∠F AC,在△AFD和△AFC中,,∴△ADF≌△ACF(SAS),∴FC=DF,∠ADF=∠ACF=∠BAC+∠B=135°,∴∠EDF=∠ADF﹣∠ADE=135°﹣45°=90°,在Rt△EDF中,DE2+FD2=EF2,即EF2=BE2+FC2.(3)证明:如图4,将△AEG沿AE折叠得到△AEB,将△AFG沿AF折叠得到△AFD,延长BE和DF相交于点C.∴AD=AG=AB,∠D=∠AGF=90°,∠B=∠AGE=90°,∠DAF=∠GAF,∠BAE =∠GAE,∵∠EAF=45°=∠F AG+∠GAE,∴∠DAF+∠BAE=45°,∴∠DAB=45°+45°=90°,即∠B=∠D=∠DAB=90°,AD=AB,∴四边形ABCD是正方形.由折叠知,Rt△ABE≌Rt△AGE,Rt△ADF≌Rt△AGF,∴BE=EG=3,DF=FG=2,∵EF=5,设AG=x,则AB=BC=CD=AG=x,CE=CB﹣BE=x﹣3,CF=x﹣2.∵CE2+CF2=EF2,∴(x﹣3)2+(x﹣2)2=52.解得x1=6,x2=﹣1(舍去).∴AG=6.∴△AEF的面积=EF•AG=×5×6=15.故答案为:15.19.解:(1)如图1中,连接BE,CF.∵AB=AC=6,∠BAC=90°,AD⊥BC于点D,∴BC=AB=12,BD=CD=6,∠BAD=∠CAD=30°,∴AD=BD=DC=6,∵△AEF是等腰直角三角形,∴AE=AF∵∠DAH=∠F AH=45°,∴EH=HF,∵AE:DE=2:1,∴AE=4,DE=2,∴BE===2,∵AB=AC,AE=AF,∠BAC=∠EAF=90°,∴∠BAE=∠CAF,∴△BAE≌△CAF(SAS),∴CF=BE=2,∵EG=CG,EH=FH,∴GH=CF=.(2)结论:∠DGH=90°是定值.理由:连接BE,CF,设CF交BE于点O,BE交AC于J.同法可证△BAE≌△CAF(SAS),∴∠ABE=∠ACF,∵∠AJB=∠CJO,∴∠COJ=∠BAJ=90°,∴CF⊥BE,∵EH=EH,EG=GC,∴GH∥CF,∵CD=DB,CG=GE,∴DG∥BE,∴DG⊥GH,∴∠DGH=90°.(3)如图3中,取AC的中点J,连接BJ,JG.由题意AJ=JC=3,AB=6,∵∠BAJ=90°,∴BJ===3,∵AJ=JC,EG=CG,∴JG=AE=3,∵BG≤BJ+JG,∴BG≤3+2,∴BG的最大值为3+2.20.解:(1)设C(0,m),∵A(﹣6,0),B(0,8),∴OA=6,OB=8,由翻折的性质可知,∠CDA=∠AOC=90°,OC=CD=m,∵S△AOB=S△AOC+S△ACB,∴•OA•OB=•OC•OA+•AB•CD,∴6×8=6m+10m,∴m=3,∴C(0,3).(2)如图2中,由翻折的性质可知,OA=AD=6,CD=OC=3,∵AB=10,∴BD=AB﹣AD=10﹣6=4,∴BD:AB=4:10=2:5,∴S△BOD=•S△AOB=××6×8=,∵OC:OB=3:8,∴S△CDO=S△BOD,∵OH⊥CD,∴×3×OH=×,∴OH=.(3)如图3中,设P(m,n).∴S△POA=12,∴×6×n=12,∴n=4,∴当点P在线段AB上时,P A=PB=5,此时P(3.4),∴PD=AD﹣P A=6﹣5=1,∴CD+PD=3+1=4,∴t=4(s).当点P′在线段CD上时,CP′=t,则有S四边形AOCD﹣S△ADP′﹣S△P′OC=S△P′OA,∴2××3×6﹣×6×(3﹣t)﹣×t×=12,∴t=(s).综上所述,满足条件的t的值为4s或s。
备战中考数学一元一次方程专题综合能力提升练习(含解析)
2019备战中考数学一元一次方程专题-综合能力提升练习(含解析)一、单选题1.小明准备为希望工程捐款,他现在有20元,以后每月打算存10元.若设x月后他能捐出100元,则下列方程中能正确计算出x的是:()A. 10x+20=100B. 10x-20=100C. 20-10x=100D. 20x+10=1002.如图所示,将一刻度尺放在数轴上(数轴的单位长度是1 cm),刻度尺上的“0 cm”和“15 cm”分别对应数轴上的-3.6和x,则( )A. 9<x<10B. 10<x<11 C. 11<x<12 D. 12<x<133.某商品进价是200元,标价是300元,要使该商品利润为20%,则该商品销售应按()A. 7折B. 8折C. 9折D. 6折4.把方程x=1变形为x=2,其依据是()A. 等式的性质1B. 等式的性质2 C. 分式的基本性质 D. 不等式的性质15.如果x=y,a为有理数,那么下列等式不一定成立的是()A. 4﹣y=4﹣x B. x2=y2C.D. ﹣2ax=﹣2ay6.若a:2=b:3=c:7,且a﹣b+c=12,则2a﹣3b+c等于()A. 2B. 4C.D. 127.某工程甲独做12天完成,乙独做8天完成,现在由甲先做3天,乙再参加合做.设完成此工程一共用了x天,则下列方程正确的是()A. +=1B. +=1 C. +=1 D. +=18.某商店一套服装进价为300元,如果按标价的八折销售可获利80元,那么该服装的标价是()A. 375元B. 380元C. 450元D. 475元9.下列等式中,方程的个数为()①5+3=8;②a=0;③y2﹣2y;④x﹣3=8.A. 1B. 2C. 3D. 410.已知a+ =b﹣= =2019,且a+b+c=2019k,那么k的值为()A.B. 4C. ﹣D. ﹣411.甲比乙大15岁,5年前甲的年龄是乙的年龄的两倍,乙现在的年龄是()A. 10岁B. 15岁C. 20岁D. 30岁12.已知3是关于x的方程2x-a=1的解,则a的值是()A. -5B. 5C. 7D. 2二、填空题13.方程﹣=1可变形为﹣=________.14.用长12cm的铁丝围成一个长是宽2倍的长方形,则长方形的面积是________15.方程8x=16两边同时________ 得到另一个方程4x=8,8x=16与4x=8的解________ .像这样,两个方程的解相同,我们称这两个方程为________ .16.根据图中提供的信息,可知一个杯子的价格是________元.17.已知x=﹣1是关于x的方程2x﹣3a=﹣4的解,则a为________.18.校用56m长的篱笆围成一个长方形的生物园,要使长为16 m,则宽为________m.19.方程2x﹣3=6的解是________.三、计算题20.解方程:x﹣=1﹣.21.计算题(1)计算:;(2)解方程:.22.定义新运算符号“*”的运算过程为a*b= a﹣b,试解方程2*(2*x)=1*x.23.解方程:﹣3(2+x)=2(5﹣x).四、解答题24.指出下列方程中的未知数是什么,方程的左边是什么.方程的右边是什么?并且判断它否是一元一次方程?(1)3=2x﹣1;(2)x+2y=7;(3)x2+5x﹣1=5;(4)x2=y2+2y;(5)x﹣π=3;(6)3m+5=﹣4;(7)﹣=1.25.已知关于x的方程(k+1)+(k﹣3)x﹣1=0(1)当k取何值时,它是一元一次方程?(2)当k取何值时,它是一元二次方程?五、综合题26.已知关于a的方程2(a+2)=a+4的解也是关于x的方程2(x-3)-b=7的解.(1)求a、b的值;(2)若线段AB=a,在直线AB上取一点P,恰好使=b,点Q为PB的中点,请画出图形并求出线段AQ的长.27.我国某部边防军小分队成一列在野外行军,通讯员在队伍中,数了一下他前后的人数,发现前面人数是后面的两倍,他往前超了6位战士,发现前面的人数和后面的人数一样.(1)这列队伍一共有多少名战士?(2)这列队伍要过一座320米的大桥,为安全起见,相邻两个战士保持相同的一定间距,行军速度为5米/秒,从第一位战士刚上桥到全体通过大桥用了100秒时间,请问相邻两个战士间距离为多少米(不考虑战士身材的大小)?28.某校为了更好地开展球类运动,体育组决定用1600元购进足球8个和篮球14个,并且篮球的单价比足球的单价多20元,请解答下列问题:(1)求出足球和篮球的单价;(2)若学校欲用不超过3240元,且不少于3200元再次购进两种球50个,求出有哪几种购买方案?(3)在(2)的条件下,若已知足球的进价为50元,篮球的进价为65元,则在第二次购买方案中,哪种方案商家获利最多?答案解析部分一、单选题1.【答案】A【考点】一元一次方程的实际应用-和差倍分问题【解析】【解答】根据题意得,月存钱为,则可列方程为故A符合题意.故答案为:A.【分析】根据x个月存的钱+原有的20元=100元列方程.2.【答案】C【考点】一元一次不等式组的应用【解析】【解答】解:根据题意得:x+3.6=15,解得:x=11.4 ;故答案为: C【分析】根据数轴上两点间的距离得出原点右边的线段长度+原点左边的线段长度=15,列出方程,求解得出x的值,从而得出答案。
九年级中考数学综合训练题(4)
九年级中考数学综合训练题(4)一.选择题(共12小题,满分36分,每小题3分)1.(3分)=()A.B.C.D.2.(3分)如图所示的几何体的主视图是()A.B.C.D.3.(3分)如图,P A、PB是⊙O的切线,切点分别为A、B,点C在⊙O上,如果∠P=50°,那么∠ACB等于()A.40°B.50°C.65°D.130°4.(3分)为了比较某校同学汉字听写谁更优秀,语文老师随机抽取了10次听写情况,发现甲乙两人平均成绩一样,甲、乙的方差分别为2.7和3.2,则下列说法正确的是()A.甲的发挥更稳定B.乙的发挥更稳定C.甲、乙同学一样稳定D.无法确定甲、乙谁更稳定5.(3分)如图所示,三角形ABC中,∠BAC=90°,过点A画AD⊥BC,则下列说法不正确的是()A.线段AD是点A与直线BC上各点连接的所有线段中最短的B.线段AB是点B到直线AD的垂线段C.点A到直线BC的距离是线段AD的长D.点C到直线AB的距离是线段AC的长6.(3分)某校数学课外活动探究小组,在老师的引导下进一步研究了完全平方公式.结合实数的性质发现以下规律:对于任意正数a、b,都有a+b≥2成立.某同学在做一个面积为3 600cm2,对角线相互垂直的四边形风筝时,运用上述规律,求得用来作对角线用的竹条至少需要准备xcm.则x的值是()A.120B.60C.120D.607.(3分)如图,梯形ABCD中,AD∥BC,DC⊥BC,将梯形沿对角线BD折叠,点A恰好落在边DC中点E处,若BC=2,则线段AB的长为()A.2B.C.2D.8.(3分)在函数中,自变量x的取值范围是()A.x<B.x≠﹣C.x≠D.x>9.(3分)如图,矩形ABCD中,F是DC上一点,BF⊥AC,垂足为E,AB=2AD=4,则CF长度是()A.B.C.D.110.(3分)如图,反比例函数(k>0)与一次函数的图象相交于两点A(x1,y1),B(x2,y2),线段AB交y轴与C,当|x1﹣x2|=2且AC=2BC时,k、b的值分别为()A.k=,b=2B.k=,b=1C.k=,b=D.k=,b=11.(3分)如图,直线y=kx+b(k<0)交y轴于点A,交x轴于点B,且(AB+OA)(AB ﹣OA)=,则不等式kx+b>0的解集为()A.x>B.x>3C.x<D.x<312.(3分),,,=﹣…从计算结果中找出规律,并用这一规律计算:(+++…+)(+1)结果为()A.2005B.2006C.2007D.2008二.填空题(共6小题,满分18分,每小题3分)13.(3分)如图,海平面上灯塔O方圆100千米范围内有暗礁.一艘轮船自西向东方向航行,在点A处测量得灯塔O在北偏东60°方向,继续航行100千米后,在点B处测量得灯塔O在北偏东37°方向.请你作出判断,为了避免触礁,这艘轮船是否要改变航向?.(填“是”或“否”,参考数据:sin37°≈0.6018,cos37°≈0.7986,tan37°≈0.7536,cot37°≈1.327,≈1.732).14.(3分)不等式组的整数解的积为.15.(3分)+(b+2)2+|c﹣2022|=0,则(a+b)c的值为.16.(3分)定义新运算“*”.规则:a*b=a(a≥b)或者a*b=b(a<b)如1*2=2,(﹣3)*2=2.若x2+x﹣1=0的根为x1、x2,则x1*x2的值为:.17.(3分)如图,已知矩形DEFG内接于Rt△ABC,D在AB上,E、F在BC上,G在AC 上,∠BAC=90°,AB=6cm,AC=8cm,,则矩形的边长DG=.18.(3分)已知在平面直角坐标系中,点O为坐标原点,过O的直线OM经过点A(6,6),过A作正方形ABCD,在直线OA上有一点E,过E作正方形EFGH,已知直线OC经过点G,且正方形ABCD的边长为2,正方形EFGH的边长为3,则点F的坐标为.三.解答题(共7小题,满分66分)19.(6分)化简求值:(﹣)÷,其中a=+1,b=﹣1.20.(8分)阅读下面材料,再回答问题:有一些几何图形可以被某条直线分成面积相等的两部分,我们将“把一个几何图形分成面积相等的两部分的直线叫做该图形的二分线”,如:圆的直径所在的直线是圆的“二分线”,正方形的对角线所在的直线是正方形的“二分线”.解决下列问题:(1)菱形的“二分线”可以是.(2)三角形的“二分线”可以是.(3)在图中,试用两种不同的方法分别画出等腰梯形ABCD的“二分线”,并说明你的画法.21.(10分)掷①②两枚正六面体骰子,它们的点数和可能有哪些值?请在下表中列出来,并用表中的信息求:(1)“点数和为7点”的概率P1;(2)“两颗骰子点数相同”的概率P2;(3)“两颗骰子点数都是相同偶数”的概率P3.22.(10分)已知关于x的方程(a+c)x2+bx﹣(a+2c)=0的两根之和为1,两根的倒数和为﹣2.(1)求这个方程的两根之积;(2)求a:b:c.23.(10分)采购员用一张1万元支票去购物.购单价为590元的A种物品若干件,又购单价为670元的B种物品若干件,其中B种件数多于A种件数,找回了几张100元和几张10元的(10元的不超过9张).如把购A种物品和B种物品的件数互换,找回的100元和10元的钞票张数也恰好相反,则原来购B种物品多少件?24.(10分)如图,已知AC、AB是⊙O的弦,AB>AC.(1)在图(a)中,能否在AB上确定一点E,使得AC2=AE•AB,为什么?(2)在图(b)中,在条件(1)的结论下延长EC到P,连接PB,如果PB=PE,试判断PB和⊙O的位置关系,并说明理由.25.(12分)如图,一次函数y=﹣x+3的图象交x轴于点A,交y轴于点Q,抛物线y=ax2+bx+c (a≠0)的顶点为C,其图象过A、Q两点,并与x轴交于另一个点B(B点在A点左侧),△ABC三内角∠OAC、∠ABC、∠ACB的对边为a1,b1,c1.若关于x的方程a1(1﹣x2)+2b1x+c1(1+x2)=0有两个相等实数根,且a1=b1;(1)试判定△ABC的形状;(2)当时求此抛物线的解析式;(3)在(2)的条件下,抛物线上是否存在点P,使S△ABP=S四边形ACBQ?若存在,求出P点坐标;若不存在,请说明理由.。
人教 中考数学(圆的综合提高练习题)压轴题训练附答案
一、圆的综合真题与模拟题分类汇编(难题易错题)1.如图,⊙O是△ABC的外接圆,点E为△ABC内切圆的圆心,连接AE的延长线交BC于点F,交⊙O于点D;连接BD,过点D作直线DM,使∠BDM=∠DAC.(1)求证:直线DM是⊙O的切线;(2)若DF=2,且AF=4,求BD和DE的长.【答案】(1)证明见解析(2)23【解析】【分析】(1)根据垂径定理的推论即可得到OD⊥BC,再根据∠BDM=∠DBC,即可判定BC∥DM,进而得到OD⊥DM,据此可得直线DM是⊙O的切线;(2)根据三角形内心的定义以及圆周角定理,得到∠BED=∠EBD,即可得出DB=DE,再判定△DBF∽△DAB,即可得到DB2=DF•DA,据此解答即可.【详解】(1)如图所示,连接OD.∵点E是△ABC的内心,∴∠BAD=∠CAD,∴BD CD=,∴OD⊥BC.又∵∠BDM=∠DAC,∠DAC=∠DBC,∴∠BDM=∠DBC,∴BC∥DM,∴OD⊥DM.又∵OD为⊙O半径,∴直线DM是⊙O的切线.(2)连接BE.∵E为内心,∴∠ABE=∠CBE.∵∠BAD=∠CAD,∠DBC=∠CAD,∴∠BAD=∠DBC,∴∠BAE+∠ABE=∠CBE+∠DBC,即∠BED=∠DBE,∴BD=DE.又∵∠BDF=∠ADB(公共角),∴△DBF∽△DAB,∴DF DBDB DA=,即DB2=DF•DA.∵DF=2,AF=4,∴DA=DF+AF=6,∴DB2=DF•DA=12,∴DB=DE=23.【点睛】本题主要考查了三角形的内心与外心,圆周角定理以及垂径定理的综合应用,解题时注意:平分弦所对一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧;三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.2.已知:如图,在矩形ABCD 中,点O 在对角线BD 上,以OD 的长为半径的⊙O 与AD ,BD 分别交于点E 、点F ,且∠ABE=∠DBC .(1)判断直线BE 与⊙O 的位置关系,并证明你的结论; (2)若sin ∠ABE=33,CD=2,求⊙O 的半径.【答案】(1)直线BE 与⊙O 相切,证明见解析;(2)⊙O 的半径为3. 【解析】分析:(1)连接OE ,根据矩形的性质,可证∠BEO =90°,即可得出直线BE 与⊙O 相切; (2)连接EF ,先根据已知条件得出BD 的值,再在△BEO 中,利用勾股定理推知BE 的长,设出⊙O 的半径为r ,利用切线的性质,用勾股定理列出等式解之即可得出r 的值. 详解:(1)直线BE 与⊙O 相切.理由如下:连接OE ,在矩形ABCD 中,AD ∥BC ,∴∠ADB =∠DBC . ∵OD =OE ,∴∠OED =∠ODE . 又∵∠ABE =∠DBC ,∴∠ABE =∠OED , ∵矩形ABDC ,∠A =90°,∴∠ABE +∠AEB =90°,∴∠OED +∠AEB =90°,∴∠BEO =90°,∴直线BE 与⊙O 相切;(2)连接EF ,方法1:∵四边形ABCD 是矩形,CD =2,∴∠A =∠C =90°,AB =CD =2. ∵∠ABE =∠DBC ,∴sin ∠CBD =3sin ABE ∠= ∴23DCBD sin CBD∠==在Rt △AEB 中,∵CD =2,∴22BC =.∵tan ∠CBD =tan ∠ABE ,∴2222DC AE AEAE BC AB ,,=∴=∴=, 由勾股定理求得6BE =.在Rt △BEO 中,∠BEO =90°,EO 2+EB 2=OB 2.设⊙O 的半径为r ,则222623r r +=-()(),∴r =3, 方法2:∵DF 是⊙O 的直径,∴∠DEF =90°. ∵四边形ABCD 是矩形,∴∠A =∠C =90°,AB =CD =2. ∵∠ABE =∠DBC ,∴sin ∠CBD =33sin ABE ∠=. 设3DC x BD x ==,,则2BC x =.∵CD =2,∴22BC =. ∵tan ∠CBD =tan ∠ABE ,∴2222DC AE AEAE BC AB ,,=∴=∴=, ∴E 为AD 中点.∵DF 为直径,∠FED =90°,∴EF ∥AB ,∴132DF BD ==,∴⊙O 的半径为3.点睛:本题综合考查了切线的性质、勾股定理以及三角函数的应用等知识点,具有较强的综合性,有一定的难度.3.已知:如图,△ABC 中,AC=3,∠ABC=30°.(1)尺规作图:求作△ABC 的外接圆,保留作图痕迹,不写作法; (2)求(1)中所求作的圆的面积.【答案】(1)作图见解析;(2)圆的面积是9π. 【解析】试题分析:(1)按如下步骤作图:①作线段AB 的垂直平分线;②作线段BC 的垂直平分线;③以两条垂直平分线的交点O 为圆心,OA 长为半圆画圆,则圆O 即为所求作的圆. 如图所示(2)要求外接圆的面积,需求出圆的半径,已知AC =3,如图弦AC 所对的圆周角是∠ABC=30°,所以圆心角∠AOC=60°,所以∆AOC是等边三角形,所以外接圆的半径是3故可求得外接圆的面积.(2)连接OA,OB.∵AC=3,∠ABC=30°,∴∠AOC=60°,∴△AOC是等边三角形,∴圆的半径是3,∴圆的面积是S=πr2=9π.4.如图,△ABC中,∠A=45°,D是AC边上一点,⊙O经过D、A、B三点,OD∥BC.(1)求证:BC与⊙O相切;(2)若OD=15,AE=7,求BE的长.【答案】(1)见解析;(2)18.【解析】分析:(1)连接OB,求出∠DOB度数,根据平行线性质求出∠CBO=90°,根据切线判定得出即可;(2)延长BO交⊙O于点F,连接AF,求出∠ABF,解直角三角形求出BE.详解:(1)证明:连接OB.∵∠A=45°,∴∠DOB=90°.∵OD∥BC,∴∠DOB+∠CBO=180°.∴∠CBO=90°.∴直线BC是⊙O的切线.(2)解:连接BD.则△ODB是等腰直角三角形,∴∠ODB=45°,BD=OD=15,∵∠ODB=∠A,∠DBE=∠DBA,∴△DBE∽△ABD,∴BD2=BE•BA,∴(15)2=(7+BE)BE,∴BE=18或﹣25(舍弃),∴BE=18.点睛:本题考查了切线的判定,圆周角定理,解直角三角形等知识点,能综合运用定理进行推理和计算是解此题的关键,题目综合性比较强,难度偏大.5.如图,已知AB为⊙O直径,D是BC的中点,DE⊥AC交AC的延长线于E,⊙O的切线交AD的延长线于F.(1)求证:直线DE与⊙O相切;(2)已知DG⊥AB且DE=4,⊙O的半径为5,求tan∠F的值.【答案】(1)证明见解析;(2)2.【解析】试题分析:(1)连接BC、OD,由D是弧BC的中点,可知:OD⊥BC;由OB为⊙O的直径,可得:BC⊥AC,根据DE⊥AC,可证OD⊥DE,从而可证DE是⊙O的切线;(2)直接利用勾股定理得出GO的长,再利用锐角三角函数关系得出tan∠F的值.试题解析:解:(1)证明:连接OD,BC,∵D是弧BC的中点,∴OD垂直平分BC,∵AB 为⊙O的直径,∴AC⊥BC,∴OD∥AE.∵DE⊥AC,∴OD⊥DE,∵OD为⊙O的半径,∴DE 是⊙O的切线;(2)解:∵D是弧BC的中点,∴DC DB,∴∠EAD=∠BAD,∵DE⊥AC,DG⊥AB且DE=4,∴DE=DG=4,∵DO=5,∴GO=3,∴AG=8,∴tan∠ADG=84=2,∵BF是⊙O的切线,∴∠ABF=90°,∴DG∥BF,∴tan∠F=tan∠ADG=2.点睛:此题主要考查了切线的判定与性质以及勾股定理等知识,正确得出AG,DG的长是解题关键.6.阅读:圆是最完美的图形,它具有一些特殊的性质:同弧或等弧所对的圆周角相等,一条弧所对的圆周角等于这条弧所对的圆心角的一半……先构造“辅助圆”,再利用圆的性质将问题进行转化,往往能化隐为显、化难为易。
决战2020年中考数学压轴题综合提升训练:《四边形》(含答案)
决战2020中考数学压轴题综合提升训练:《四边形》1.如图①,在矩形ABCD中,已知BC=8cm,点G为BC边上一点,满足BG=AB=6cm,动点E以1cm/s的速度沿线段BG从点B移动到点G,连接AE,作EF⊥AE,交线段CD于点F.设点E移动的时间为t(s),CF的长度为y(cm),y与t的函数关系如图②所示.(1)图①中,CG= 2 cm,图②中,m= 2 ;(2)点F能否为线段CD的中点?若可能,求出此时t的值,若不可能,请说明理由;(3)在图①中,连接AF,AG,设AG与EF交于点H,若AG平分△AEF的面积,求此时t的值.解:(1)∵BC=8cm,BG=AB=6cm,∴CG=2cm,∵EF⊥AE,∴∠AEB+∠FEC=90°,且∠AEB+∠BAE=90°,∴∠BAE=∠FEC,且∠B=∠C=90°,∴△ABE∽△ECF,∴,∵t=6,∴BE=6cm,CE=2cm,∴∴CF=2cm,∴m=2,故答案为:2,2;(2)若点F是CD中点,∴CF=DF=3cm,∵△ABE∽△ECF,∴,∴∴EC2﹣8EC+18=0∵△=64﹣72=﹣8<0,∴点F不可能是CD中点;(3)如图①,过点H作HM⊥BC于点M,∵∠C=90°,HM⊥BC,∴HM∥CD,∴△EHM∽△EFC,∴∵AG平分△AEF的面积,∴EH=FH,∴EM=MC,∵BE=t,EC=8﹣t,∴EM=CM=4﹣t,∴MG=CM﹣CG=2﹣,∵,∴∴CF=∵EM=MC,EH=FH,∴MH=CF=∵AB=BG=6,∴∠AGB=45°,且HM⊥BC,∴∠HGM=∠GHM=45°,∴HM=GM,∴=2﹣,∴t=2或t=12,且t≤6,∴t=2.2.问题提出:(1)如图1,△ABC的边BC在直线n上,过顶点A作直线m∥n,在直线m上任取一点D,连接BD、CD,则△ABC的面积=△DBC的面积.问题探究:(2)如图2,在菱形ABCD和菱形BGFE中,BG=6,∠A=60°,求△DGE的面积;问题解决:(3)如图3,在矩形ABCD中,AB=12,BC=10,在矩形ABCD内(也可以在边上)存在一点P,使得△ABP的面积等于矩形ABCD的面积的,求△ABP周长的最小值.解:问题提出:(1)∵两条平行线间的距离一定,∴△ABC与△DBC同底等高,即△ABC的面积=△DBC的面积,故答案为:=;问题探究:(2)如图2,连接BD,∵四边形ABCD,四边形BGFE是菱形,∴AD∥BC,BC∥EF,AD=AB,BG=BE,∴∠A=∠CBE=60°,∴△ADB是等边三角形,△BGE是等边三角形,∴∠ABD=∠GBE=60°,∴BD∥GE,∴S△DGE=S△BGE=BG2=9;(3)如图3,过点P作PE∥AB,交AD于点E,∵△ABP的面积等于矩形ABCD的面积的,∴×12×AE=×12×10∴AE=8,作点A关于PE的对称点A',连接A'B交PE于点P,此时△ABP周长最小,∴A'E=AE=8,∴AA'=16,∴A'B===20,∴△ABP周长的最小值=AP+AB+PB=A'P+PB+AB=20+12=32.3.(1)方法感悟:如图①,在正方形ABCD中,点E、F分别为DC、BC边上的点,且满足∠EAF=45°,连接EF.将△ADE绕点A顺时针旋转90°得到△ABG,易证△GAF≌△EAF,从而得到结论:DE+BF=EF.根据这个结论,若CD=6,DE=2,求EF的长.(2)方法迁移:如图②,若在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是BC、CD上的点,且∠EAF=∠BAD,试猜想DE,BF,EF之间有何数量关系,证明你的结论.(3)问题拓展:如图③,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,E、F 分别是边BC、CD延长线上的点,且∠EAF=∠BAD,试探究线段EF、BE、FD之间的数量关系,请直接写出你的猜想(不必说明理由).解:(1)方法感悟:∵将△ADE绕点A顺时针旋转90°得到△ABG,∴GB=DE=2,∵△GAF≌△EAF∴GF=EF,∵CD=6,DE=2∴CE=4,∵EF2=CF2+CE2,∴EF2=(8﹣EF)2+16,∴EF=5;(2)方法迁移:DE+BF=EF,理由如下:如图②,将△ADE绕点A顺时针旋转90°得到△ABH,由旋转可得,AH=AE,BH=DE,∠1=∠2,∠D=∠ABH,∵∠EAF=∠DAB,∴∠HAF=∠1+∠3=∠2+∠3=∠BAD,∴∠HAF=∠EAF,∵∠ABH+∠ABF=∠D+∠ABF=180°,∴点H、B、F三点共线,在△AEF和△AHF中,∴△AEF≌△AHF(SAS),∴EF=HF,∵HF=BH+BF,∴EF=DE+BF.(3)问题拓展:EF=BF﹣FD,理由如下:在BC上截取BH=DF,∵∠B+∠ADC=180°,∠ADC+∠ADF=180°,∴∠B=∠ADF,且AB=AD,BH=DF,∴△ABH≌△ADF(SAS)∴∠BAH=∠DAF,AH=AD,∵∠EAF=∠BAD,∴∠DAE+∠BAH=∠BAD,∴∠HAE=∠BAD=∠EAF,且AE=AE,AH=AD,∴△HAE≌△FAE(SAS)∴HE=EF,∴EF=HE=BE﹣BH=BE﹣DF.4.如图1,在▱ABCD中,AB=3cm,BC=5cm,AC⊥AB,△ACD沿AC的方向匀速平移得到△PNM,速度为1cm/s;同时,点Q从点C出发,沿CB方向匀速移动,速度为1cm/s,当△PNM停止平移时,点Q也停止移动,如图2,设移动时间为t(s)(0<<4),连结PQ,MQ,解答下列问题:(1)当t为何值时,PQ∥MN?(2)当t为何值时,∠CPQ=45°?(3)当t为何值时,PQ⊥MQ?解:(1)∵AB=3cm,BC=5cm,AC⊥AB,∴AC==4cm,∵MN∥AB,PQ∥MN,∴PQ∥AB,∴,∴,∴t=s(2)如图2,过点Q作QE⊥AC,则QE∥AB,∴,∴,∴CE=,QE=t,∵∠CPQ=45°,∴PE=QE=t,∴t+t+t=4,∴t=s(3)如图2,过点P作PF⊥BC于F点,过点M作MH⊥BC,交BC延长线于点H,∴四边形PMHF是矩形,∴PM=FH=5,∵∠A=∠PFC=90°,∠ACB=∠PCF,∴△ABC∽△FPC,∴,∴=∴PF=,CF=,∴QH=5﹣FQ=5﹣(CF﹣CQ)=,∵PQ⊥MQ,∴∠PQF+∠MQH=90°,且∠PQF+∠FPQ=90°,∴∠FPQ=∠MQH,且∠PFQ=∠H=90°,∴△PFQ∽△QHM,∴,∴∴t=s.5.问题背景:如图1,在正方形ABCD的内部,作∠DAE=∠ABF=∠BCG=∠CDH,根据三角形全等的条件,易得△DAE≌△ABF≌△BCG≌△CDH,从而得四边形EFGH是正方形.类比探究:如图2,在正△ABC的内部,作∠1=∠2=∠3,AD,BE,CF两两相交于D,E,F三点(D,E,F三点不重合).(1)△ABD,△BCE,△CAF是否全等?如果是,请选择其中一对进行证明;(2)△DEF是否为正三角形?请说明理由;(3)如图3,进一步探究发现,△ABD的三边存在一定的等量关系,设BD=a,AD=b,AB=c,请探索a,b,c满足的等量关系.(1)△ABD≌△BCE≌△CAF;理由如下:∵△ABC是正三角形,∴∠CAB=∠ABC=∠BCA=60°,AB=BC=AC,又∵∠1=∠2=∠3,∴∠ABD=∠BCE=∠CAF,在△ABD、△BCE和△CAF中,,∴△ABD≌△BCE≌△CAF(ASA);(2)△DEF是正三角形;理由如下:∵△ABD≌△BCE≌△CAF,∴∠ADB=∠BEC=∠CFA,∴∠FDE=∠DEF=∠EFD,∴△DEF是正三角形;(3)c2=a2+ab+b2.作AG⊥BD于G,如图所示:∵△DEF是正三角形,∴∠ADG=60°,在Rt△ADG中,DG=b,AG=b,在Rt△ABG中,c2=(a+b)2+(b)2,∴c2=a2+ab+b2.6.如图,在四边形ABCD中,AC是对角线,∠ABC=∠CDA=90°,BC=CD,延长BC交AD的延长线于点E.(1)求证:AB=AD;(2)若AE=BE+DE,求∠BAC的值;(3)过点E作ME∥AB,交AC的延长线于点M,过点M作MP⊥DC,交DC的延长线于点P,连接PB.设PB=a,点O是直线AE上的动点,当MO+PO的值最小时,点O与点E是否可能重合?若可能,请说明理由并求此时MO+PO的值(用含a的式子表示);若不可能,请说明理由.(1)证明:∵∠ABC=∠CDA=90°,∵BC=CD,AC=AC,∴Rt△ABC≌Rt△ADC(HL).∴AB=AD.(2)解:∵AE=BE+DE,又∵AE=AD+DE,∴AD=BE.∵AB=AD,∴AB=BE.∴∠BAD=∠BEA.∵∠ABC=90°,∴∠BAD═45°.∵由(1)得△ABC≌△ADC,∴∠BAC=∠DAC.∴∠BAC═22.5°.(3)解:当MO+PO的值最小时,点O与点E可以重合,理由如下:∵ME∥AB,∴∠ABC=∠MEC=90°,∠MAB=∠EMA.∵MP⊥DC,∴∠MPC=90°.∴∠MPC=∠ADC=90°.∴PM∥AD.∴∠EAM=∠PMA.由(1)得,Rt△ABC≌Rt△ADC,∴∠EAC=∠MAB,∴∠EMA=∠AMP.即MC平分∠PME.又∵MP⊥CP,ME⊥CE,∴PC=EC.如图,连接PB,连接PE,延长ME交PD的延长线于点Q.设∠EAM=α,则∠MAP=α.在Rt△ABE中,∠BEA=90°﹣2α.在Rt△CDE中,∠ECD=90°﹣∠BEA=2α.∵PC=EC,∴∠PEB=∠EPC=∠ECD=α.∴∠PED=∠BEA+∠PEB=90°﹣α.∵ME∥AB,∴∠QED=∠BAD=2α.当∠PED=∠QED时,∵∠PDE=∠QDE,DE=DE,∴△PDE≌△QDE(ASA).∴PD=DQ.即点P与点Q关于直线AE成轴对称,也即点M、点E、点P关于直线AE的对称点Q,这三点共线,也即MO+PO的值最小时,点O与点E重合.因为当∠PED=∠QED时,90°﹣α=2α,也即α=30°.所以,当∠ABD=60°时,MO+PO取最小值时的点O与点E重合.此时MO+PO的最小值即为ME+PE.∵PC=EC,∠PCB=∠ECD,CB=CD,∴△PCB≌△ECD(SAS).∴∠CBP=∠CDE=90°.∴∠CBP+∠ABC=180°.∴A,B,P三点共线.当∠ABD=60°时,在△PEA中,∠PAE=∠PEA=60°.∴∠EPA=60°.∴△PEA为等边三角形.∵EB⊥AP,∴AP=2AB=2a.∴EP=AE=2a.∵∠EMA=∠EAM=30°,∴EM=AE=2a.∴MO+PO的最小值为4a.7.已知:如图,在正方形ABCD中,点E在AD边上运动,从点A出发向点D运动,到达D点停止运动.作射线CE,并将射线CE绕着点C逆时针旋转45°,旋转后的射线与AB边交于点F,连接EF.(1)依题意补全图形;(2)猜想线段DE,EF,BF的数量关系并证明;(3)过点C作CG⊥EF,垂足为点G,若正方形ABCD的边长是4,请直接写出点G 运动的路线长.解:(1)补全图形如图1所示:(2)线段DE,EF,BF的数量关系为:EF=DE+BF.理由如下:延长AD到点H,使DH=BF,连接CH,如图2所示:∵四边形ABCD是正方形,∴∠BCD=∠ADC=∠B=90°,BC=DC,∴∠CDH=90°=∠B,在△CDH和△CBF中,,∴△CDH≌△CBF(SAS).∴CH=CF,∠DCH=∠BCF.∵∠ECF=45°,∴∠ECH=∠ECD+∠DCH=∠ECD+∠BCF=45°.∴∠ECH=∠ECF=45°.在△ECH和△ECF中,,∴△EC H≌△ECF(SAS).∴EH=EF.∵EH=DE+DH,∴EF=DE+BF;(3)由(2)得:△ECH≌△ECF(SAS),∴∠CEH=∠CEF,∵CD⊥AD,CG⊥EF,∴CD=CG=4,∴点G的运动轨迹是以C为圆心4为半径的弧DB,∴点G运动的路线长==2π.8.如图,在正方形ABCD中,P是边BC上的一动点(不与点B,C重合),点B关于直线AP的对称点为E,连接AE.连接DE并延长交射线AP于点F,连接BF.(1)若∠BAP=α,直接写出∠ADF的大小(用含α的式子表示);(2)求证:BF⊥DF;(3)连接CF,用等式表示线段AF,BF,CF之间的数量关系,并证明.(1)解:由轴对称的性质得:∠EAP=∠BAP=α,AE=AB,∵四边形ABCD是正方形,∴∠BAD=90°,AB=AD,∴∠DAE=90°﹣2α,AD=AE,∴∠ADF=∠AED=(180°﹣∠DAE)=(90°+2α)=45°+α;(2)证明:∵四边形ABCD是正方形,∴∠BAD=90°,AB=AD,∵点E与点B关于直线AP对称,∴∠AEF=∠ABF,AE=AB.∴AE=AD.∴∠ADE=∠AED.∵∠AED+∠AEF=180°,∴在四边形ABFD中,∠ADE+∠ABF=180°,∴∠BFD+∠BAD=180°,∴∠BFD=90°∴BF⊥DF;(3)解:线段AF,BF,CF之间的数量关系为AF=BF+CF,理由如下:过点B作BM⊥BF交AF于点M,如图所示:∵四边形ABCD是正方形,∴AB=CB,∠ABC=90°,∴∠ABM=∠CBF,∵点E与点B关于直线AP对称,∠BFD=90°,∴∠MFB=∠MFE=45°,∴△BMF是等腰直角三角形,∴BM=BF,FM=BF,在△AMB和△CFB中,,∴△AMB≌△CFB(SAS),∴AM=CF,∵AF=FM+AM,∴AF=BF+CF.9.如图1,已知等腰Rt△ABC中,E为边AC上一点,过E点作EF⊥AB于F点,以为边作正方形,且AC=3,EF=.(1)如图1,连接CF,求线段CF的长;(2)将等腰Rt△ABC绕点旋转至如图2的位置,连接BE,M点为BE的中点,连接MC,MF,求MC与MF关系.解:(1)如图1,∵△ABC是等腰直角三角形,AC=3,∴AB=3,过点C作CM⊥AB于M,连接CF,∴CM=AM=AB=,∵四边形AGEF是正方形,∴AF=EF=,∴MF=AM﹣AF=﹣,在Rt△CMF中,CF===;(2)CM=FM,CM⊥FM,理由:如图2,过点B作BH∥EF交FM的延长线于H,连接CF,CH,∴∠BHM=∠EFM,∵四边形AGEF是正方形,∴EF=AF∵点M是BE的中点,∴BM=EM,在△BMH和△EMF中,,∴△BMH≌△EMF(AAS),∴MH=MF,BH=EF=AF∵四边形AGEF是正方形,∴∠FAG=90°,EF∥AG,∵BH∥EF,∴BH∥AG,∴∠BAG+∠ABH=180°,∴∠CBH+∠ABC+∠BAC+∠CAG=180°.∵△ABC是等腰直角三角形,∴BC=AC,∠ABC=∠BAC=45°,∴∠CBH+∠CAG=90°,∵∠CAG+∠CAF=90°,∴∠CBH=∠CAF,在△BCH和△ACF中,,∴△BCH≌△ACF(SAS),∴CH=CF,∠BCH=∠ACF,∴∠HCF=∠BCH+∠BCF=∠ACF+∠BCF=90°,∴△FCH是等腰直角三角形,∵MH=MF,∴CM=FM,CM⊥FM;10.如图将正方形ABCD绕点A顺时针旋转角度α(0°<α<90°)得到正方形AB′C′D′.(1)如图1,B′C′与AC交于点M,C′D′与AD所在直线交于点N,若MN∥B′D′,求α;(2)如图2,C′B′与CD交于点Q,延长C′B′与BC交于点P,当α=30°时.①求∠DAQ的度数;②若AB=6,求PQ的长度.解:(1)如图1中,∵MN∥B′D′,∴∠C′MN=∠C′B′D′=45°,∠C′NM=∠C′D′B′=45°,∴∠C′MN=∠C′NM,∴C′M=C′N,∵C′B′=C′D′,'∴MB′=ND′,∵AB′=AD′,∠AB′M=∠AD′N=90°,∴△AB′M≌△AD′N(SAS),∴∠B′AM=∠D′AN,∵∠B′AD′=90°,∠MAN=45°,∴∠B′AM=∠D′AN=22.5°,∵∠BAC=45°,∴∠BAB′=22.5°,∴α=22.5°.(2)①如图2中,∵∠AB′Q=∠ADQ=90°,AQ=AQ,AB′=AD,∴Rt△AQB′≌Rt△AQD(HL),∴∠QAB′=∠QAD,∵∠BAB′=30°,∠BAD=90°,∴∠B′AD=30°,∴∠QAD=∠B′AD=30°.②如图2中,连接AP,在AB上取一点E,使得AE=EP,连接EP.设PB=a.∵∠ABP=∠AB′P=90°,AP=AP,AB=AB′,∴Rt△APB≌Rt△APB′(HL),∴∠BAP=∠PAB′=15°,∵EA=EP,∴∠EAP=∠EPA=15°,∴∠BEP=∠EAP+∠EPA=30°,∴PE=AE=2a,BE=a,∵AB=6,∴2a+a=6,∴a=6(2﹣).∴PB=6(2﹣),∴PC=BC﹣PB=6﹣6(2﹣)=6﹣6,∵∠CPQ+∠BPB′=180°,∠BAB′+∠BPB′=180°,∴∠CPQ=∠BAB′=30°,∴PQ===12﹣4.11.已知,如图1,在边长为2的正方形ABCD中,E是边AB的中点,点F在边AD上,过点A作AG⊥EF,分别交线段CD、EF于点G、H(点G不与线段CD的端点重合).(1)如图2,当G是边CD中点时,求AF的长;(2)设AF=x,四边形FHGD的面积是y,求y关于x的函数关系式,并写出x的取值范围;(3)联结ED,当∠FED=45°时,求AF的长.解:(1)∵E是AB的中点,AB=2,∴AE=AB=1,同理可得DG=1,∵AG⊥EF,∴∠AHF=∠HAF+∠AFH=90°,∵四边形ABCD是正方形,∴∠ADG=90°=∠DAG+∠AGD,∴∠AFH=∠AGD,∵∠EAF=∠ADG=90°,∴△EAF∽△ADG,∴,即,∴AF=;(2)如图1,由(1)知:△EAF∽△ADG,∴,即,∴DG=2x,∵∠HAF=∠DAG,∠AHF=∠ADG=90°,∴∠AHF∽△ADG,∴=,∴=,∴AH==,FH==,∴y=S△ADG﹣S△AFH,=,=2x﹣,如图2,当G与C重合时,∵EF⊥AG,∴∠AHE=90°,∵∠EAH=45°,∴∠AEH=45°,∴AF=AE=1,∴0<x<1;∴y关于x的函数关系式为:y=2x﹣(0<x<1);(3)如图3,过D作DM⊥AG,交BC于M,连接EM,延长EA至N,使AN=CM,连接DN,设CM=a,则AN=a,∵AD=CD,∠NAD=∠DCM=90°,∴△NAD≌△MCD(SAS),∴∠ADN=∠CDM,DN=DM,∵EF⊥AG,DM⊥AG,∴EF∥DM,∴∠EDM=∠FED=45°,∴∠ADE+∠CDM=∠EDM=45°,∴∠NDA+∠ADE=∠NDE=∠EDM,∵ED=ED,∴△NDE≌△MDE(SAS),∴EN=EM=a+1,∵BM=2﹣a,在Rt△EBM中,由勾股定理得:BE2+BM2=EM2,∴12+(2﹣a)2=(a+1)2,a=,∵∠AEF+∠EAG=∠EAG+∠DAG,∴∠AEF=∠DAG=∠CDM,∴tan∠AEF=tan∠CDM,∴,∴,∴AF=.12.如图1,对角线互相垂直的四边形叫做垂美四边形.(1)概念理解:如图2,在四边形ABCD中,AB=AD,CB=CD,问四边形ABCD 是垂美四边形吗?请说明理由;(2)性质探究:如图1,四边形ABCD的对角线AC、BD交于点O,AC⊥BD.试证明:AB2+CD2=AD2+BC2;(3)解决问题:如图3,△ACB中,∠ACB=90°,AC⊥AG且AC=AG,AB⊥AE 且AE=AB,连结CE、BG、GE.已知AC=4,AB=5,求GE的长.解:(1)四边形ABCD是垂美四边形,理由如下:连接AC,BD,∵AB=AD,∴点A在线段BD的垂直平分线上,∵CB=CD,∴点C在线段BD的垂直平分线上,∴AC是线段BD的垂直平分线,∴四边形ABCD是垂美四边形;(2)∵AC⊥BD,∴∠AOD=∠AOB=∠BOC=∠COD=90°,由勾股定理得,AD2+BC2=AO2+DO2+BO2+CO2,AB2+CD2=AO2+BO2+CO2+DO2,∴AD2+BC2=AB2+CD2;故答案为:AB2+CD2=AD2+BC2;(3)∵∠CAG=∠BAE=90°,∴∠CAG+∠BAC=∠BAE+∠BAC,即∠GAB=∠CAE,在△GAB和△CAE中,,∴△GAB≌△CAE(SAS),∴∠ABG=∠AEC,又∠AEC+∠AME=90°,∴∠ABG+∠AME=90°,即CE⊥BG,∴四边形CGEB是垂美四边形,由(2)得,CG2+BE2=CB2+GE2,∵AC=4,AB=5,∴BC=3,CG=4,BE=5,∴GE2=CG2+BE2﹣CB2=73,∴GE=.13.如图1,四边形ACEB,连接BC,∠ACB=∠BEC=90°,D在AB上,连接CD,∠ACD=∠ABC,BE=CD.(1)求证:四边形CDBE为矩形;(2)如图2,连接DE,DE交BC于点O,若tan∠A=2,在不添加任何辅助线和字母的情况下,请直接写出图中所有长度与AD的长度相等的线段.(1)证明:∵∠ACB=90°,∴∠A+∠ABC=90°,∵∠ACD=∠ABC,∴∠A+∠ACD=90°,∴∠ADC=90°,∴∠BDC=180°﹣90°=90°=∠BEC,在Rt△BCD和Rt△CBE中,,∴Rt△BCD≌Rt△CBE(HL),∴BD=CE,∵CD=BE,∴四边形CDBE是平行四边形,又∵∠BEC=90°,∴四边形CDBE为矩形;(2)解:图中所有长度与AD的长度相等的线段为AC=OC=OB=OD=OE=AD.理由如下:由(1)得:四边形CDBE为矩形,∠ADC=90°,∴BC=DE,OD=OE,OB=OC,∴OC=OB=OD=OE=BC,∵∠ADC=∠ACB=90°,∴tan∠A=2==,∴CD=2AD,BC=2AC,∴AC===AD,∴DE=BC=2AC,∴OC=OB=OD=OE=BC=AC=AD,∴AC=OC=OB=OD=OE=AD.14.如图在直角坐标系中,四边形ABCO为正方形,A点的坐标为(a,0),D点的坐标为(0,b),且a,b满足(a﹣3)2+|b﹣|=0.(1)求A点和D点的坐标;(2)若∠DAE=∠OAB,请猜想DE,OD和EB的数量关系,说明理由.(3)若∠OAD=30°,以AD为三角形的一边,坐标轴上是否存在点P,使得△PAD 为等腰三角形,若存在,直接写出有多少个点P,并写出P点的坐标,选择一种情况证明.解:(1)∵(a﹣3)2+|b﹣|=0,∴a=3,b=,∴D(0,),A(3,0);(2)DE=OD+EB;理由如下:如图1,在CO的延长线上找一点F,使OF=BE,连接AF,在△AOF和△ABE中,,∴△AOF≌△ABE(SAS),∴AF=AE,∠OAF=∠BAE,又∵∠OAB=90°,∠DAE=,∴∠BAE+∠DAO=45°,∴∠DAF=∠OAF+∠DAO=45°,∴∠DAF=∠EAD,在△AFD和△AED中,,∴△AFD≌△AED(SAS),∴DF=DE=OD+EB;(3)有3种情况共6个点:①当DA=DP时,如图2,Rt△ADO中,OD=,OA=3,∴AD===2,∴P 1(﹣3,0),P2(0,3),P3(0,﹣);②当AP4=DP4时,如图3,∴∠ADP4=∠DAP4=30°,∴∠OP4D=60°,Rt△ODP 4中,∠ODP4=30°,OD=,∴OP4=1,∴P4(1,0);③当AD=AP时,如图4,∴AD=AP 5=AP6=2,∴P 5(3+2,0),P6(3﹣2,0),综上,点P的坐标为:∴P(﹣3,0)或(0,3)或(0,﹣)或(1,0)或(3+2,0)或(3﹣2,0).证明:P 5(3+2,0),∵∠OAD=30°且△ADO是直角三角形,又∵AO=3,DO=,∴DA=2,而P 5A=|3+2﹣3|=2,∴P5A=DA,∴△P5AD是等腰三角形.15.已知,在四边形ABCD中,点M、N、P、Q分别为边AB、AD、CD、BC的中点,连接MN、NP、PQ、MQ.(1)如图1,求证:四边形MNPQ为平行四边形;(2)如图2,连接AC,AC分别交MN、PQ于点E、F,连接BD,BD分别交MQ、NP于点G、H,AC与BD交于点O,且AC⊥BD,若tan∠ADB=,在不添加任何辅助线的情况下,请直接写出图2中所有长度等于OD的线段.(1)证明:如图1,连接BD.∵Q,P分别是BC,CD的中点,所以PQ∥BD,PQ=BD.∵M,N分别是AB,AD的中点.∴MN∥BD,MN=BD.∴PQ∥MN,且PQ=MN.∴四边形MNPQ是平行四边形.(2)解:∵四边形MNPQ是平行四边形,AC⊥BD,∴四边形MNPQ是矩形,∴四边形NHOE和四边形EOGM都是矩形,∴NH=OE=MG=AE=,∵tan∠ADB=,∴,∴NH=OE=MG=AE=.即长度等于OD的线段有NH,OE,MG,AE.。
2021中考数学分类专题提分训练--一次函数综合题专项2(附详细答案)
中考数学分类专题提分训练一次函数压轴题专项1.A、B两地相距90km,甲、乙两人从两地出发相向而行,甲先出发.图中l1,l2表示两人离A地的距离S(km)与时间t(h)的关系,结合图象回答下列问题:(1)表示甲离A地的距离与时间关系的图象是(填l1或l2);甲的速度是km/h;乙的速度是km/h.(2)甲出发后多少时间两人恰好相距15km?2.小泽和小帅两同学分别从甲地出发,骑自行车沿同一条路到乙地参加社会实践活动.如图折线OAB和线段CD分别表示小泽和小帅离甲地的距离y(单位:千米)与时间x(单位:小时)之间函数关系的图象.根据图中提供的信息,解答下列问题:(1)小帅的骑车速度为千米/小时;点C的坐标为;(2)求线段AB对应的函数表达式;(3)当小帅到达乙地时,小泽距乙地还有多远?3.如图,在平面直角坐标系中,直线l1的解析式为y=x,直线l2的解析式为y=﹣x+3,与x轴、y轴分别交于点A、点B,直线l1与l2交于点C.(1)求点A、点B、点C的坐标,并求出△COB的面积;(2)若直线l2上存在点P(不与B重合),满足S△COP=S△COB,请求出点P的坐标;(3)在y轴右侧有一动直线平行于y轴,分别与l1,l2交于点M、N,且点M在点N 的下方,y轴上是否存在点Q,使△MNQ为等腰直角三角形?若存在,请直接写出满足条件的点Q的坐标;若不存在,请说明理由.4.如图,直线l1的解析式为y=﹣3x+3,且l1与x轴交于点D,直线l2经过点A、B,直线l1、l2交于点C.(1)求直线l2的解析表达式;(2)求△ADC的面积;(3)在直线l2上存在异于点C的另一点P,使得△ADP与△ADC的面积相等,请求出点P的坐标.5.如图,在平面直角坐标系中,直线y=﹣x+b分别与x轴、y轴交于点A、B,且点A的坐标为(4,0),四边形ABCD是正方形.(1)填空:b=;(2)求点D的坐标;(3)点M是线段AB上的一个动点(点A、B除外),试探索在x上方是否存在另一个点N,使得以O、B、M、N为顶点的四边形是菱形?若不存在,请说明理由;若存在,请求出点N的坐标.6.在平面直角坐标系xOy中,直线l1:y=k1x+6与x轴、y轴分别交于A、B两点,且OB=OA,直线l2:y=k2x+b经过点C(,1),与x轴、y轴、直线AB分别交于点E、F、D三点.(1)求直线l1的解析式;(2)如图1,连接CB,当CD⊥AB时,求点D的坐标和△BCD的面积;(3)如图2,当点D在直线AB上运动时,在坐标轴上是否存在点Q,使△QCD是以CD为底边的等腰直角三角形?若存在,请直接写出点Q的坐标,若不存在,请说明理由.7.如图表示甲骑摩托车和乙驾驶汽车沿相同的路线行驶90千米,由A地到B地时,行驶的路程y(千米)与经过的时间x(小时)之间的关系.请根据图象填空:(1)摩托车的速度为千米/小时;汽车的速度为千米/小时;(2)汽车比摩托车早小时到达B地.(3)在汽车出发后几小时,汽车和摩托车相遇?说明理由.8.阅读下列一段文字,然后回答下列问题.已知在平面内两点P1(x1,y1)、P2(x2,y2),其两点间的距离,同时,当两点所在的直线在坐标轴或平行于坐标轴或垂直于坐标轴时,两点间距离公式可简化为|x2﹣x1|或|y2﹣y1|.(1)已知A(2,4)、B(﹣3,﹣8),试求A、B两点间的距离;(2)已知A、B在平行于y轴的直线上,点A的纵坐标为4,点B的纵坐标为﹣1,试求A、B两点间的距离;(3)已知一个三角形各顶点坐标为D(1,6)、E(﹣2,2)、F(4,2),你能判定此三角形的形状吗?说明理由;(4)在(3)的条件下,平面直角坐标系中,在x轴上找一点P,使PD+PF的长度最短,求出点P的坐标以及PD+PF的最短长度.9.如图,在平面直角坐标系中,点A、B分别在x轴、y轴上,线段OA、OB的长(OA <OB)是方程组的解,点C是直线y=2x与直线AB的交点,点D在线段OC 上,OD=(1)求点C的坐标;(2)求直线AD的解析式;(3)P是直线AD上的点,在平面内是否存在点Q,使以O、A、P、Q为顶点的四边形是菱形(邻边相等的平行四边形)?若存在,请写出点Q的坐标;若不存在,请说明理由.10.一架方梯AB长2.5米,如图,斜靠在一面墙上,梯子底端离墙OB为0.7米,(1)这个梯子的顶端距地面有多高?(2)如果梯子的底端右滑了0.8米,那么梯子的顶端在竖直向下方向滑动了几米?(3)以O为原点建立直角坐标系,求A'B'所在直线的解析式.答案1.解:(1)∵甲先出发,∴表示甲离A地的距离与时间关系的图象是l1,甲的速度是:90÷2=45km/h,乙的速度是:90÷(3.5﹣0.5)=90÷3=30km/h,故答案为:l1,45,30;(2)设甲对应的函数解析式为y=ax+b,,得,∴甲对应的函数解析式为y=﹣45x+90,设乙对应的函数解析式为y=cx+d,,得,即乙对应的函数解析式为y=30x﹣15,∴|(﹣45x+90)﹣(30x﹣15)|=15,解得,x1=1.2,x2=1.6,答:甲出发后1.2h或1.6h时两人恰好相距15km.2.解:(1)由图可得,小帅的骑车速度是:(24﹣8)÷(2﹣1)=16千米/小时,点C的横坐标为:1﹣8÷16=0.5,∴点C的坐标为(0.5,0),故答案为:16千米/小时,(0.5,0);(2)设线段AB对应的函数表达式为y=kx+b(k≠0),∵A(0.5,8),B(2.5,24),∴,解得:,∴线段AB对应的函数表达式为y=8x+4(0.5≤x≤2.5);(3)当x=2时,y=8×2+4=20,∴此时小泽距离乙地的距离为:24﹣20=4(千米),答:当小帅到达乙地时,小泽距乙地还有4千米.3.解:(1)直线l2的解析式为y=﹣x+3,与x轴、y轴分别交于点A、点B,则点A、B的坐标分别为(6,0)、(0,3),联立式y=x,y=﹣x+3并解得:x=2,故点C(2,2);△COB的面积=×OB×x C=×3×2=3;(2)设点P(m,﹣m+3),S△COP=S△COB,则BC=PC,解得:m=4或0(舍去0),故点P(4,1);(3)设点M、N、Q的坐标分别为(m,m)、(m,3﹣m)、(0,n),①当∠MQN=90°时,∵∠GNQ+∠GQN=90°,∠GQN+∠HQM=90°,∴∠MQH=∠GNQ,∠NGQ=∠QHM=90°,QM=QN,∴△NGQ≌△QHM(AAS),∴GN=QH,GQ=HM,即:m=3﹣m﹣n,n﹣m=m,解得:m=,n=;②当∠QNM=90°时,则MN=QN,即:3﹣m﹣m=m,解得:m=,n=y N=3﹣=;③当∠NMQ=90°时,同理可得:n=;综上,点Q的坐标为(0,)或(0,)或(0,).4.解:(1)设直线l2的解析表达式为y=kx+b(k≠0),把A(4,0)、B(3,)代入表达式y=kx+b,,解得:,∴直线l2的解析表达式为y=x﹣6.(2)当y=﹣3x+3=0时,x=1,∴D(1,0).联立y=﹣3x+3和y=x﹣6,解得:x=2,y=﹣3,∴S△ADC=×3×|﹣3|=.(3)∵△ADP与△ADC底边都是AD,△ADP与△ADC的面积相等,∴两三角形高相等.∵C(2,﹣3),∴点P的纵坐标为3.当y=x﹣6=3时,x=6,∴点P的坐标为(6,3).5.解:(1)把(4,0)代入y=﹣x+b,得:﹣3+b=0,解得:b=3,故答案是:3;(2)如图1,过点D作DE⊥x轴于点E,∵正方形ABCD中,∠BAD=90°,∴∠1+∠2=90°,又∵直角△OAB中,∠1+∠3=90°,∴∠1=∠3,在△OAB和△EDA中,,∴△OAB≌△EDA,∴AE=OB=3,DE=OA=4,∴OE=4+3=7,∴点D的坐标为(7,4);(3)存在.①如图2,当OM=MB=BN=NM时,四边形OMBN为菱形.则MN在OB的中垂线上,则M的纵坐标是,把y=代入y=﹣x+3中,得x=2,即M的坐标是(2,),则点N的坐标为(﹣2,).②如图3,当OB=BN=NM=MO=3时,四边形BOMN为菱形.∵ON⊥BM,根据题意得:,解得:.则点N的坐标为(,).综上所述,满足条件的点N的坐标为(﹣2,)或(,).6.解:(1)y=k1x+6,当x=0时,y=6,∴OB=6,∵OB=OA,∴OA=2,∴A(﹣2,0),把A(﹣2,0)代入:y=k1x+6中得:﹣2k1+6=0,k1=,∴直线l1的解析式为:y=x+6;(2)如图1,过C作CH⊥x轴于H,∵C(,1),∴OH=,CH=1,Rt△ABO中,AB==4,∴AB=2OA,∴∠OBA=30°,∠OAB=60°,∵CD⊥AB,∴EH=,∴OE=OH+EH=2,∴E(2,0),把E(2,0)和C(,1)代入y=k2x+b中得:,解得:,∴直线l2:y=﹣x+2,∴F(0,2)即BF=6﹣2=4,则,解得,∴D(﹣,3),∴S△BCD=BF(x C﹣x D)==4;(3)分四种情况:①当Q在y轴的正半轴上时,如图2,过D作DM⊥y轴于M,过C作CN⊥y轴于N,∵△QCD是以CD为底边的等腰直角三角形,∴∠CQD=90°,CQ=DQ,∴∠DMQ=∠CNQ=90°,∴∠MDQ=∠CQN,∴△DMQ≌△QNC(AAS),∴DM=QN,QM=CN=,设D(m,m+6)(m<0),则Q(0,﹣m+1),∴OQ=QN+ON=OM+QM,即﹣m+1=m+6+,m==1﹣2,∴Q(0,2);②当Q在x轴的负半轴上时,如图3,过D作DM⊥x轴于M,过C作CN⊥x轴于N,同理得:△DMQ≌△QNC(AAS),∴DM=QN,QM=CN=1,设D(m,m+6)(m<0),则Q(m+1,0),∴OQ=QN﹣ON=OM﹣QM,即m+6﹣=﹣m﹣1,m=5﹣4,∴Q(6﹣4,0);③当Q在x轴的负半轴上时,如图4,过D作DM⊥x轴于M,过C作CN⊥x轴于N,同理得:△DMQ≌△QNC(AAS),∴DM=QN,QM=CN=1,设D(m,m+6)(m<0),则Q(m﹣1,0),∴OQ=QN﹣ON=OM+QM,即﹣m﹣6﹣=﹣m+1,m=﹣4﹣5,∴Q(﹣4﹣6,0);④当Q在y轴的负半轴上时,如图5,过D作DM⊥y轴于M,过C作CN⊥y轴于N,同理得:△DMQ≌△QNC(AAS),∴DM=QN,QM=CN=,设D(m,m+6)(m<0),则Q(0,m+1),∴OQ=QN﹣ON=OM+QM,即﹣m﹣6+=﹣m﹣1,m=﹣2﹣1,∴Q(0,﹣2);综上,存在点Q,使△QCD是以CD为底边的等腰直角三角形,点Q的坐标是(0,±2)或(6﹣4,0)或(﹣4﹣6,0).7.解:(1)摩托车的速度为:90÷5=18千米/小时,汽车的速度为:90÷(4﹣2)=45千米/小时,故答案为:18、45;(2)5﹣4=1,即汽车比摩托车早1小时到达B地,故答案为:1;(3)解:在汽车出发后小时,汽车和摩托车相遇,理由:设在汽车出发后x小时,汽车和摩托车相遇,45x=18(x+2)解得x=∴在汽车出发后小时,汽车和摩托车相遇.8.解:(1)∵A(2,4)、B(﹣3,﹣8),∴AB==13;(2)∵A、B在平行于y轴的直线上,点A的纵坐标为4,点B的纵坐标为﹣1,∴AB=|4﹣(﹣1)|=5;(3)△DEF为等腰三角形,理由为:∵D(1,6)、E(﹣2,2)、F(4,2),∴DE==5,DF==5,EF==6,即DE=DF,则△DEF为等腰三角形;(4)做出F关于x轴的对称点F′,连接DF′,与x轴交于点P,此时DP+PF最短,设直线DF′解析式为y=kx+b,将D(1,6),F′(4,﹣2)代入得:,解得:,∴直线DF′解析式为y=﹣x+,令y=0,得:x=,即P(,0),∵PF=PF′,∴PD+PF=DP+PF′=DF′==,则PD+PF的长度最短时点P的坐标为(,0),此时PD+PF的最短长度为.9.解:(1),解得,,∵OA<OB,∴OA=6,OB=12,设直线AB的解析式为:y=kx+b,则,解得,,∴直线AB的解析式为:y=﹣2x+12,,解得,,∴点C的坐标为(3,6);(2)设点D的坐标为(a,2a),∵OD=2,∴a2+(2a)2=(2)2,解得,a=±2,∵由题意得,a>0,∴a=2.∴D(2,4),设直线AD的解析式为y=mx+n,把A(6,0),D(2,4)代入,得,解得,,∴直线AD的解析式为:y=﹣x+6;(3)存在,理由如下:∵点D的坐标为(2,4),点A的坐标为(6,0),∴∠OAD=45°,当四边形OAPQ为菱形时,OQ=OA=6,∴点Q的坐标为(﹣3,3),当四边形OAP′Q′为菱形时,OQ′=OA=6,∴点Q′的坐标为(3,﹣3),直线AD与y轴的交点P′′的坐标为(0,6),∴OP′′=OA=6,当四边形OAQ′′P′′为菱形时,点Q′′的坐标为(6,6),当四边形OPAQ是以OA为对角线的菱形时,点Q的坐标为(3,﹣3),综上所述,以O、A、P、Q为顶点的四边形是菱形时,点Q的坐标为(﹣3,3)或(3,﹣3)或(6,6)或(3,﹣3).10.解:(1)由题意可得,AO==2.4(米),即这个梯子的顶端距地面有2.4米;当梯子的底端右滑了0.8米,梯子顶端距地面的距离为:=2(米),2.4﹣2=0.4(米),即梯子的顶端在竖直向下方向滑动了0.4米;(3)由题意可得,点A′(0,2),点B′(1.5,0),设过A′、B′的直线的解析式为y=kx+b,,解得,,即A′B′所在直线的解析式是y=.。
2023年春九年级数学中考复习《圆综合压轴解答题》专题提升训练(附答案)
2023年春九年级数学中考复习《圆综合压轴解答题》专题提升训练(附答案)1.如图,已知四边形ACBD内接于⊙O,AB是⊙O的直径,AB=10,点D是半圆的中点,连接CD,点I是CD上一点,且DI=DB.(1)求证:点I是△ABC的内心;(2)若BC=6,求△BIC的面积;(3)随着点C的变化,点I的位置也发生改变,请探求CI长度的取值范围.2.如图,在△ABC中,AB=4,以AB为直径作⊙O,分别交BC于点D,交CA的延长线于点E,过点D作⊙O的切线DH交AC于点H,且DH⊥AC,连接DE与AB交于点G.(1)求证:AB=AC;(2)填空:①当BD=时,四边形EODA为菱形;②若∠EGA=∠EAG,则GO 的长为.3.如图,AB是⊙O的直径,点D在⊙O上,连接AD并延长至点C,连接BC交⊙O于点E,AB=BC=10,AC=12,过点D作DF⊥BC于点F.(1)求证:直线DF是⊙O的切线;(2)连接DE,设△CDE的面积为S1,四边形ADEB的面积为S2,求的值;(3)点P在上,且的长为,点Q为线段BD上一动点,连接PQ,求的最小值.4.(1)如图①,在△ABC中,∠BAC=90°,AB=4,AC=3,若AD平分∠BAC交CB于点D,那么点D到AC的距离为;(2)如图②,四边形ABCD内接于⊙O,AC为直径,点B是半圆AC的三等分点(弧AB<弧BC),连接BD,若BD平分∠ABC,且BD=8,求四边形ABCD的面积.(3)如图③,有一块半径为1的⊙O,若⊙O的内接四边形ABCD满足∠ABC=60°,AB=AD,且AD+DC=2,求AB的长.5.如图1,△ABC内接于⊙O,弦AE交BC于点D,连接BO,且∠ABO=∠DAC.(1)求证:AE⊥BC;(2)如图2,点F在弧AC上,连接CF、BF,BF交AE于点M,若∠ACF=∠OBC,求证:MD=ED;(3)如图3,在(2)的条件下,∠BFC=3∠EAC,若BM=,AM=3时,求弦CF 的长.6.如图,在△ABC中,AB=AC,⊙O是△ABC的外接圆,连接BO并延长交边AC于点D.(1)如图1,求证:∠BAC=2∠ABD;(2)如图2,过点B作BH⊥AC于点H,延长BH交⊙O于点G,连接OC,CG,OC 交BG于点F,求证:BF=2HG;(3)如图3,在(2)的条件下,若AD=2,CD=3,求线段BF的长.7.如图,等边△ABC内接于⊙O,点D是弧AC上一点,连接BD交AC于E.(1)如图1,求证∠ADB=∠CDB;(2)如图2,点F为线段BD上一点,连接CF,若∠BCF=2∠ABD时,求证:BF=DE+AD;(3)在(2)的条件下,作∠BCF的平分线交⊙O于M,在CM上取点R,连接AR交CF于点T,若TR=1,MR=5,∠CAT=3∠ACD,求AT的长.8.如图,在△ABC中,∠C=90°,AC=BC=2.(1)若点D、E、F分别在AB,AC,BC边上(如图1),连接DE,DF,EF,且∠EDF =90°,DE=DF.①四边形DECF的四个顶点是否在同一个圆上,并说明你的理由;②EF最小值为;四边形CEDF的面积是;(请直接写出答案)③点C到线段EF的最大距离为;(请直接写出答案)(2)若点D、E、F分别在AC,BC,AB边上(如图2),连接DE,DF,EF,且∠EDF =90°,DE=DF,求EF的最小值.9.已知,△ABC内接于⊙O,AD⊥BC于点G,连接AO.(1)如图1,求证:∠BAO=∠CAD;(2)如图2,过点O作ON⊥BC于N,过点B作BH⊥AC于H,交AD于点E,交⊙O 于点F,求证:AE=2ON;(3)如图3,在(2)的条件下,直线OE交AB于点P,交AC于点Q,若HC:EF=:2,BP=11,CQ=2,求线段AD的长.10.(1)如图1,P是半径为5的⊙O上一点,直线l与⊙O交于A、B两点,AB=8,则点P到直线l的距离的最大值为.问题探究:(2)如图2,在等腰△ABC中,BA=BC,∠ABC=45°,F是高AD和高BE的交点,求S△ABF:S△BFD的值.问题解决:(3)如图3,四边形ABCD是某区的一处景观示意图,AD∥BC,∠ABC=60°,∠BCD =90°,AB=60m,BC=80m,M是AB上一点,且AM=20m.按设计师要求,需在四边形区域内确定一个点N,修建花坛△AMN和草坪△BCN,且需DN=25m.已知花坛的造价是每平米400元,草坪的造价是每平米200元,请帮设计师算算修好花坛和草坪预算最少需要多少元?11.如图,AB是⊙O的直径,P为AB上一点,弦CD与弦EF交于点P,PB平分∠DPF,连DF交AB于点G.(1)求证:CD=EF;(2)若∠DPF=60°,PE:PF=1:3,AB=2,求OG的长.12.已知⊙O是△ABC的外接圆,BC为⊙O的直径,弧AB上一点D满足DB=DA,连结CD交AB于点E.(1)求∠AED+∠ABC的值.(2)求证:AC•BC=CE•CD;(3)连接OE,若∠BOE=∠BEO,求△BEO与△BED的面积比.13.【基础巩固】(1)如图1,点A,F,B在同一直线上,若∠A=∠B=∠EFC,求证:△AFE∼△BCF;【尝试应用】(2)如图2,AB是半圆⊙O的直径,弦长AC=BC=4,E,F分别是AC,AB上的一点,∠CFE=45°,若设AE=y,BF=x,求出y与x的函数关系及y的最大值.【拓展提高】(3)已知D是等边△ABC边AB上的一点,现将△ABC折叠,使点C与D重合,折痕为EF,点E,F分别在AC和BC上.如图3,如果AD:BD=1:2,求CE:CF的值.14.如图1,▱ABCD为⊙O的内接四边形,已知,以A为顶点作∠P AZ=45°,交BC于P,交CD于Z.(1)求证:四边形ABCD为正方形;(2)若BC=4BP,求DZ:CZ的值;(3)如图2,过P作PQ⊥AD于Q,过Z作ZX⊥AB于X,交PQ于Y.若,求四边形ZYPC的面积.15.如图1,在Rt△ABC中,∠C=90°,AC=16cm,AB=20cm,动点D由点C向点A 以每秒1cm速度在边AC上运动,动点E由点C向点B以每秒cm速度在边BC上运动,若点D、点E从点C同时出发,运动t秒(t>0),联结DE.(1)求证:△DCE∽△BCA;(2)如图2,设经过点D、C、E三点的圆为⊙P;①当⊙P与边AB相切时,求t的值;②在点D、点E运动过程中,若⊙P与边AB交于点F、G(点F在点G左侧,如图3),联结CP并延长交边AB于点M,连接PF,当△PFM与△CDE相似时,求CE的长.16.问题解决:(1)如图①,半圆O的直径AB=6,点P是半圆O上的一个动点,则△P AB的面积最大值是.(2)如图②,在扇形OAB中,∠AOB=90°,OA=6,点C、D分别在OA和OB上,且AC=2,D是OB的中点,点E在弧AB上.连接CE、DE,四边形CODE的面积是否存在最大值,若存在,请求出最大值;若不存在,请说明理由.(3)如图③,四边形ABCD中,AB=AD=6,∠BAD=60°,∠BCD=120°,四边形ABCD的面积是否存在最大值,若存在,请求出最大值;若不存在,请说明理由.17.给出定义:有两个内角分别是它们对角的两倍的四边形叫做倍对角四边形.(1)如图1,在倍对角四边形ABCD中,∠D=2∠B,∠A=2∠C,求∠B与∠C的度数之和;(2)如图2,锐角△ABC内接于⊙O,若边AB上存在一点D,使得BD=BO,∠OBA 的平分线交OA于点E,连结DE并延长交AC于点F,∠AFE=2∠EAF.求证:四边形DBCF是倍对角四边形;(3)如图3,在(2)的条件下,过点D作DG⊥OB于点H,交BC于点G.当4DH=3BG时,求△BGH与△ABC的面积之比.18.【概念提出】圆心到弦的距离叫作该弦的弦心距.【数学理解】如图①,在⊙O中,AB是弦,OP⊥AB,垂足为P,则OP的长是弦AB的弦心距.(1)若⊙O的半径为5,OP的长为3,则AB的长为.(2)若⊙O的半径确定,下列关于AB的长随着OP的长的变化而变化的结论:①AB的长随着OP的长的增大而增大;②AB的长随着OP的长的增大而减小;③AB的长随着OP的长的确定而确定;④AB的长与OP的长无关.其中所有正确结论的序号是.【问题解决】如图②,已知线段EF,MN,点Q是⊙O内一定点.(3)用直尺和圆规过点Q作弦AB,满足AB=EF;(保留作图痕迹,不写作法)(4)若弦AB,CD都过点Q,AB+CD=MN,且AB⊥CD.设⊙O的半径为r,OQ的长为d,MN的长为l.①求AB,CD的长(用含r,d,l的代数式表示);②写出作AB,CD的思路.19.阅读,然后解答问题:我们新定义一种三角形,两边平方和等于第三边平方的2倍的三角形叫做奇异三角形.(1)根据“奇异三角形”的定义,请你证明:“三边分别为3,,5的三角形是奇异三角形;(2)在Rt△ABC中,AB=c,AC=b,BC=1,且c>b>1,若Rt△ABC是奇异三角形,求b和c;(3)如图,AB是⊙的直径,C是⊙O上一点(不与点A、B重合),D是半圆的中点,C、D在直径AB的两侧,若在⊙O内存在点E,使AE=AD,CB=CE.①求证:△ACE是奇异三角形;②当△ACE是直角三角形时,求∠AOC的度数.20.问题情境:如图1,P是⊙O外的一点,直线PO分别交⊙O于点A,B,则P A是点P 到⊙O上的点的最短距离.(1)探究证明:如图2,在⊙O上任取一点C(不与点A,B重合),连接PC,OC.求证:P A<PC.(2)直接应用:如图3,在Rt△ABC中,∠ACB=90°,AC=BC=3,以BC为直径的半圆交AB于D,P是弧CD上的一个动点,连接AP,则AP的最小值是.(3)构造运用:如图4,在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,N是AB边上一动点,将△AMN沿MN所在的直线翻折得到△A1MN,连接A1B,则A1B 长度的最小值为.(4)综合应用:如图5,平面直角坐标系中,分别以点A(﹣2,3),B(4,5)为圆心,以1,2为半径作⊙A,⊙B,M,N分别是⊙A,⊙B上的动点,P为x轴上的动点,直接写出PM+PN的最小值为.参考答案1.(1)如图1,证明:∵点D是半圆的中点,∴∠ACD=∠ABD=∠BCD=∠DAB,∵DI=DB.∴∠DIB=∠DBI,∴∠DCB+∠CBI=∠ABD+∠ABI,∴∠CBI=∠ABI,∴点I是△ABC的内心;(2)如图2,作AE⊥CD于E,∵AB是⊙O的直径,∴∠ACB=∠ADB=90°,∴∠ACD=∠ABD=∠BCD=∠DAB=45°,在Rt△ABC中,BC=6,AB=10,∴AC=8,在Rt△ACE中,AE=CE=AC=4,在Rt△ADE中,AE=4,BD=AD==5,∴DE=3,∴CD=CE+DE=7,∵DI=BI=5,∴CI=2,作IJ⊥BC于J,∴IJ=CI=2,∴S△BIC===6;(3)如图3,∵DI=BD=5,∴I在以D为圆心,5为半径的圆上一段弧上运动,作⊙O的直径DC′与⊙D交于点I′,当C与C′重合,I与I′重合时,IC最大,C′I′=10﹣5,∴0<CI≤10﹣52.(1)证明:连接OD,∵DH为⊙O的切线,D为切点,∴OD⊥DH,∵DH⊥AC,∴∠ODH=∠DHC=90°,∴OD∥AC,∴∠ODB=∠C,∵OB=OD,∴∠OBD=∠ODB,∴∠OBD=∠C,∴AB=AC;(2)解:①如图,连接AD、OD、EO,∵四边形EODA为菱形,∴AD=OD=AB=2,∵AB为⊙O的直径,∴∠ADB=90°,∴BD=,故答案为:2;②∵∠EGA=∠EAG,∴∠EAG=∠OGD,∵AE∥OD,∴∠CED=∠ODE,∠EAG=∠AOD,∴∠OGD=∠GOD,∴OD=DG,∵∠B=∠AED,∴∠ODE=∠B,又∵∠OGD=∠DGB,∴△OGD∽△DGB,设OG=x,∴,∴,∵x>0,∴x=﹣1,∴OG=﹣1,故答案为:﹣1.3.(1)证明:连接OD,∵AO=OD,∴∠OAD=∠ODA,∵AB=BC,∴∠OAD=∠C.∴OD∥BC,∵DF⊥BC,∴DF⊥OD,∵OD是⊙O的半径,∴直线DF是⊙O的切线;(2)解:∵AB是⊙O的直径,∴∠ADB=90°,∵AB=BC,∴AD=DC=6,∵四边形ADEB是⊙O的内接四边形,∴∠ADE+∠ABE=180°,∵∠ADE+∠CDE=180°,∴∠CDE=∠ABC,∵∠C=∠C,∴△CDE∽△CBA,∴=,∴;(3)如图,过点Q作QG⊥AB于点G,∵sin∠ABD=,∴QG=BQ,∴PQ+BQ=PQ+QG,∴当P,Q,G三点共线时,PQ+BQ有最小值为PG,∵的弧长为π,∴,∴∠POB=60°,∴PG=OP•sin60°=,∴PQ+BQ的最小值为.4.解:(1)如图1,作DE⊥AC于E,作DF⊥AB于F,∵AD平分∠BAC,∴DE=DF,由S△ABC=S△ABD+S△ACD得,AB•AC=,∴4×3=4•DE+3DE,∴DE=,故答案是;(2)如图2,作CE⊥BD于E,作AF⊥BD于F,∵AC是直径,∴∠ABC=90°,∵BD平分∠ABC,∴∠DBC=∠ABD=,∴=,∠ECB=90°﹣∠DBC=45°=∠DBC,∴AD=CD,BE=CE,∵点B是半圆AC的三等分点(弧AB<弧BC),∴的度数是60°,的度数是120°,∴∠ADB=30°,∠BDC=60°,∴∠ADB=∠DCE=30°,∴△ADF≌△DCE(AAS),∴AF=DE,∴AF+CE=DE+BE=8,∴S四边形ABCD=S△ABD=====32;(3)如图3连接AC,延长CD至E,使DE=AD,连接AE,∵AB=AD,∴=,∴∠ACB=∠ACE,∵四边形ABCD内接于⊙O,∴∠ADE=∠ABC=60°,∴△ADE是等边三角形,∴∠E=60°,∴∠B=∠E,又∵AC=AC,∴△ABC≌△AEC(AAS),∴BC=CE,∵CE=DE+CD=AD+CD=2,∴BC=2.∵⊙O的半径是1,∴BC是⊙O的直径,∴∠BAC=90°,∴AB=BC•cos60°=1.5.(1)证明:延长BO交⊙O于G,连接AG,如图:∵=,∴∠G=∠C,∵∠ABO=∠DAC,∴∠G+∠ABO=∠C+∠DAC,∵BG为⊙O直径,∴∠BAG=90°,∴∠G+∠ABO=∠C+∠DAC=90°,∴∠ADC=90°,∴AE⊥BC;(2)证明:设BF交AC于N,延长BO交⊙O于G,连接CG,BE,如图:∵BG为⊙O直径,∴∠BCG=90°,∴∠G+∠OBC=90°,∵∠G=∠BFC,∠OBC=∠ACF,∴∠BFC+∠ACF=90°,∴∠CNF=90°,∴∠NBC+∠NCB=90°,由(1)知:AE⊥BC有∠DAC+∠NCB=90°,∴∠NBC=∠DAC,∵=,∴∠DAC=∠DBE,∴∠NBC=∠DBE,又∠BDM=∠BDE=90°,BD=BD,∴△BDM≌△BDE(ASA),∴MD=ED;(3)解:连接AF、BE,如图:∵=,∴∠BFC=∠BAC,∵∠BFC=3∠EAC,∴∠BAC=3∠EAC,∴∠BAE=2∠EAC,由(2)知∠EAC=∠DBE=∠DBM,BE=BM=,∴∠EBM=2∠EAC,∴∠EBM=∠BAE,又∠BEM=∠AEB,∴△BEM∽△AEB,∴==,∵AM=3,∴==,解得:EM=2,AB=5,在Rt△AMN中,MN2+AN2=AM2=9(Ⅰ),在Rt△ABN中,(+MN)2+AN2=AB2=25(Ⅱ),由(Ⅰ)、(Ⅱ)可得:MN=,AN=,∵∠AMF=∠BME,∠AFM=∠BEM,∴△BEM∽△AFM,∴=,即=,∴MF=,∴NF=MF﹣MN=,∵cos∠BAC=cos∠BFC,∴=,即=,∴CF=.6.(1)如图1,证明:连接OA,OC,∴OB=OC,又AB=AC,OA=OA,∴△AOB≌△AOC(SSS),∴∠OAC=∠OAB,∴∠BAC=2∠OAB,∵OA=OB,∴∠ABD=∠OAB,∴∠BAC=2∠ABD;(2)如图2,证明:连接AG,OG,延长AO交BG于M,交BC于P,交⊙O于N,由(1)知,∠BAO=∠CAO,∴=,∵AB=AC,∴AP⊥BC,∵BH⊥AC,∠AMH=∠BMP,∴∠CBG=∠CAO,∵=,∴∠CAG=∠CBG,∴∠CAG=∠CAO,∴AM=AG,=,∴GM=2GH,∠BON=∠COG,∵OB=OG,∴∠OBG=∠OGB,∴△BOM≌△GOF(ASA),∴BM=GF,∴BM+MF=GF+MF,即BF=MG=2GH;(3)如图3,解:设∠ABD=α,由(1)(2)知,∠BAC=2∠ABD=2α,∠CAG=,连接AG,作DT⊥AB于T,截取TK=AT,∴AD=DK=2,∴∠DKA=∠DAK=2α,∵∠BDK=∠AKD﹣∠ABD=2α﹣α=α,∴BK=DK=2,∴AK=AB﹣BK=3,∴AT=KT==,∴DT===,∴cos2α===,tanα==,在Rt△ABH中,AH=AB•cos2α=5×=,在Rt△AHG中,GH=AH•tanα==,∴BF=2GH=.7.解:(1)证明:∵△ABC是等边三角形,∴∠BAC=∠ACB=60°,∴=,∴∠ADB=∠CDB;(2)证明:如图,作∠BCF的角平分线,交BD于点G,设∠ACD=α,∵=,∴∠ABD=∠ACD=α,∵∠BCF=2∠ABD,∴∠FCG=∠BCG=∠ACD=α,∵△ABC是等边三角形,∴BC=AC,∵=,∴∠DAC=∠DBC,在△ADC与△BGC中,,∴△ADC≌△BGC(SAS),∴BG=AD,DC=GC,∵=,∴∠BDC=∠BAC=60°,∴△DGC是等边三角形,∴∠FGC=∠EDC=60°,在△CED与△CFG中,,∴△CED≌△CFG(ASA),∴ED=FG,∴BF=BG+GF=AD+DE,即BF=DE+AD;(3)解:设∠ACD=α,则∠CAT=3∠ACD=3α,如图,延长CF交⊙O点P,交AM于N点,连接P A,过M点作MQ∥AP,交AR于Q 点,连接PM,∵CM是∠BCF的平分线,由(2)得∠FCG=∠BCG=∠ACD=α,∴∠ACP=∠ACB﹣∠BCF=60°﹣2α,∠BAT=∠BAC﹣∠CAT=60°﹣3α,∵=,=,∴∠MAB=∠BCG=α,∠MAP=∠FCG=α,∴∠MAC=∠BAC+∠BAM=60°+α,∴∠MAT=∠MAC﹣∠CAT=60°+α﹣3α=60°﹣2α,∠P AT=∠MAT+∠MAP=60°﹣2α+α=60°﹣α,∵=,∴∠AMP=∠ACP=60°﹣2α,∴∠AMP=∠MAT=60°﹣2α,∴MP∥AR,∴∠AMQ=∠MAP=α,∠MQT=∠P AR=60°﹣α,∵=,∴∠AMC=∠ABC=60°,∴∠QMR=∠AMC﹣∠AMQ=60°﹣α,∴∠QMR=∠MQR=60°﹣α,∴QR=MR=5,∵设MP=AQ=m,则QT=QR﹣TR=5﹣1=4,∴AT=QT+AQ=4+m,∵=,∴∠MPC=∠MAC=60°+α,又∵∠MNP=∠ANT=∠APC+∠P AM=60°+α,∠ATN=∠ACP+∠CAT=60°﹣2α+3α=60°+α,∴∠MNP=∠MPC=∠ANT=∠ATN=60°+α,∴MP=MN,AN=AT,∴AM=MN+AN=MP+AT=m+4+m=4+2m,在△AMR中,∠AMR=60°,AM=4+2m,MR=5,AR=5+m,如图,过R点作AM边的高HR,∴∠MRH=30°,∴MH=MR=,HR==MR=,∴AH=AM﹣MH=+2m,在Rt△AHR中,HR2+AH2=AR2,∴()2+(+2m)2=(5+m)2,解得:m=2或﹣(舍去),∴AT=4+m=6.8.解:(1)①取EF中点P,连接CP,DP,∵点P为EF中点,∴PE=PF=EF.∵∠ACB=∠EDF=90°,∴CP=DP=AC,∴PE=PF=PC=PD,∴点E、D、F、C在以P为圆心,EF为半径的同一个圆上;②当DE⊥AC时,DE的长度最小,此时EF最短,∵∠A=45°,AD=,∴DE=1,∵DE=DF,∴EF==;∵D是AB的中点,∴AD=BD=CD=,CD⊥AB,∠BCD=45°,∵DE⊥DF,∴∠EDF=90°,∴∠ADE=∠CDF,在△ADE和△CDF中,,∴△ADE≌△CDF(ASA),∴S△ADE=S△CDF,∴S四边形DECF=S△DEC+S△DCF=S△DEC+S△ADE=S△ADC=××=1;故答案为;1.③由②可知当EF取最小值时,点C到线段EF的最大距离为EF=.故答案为.(2)过点F分别作FG⊥CA于点G,设DC=a,CE=b,∵∠CDE+∠GDF=∠GDF+∠DFG=90°,∴∠CDE=∠DFG,∵∠C=∠DGF,DE=DF,∴△DCE≌△FGD(AAS),∴FG=DC=a,GD=CE=b,则2a+b=2,a2+b2=DF2,∴DF2=a2+(2﹣2a)2,=5a2_8a+4=5,当a=时,DF2最小,此时EF2最小,∴EF的最小值为.9.(1)证:如图1,作直径AE,连接BE,∴∠ABE=90°,∴∠BAO=90°﹣∠E,∵=,∴∠E=∠C,∴∠BAO=90°﹣∠C,∵AD⊥BC,∴∠AGC=90°,∴∠CAD=90°﹣∠C,∴∠BAO=∠CAD;(2)证:如图2,∵ON⊥BC,∴BC=2CN,作直径CM,连接BM,AM,∴MB⊥BC,∵ON⊥BC,∴ON∥BM,∴△CON∽△CMB,∴==2,∴BM=2ON,∵=,∴∠BAM=∠BCM,∴∠BAM=∠BCM=90°﹣∠BMC,∵=,∴∠BMC=∠BAC,∴∠BAM=90°﹣∠BAC,∵∠AHB=90°,∴∠ABH=90°﹣∠BAC,∴∠BAM=∠ABH,∴BE∥AM,∴四边形AMBE是平行四边形,∴AE=BM,∴AE=2ON;(3)解:如图3,连接AF,CF,连接CE并延长交AB于I,连接OB、OC和BD,作OJ⊥AB于J,∵AG⊥BC,BH⊥AC,∴CI⊥AB,又∵∠AEH=∠BEG,∴∠GBE=∠EAH,∵=,∴∠F AC=∠GBE,∴∠F AC=∠EAH,∵∠AHF=∠AHE=90°,AH=AH,∴△AHE≌△AHF(ASA),∴EH=FH,∴FH=,同理可得:EG=DG=,∴tan∠BFC===,∴∠BFC=60°,∵=,∴∠BAC=∠BFC=60°,∴∠BOC=2∠BAC=120°,∵OB=OC,ON⊥BC,∴∠BON==60°,∴OA=OB=2ON,∵AE=2ON,∴AO=AE,∴∠AOE=∠AEO,∴∠AOP=∠AEQ,∵∠BAO=∠CAD,∵△AOP≌△AEQ(ASA),∴AP=AQ,∴△APQ是等边三角形,∴∠APQ=60°,∵∠AEH=90°﹣∠BAC=30°,∴∠AEH=∠ABH=30°,∴PE=PB=11,设AP=AQ=PQ=x∴OP=EQ=PQ﹣PE=x﹣11,AC=AQ+CQ=x+2,在Rt△AIC中,∠BAC=60°,AC=x+2,∴AI=AC=(x+2),CI=(x+2),∴BI=AB﹣AI=(x+11)﹣(x+2)=+10,在Rt△BIC中,BC2=BI2+CI2,=()2+[(x+2)]2,在Rt△POJ中,∠APH=60°,OP=x﹣11,∴PJ=(x﹣11),OJ=(x﹣11),∴AJ=AP﹣PJ=x﹣(x﹣11)=,在Rt△AOJ中,OA2=OJ2+AJ2=[(x﹣11)]2+()2,∴OB2=[(x﹣11)]2+()2,∵BN=OB,∴BC=2BN=OB,∴BC2=3OB2=3•[(x﹣11)]2+()2,∴3•[(x﹣11)]2+()2=()2+[(x+2)]2,化简,得,x2﹣23x+130=0,∴x1=13,x2=10(舍去),∴AB=x+11=24,AC=x+2=15,∴BH=AB=12,AH=12,∴CH=AC﹣AH=3,∴BC==21,∵∠CAD=∠CBH,∠AGC=∠BHC=90°,∴△ACG∽△BCH,△BGE∽△AGC,∴==,=∴===,∴AG=,CG=,∴BG=BC﹣CG,=21﹣=,∴=,∴DG=EG=,∴AD=AG+DG=+=.10.解:(1)点P到直线l距离的最大值,即过圆心O向直线l作垂线交圆O于点P,连接OA,∵AB=8,OC⊥AB,∴AC=4,由勾股定理得:OC=3,∴PC=8,故答案为:8;(2)过点F作FG⊥AB,∵∠ABC=45°,AD⊥BC,∴△ABD为等腰直角三角形,∴AB=BD,又∵△ABC为等腰三角形,且AB=BC,BE⊥AC,∴BE平分∠ABC,又∵FD⊥BC,FG⊥AB,∴FG=FD,∴S△ABF=×AB×FG,S△BDF=×BD×DF,∴;(3)连接MC,过点A作AP⊥BC于点P,∵∠ABC=60°,AB=60,∴BP=30,AP=30,∴CD=30,设总费用为W元,∴W=400S△AMN+200S△BNC,∴W=200(2S△AMN+S△BNC),∴当2S△AMN+S△BNC最小时,总费用最小,又∵AM=20米,BM=40米,∴2S△AMN=S△BMN,∴当S△BMN+S△BNC最小时,费用最小,即S四边形BMNC最小时,费用最小,又∵S四边形BMNC=S△BMC+S△CMN,过点M作MH⊥BC,垂足为H,∵∠ABC=60°,BM=40米,∴BH=20米,MH=20米,MC=40米,∴∠BCM=30°,∴∠DCM=60°,∴S△BMC==800(平方米),∴当S△CMN最小时,费用最小,∴S△CMN=×NQ=20NQ,∴当NQ最小时,费用最小,∵ND=25米,∴N点在以D为圆心,25为半径的圆上运动,过圆心D向MC作垂线交⊙D于N点,交MC于Q,即此时NQ最小,∵CQ=15米,DQ=45米,∴NQ=45﹣25=20(米),∴S△MNC最小值=×20=400(平方米),∴S四边形BMNC最小值=1200(平方米)∴W最小值=200×1200=240000(元),11.(1)证明:如图,过点O作OM⊥EF于点M,ON⊥CD于点N,连接OF、OD,则∠OMF=∠OND=90°,∵PB平分∠DPF,OM⊥EF,ON⊥CD,∴OM=ON,在Rt△OFM和Rt△ODN中,,∴Rt△OFM≌Rt△ODN(HL),∴FM=DN,∵OM⊥EF,ON⊥CD,∴EF=2FM,CD=2DN,∴CD=EF;(2)∵PE:PF=1:3,∴设PE=x,PF=3x,则EF=PE+PF=4x,∵OM⊥EF,∴EM=FM=EF=2x,∴PM=EM﹣PE=2x﹣x=x,∵PB平分∠DPF,∠DPF=60°,∴∠FPB=DPB=DPF=30°,∴OM=x,OP=x,在Rt△OPM和Rt△OPN中,,∴Rt△OPM≌Rt△OPN(HL),∴PM=PN,由(1)知:FM=DN,∴PM+FM=PN+DN,∴PF=PD,∵∠DPF=60°,∴△PDF是等边三角形,∵PB平分∠DPF,∴PB⊥DF,垂足为G,∴DF=PF=3x,FG=DF=,∴PG===,∴OG=PG﹣OP=﹣x=,∵AB=2,∴OF=AB=,在Rt△OFG中,根据勾股定理,得OG2+FG2=OF2,∴()2+()2=()2,整理,得x2=3,解得x=±(负值舍去),∴x=,∴OG===.12.(1)解:∵BC是直径,∴∠CAB=90°,∴∠ACB+∠ABC=90°,∴∠ACB+∠ABC=45°,∵BD=AD,∴=,∴∠ACD=∠BCD,∵∠AED=∠ACD+∠CAE,∴∠AED+∠ABC=90°+∠ACB+∠ABC=135°;(2)证明:∵=,∴∠ACD=∠BCE,∵∠CBE=∠ADC,∴△CBE∽△CDA,∴=,∴AC•BC=CE•CD;(3)解:如图,过点B作BT⊥OE交CD于点T,连接OT.∵BO=BE,∴BO垂直平分线段OE,TB平分∠ABC,∴TO=TE,∴TB平分∠OTE,∵CE平分∠ACB,∴∠BTD=∠TCB+∠TBC=(∠ACB+∠ABC)=45°,∴∠OTE=90°,∴OT⊥CD,∴CT=TD,∵BC是直径,∴∠BDT=90°,∴∠BTD=∠DBT=45°,∴BD=DT=CT,∵CO=OB,CT=TD,∴BD=2OT,∴DT=CT=2ET,∴CE=3DE,∴S△BEC=3S△ADE,∵BO=OC,∴S△BEC=2S△BEO,∴2S△BEO=3S△DEB,∴=.13.(1)证明:∵∠A=∠EFC,∴∠E+∠EF A=∠EF A+∠CFB,∴∠E=∠CFB,∵∠A=∠B,∴△AFE∽△BCF;(2)解:∵AB是⊙O的直径,∴∠ACB=90°,∴AB==8,∵AC=BC,∴∠A=∠B=45°,∴∠A=∠B=∠CFE=45°,由(1)可得△AFE∽△BCF,∴,即,∴y=﹣x2+x(0≤x≤8),∴当x=4时,y最大=2;(3)解:连接DE,DF,∵△EFC与△EFD关于EF对称,∴∠EDF=∠ECF=60°,EC=ED,FC=FD,∵∠BDF+∠EDF=∠BDE=∠A+∠DEA,∵∠EDF=∠A=60°,∴∠BDF=∠DEA,∴△ADE∽△BFD,设AD=x,CE=DE=a,CF=DF=b,∵AD:BD=1:2,∴DB=2x,∴AB=3x=AC=BC,∴AE=3x﹣a,BF=3x﹣b,∵△ADE∽△BFD,∴,∴,由前两项得,2ax=b(3x﹣a),由后两项得,(3x﹣a)(3x﹣b)=2x2,即:3x(3x﹣a)﹣b(3x﹣a)=2x2,∴3x(3x﹣a)﹣2ax=2x2,∴a=x,∴,∴CE:CF=4:5.14.(1)∵四边形ABCD为平行四边形,∴∠B=∠D.又∵∠B+∠D=180°,∴∠B=∠D=90°.∴四边形ABCD为矩形,∵,∴AB=AD.∴四边形ABCD为正方形.(2)延长CD至点Q,使得DQ=BP,连接AQ,如图,∵四边形ABCD为正方形,∴∠ABP=∠ADQ=90°.在△ABP和△ADQ中,,∴△ABP≌△ADQ(SAS),∴AP=AQ,∠BAP=∠DAQ.∵∠BAD=90°,∴∠DAP+∠BAD=90°.∴∠DAP+∠QAD=90°.∴∠QAP=90°.∵∠P AZ=45°,∴∠P AZ=∠QAZ=45°.在△APZ和△AQZ中,,∴△APZ≌△AQZ(SAS).∴PZ=QZ.设AB=4a,DZ=t,则BP=a,ZC=4a﹣t,ZP=t+a,在Rt△CPZ中,∵ZC2+CP2=ZP2,∴(4a﹣t)2+(3a)2=(t+a)2.解得:t=.∴DZ=a,CZ=a,∴DZ:CZ=3:2.(3)∵四边形ABCD为正方形,PQ⊥AD,ZX⊥AB,∴四边形AXYQ,AXZD,XBPY,XBCZ均为矩形.设AB=a,AX=m,AQ=n,则mn=.由(2)可知,PZ=DZ+BP=m+n,CZ=XB=a﹣m,CP=DQ=a﹣n.在Rt△CPZ中,∵ZC2+PC2=PZ2,∴(a﹣m)2+(a﹣n)2=(m+n)2.化简得:a2﹣(m+n)a=mn.∴S四边形ZYPC=(a﹣m)(a﹣n)=a2﹣(m+n)a+mn=2mn=2×=5.15.(1)证明:∵∠C=90°,AC=16,AB=20,∴BC==12,∴=,∵==,∴=,∵∠C=∠C,∴△DCE∽△BCA;(2)解:①如图1,作PG⊥AC于G,PF⊥BC于F,作PH⊥AB于H,设CD=3a,CE=4a,DE=5a,由题意得,PH=PC=DE=,PF=CG=CD=a,FG=2a,∵S△ABC=S△APB+S△PBC+S△P AC,∴BC•AC=AB•PH++,∴12×16=20×a+12×a+16×2a,∴a=,∴t=3a=;②如图2,设CD=3a,CE=4a,DE=5a,∴PF=DE=a,由(1)知,△DCE∽△BCA,当△PMF∽△DCE时,∴△PMF∽△BCA,==,∴PM=a,FM=2a,由S△ABC=得20•CM=12×16,∴CM=,∵CP+PM=CM,∴a+a=,∴4a=,即CE=,当△PMF∽△ECD时,类比上可得,a+2a=,∴4a=,∴CE=,综上所述:CE=或.16.解:(1)点P运动至半圆O的中点时,如图1:此时底边AB上的高最大,即P'O=r=3,△P AB的面积最大值,∴S△P'AB=×3×6=9,故答案为:9;(2)四边形CODE的面积存在最大值,作OG⊥CD,垂足为G,延长OG交弧AB于点E′,则此时△CDE'的面积最大,如图2:∵OA=OB=6,AC=2,点D为OB的中点,∴OC=4,OD=3,在Rt△COD中,CD=5,OG=2.4,∴GE′=6﹣2.4=3.6,∴四边形CODE'面积为S△CDO+S△CDE′=×3×4+×5×3.6=15,∴四边形CODE的面积的最大值为15;(3)四边形ABCD的面积存在最大值,连接BD,作△ABD的外接圆O,过A作AE⊥BD于E,如图3:∵∠DAB=60°,∠DCB=120°,∴∠DAB+∠DCB=180°,∴A、B、C、D四点共圆,即C在⊙O上,∵AD=AB,∠DAB=60°,∴△ADB是等边三角形,有BD=AB=AD=6,在Rt△ABE中,BE=AB=3,AE=BE=3,∴S△ABD=BD•AE=×6×3=9,当C为中点,即A、E、C共线时,△BDC的面积最大,此时∠ACB=∠ADB=60°,AC为⊙O直径,∴∠CAB=30°,∴AC==4,∴CE=AC﹣AE=,∴S△BDC=BD•CE=×6×=3,∴S四边形ABCD=S△ABD+S△BDC=12,即四边形ABCD的面积的最大值是12.17.(1)解:在倍对角四边形ABCD中,∠D=2∠B,∠A=2∠C,∵∠A+∠B+∠C+∠D=360°,∴3∠B+∠3∠C=360°,∴∠B+∠C=120°,∴∠B与∠C的度数之和为120°;(2)证明:在△BED与△BEO中,,∴△BED≌△BEO(SAS),∴∠BDE=∠BEO,∵∠BOE=2∠BCF,∴∠BDE=2∠BCF连接OC,设∠EAF=α,则∠AFE=2α,∴∠EFC=180°﹣∠AFE=180°﹣2α,∵OA=OC,∴∠OAC=∠OCA=α,∴∠AOC=180°﹣∠OAC﹣∠OCA=180°﹣2α,∴∠EFC=∠AOC=2∠ABC,∴四边形DBCF是倍对角四边形;(3)解:过点O作OM⊥BC于M,∵四边形DBCF是倍对角四边形,∴∠ABC+∠ACB=120°,∴∠BAC=60°,∴∠BOC=2∠BAC=120°,∵OB=OC,∴∠OBC=∠OCB=30°,∴BC=2BM=BO=BD,∵DG⊥OB,∴∠HGB=∠BAC=60°,∵∠DBG=∠CBA,∴△DBG∽△CBA,∴==,∵4DH=3BG,BG=2HG,∴DG=,∴==,∴=.18.解:(1)连接OA,∵OP⊥AB,∴AP=,∵OA=5,OP=3,∴AP==4,∴AB=2AP=8,故答案为:8;(2)设半径为r不变,∴AB=2AP=2,当r不变,OP的长增大时,AB减小;OP长确定时,AB也确定,故选:②③;(3)如图,利用△MPF和△OP'B全等,首先作EF的垂直平分线,再取FM=r,然后以点O为圆心,MP为半径画圆,再以OQ为直径画圆,两圆交点为P',从而画出线段AB,如图,线段AB即为所求;(4)①解:设AB=2m,CD=2n,如图,可得:,解得:,∴AB=,CD=,②作图思路:先作斜边为4r,一条直角边为2,另一条直角边为的直角三角形;再作斜边为,一条直角边为l,另一条直角边为的直角三角形;再在⊙O中作出长为的弦,再如(3)中作法,过点Q作弦AB;最后过点Q作AB的垂直弦CD.19.(1)证明:在△ABC中,三边长分别是3,和5,∵32+52=2()2,。
北京市海淀区【中考数学】2022-2023学年专题提升训练—相似三角形综合解答题(含解析)
北京市海淀区【中考数学】2022-2023学年专题提升训练—相似三角形综合解答题1.如图在矩形ABCD中,AB=12,P是边AB上一点,把△PBC沿直线PC折叠,顶点B的对应点是点G,过点B作BE⊥CG,垂足为点E且点E在AD上,BE交PC于点F.(1)求证:△ABE∽△DEC;(2)当AD=25时,且AE<DE时,求tan∠PCB的值;(3)当BP=9时,求BE•EF的值.2.如图,在△ABC中,BA=BC,AB=kAC.点F在AC上,点E在BF上,BE=2EF.点D 在BC延长线上,连接AD、AE,∠ACD+∠DAE=180°.(1)求证:∠CAD=∠EAB;(2)求的值(用含k的式子表示);(3)如图2,若DH=AH,求的值(用含k的式子表示).3.已知在Rt△ABC中,CD⊥AB于点D.(1)在图1中,写出其中两对相似三角形.(2)已知BD=1,DC=2,将△CBD绕着点D按顺时针方向进行旋转得到△C'BD,连接AC',BC.①如图2,判断AC'与BC之间的位置及数量关系,并证明;②在旋转过程中,当点A,B,C'在同一直线时,求BC的长.4.如图,在正方形ABCD中,点E是边CD上的一点(不与点C,D重合),点F在边CB的延长线上,且AE=AF,连接EF交AB于点M,交AC于点N.(1)求证:AE⊥AF;(2)若∠BAC=2∠BAF,求证:AF2=AM•AB;(3)若CE=nDE,求的值(用含n的式子表示).5.如图,点E是矩形ABCD中CD边上一点,△BCE沿BE折叠为△BFE,点F落在AD 上.(1)求证:△ABF∽△DFE;(2)若sin∠DFE=,求tan∠EBC的值;(3)在△ABF中,AF=5cm,BF=10cm,动点M从点B出发,在BF边上以每秒2cm的速度向点F匀速运动,同时动点N从点A出发,在AB边上以每秒cm的速度向点B匀速运动,设运动时间为ts(0≤t≤5),连接MN,若△ABF与以点B,N,M为顶点的三角形相似,求t的值.6.【基础探究】如图1,四边形ABCD中,∠ADC=∠ACB,AC为对角线,AD•CB=DC•AC.(1)求证:AC平分∠DAB.(2)若AC=8,AB=12,则AD= .【应用拓展】如图2,四边形ABCD中,∠ADC=∠ACB=90°,AC为对角线,AD•CB=DC•AC,E为AB的中点,连结CE、DE,DE与AC交于点F.若CB=6,CE=5,请直接写出的值.7.已知:∠ACB=90°,CD是∠ACB的平分线,点P在CD上,CP=.将三角板的直角顶点放置在点P处,绕着点P旋转,三角板的一条直角边与射线CB交于点E,另一条直角边与直线CA,直线CB分别交于点F,点G.(1)如图1,当点F在射线CA上时,①求证:PF=PE;②设CF=a(0<a<1),试求CG的值(用含a的代数式表示);(2)如图2,点F在AC延长线上,连接EF,当△CEF与△EGP相似时,求EG的长.8.(1)【问题呈现】如图1,△ABC和△ADE都是等边三角形,连接BD,CE.求证:BD=CE.(2)【类比探究】如图2,△ABC和△ADE都是等腰直角三角形,∠ABC=∠ADE=90°.连接BD,CE.请直接写出的值.(3)【拓展提升】如图3,△ABC和△ADE都是直角三角形,∠ABC=∠ADE=90°,且==.连接BD,CE.①求的值;②延长CE交BD于点F,交AB于点G.求sin∠BFC的值.9.如图1,在△ABC中,∠A=90°,AB=3,AC=4,点M是边AB上的动点(不与A,B 重合),MQ⊥BC于点Q,MN∥BC,交AC于点N,连接NQ.(1)求证:△QBM∽△AMN;(2)若点M为AB的中点(如图2),求QB的长;(3)若四边形BMNQ为平行四边形(如图3),求QB的长.10.如图,已知△ABC是边长为12cm的等边三角形,动点P,Q同时从AB两点出发,分别沿AB、BC匀速运动,其中点P运动的速度是2cm/s,点Q运动的速度是4cm/s,当点Q到达点C时,P、Q两点都停止运动,设运动时间为t(s),解答下列问题:(1)当t=2时,判断△BPQ的形状,并说明理由;(2)设△BPQ的面积为S(cm2),求S与t的函数关系式;(3)作QR∥BA交AC于点R,连接PR,当t为何值时,△APR∽△PRQ.11.问题初探:数学兴趣小组在研究四边形的旋转时,遇到了这样的一个问题.如图1,四边形ABCD和BEFG都是正方形,BH⊥AE于H,延长HB交CG于点M.通过测量发现CM=MG.为了证明他们的发现,小亮想到了这样的证明方法:过点C作CN⊥BM于点N.他已经证明了△ABH≌△BCN,但接下来的证明过程,他有些迷茫了.(1)请同学们帮小亮将剩余的证明过程补充完整;(2)深入研究:若将原题中的“正方形”改为“矩形”(如图2所示),且(其中k>0),请直接写出线段CM、MG的数量关系为 ;(3)拓展应用:在图3中,在Rt△ABC和Rt△ADE中,∠BAC=∠DAE=90°,∠ACB=∠AED=30°,连接BD、CE,F为BD中点,则AF与CE的数量关系为 .12.如图1,Rt△ABC中,∠A=90°,D为AB上一点,∠ACD=∠B.(1)求证:AC2=AD•AB;(2)如图2,过点A作AM⊥CD于M,交BC于点E,若,求的值;(3)如图3,N为CD延长线上一点,连接AN、BN,若,∠NBD=2∠ACD,则tan∠ACN的值为 .13.如图(1),点E为正方形ABCD内一动点,连接CE,DE,且∠DEC=90°,以CE为边向右侧作等腰直角三角形ECF,∠ECF=90°,连接AF,BF.(1)求∠BFE的度数;(2)如图(2),连接AE,若∠AEF=90°.①求证:=;②求tan∠AFE的值.14.(1)阅读解决华罗庚是我国著名的数学家,他推广的优选法,就是以黄金分割法为指导,用最可能少的试验次数,尽快找到生产和科学实验中最优方案的一种科学试验方法.黄金分割是指将整体一分为二,较大部分与整体部分的比值等于较小部分与较大部分的比值,这个比例被公认为最能引起美感的比例,因此被称为黄金分割.如图①,点B把线段AC分成两部分,如果=,那么称点B为线段AC的黄金分割点,它们的比值为.在图①中,若AB=12m,则BC的长为 cm;(2)问题解决如图②,用边长为40m的正方形纸片进行如下操作:对折正方形ABCD得折痕EF,连接CE,将CB折叠到CE上,点B对应点为H,折痕为CG.证明:G是AB的黄金分割点;(3)拓展探究如图③在边长为m的正方形ABCD的边AD上任取点E(AE>DE),连接BE,作CF⊥BE,交AB于点F,延长EF,CB交于点P.发现当PB与BC满足某种关系时,E、F恰好分别是AD、AB的黄金分割点.请猜想这一发现,并说明理由,15.定义:两个相似等腰三角形,如果它们的底角有一个公共的顶点,那么把这两个三角形称为“关联等腰三角形”.如图,在△ABC与△AED中,BA=BC,EA=ED,且△ABC~AED,所以称△ABC与△AED为“关联等腰三角形”,设它们的顶角为α,连接EB,DC,则称为“关联比”.下面是小颖探究“关联比”与α之间的关系的思维过程,请阅读后,解答下列问题:(1)当△ABC与△AED为“关联等腰三角形”,且α=90°时,①在图2中,若点E落在AB上,则“关联比”= ;②在图3中,探究△ABE与△ACD的关系,并求出“关联比”的值.(2)如图4,当△ABC与△AED为“关联等腰三角形”,且α=120°,①“关联比”= .②AB=2时,将△ABC绕点A顺时针旋转60°,线段BC扫过的面积是 .[迁移运用](3)如图5,△ABC与△AED为“关联等腰三角形”.若∠ABC=∠AED=90°,AC=4,点P为AC边上一点,且PA=1,点E为PB上一动点,当点E自点B运动至点P时,点D所经过的路径长为 .16.【教材呈现】华师版九年级上册数学教材第77页的部分内容:如图,在△ABC中,点D、E分别是AB,AC的中点,可以猜想:DE∥BC且DE=BC.对此,我们可以用演绎推理给出证明.证明:在△ABC中,∵点D、E分别是AB与AC的中点,∴,请根据教材提示,结合图1,写出完整证明过程.【结论应用】如图2,在△ABC中AD垂直于∠ABC的平分线BE于点E,且交BC边于点D,点F为AC 的中点.若AB=6,BC=10,求EF的长.【拓展延伸】如图3,在Rt△ABC中,∠ABC=90°,AB=3,BC=4,D为AC中点,将AD绕点A逆时针旋转一定的角度α(0°<α<360°),得到线段AD1,连结CD1,取CD1的中点E,连结BE.则△BEC面积的最大值为 .17.【观察与猜想】(1)如图1,在正方形ABCD中,点E,F分别是AB,AD上的两点,连接DE,CF,若DE⊥CF,则的值为 ;(2)如图2,在矩形ABCD中,AD=7,CD=4,点E是AD上的一点,连接CE,BD,若CE⊥BD,则的值为 .【类比探究】(3)如图3,在四边形ABCD中,∠A=∠B=90°,点E为AB上一点,连接DE,过点C作DE的垂线交ED的延长线于点G,交AD的延长线于点F,求证:DE•AB=CF•AD;【拓展延伸】(4)如图4,在Rt△ABD中,∠BAD=90°,AD=18,将△ABD沿BD翻折,点A落在点C处,得到△CBD,点F为线段AD上一动点,连接CF,作DE⊥CF交AB于点E,垂足为点G,连接AG.设,求AG的最小值.18.类比推理是根据两个或两类对象在一系列属性上相同或相似,从而推出它们在其他属性上也相同或相似的推理.借助类比推理可以发现解决问题的方法.如图(1),在△ABC中,∠C=90°,=m,点D、F分别是边AB、AC上的点,∠B=2∠ADF,过点A作AE⊥DF交DF的延长线于点E,求的值.为了获取解决问题的方法,小敏先假设m=1,点D与点B重合(图(2)),此时她发现BE 是∠ABC的角平分线,因为BE又与AE垂直,所以她想到将AE与BC延长,于是她求出了的值.(1)图(2)中,∠CAE= °,小敏求出的= ;(2)接着在m=1的条件下,她让点D与点B不重合,如图(3),请尝试探究此时的值;(3)最后她类比特例中采用的方法,成功地解决的原题.请结合特例探究的经验,尝试求出原题图(1)中的值.(4)如图(4),∠C=90°,点D、F分别在BC、AC边上,连接AD、BF交于点M,过点A作AE⊥BF,BC=mAF,CF=mBD.请直接写出的值.19.如图,△ABC中,D,E分别为AB,AC上的点,DE∥BC,将△ADE绕点A逆时针旋转,连接BD,且B,D,E三点恰好在一条直线上.(1)如图①,连接CE,求证:△ABD∽△ACE;(2)如图②,若△ABC为直角三角形,∠BAC=90°,∠ABC=30°,延长AE,BC交于点F,若,求的值;(3)如图③,若△ABC为等腰三角形,AB=AC=6,点G为△ABC内一点,连接AG,BG,CG,且∠BAG=∠GBC,∠BGC=90°,BG=2GC,请直接写出AG的长.20.几何学的产生,源于人们对土地测量的需要,后来由实际问题抽象成为数学问题.初中数学常见的几何模型有很多,通过整理归纳,可以从这些基本模型中找到其所藻蕴含的规律.【提出问题】如图1,△ABC和△ADE均为等腰直角三角形,∠ABC=∠ADE=90°,△ADE绕点A旋转,连结BD、EC,小明通过探究得到∠ABD与∠BCE的大小存在某种数量关系,具体探究过程如下.【探究问题】小明先将上述问题“特值化”,如图1,令AB=1,AD=,∠ABD=100°,则可证明△ABD和△ACE相似,进而可求得∠BCE的度数.请你帮助小明完成解答过程.【解决问题】将问题“一般化”,如图2,在△ADE绕点A旋转过程中,∠ABD与∠BCE满足的数量关系为 .【拓展应用】如图3,过线段AB的端点B作射线BM⊥AB,Rt△ADE的直角顶点D在射线BM上运动,连结BE,若AB=4,=,则BE的最小值为 .答案1.(1)证明:∵四边形ABCD是矩形,∴∠A=∠D=90°,∵BE⊥CG,∴∠BEC=90°,∴∠AEB=90°﹣∠CED=∠DCE,∴△ABE∽△DEC;(2)解:当AD=25时,如图:由(1)知△ABE∽△DEC,∴=,设AE=m,则DE=25﹣m,∴=,解得:m=9或m=16,经检验,m=9或m=16是原分式方程的解,∵AE<DE,∴AE=9,DE=16,∴CE=20,BE=15,∵△BPC沿PC折叠得到△GPC,∴∠PGC=∠PBC=90°,∠BPC=∠GPC,BP=PG,∵BE⊥CG,∴BE∥PG,∴∠GPF=∠PFB,∴∠BPF=∠BFP,∴BP=BF;∴BP=BF=PG,∵BE∥PG,∴△ECF∽△GCP,∴=,设BP=BF=PG=n,∴=,∴n=,经检验,n=是原分式方程的解,∴BP=,∴tan∠PCB===;(3)解:连接FG,如图:∵∠GEF=∠PGC=90°,∴BF∥PG,由(2)知BF=PG=BP=9,∴四边形BPGF是菱形,GF=9,∴BP∥GF,∴∠GFE=∠ABE,∴△GEF∽△EAB,∴=,∴BE•EF=AB•GF=12×9=108.2.(1)证明:∵BA=BC,∴∠BAC=∠BCA,∵∠ACD+∠DAE=180°,∠ACD+∠ACB=180°∴∠DAE=∠ACB,∴∠DAE=∠BAC,∴∠DAE﹣∠CAE=∠BAC﹣∠CAE,即∠CAD=∠BAE;(2)解:如图1,过点C作∠ACM=∠ABE,交AD于点M,∵∠DAC=∠BAE,∴△AEB∽△AMC,∴==,∵AB=kAC,∴AM=AE,CM=BE,∵BE=2EF,∴CM=EF,∵∠AEF=∠EAB+∠ABE,∠DMC=∠MAC+∠ACM,∴∠DMC=∠AEF,∵∠ACB=∠D+∠DAC,∠DAE=∠DAC+∠EAE,∠DAE=∠ACB,∴∠D=∠FAE,∴△DCM∽△AFE,∴=,∴DM=AE,∴AD=AM+DM=AE,∴=;(3)解:如图2,过点B作BN∥AC交AE延长线于点N,∵∠D=∠CAH,∠AHC=∠DHA,∴△AHC∽△DHA,∴=,==,∴AH2=CH•DH,AD=AC,∵AB=kAC,∴AD=AB,∵=,∴AE=AB,设AH=2a,AB=BC=b,则DH=3a,AE=b,∵BN∥AC,BE=2EF,∴NE=2AE=b,∵EH=AH﹣AE=EN﹣NH,∴NH=b﹣2a,∵AH2=HC•DH,∴CH=a,∴CD=a,由(2)知,BN=ak,∵△ADH∽△NBH,∴=,∴=,整理得:9b2﹣12ab﹣20a2k2=0,解得:b1=a(舍去),b2=a,∴=.3.解:(1)∵CD⊥AB,∴∠ADC=∠BDC=∠ACB=90°,∴△ABC∽△ACD,△BCD∽△BAC;(2)①,AC'⊥BC,理由如下:由(1)知,在图1中,△ABC∽△CBD∽△ACD,∴,如图2,∵∠BDC'=∠CDA=90°,∴∠BDC=∠C'DA,∴△DBC∽△DC'A,∴,∠DC'A=∠DBC,∵∠DEB=∠CEC',∴∠C'FE=∠BDC'=90°,∴AC'⊥BC,∴,AC'⊥BC;②如图,当点A、B、C'在同一直线上时,由①知,,AC'⊥BC,设BC=x,AC'=2x,在Rt△ACB中,由勾股定理得,x2+(2x﹣)2=(2)2,解得x=(负值舍去),如图,当A、C'、B在同一直线上时,同理可得,x2+(2x+)2=(2)2,解得x=(负值舍去),综上:BC=或.4.(1)证明:∵四边形ABCD是正方形,∴AB=AD,∠D=∠ABC=90°,∴∠D=∠ABF=90°,在Rt△ABF与Rt△ADE中,,∴Rt△ABF≌Rt△ADE(HL),∴∠FAB=∠EAD,∵∠EAD+∠BAE=90°,∴∠FAB+∠BAE=90°,∴∠FAE=90°,∴AE⊥AF;(2)证明:∵∠BAC=45°,∠BAC=2∠BAF,∴∠BAF=22.5°,由(1)知,∠DAE=∠BAF=22.5°,∵∠DAC=45°,∴∠CAE=22.5°,∴∠BAF=∠CAE,∵AE=AF,AE⊥AF,∴∠AFE=∠AEF=45°,∴∠AFM=∠ACE,∴△AFM∽△ACE,∴=,∴AF2=AC•AM,∵AC=AB,∴AF2=AM•AB;(3)解:∵CE=nDE,∴设DE=1,CE=n,由(1)知,Rt△ABF≌Rt△ADE,∴BF=DE=1,∴BC=AB=CD=1+n,∴FC=n+2,∴FE===,∵BM∥CE,∴△BFM∽△CFE,∴=,∴FM=,∵∠AEN=∠ACE=45°,∠EAN=∠CAE,∴△AEN∽△ACE,∴=,∵AE==,AC=CD=(n+1),∴EN===,∴==.5.(1)证明:∵四边形ABCD是矩形,∴∠A=∠D=∠C=90°,∵△BCE沿BE折叠为△BFE,∴∠BFE=∠C=90°,∴∠AFB+∠DFE=180°﹣∠BFE=90°,又∵∠AFB+∠ABF=90°,∴∠ABF=∠DFE,∴△ABF∽△DFE;(2)解:在Rt△DEF中,sin∠DFE=,∴设DE=a,EF=3a,则DF=2a,∵△BCE沿BE折叠为△BFE,∴CE=EF=3a,CD=DE+CE=4a,AB=4a,∠EBC=∠EBF,由(1)得:△ABF∽△DFE,∴,∴tan;(3)解:∵AF=5cm,BF=10cm,∴AB=5cm,∵∠ABF=∠NBM,①当△ABF∽△NBM时,如图,此时,,即,∴t=2.5;②当△ABF∽△MBN时,如图,此时,即,∴t=,综上,t=2.5或.6.(1)证明:∵∠ADC=∠ACB,,∴△ADC∽△ACB,∴∠DAC=∠CAB,∴AC平分∠DAB;(2)解:∵△ADC∽△ACB,∴,∴AC2=AB×AD,∵AC=8,AB=12,∴64=12AD,∴AD=,故;(3)解:∵∠ACB=90°,点E为AB的中点,∴AB=2CE=10,∴AC=8,∵△ADC∽△ACB,∴AD==6.4,由(1)知∠DAC=∠EAC,∵CE=AE,∴∠ECA=∠EAC,∴∠DAC=∠ECA,∴△AFD∽△CFE,∴.7.(1)①证明:过点P作PM⊥AC,PN⊥BC,垂足分别为M、N.∵CD是∠ACB的平分线,∴PM=PN.由∠PMC=∠MCN=∠CNP=90°,得∠MPN=90°,∴∠1+∠FPN=90°,∵∠2+∠FPN=90°,∴∠1=∠2.∴△PMF≌△PNE(AAS).∴PF=PE.②解:∵CP=,∴CN=CM=1.∵△PMF≌△PNE,∴NE=MF=1﹣a.∴CE=2﹣a.∵CF∥PN,∴△GCF∽△GNP,∴.∴CG=(0<a<1).(2)解:当△CEF与△EGP相似时,点F的位置有两种情况:①当点F在射线CA上时,∵∠GPE=∠FCE=90°,∠1≠∠PEG,∴∠G=∠1.∴FG=FE.∴CG=CE.在Rt△EGP中,EG=2CP=2.②当点F在AC延长线上时,∵∠GPE=∠FCE=90°,∠1≠∠2,∴∠3=∠2.∵∠1=45°+∠5,∠1=45°+∠3,∠2=∠3,∴∠5=∠2.易证∠3=∠4,可得∠5=∠4.∴FC=CP=.∴FM=1+.易证△PMF≌△PNE,可得EN=1+.∵CF∥PN,∴.∴GN=﹣1.∴EG=2.8.(1)证明:∵△ABC和△ADE都是等边三角形,∴AD=AE,AB=AC,∠DAE=∠BAC=60°,∴∠DAE﹣∠BAE=∠BAC﹣∠BAE,∴∠BAD=∠CAE,∴△BAD≌△CAE(SAS),∴BD=CE;(2)解:∵△ABC和△ADE都是等腰直角三角形,∴==,∠DAE=∠BAC=45°,∴∠DAE﹣∠BAE=∠BAC﹣∠BAE,∴∠BAD=∠CAE,∴△BAD∽△CAE,∴===;(3)解:①∵==,∠ABC=∠ADE=90°,∴△ABC∽△ADE,∴∠BAC=∠DAE,==,∴∠CAE=∠BAD,∴△CAE∽△BAD,∴==;②由①得:△CAE∽△BAD,∴∠ACE=∠ABD,∵∠AGC=∠BGF,∴∠BFC=∠BAC,∴sin∠BFC==.9.解:(1)∵MQ⊥BC,∴∠BQM=90°=∠A,∵MN∥BC,∴∠B=∠AMN,∴△QBM∽△AMN;(2)在Rt△ABC中,AB=3,AC=4,根据勾股定理得,BC=5,∵点M为AB的中点,且AB=3,∴AM=BM==,∵∠B=∠B,∠BQM=∠BAC=90°,∴△QBM∽△ABC,∴,∴,∴QB=;(3)∵四边形BMNQ为平行四边形,∴BQ=MN,∵MN∥BC,∴△AMN∽△ABC,∴,∴,设AM=3a,则MN=5a,∵四边形BMNQ为平行四边形,∴BQ=MN,∴BQ=MN=5a,由(1)知,△QBM∽△AMN,∴,∴,∴a=,∴BQ=5a=.10.解:(1)结论:△PBQ是等边三角形.理由:∵△ABC是等边三角形,∴AB=BC=AC=12,∠A=∠B=∠C=60°,∵t=2,∴AP=4,BQ=8,∴PB=AB﹣AP=8,∴BP=BQ,∵∠B=60°,∴△PBQ是等边三角形.(2)过Q作QE⊥AB,垂足为E由QB=4t,得QE=4t•sin60°=2t由AP=2t,得PB=12﹣2t∴S△BPQ=×BP×QE=(12﹣2t)×2t=﹣2t2+12t.(3)∵QR∥BA∴∠QRC=∠A=60°,∠RQC=∠B=60°∴△QRC是等边三角形∴QR=RC=QC=12﹣4t∵BE=BQ•cos60°=×4t=2t∴EP=AB﹣AP﹣BE=12﹣2t﹣2t=12﹣4t∴EP∥QR,EP=QR∴四边形EPRQ是平行四边形∴PR=EQ=2t又∵∠PEQ=90°,∴四边形EPRQ是矩形,∴∠APR=∠PRQ=90°∵△APR∽△PRQ,∴∠QPR=∠A=60°∴tan60°=,即=解得t=∴当t=s时,△APR∽△PRQ.11.解:(1)过G作GQ⊥BM于点Q,∵BH⊥AE,∴∠GQB=∠BHE=90°,∠HBE+∠BEH=90°,∵正方形BEFG,∴BE=BG,∠GBE=90°,∴∠HBE+∠QBG=90°,∴∠QBG=∠BEH,∴△EBH≌△BGQ(AAS),∴BH=GQ,∵△ABH≌△BCN,∴BH=CN,∴CN=GQ,又∵∠CMN=∠QMG,∴△CMN≌△GMQ(AAS),∴CM=MG,∴M为CG的中点.(2)过点C作CN⊥BM于点N,过G作GQ⊥BM于点Q.∵∠ABC=90°,∴∠ABH+∠CBN=90°,∵∠ABH+∠BAH=90°,∴∠CBN=∠BAH,∴△ABH∽△BCN,同理可得:△BEH∽△BGQ.∵,∴,∴,∵∠AMN=∠GMQ,∴△CMN∽△GMQ,∴,∴MG=k2CM.故MG=k2CM;(3)延长AF至点G,使AF=FG,∵AF=FG,BF=DF,∴四边形ABGF为平行四边形,∴AD∥BG,AD=BG,∴∠ABG+∠BAD=180°,∵∠BAC=∠DAE=90°,∴∠CAE+∠BAD=180°,∴∠ABG=∠BAD,∵∠ACB=∠AED=30°,∴AC=AB,AE=AD=BG,∴,∴△CAE∽△ABG,∴,∴,∴CE=2AF.故CE=2AF.12.(1)证明:∵∠ACD=∠B,∠A=∠A=90°,∴△ABC∽△ACD,∴,∴AC2=AD•AB;(2)解:过点E作EF⊥AB交AB于点F,∵AM⊥CD,∴∠AMD=∠DAC=90°,∴∠DAM+∠ADM=∠ADM+∠ACD=90°,∴∠DAM=∠ACD,∵∠ABC=∠ACD,∴∠DAM=∠ABC,∴△AEB为等腰三角形,∴AE=BE,AF=BF=AB,又∵△ABC∽△ACD,∴,∵=,令CD=a,则BC=2a,AB=2AC,在Rt△ABC中,BC2=AB2+AC2,∴AC=a,AB=a,∴AF=AB=a,AD=AC=a,∵∠ACD=∠ABC,∴sin∠ACD=sin∠ABC,即,∴AM==a,又∵∠BAE=∠ACD,∠EFA=∠DCA=90°,∴Rt△AEF∽Rt△ADC,∴,∴AE==a,∴=,∴;(3)解:作∠NBD的角平分线BP交DN于点P,过点A作AF⊥CN于F,∴∠NBP=∠PBD=∠NBD,∵∠NBD=2∠ACD,∴∠NBP=∠PBD=∠ACD,且∠PDB=∠ADC,∴∠BPD=∠BAC=90°,∴BP⊥DN,在△BNP和△BDP中,,∴△BNP≌△BDP(ASA),∴BN=BD,NP=DP,∵∠PBD=∠ACD,∠PDB=∠ADC,∴△PDB∽△ADC,∴,由(1)知,AC2=AD•AB,在Rt△ADC中,AC2=CD2﹣AD2,AB=AD+BD,∴CD2﹣AD2=AD(AD+BD),∵CD=,BN=3,BD=BN=3,即()2﹣AD2=AD2+3AD,解得AD=1或AD=﹣(舍去),∵==,∴PD=AD=,∵NP=DP,∴DN=2PD=,AC=2,∵AF•DC=AD•AC,∴AF=,在Rt△ADF中,DF==,∴NF=ND+DF=+=,在Rt△ANF中,tan∠ANC==.故.13.(1)解:在正方形ABCD中,BC=CD,∠BCD=90°,又∵△ECF是等腰直角三角形,∴CE=CF,∠ECF=90°,∠CFE=45°,∴∠ECF﹣∠ECB=∠BCD﹣∠ECB,∴∠DCE=∠BCF,∴△DEC≌△BFC(SAS),∴∠BFC=∠DEC=90°,∴∠BFE=∠EFC=45°;(2)①证法1:如图2中,将DE边沿着D点顺时针旋转90°得到DH边,连接CH,EH,则DE=DH.∴∠EDH=∠ADC=90°,∠DHE=∠DEH=45°,∴∠ADE=∠CDH,∠HEC=45°,又∵AD=CD,∴△ADE≌△CDH(SAS),∴AE=CH,又∵∠AEF=∠DEC=90°,∠CEF=45°,∴∠AED=135°=∠DHC,∴∠EHC=90°,即EH=CH,∴,,∴;证法2:如图3中,连接AC.∵∠AEC=∠AEF+∠FEC=135°,∴∠AED=360°﹣∠AEC﹣∠DEC=135°,∴∠AEC=∠AED,又∵∠DAE+∠EAC=45°,∠ACE+∠EAC=45°,∴∠DAE=∠ACE,∴△ADE∽△CAE,∴,∵EC=CF,ED=BF,∴;②解法1:如图2中,∵AE=CH,∴,即CE=,∵EF=,∴EF=2AE,即tan∠AFE=;解法2:如图3中,∵△ADE∽△CAE,∴,又∵EF=,∴tan∠AFE=.14.(1)解:∵=,∴=,整理得:BC2+12BC﹣144=0,解得:BC1=6﹣6,BC2=﹣6﹣6(舍去),则BC的长为(6﹣6)cm,故(6﹣6);(2)证明:如图②,分别延长DA、CG交于点M,∵四边形ABCD为正方形,∴AD∥BC,∴∠BCG=∠M,由折叠的性质可知:∠BCG=∠ECG,∴∠ECG=∠M,∴EC=EM,由勾股定理得:EC===20(cm),∴AM=(20﹣20)cm,∵AD∥BC,∴△MAG∽△CBG,∴===,∴G是AB的黄金分割点;(3)当PB=BC时,E、F恰好分别是AD、AB的黄金分割点,理由如下:∵CF⊥BE,∴∠CBE+∠BCF=90°,∵∠ABE+∠CBE=90°,∴∠ABE=∠BCF,在△ABE和△BCF中,,∴△ABE≌△BCF(ASA),∴AE=BF,∵AD∥BC,∴△AFE∽△BFP,∴=,∵F是AB的黄金分割点,∴=,∴=,∵AE=BF,∴BP=AB=BC.15.解:(1)①∵△ABC与△AED为等腰直角三角形,∴∠BAC=∠EAD=45°,==,∠AED=∠CBA=90°,∴DE∥CB,若点E落在AB上,则点D落在AC上,∴==,故;②∵△ABC与△AED为等腰直角三角形,∴∠BAC=∠EAD=45°,==,∠AED=∠CBA=90°,∴∠BAC﹣∠CAE=∠EAD﹣∠EAC,∴∠BAE=∠CAD,∴△ABE∽△ACD,∴==;(2)①如图4,过点E作EF⊥AD于点F,则∠AFE=90°,∵AE=DE,∠AED=α=120°,∴∠EAD=∠EDA=30°,AF=DF,∴AE=2EF,AF=EF,∴AD=2AF=2EF,∴=,同理:∠BAC=30°,==,∴∠EAD+∠CAE=∠BAC+∠CAE,即∠CAD=∠BAE,∴△CAD∽△BAE,∴==,故;②如图4﹣1,由①可知,=,∴AC=AB=2,由旋转的性质得:∠BAB'=∠CAC'=60°,△ABC≌△AB'C',∴线段BC扫过的面积=△ABC的面积+扇形CAC'的面积﹣(△AB'C'的面积+扇形BAB'的面积)=扇形CAC'的面积﹣扇形BAB'的面积=﹣=,故;(3)如图6同(2)得:△CAD∽△BAE,∴∠ACD=∠ABE,∴点D所经过的路径是线段CD,此时CP=AC﹣AP=4﹣1=3,PD=AP=1,∠CPD=90°,∴CD===,∴当点E自点B运动至点P时,点D所经过的路径长为,故.16.解:【教材呈现】如图1中,∵点D、E分别是AB与AC的中点,∴,∵∠A=∠A,∴△ADB∽△ABC,∴==,∠ADE=∠B,∴DE∥BC;【结论应用】如图2中,∵BE⊥AD,∴∠BEA=∠BED=90°,∵BE平分∠ABE,∴∠ABE=∠DBE,∵∠ABE+∠BAE=90°,∠DBE+∠BDE=90°,∴∠BAE=∠BDE,∴BA=BD,∴AE=DE,∵AF=FC,∴EF=CD,∵AB=BD=6,BC=10,∴CD=BC﹣BD=10﹣6=4,∴EF=CD=2.【拓展延伸】如图3中,连接DE,过点D作DH⊥BC于H.在Rt△ABC中,AB=3,BC=4,∴AC===5,∵AD=DC,∴AD=AC=,∵DH∥AB,AD=DC,∴BH=HC,∴DH=AB=,∵AD=DC,ED1=EC,∴DE=AD1=,∴点E在以D为圆心,为半径的圆上运动,∴点E到直线BC的最大距离=DE+DH=+=,∴△BCE的面积的最大值=×4×=.故.17.(1)解:如图1,设DE与CF交于点G,∵四边形ABCD是正方形,∴∠A=∠FDC=90°,AD=CD,∵DE⊥CF,∴∠DGF=90°,∴∠ADE+∠CFD=90°,∠ADE+∠AED=90°,∴∠CFD=∠AED,在△AED和△DFC中,,∴△AED≌△DFC(AAS),∴DE=CF,即=1,故1;(2)解:如图2,设DB与CE交于点G,∵四边形ABCD是矩形,∴∠A=∠EDC=90°,AB=CD,AD∥BC,∵CE⊥BD,∴∠DGC=90°,∴∠CDG+∠ECD=90°,∠ADB+∠CDG=90°,∴∠ECD=∠ADB,∵∠CDE=∠A,∴△DEC∽△ABD,∴==,故;(3)证明:如图3,过点C作CH⊥AF交AF的延长线于点H,∵CG⊥EG,∴∠G=∠H=∠A=∠B=90°,∴四边形ABCH为矩形,∴AB=CH,∠FCH+∠CFH=∠DFG+∠FDG=90°,∴∠FCH=∠FDG=∠ADE,∵∠A=∠H=90°,∴△DEA∽△CFH,∴,∴,∴DE•AB=CF•AD;(4)解:如图4,过点C作CH⊥AD于H,过点A作AN⊥DC于N,取CD的中点O,连接AO,CO,∵DE⊥CF,CH⊥AD,∴∠BAD=∠EGF=90°=∠CHF,∴∠AEG+∠AFG=180°,又∵∠AFG+∠CFH=180°,∴∠AEG=∠CFH,∴△DAE∽△CHF,∴=,∴CH=AD=,∵将△ABD沿BD翻折,∴AD=CD=18,又∵∠ADC=∠ADC,∠CHD=∠AND=90°,∴△AND≌△CHD(AAS),∴AN=CH=,∴DN===,∵点O是CD的中点,∴DO=CO=9,∴NO=,∴AO==,∵∠CGD=90°,∴点G在以CD为直径的圆上运动,∴当点G在线段AO上时,AG有最小值为﹣9.18.解:(1)如图1,延长AE,交BC的延长线于G,∵∠ABC=2∠ABE,∴∠ABE=∠GBG,∵BE⊥AE,∴∠AEB=∠BEG,∵BE=BE,∴△ABE≌△GBE(ASA),∴AE=EG,∴AG=2AE,∵∠AFE=∠BFC,∴∠CAE=∠CBD==22.5°,∵AC=BC,∠ACB=∠ACG=90°,∴△ACG≌△BCF(ASA),∴AG=DF,∴,故22,5°,;(2)如图2,作DH⊥AC,交AE的延长线于G,∵∠ACB=90°,AC=BC,∴∠CAB=∠B=45°,∴∠ADH=90°﹣∠CAB=45°,∴∠CAB=∠ADH,∴AH=DH,∴△ADH是等腰直角三角形,∴∠ADH=∠ABC=2∠ADE,由(1)得,AG=DF,AG=2AE,∴;(3)如图3,作DH⊥AC,交AE的延长线于G,∴∠AHD=∠C=90°,∵∠HAD=∠CAB,∴△AHD∽△ACB,∴=m,由上可知,AG=2AE,∠GAH=∠HDF,∠AHG=∠DHF=90°,∴△AHG∽△DHF,∴,∴,∴;(4)如图4,作AG⊥AC,截取AG=BD,∵∠C=90°,∴AG∥BC,∴四边形AGBD是平行四边形,∴AD∥BG,∴∠∠EMA=∠GBF,∵BC=mAF,CF=mBD,∴,∴,∵∠FAG=∠C=90°,∴△FAG∽△BCF,∴∠FAG=∠CBF,,∴∠AFG+∠BFC=∠CBF+∠BFC=90°,∴∠BFG=90°,∴∠BFG=∠E=90°,∴△AME∽△GBF,∴.19.(1)证明:∵DE∥BC,∴,∵∠DAE=∠BAC,∴∠DAE﹣∠DAC=∠BAC﹣∠DAC,∴∠BAD=∠CAE,∴△ABD∽△ACE;(2)解:如图1,连接CE,由(1)知,△ABD∽△ACE,∴==tan∠ABC=tan30°=,∠ACE=∠ABD,∴∠BEC=∠BAC=90°,∵∠AED=60°,∴∠FEC=180°﹣∠AED﹣∠AEC=30°,∵∠ABC=30°,∴∠FEC=∠ABC,∵∠F=∠F,∴△FEC∽△FBA,∴,∵=,∴,∴;(3)解:如图2,将△ABG绕点A旋转∠BAC的度数至△ACG′,连接CG′,∴AG=AG′,∠GAG′=∠BAC,∵AB=AC,∴,∴△AGG′∽△ABC,∴∠AGG′=∠ABC,∵∠AGB+∠BAG+∠ABG=180°,∠BAG=∠CBG,∴∠AGB+∠CBG+∠ABG=180°,∴∠AGB+∠ABC=180°,∴∠AGB+∠AGG′=180°,∴B、G、G′共线,∴∠CGG′=90°,设CG=a,则CG′=BG=2a,∴BC=a,GG′==,。
九年级中考数学复习训练卷(提高题)
九年级中考数学复习训练卷(提高题)1.定义新运算:对任意有理数a、b,都有a⊗b=a(),例如3⊗4=3×()=,那么(﹣2)⊗5的值是()A.B.C.﹣D.2.一个口袋中共有50个球,其中白球20个,红球20个,蓝球10个,则摸到白球的概率是()A.B.C.D.3.如图,在平面直角坐标系中,△ABC的顶点都在方格线的格点上,将△ABC绕点P逆时针方向旋转90°,得到△A′B′C′,则点P的坐标为()A.(2,1)B.(1,1)C.(1,2)D.(0,4)4.如图,图1是装了液体的高脚杯示意图(数据如图),用去一部分液体后如图2所示,此时液面直径AB=()A.B.C.(6﹣4tanα)cm D.(6﹣8tanα)cm5.如图,E是边长为2的正方形ABCD的对角线AC上一点,且AE=AB,F为BE上任意点,FG⊥AC于点G,FH⊥AB于点H,则FG+FH的值是()A.B.C.2D.16.如图,一块矩形木板ABCD斜靠在墙边,OC⊥OB,点A,B,C,D,O在同一平面内,已知AB=2,AD=8,∠BCO=x,则点A到OC的距离等于()A.2sin x+8sin x B.2cos x+8cos xC.2sin x+8cos x D.2cos x+8sin x7.已知点A(x1,y1),B(x2,y2),C(x3,y3)都在反比例函数y=(k<0)的图象上,且x1<x2<0<x3,则y1,y2,y3的大小关系是()A.y2>y1>y3B.y3>y2>y1C.y1>y2>y3D.y3>y1>y2 8.如图,将两个正方形如图放置(B,C,E共线,D,C,G共线),若AB=3,EF=2,点O在线段BC上,以OF为半径作⊙O,点A,点F都在⊙O上,则OD的长是()A.4B.C.D.9.关于二次函数y=ax2﹣4ax﹣5(a≠0)的四个结论:①对任意实数m,都有x1=2+m与x2=2﹣m对应的函数值相等;②无论a取何值,抛物线必过两个定点;③若抛物线与x 轴交于不同两点A,B,且AB≤6,则a<﹣;④若3≤x≤4,对应的y的整数值有4个,则﹣<a≤﹣1或1≤a<,其中正确的结论是.(填写序号)10.计算:(1)用乘法公式计算:20162﹣2018×2014.(2)(x﹣2y+3z)(x﹣2y﹣3z).(3)化简求值:[(a﹣3b)(a+b)﹣(a+2b)(a﹣2b)]÷(﹣2b),其中a=﹣1,b=.11.已知:如图,在正方形ABCD外取一点E,连接AE、BE、DE.过点A作AE的垂线交DE于点P.若AE=AP=1,PB=.(1)求证:△APD≌△AEB;(2)求证:EB⊥ED;(3)求点B到直线AE的距离;(4)求正方形ABCD的面积.12.如图,点P在y轴的正半轴上,⊙P交x轴于B、C两点,以AC为直角边作等腰Rt△ACD,BD分别交y轴和⊙P于E、F两点,连接AC、FC.(1)求证:∠ACF=∠ADB;(2)若点A到BD的距离为m,BF+CF=n,求线段CD的长;(3)当⊙P的大小发生变化而其他条件不变时,的值是否发生变化?若不发生变化,请求出其值;若发生变化,请说明理由.13.问题背景如图1,在正方形ABCD中,点E为AB边上一动点(不与点A,B重合),连接CE,过点E作EF⊥CE,且EF=CE,连接AC,AF,CF,求证:△AFC∽△BEC;尝试应用如图2,在问题背景的条件下,CF与AD交于点G,若AG=DG,求的值;拓展创新如图3,在矩形ABCD中,点E为AB边上一动点(不与点A,B重合),连接CE,过点E作EF⊥CE,且==,连接CF交AD于G,EF与AD交于H,若FG=FH,直接写出的值.14.“枯藤老树昏鸦,空调WiFi西瓜”.在炎炎夏日,西瓜仿佛是人们的“必备品”.据调查,某超市购进A、B两类西瓜.其中,1kgA类西瓜的进价比2kgB类西瓜的进价多0.5元,2kgA 类西瓜的进价与5kgB类西瓜的进价相同.(1)求A、B两类西瓜的进价分别是多少元?(2)八月初,该超市购进了A类西瓜2000kg和B类西瓜8000kg,此次A类西瓜售价是3元,B类西瓜的售价是1.5元,极为畅销,很快全部卖出.超市负责人决定立马再次进货,此次购进A类西瓜的重量是上次总重量的5m%;购进B类西瓜的重量比上次B类西瓜重量增加了m%,A、B两类西瓜进价不变.但恰好持续几天都是阴雨天,气温转凉,市民对西瓜的消费热情降低,为了冲击销量,超市决定对西瓜进行降价促销活动,A类西瓜售价降低m%,B类西瓜利润降低4m%,最终还是全部卖完.结果比上次少盈利1000元,求m的值.15.如图1,抛物线y=ax2+bx+c与x轴交于A,B(点A在点B左侧),与y轴负半轴交于C,且满足OA=OB=OC=2.(1)求抛物线的解析式;(2)如图2,D为y轴负半轴上一点,过D作直线l垂直于直线BC,直线l交抛物线于E,F两点(点E在点F右侧),若DF=3DE,求D点坐标;(3)如图3,点M为抛物线第二象限部分上一点,点M,N关于y轴对称,连接MB,P 为线段MB上一点(不与M、B重合),过P点作直线x=t(t为常数)交x轴于S,交直线NB于Q,求QS﹣PS的值(用含t的代数式表示).。
2020年中考数学一轮复习:三角形综合提升训练解析版
2020年中考数学一轮复习:三角形综合提升训练一.选择题(共14小题)1.下列长度的三条线段,能组成三角形的是()A.3,4,8B.5,6,10C.5,5,11D.5,6,112.如图,已知BG是∠ABC的平分线,DE⊥AB于点E,DF⊥BC于点F,DE=6,则DF 的长度是()A.2B.3C.4D.63.如图,等腰直角三角形的顶点A、C分别在直线a、b上,若a∥b,∠1=30°,则∠2的度数为()A.30°B.15°C.10°D.20°4.如图,等边三角形ABC中,AD⊥BC,垂足为D,点E在线段AD上,∠EBC=45°,则∠ACE等于()A.15°B.30°C.45°D.60°5.在△AOC中,OB交AC于点D,量角器的摆放如图所示,则∠CDO的度数为()A.90°B.95°C.100°D.120°6.如图,在△ABC中,DE是AC的垂直平分线,且分别交BC,AC于点D和E,∠B=60°,∠C=25°,则∠BAD为()A.50°B.70°C.75°D.80°7.在Rt△ABC中,∠ACB=90°,CD⊥AB于D,CE平分∠ACD交AB于E,则下列结论一定成立的是()A.BC=EC B.EC=BE C.BC=BE D.AE=EC8.三角形的重心是()A.三角形三条边上中线的交点B.三角形三条边上高线的交点C.三角形三条边垂直平分线的交点D.三角形三条内角平分线的交点9.如图,∠ACD=120°,∠B=20°,则∠A的度数是()A.120°B.90°C.100°D.30°10.一个三角形的三个内角的度数之比为1:2:3,则这个三角形一定是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰直角三角形11.如图,直线AB∥CD,∠A=70°,∠C=40°,则∠E等于()A.30°B.40°C.60°D.70°12.如图,△ABC中,AB=AC,AD是∠BAC的平分线.已知AB=5,AD=3,则BC的长为()A.5B.6C.8D.1013.如图,CE是△ABC的外角∠ACD的平分线,若∠B=35°,∠ACE=60°,则∠A=()A.35°B.95°C.85°D.75°14.如图,在△ABC中,AB=AC,∠A=30°,E为BC延长线上一点,∠ABC与∠ACE 的平分线相交于点D,则∠D的度数为()A.15°B.17.5°C.20°D.22.5°二.填空题(共8小题)15.等腰三角形的一个底角为50°,则它的顶角的度数为.16.如图,△ABC中,∠ABC与∠ACB的平分线相交于D,若∠A=50°,则∠BDC=度.17.如图,△ABC中,D是BC上一点,AC=AD=DB,∠BAC=102°,则∠ADC=度.18.如图,在△ABC中,∠C=31°,∠ABC的平分线BD交AC于点D,如果DE垂直平分BC,那么∠A=°.19.如图,在正三角形ABC中,AD⊥BC于点D,则∠BAD=°.20.如图,在等腰三角形ABC中,AB=AC,DE垂直平分AB,已知∠ADE=40°,则∠DBC=°.21.如图所示,小明为了测量学校里一池塘的宽度AB,选取可以直达A、B两点的点O处,再分别取OA、OB的中点M、N,量得MN=20m,则池塘的宽度AB为m.22.如图,在△ABC中,∠B=∠C,AD⊥BC于点D,若AB=6,CD=4,则△ABC的周长是.三.解答题(共6小题)23.如图,在△ABC中,AC<AB<BC.(1)已知线段AB的垂直平分线与BC边交于点P,连接AP,求证:∠APC=2∠B.(2)以点B为圆心,线段AB的长为半径画弧,与BC边交于点Q,连接AQ.若∠AQC =3∠B,求∠B的度数.24.如图,在△ABC中,∠BAC=90°,E为边BC上的点,且AB=AE,D为线段BE的中点,过点E作EF⊥AE,过点A作AF∥BC,且AF、EF相交于点F.(1)求证:∠C=∠BAD;(2)求证:AC=EF.25.已知,在如图所示的“风筝”图案中,AB=AD,AC=AE,∠BAE=∠DAC.求证:∠E=∠C.26.如图,在△ABC中,AD是BC边上的中线,E是AB边上一点,过点C作CF∥AB交ED的延长线于点F.(1)求证:△BDE≌△CDF.(2)当AD⊥BC,AE=1,CF=2时,求AC的长.27.如图,在△ABC中,AB=AC,AD⊥BC于点D.(1)若∠C=42°,求∠BAD的度数;(2)若点E在边AB上,EF∥AC交AD的延长线于点F.求证:AE=FE.28.如图,点A、D、C、F在同一条直线上,AD=CF,AB=DE,BC=EF.(1)求证:△ABC≌△DEF;(2)若∠A=55°,∠B=88°,求∠F的度数.一.选择题(共14小题)1.下列长度的三条线段,能组成三角形的是()A.3,4,8B.5,6,10C.5,5,11D.5,6,11【分析】根据三角形的三边关系即可求【解答】解:A选项,3+4=7<8,两边之和小于第三边,故不能组成三角形B选项,5+6=11>10,10﹣5<6,两边之各大于第三边,两边之差小于第三边,故能组成三角形C选项,5+5=10<11,两边之和小于第三边,故不能组成三角形D选项,5+6=11,两边之和不大于第三边,故不能组成三角形故选:B.2.如图,已知BG是∠ABC的平分线,DE⊥AB于点E,DF⊥BC于点F,DE=6,则DF 的长度是()A.2B.3C.4D.6【分析】根据角的平分线上的点到角的两边的距离相等即可得.【解答】解:∵BG是∠ABC的平分线,DE⊥AB,DF⊥BC,∴DE=DF=6,故选:D.3.如图,等腰直角三角形的顶点A、C分别在直线a、b上,若a∥b,∠1=30°,则∠2的度数为()A.30°B.15°C.10°D.20°【分析】由等腰直角三角形的性质和平行线的性质求出∠ACD=60°,即可得出∠2的度数.【解答】解:如图所示:∵△ABC是等腰直角三角形,∴∠BAC=90°,∠ACB=45°,∴∠1+∠BAC=30°+90°=120°,∵a∥b,∴∠ACD=180°﹣120°=60°,∴∠2=∠ACD﹣∠ACB=60°﹣45°=15°;故选:B.4.如图,等边三角形ABC中,AD⊥BC,垂足为D,点E在线段AD上,∠EBC=45°,则∠ACE等于()A.15°B.30°C.45°D.60°【分析】先判断出AD是BC的垂直平分线,进而求出∠ECB=45°,即可得出结论.【解答】解:∵等边三角形ABC中,AD⊥BC,∴BD=CD,即:AD是BC的垂直平分线,∵点E在AD上,∴BE=CE,∴∠EBC=∠ECB,∵∠EBC=45°,∴∠ECB=45°,∵△ABC是等边三角形,∴∠ACB=60°,∴∠ACE=∠ACB﹣∠ECB=15°,故选:A.5.在△AOC中,OB交AC于点D,量角器的摆放如图所示,则∠CDO的度数为()A.90°B.95°C.100°D.120°【分析】依据CO=AO,∠AOC=130°,即可得到∠CAO=25°,再根据∠AOB=70°,即可得出∠CDO=∠CAO+∠AOB=25°+70°=95°.【解答】解:∵CO=AO,∠AOC=130°,∴∠CAO=25°,又∵∠AOB=70°,∴∠CDO=∠CAO+∠AOB=25°+70°=95°,故选:B.6.如图,在△ABC中,DE是AC的垂直平分线,且分别交BC,AC于点D和E,∠B=60°,∠C=25°,则∠BAD为()A.50°B.70°C.75°D.80°【分析】根据线段垂直平分线的性质得到DA=DC,根据等腰三角形的性质得到∠DAC =∠C,根据三角形内角和定理求出∠BAC,计算即可.【解答】解:∵DE是AC的垂直平分线,∴DA=DC,∴∠DAC=∠C=25°,∵∠B=60°,∠C=25°,∴∠BAC=95°,∴∠BAD=∠BAC﹣∠DAC=70°,故选:B.7.在Rt△ABC中,∠ACB=90°,CD⊥AB于D,CE平分∠ACD交AB于E,则下列结论一定成立的是()A.BC=EC B.EC=BE C.BC=BE D.AE=EC【分析】根据同角的余角相等可得出∠BCD=∠A,根据角平分线的定义可得出∠ACE=∠DCE,再结合∠BEC=∠A+∠ACE、∠BCE=∠BCD+∠DCE即可得出∠BEC=∠BCE,利用等角对等边即可得出BC=BE,此题得解.【解答】解:∵∠ACB=90°,CD⊥AB,∴∠ACD+∠BCD=90°,∠ACD+∠A=90°,∴∠BCD=∠A.∵CE平分∠ACD,∴∠ACE=∠DCE.又∵∠BEC=∠A+∠ACE,∠BCE=∠BCD+∠DCE,∴∠BEC=∠BCE,∴BC=BE.故选:C.8.三角形的重心是()A.三角形三条边上中线的交点B.三角形三条边上高线的交点C.三角形三条边垂直平分线的交点D.三角形三条内角平分线的交点【分析】根据三角形的重心是三条中线的交点解答.【解答】解:三角形的重心是三条中线的交点,故选:A.9.如图,∠ACD=120°,∠B=20°,则∠A的度数是()A.120°B.90°C.100°D.30°【分析】根据三角形的外角的性质计算即可.【解答】解:∠A=∠ACD﹣∠B=120°﹣20°=100°,故选:C.10.一个三角形的三个内角的度数之比为1:2:3,则这个三角形一定是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰直角三角形【分析】根据三角形内角和等于180°计算即可.【解答】解:设三角形的三个内角的度数之比为x、2x、3x,则x+2x+3x=180°,解得,x=30°,则3x=90°,∴这个三角形一定是直角三角形,故选:B.11.如图,直线AB∥CD,∠A=70°,∠C=40°,则∠E等于()A.30°B.40°C.60°D.70°【分析】先根据两直线平行,同位角相等求出∠1,再利用三角形的外角等于和它不相邻的两个内角的和即可求出∠E的度数.【解答】解:如图,∵AB∥CD,∠A=70°,∴∠1=∠A=70°,∵∠1=∠C+∠E,∠C=40°,∴∠E=∠1﹣∠C=70°﹣40°=30°.故选:A.12.如图,△ABC中,AB=AC,AD是∠BAC的平分线.已知AB=5,AD=3,则BC的长为()A.5B.6C.8D.10【分析】根据等腰三角形的性质得到AD⊥BC,BD=CD,根据勾股定理即可得到结论.【解答】解:∵AB=AC,AD是∠BAC的平分线,∴AD⊥BC,BD=CD,∵AB=5,AD=3,∴BD==4,∴BC=2BD=8,故选:C.13.如图,CE是△ABC的外角∠ACD的平分线,若∠B=35°,∠ACE=60°,则∠A=()A.35°B.95°C.85°D.75°【分析】根据三角形角平分线的性质求出∠ACD,根据三角形外角性质求出∠A即可.【解答】解:∵CE是△ABC的外角∠ACD的平分线,∠ACE=60°,∴∠ACD=2∠ACE=120°,∵∠ACD=∠B+∠A,∴∠A=∠ACD﹣∠B=120°﹣35°=85°,故选:C.14.如图,在△ABC中,AB=AC,∠A=30°,E为BC延长线上一点,∠ABC与∠ACE 的平分线相交于点D,则∠D的度数为()A.15°B.17.5°C.20°D.22.5°【分析】先根据角平分线的定义得到∠1=∠2,∠3=∠4,再根据三角形外角性质得∠1+∠2=∠3+∠4+∠A,∠1=∠3+∠D,则2∠1=2∠3+∠A,利用等式的性质得到∠D =∠A,然后把∠A的度数代入计算即可.【解答】解:∵∠ABC的平分线与∠ACE的平分线交于点D,∴∠1=∠2,∠3=∠4,∵∠ACE=∠A+∠ABC,即∠1+∠2=∠3+∠4+∠A,∴2∠1=2∠3+∠A,∵∠1=∠3+∠D,∴∠D=∠A=×30°=15°.故选:A.二.填空题(共8小题)15.等腰三角形的一个底角为50°,则它的顶角的度数为80°.【分析】本题给出了一个底角为50°,利用等腰三角形的性质得另一底角的大小,然后利用三角形内角和可求顶角的大小.【解答】解:∵等腰三角形底角相等,∴180°﹣50°×2=80°,∴顶角为80°.故填80°.16.如图,△ABC中,∠ABC与∠ACB的平分线相交于D,若∠A=50°,则∠BDC=115度.【分析】根据角平分线的性质和三角形的内角和定理求解.【解答】解:∵∠A=50°,∴∠ABC+∠ACB=130°.∵∠ABC与∠ACB的平分线相交于D,∴∠DBC+∠DCB=65°,∴∠BDC=115°.17.如图,△ABC中,D是BC上一点,AC=AD=DB,∠BAC=102°,则∠ADC=52度.【分析】设∠ADC=α,然后根据AC=AD=DB,∠BAC=102°,表示出∠B和∠BAD 的度数,最后根据三角形的内角和定理求出∠ADC的度数.【解答】解:∵AC=AD=DB,∴∠B=∠BAD,∠ADC=∠C,设∠ADC=α,∴∠B=∠BAD=,∵∠BAC=102°,∴∠DAC=102°﹣,在△ADC中,∵∠ADC+∠C+∠DAC=180°,∴2α+102°﹣=180°,解得:α=52°.故答案为:52.18.如图,在△ABC中,∠C=31°,∠ABC的平分线BD交AC于点D,如果DE垂直平分BC,那么∠A=87°.【分析】根据DE垂直平分BC,求证∠DBE=∠C,再利用角平分线的性质和三角形内角和定理,即可求得∠A的度数.【解答】解:∵在△ABC中,∠C=31°,∠ABC的平分线BD交AC于点D,∴∠DBE=∠ABC=(180°﹣31°﹣∠A)=(149°﹣∠A),∵DE垂直平分BC,∴BD=DC,∴∠DBE=∠C,∴∠DBE=∠ABC=(149°﹣∠A)=∠C=31°,∴∠A=87°.故答案为:87.19.如图,在正三角形ABC中,AD⊥BC于点D,则∠BAD=30°°.【分析】根据正三角形ABC得到∠BAC=60°,因为AD⊥BC,根据等腰三角形的三线合一得到∠BAD的度数.【解答】解:∵△ABC是等边三角形,∴∠BAC=60°,∵AB=AC,AD⊥BC,∴∠BAD=∠BAC=30°,故答案为:30°.20.如图,在等腰三角形ABC中,AB=AC,DE垂直平分AB,已知∠ADE=40°,则∠DBC=15°.【分析】根据线段垂直平分线求出AD=BD,推出∠A=∠ABD=50°,根据三角形内角和定理和等腰三角形性质求出∠ABC,即可得出答案.【解答】解:∵DE垂直平分AB,∴AD=BD,∠AED=90°,∴∠A=∠ABD,∵∠ADE=40°,∴∠A=90°﹣40°=50°,∴∠ABD=∠A=50°,∵AB=AC,∴∠ABC=∠C=(180°﹣∠A)=65°,∴∠DBC=∠ABC﹣∠ABD=65°﹣50°=15°,故答案为:15.21.如图所示,小明为了测量学校里一池塘的宽度AB,选取可以直达A、B两点的点O处,再分别取OA、OB的中点M、N,量得MN=20m,则池塘的宽度AB为40m.【分析】根据题意知MN是△ABO的中位线,所以由三角形中位线定理来求AB的长度即可.【解答】解:∵点M、N是OA、OB的中点,∴MN是△ABO的中位线,∴AB=AMN.又∵MN=20m,∴AB=40m.故答案是:40.22.如图,在△ABC中,∠B=∠C,AD⊥BC于点D,若AB=6,CD=4,则△ABC的周长是20.【分析】运用等腰三角形的性质,可得BD=CD,再求出△ABC的周长.【解答】解:∵在△ABC中,AB=AC,∴△ABC是等腰三角形,又∵AD⊥BC于点D∴BD=CD∵AB=6,CD=4∴△ABC的周长=6+4+4+6=20.故答案为:20.三.解答题(共6小题)23.如图,在△ABC中,AC<AB<BC.(1)已知线段AB的垂直平分线与BC边交于点P,连接AP,求证:∠APC=2∠B.(2)以点B为圆心,线段AB的长为半径画弧,与BC边交于点Q,连接AQ.若∠AQC =3∠B,求∠B的度数.【分析】(1)根据线段垂直平分线的性质可知P A=PB,根据等腰三角形的性质可得∠B=∠BAP,根据三角形的外角性质即可证得APC=2∠B;(2)根据题意可知BA=BQ,根据等腰三角形的性质可得∠BAQ=∠BQA,再根据三角形的内角和公式即可解答.【解答】解:(1)证明:∵线段AB的垂直平分线与BC边交于点P,∴P A=PB,∴∠B=∠BAP,∵∠APC=∠B+∠BAP,∴∠APC=2∠B;(2)根据题意可知BA=BQ,∴∠BAQ=∠BQA,∵∠AQC=3∠B,∠AQC=∠B+∠BAQ,∴∠BQA=2∠B,∵∠BAQ+∠BQA+∠B=180°,∴5∠B=180°,∴∠B=36°.24.如图,在△ABC中,∠BAC=90°,E为边BC上的点,且AB=AE,D为线段BE的中点,过点E作EF⊥AE,过点A作AF∥BC,且AF、EF相交于点F.(1)求证:∠C=∠BAD;(2)求证:AC=EF.【分析】(1)由等腰三角形的性质可得AD⊥BC,由余角的性质可得∠C=∠BAD;(2)由“ASA”可证△ABC≌△EAF,可得AC=EF.【解答】证明:(1)∵AB=AE,D为线段BE的中点,∴AD⊥BC∴∠C+∠DAC=90°,∵∠BAC=90°∴∠BAD+∠DAC=90°∴∠C=∠BAD(2)∵AF∥BC∴∠F AE=∠AEB∵AB=AE∴∠B=∠AEB∴∠B=∠F AE,且∠AEF=∠BAC=90°,AB=AE∴△ABC≌△EAF(ASA)∴AC=EF25.已知,在如图所示的“风筝”图案中,AB=AD,AC=AE,∠BAE=∠DAC.求证:∠E=∠C.【分析】由“SAS”可证△ABC≌△ADE,可得∠C=∠E.【解答】证明:∵∠BAE=∠DAC∴∠BAE+∠CAE=∠DAC+∠CAE∴∠CAB=∠EAD,且AB=AD,AC=AE∴△ABC≌△ADE(SAS)∴∠C=∠E26.如图,在△ABC中,AD是BC边上的中线,E是AB边上一点,过点C作CF∥AB交ED的延长线于点F.(1)求证:△BDE≌△CDF.(2)当AD⊥BC,AE=1,CF=2时,求AC的长.【分析】(1)根据平行线的性质得到∠B=∠FCD,∠BED=∠F,由AD是BC边上的中线,得到BD=CD,于是得到结论;(2)根据全等三角形的性质得到BE=CF=2,求得AB=AE+BE=1+2=3,于是得到结论.【解答】(1)证明:∵CF∥AB,∴∠B=∠FCD,∠BED=∠F,∵AD是BC边上的中线,∴BD=CD,∴△BDE≌△CDF(AAS);(2)解:∵△BDE≌△CDF,∴BE=CF=2,∴AB=AE+BE=1+2=3,∵AD⊥BC,BD=CD,∴AC=AB=3.27.如图,在△ABC中,AB=AC,AD⊥BC于点D.(1)若∠C=42°,求∠BAD的度数;(2)若点E在边AB上,EF∥AC交AD的延长线于点F.求证:AE=FE.【分析】(1)根据等腰三角形的性质得到∠BAD=∠CAD,根据三角形的内角和即可得到∠BAD=∠CAD=90°﹣42°=48°;(2)根据等腰三角形的性质得到∠BAD=∠CAD根据平行线的性质得到∠F=∠CAD,等量代换得到∠BAD=∠F,于是得到结论.【解答】解:(1)∵AB=AC,AD⊥BC于点D,∴∠BAD=∠CAD,∠ADC=90°,又∠C=42°,∴∠BAD=∠CAD=90°﹣42°=48°;(2)∵AB=AC,AD⊥BC于点D,∴∠BAD=∠CAD,∵EF∥AC,∴∠F=∠CAD,∴∠BAD=∠F,∴AE=FE.28.如图,点A、D、C、F在同一条直线上,AD=CF,AB=DE,BC=EF.(1)求证:△ABC≌△DEF;(2)若∠A=55°,∠B=88°,求∠F的度数.【分析】(1)求出AC=DF,根据SSS推出△ABC≌△DEF.(2)由(1)中全等三角形的性质得到:∠A=∠EDF,进而得出结论即可.【解答】证明:(1)∵AC=AD+DC,DF=DC+CF,且AD=CF∴AC=DF在△ABC和△DEF中,∴△ABC≌△DEF(SSS)(2)由(1)可知,∠F=∠ACB∵∠A=55°,∠B=88°∴∠ACB=180°﹣(∠A+∠B)=180°﹣(55°+88°)=37°∴∠F=∠ACB=37°。
【解析版】中考数学名师点拨:几何综合问题-巩固练习(提高)及答案解析
中考冲刺:几何综合问题—巩固练习(提高)【巩固练习】一、选择题1.如图,直角三角板ABC的斜边AB=12cm,∠A=30°,将三角板ABC绕C顺时针旋转90°至三角板A′B′C′的位置后,再沿CB方向向左平移,使点B′落在原三角板ABC的斜边AB上,则三角板A′B′C′平移的距离为()A.6cmB.4cmC.(6-cmD.()6cm2.如图,△ABC和△DEF是等腰直角三角形,∠C=∠F=90°,AB=2,DE=4.点B与点D重合,点A,B(D),E在同一条直线上,将△ABC沿DE方向平移,至点A与点E重合时停止.设点B,D之间的距离为x,△ABC 与△DEF重叠部分的面积为y,则准确反映y与x之间对应关系的图象是()A B C D二、填空题3.如图,将两块直角三角板的斜边重合,E是两直角三角形公共斜边AC的中点.D、B分别为直角顶点,连接DE、BE、DB,∠DAC=60°,∠BAC=45°.则∠EDB的度数为_______.4.如图,一块直角三角形木板△ABC,将其在水平面上沿斜边AB所在直线按顺时针方向翻滚,使它滚动到cm .三、解答题5.如图,在正方形ABCD 中,对角线AC 与BD 相交于点E ,AF 平分∠BAC ,交BD 于点F. (1)EF+21AC =AB ; (2)点C 1从点C 出发,沿着线段CB 向点B 运动(不与点B 重合),同时点A 1从点A 出发,沿着BA 的延长线运动,点C 1与点A 1运动速度相同,当动点C 1停止运动时,另一动点A 1也随之停止运动.如图,AF 1平分∠B A 1 C 1,交BD 于F 1,过F 1作F 1E 1⊥A 1 C 1,垂足为E 1,试猜想F 1E 1,21A 1 C 1与AB 之间的数量关系,并证明你的猜想.(3)在(2)的条件下,当A 1 E 1=3,C 1 E 1=2时,求BD 的长.6.如图,等腰Rt△ABC 中,∠C=90°,AC=6,动点P 、Q 分别从A 、B 两点同时以每秒1个单位长的速度按顺时针方向沿△ABC 的边运动,当Q 运动到A 点时,P 、Q 停止运动.设Q 点运动时间为t 秒,点P 运动的轨迹与PQ 、AQ 围成图形的面积为S.求S 关于t 的函数解析式.7.正方形ABCD中,点F为正方形ABCD内的点,△BFC绕着点B按逆时针方向旋转90°后与△BEA重合.(2)如图2,若点F为正方形ABCD对角线AC上的点,且AF:FC=3:1,BC=2,求BF的长.8.将正方形ABCD和正方形BEFG如图1摆放,连DF.∠DMC=_____;DMC的值,并证明你的结论;∠DMC=_________.请画出图形,并直接写出你的结论(不用证明).9.已知△ABC≌△ADE,∠BAC=∠DAE=90°.(1)如图(1)当C、A、D在同一直线上时,连CE、BD,判断CE和BD位置关系,填空:CE_____BD.(2)如图(2)把△ADE绕点A旋转到如图所示的位置,试问(1)中的结论是否仍然成立,写出你的结论,并说明理由.(3)如图(3)在图2的基础上,将△ACE绕点A旋转一个角度到如图所示的△AC′E′的位置,连接10.将正方形ABCD 和正方形CGEF 如图1摆放,使D 点在CF 边上,M 为AE 中点, (1)连接MD 、MF ,则容易发现MD 、MF 间的关系是______________(2)操作:把正方形CGEF 绕C 点旋转,使对角线CE 放在正方形ABCD 的边BC 的延长线上(CG >BC ),取线段AE 的中点M ,探究线段MD 、MF 的关系,并加以说明;(3)将正方形CGEF 绕点C 旋转任意角度后(如图3),其他条件不变,(2)中的结论是否仍成立?直接写出猜想,不需要证明.【答案与解析】 一、选择题 1.【答案】C. 2.【答案】B. 二、填空题 3.【答案】15°. 4.三、解答题 5.【答案与解析】(1)证明:如图1,过点F 作FM ⊥AB 于点M ,在正方形ABCD 中,AC ⊥BD 于点E .∵AF 平分∠BAC , ∴EF=MF ,图3DEC FGMB A图2C FMABDEG图1ABGM F EDC又∵AF=AF,∴Rt△AMF≌Rt△AEF,∴AE=AM,∵∠MFB=∠ABF=45°,∴MF=MB,MB=EF,证明:如图2,连接F1C1,过点F1作F1P⊥A1B于点P,F1Q⊥BC于点Q,∵A1F1平分∠BA1C1,∴E1F1=PF1;同理QF1=PF1,∴E1F1=PF1=QF1,又∵A1F1=A1F1,∴Rt△A1E1F1≌Rt△A1PF1,∴A1E1=A1P,同理Rt△QF1C1≌Rt△E1F1C1,∴C1Q=C1E1,由题意:A1A=C1C,∴A1B+BC1=AB+A1A+BC-C1C=AB+BC=2AB,∵PB=PF1=QF1=QB,∴A1B+BC1=A1P+PB+QB+C1Q=A1P+C1Q+2E1F1,即2AB=A1E1+C1E1+2E1F1=A1C1+2E1F1,(3)解:设PB=x,则QB=x,∵A1E1=3,QC1=C1E1=2,Rt△A1BC1中,A1B2+BC12=A1C12,即(3+x)2+(2+x)2=52,∴x1=1,x2=-6(舍去),∴PB=1,∴E1F1=1,又∵A1C1=5,6.【答案与解析】当P运动到C点时:t=6当Q运动到A点:t=∴分两种情况讨论(1)当0≤t≤6时,如图:作PH⊥AB于H,则△APH为等腰直角三角形此时AP=t,BQ=t,则AQ=-tPH=APsin45°=t∴S△AQP=AQ·PH=·(-t)·t=t2+3t(2)当6<t≤时,如图:过P过PH⊥AB于H,此时△PBH为等腰直角三角形AC+CP=t,BQ=t∴BP=AC+CB-(AC+CP)=12-t∴PH=BPsin45°=(12-t)∴S四边形AQPC=S△ABC-S△BPQ=AC·BC-BQ·PH=·6·6-·t·(12-t)=18-t+t2=t2-t+18.综上,.7.【答案与解析】(1)证明:∵△BFC绕着点B按逆时针方向旋转90°后与△BEA重合∴BE=BF=1,∠EBF=∠ABC=90°,∠AEB=∠BFC在△BFC中,BC2=22=4∴BF2+FC2=BC2∴∠BFC=90°…(3分)∴∠AEB+∠EBF=180°∴AE∥BF…(4分)(2)解:∵Rt△ABC中,AB=BC=2,由勾股定理,得∵AF:FC=3:1,∵△BFC绕着点B按逆时针方向旋转90°后与△BEA重合∵四边形ABCD是正方形∴∠ABC=90°∴∠BAC+∠ACB=90°∴∠EAB+∠BAC=90°即∠EAF=90°在Rt△EBF中,EF2=BE2+BF2∵BE=BF8.【答案与解析】(1)如图2,连接BF,∵四边形ABCD、四边形BEFG是正方形,∴∠FBC=∠CBD=45°,∴∠CBD=∠GBC=90°,∴△BFD ∽△BGC ,-90°=45°,(2)如图3,∵将图1中的正方形BEFG 绕B 点顺时针旋转45°,DF 的延长线交CG 于M , ∴B 、E 、D 三点在同一条直线上, 而四边形ABCD 、四边形BEFG 是正方形,∴△BFD ∽△BGC , 而∠DMC=180°-∠BCG-∠BCD-∠CDF =180°-∠BDF-∠BCD-∠CDF=180-45°-90° =45°, 即∠DMC=45°; 9.【答案与解析】(1)CE ⊥BD.(2)延长CE 交BD 于M ,设AB 与EM 交于点F .∵∠BAC=∠DAE=90°,∴∠CAE=∠BAD.又∵△ABC≌△ADE,∴AC=AE,AB=AD,∴∠ACE=∠ABD.又∵∠AFC=∠BFM,∠AFC+∠ACE=90°,∴∠ABD+∠BFM=90°,∴∠BMC=90°,∴CE⊥BD.(3)过C′作C′G⊥AM于G,过D作DH⊥AM交延长线于点H.∵∠∠E′NA=∠AGC′=90°,∴∠NE′A+∠NAE′=90°,∠NAE′+∠C′AG=90°,∴∠NE′A=∠C′AG,∵AE′=AC′∴△ANE′≌△C′GA(AAS),∴AN=C′G.同理可证△BNA≌△AHD,AN=DH.∴C′G=DH.在△C′GM与△DHM中,∠C′GM=∠DHM=90°,∠C′MG=∠DMH,C′G=DH,∴△C′GM≌△DHM,∴C′M=DM,10.【答案与解析】如图1,延长DM交FE于N,图1∵正方形ABCD、CGEF,∴CF=EF,AD=DC,∠CFE=90°,AD∥FE,∴∠1=∠2,又∵MA=ME,∠3=∠4,∴△AMD≌△EMN,∴MD=MN,AD=EN.∵AD=DC,∴DC=NE.又∵FC=FE,∴FD=FN.又∵∠DFN=90°,∴FM⊥MD,MF=MD;(2)MD=MF,MD⊥MF.如图2,延长DM交CE于N,连接FD、FN.∵正方形ABCD,∴AD∥BE,AD=DC,∴∠1=∠2.又∵AM=EM,∠3=∠4,∴△ADM≌△ENM,∴AD=EN,MD=MN.∵AD=DC,∴DC=NE.又∵正方形CGEF,∴∠FCE=∠NEF=45°,FC=FE,∠CFE=90°.又∵正方形ABCD,∴∠BCD=90°,∴∠DCF=∠NEF=45°,∴△FDC≌△FNE,∴FD=FN,∠5=∠6,∠DFN=∠5+∠CFN=∠6+∠CFN=90°,∴△DFN为等腰直角三角形,且FM为斜边DN上的中线,∴MD=MF,MD⊥MF;(3)FM⊥MD,MF=MD.如图3,过点E作AD的平行线分别交DM、DC的延长线于N、H,连接DF、FN.∴∠ADC=∠H,AD∥EH,∴∠3=∠4.∵AM=ME,∠1=∠2,∴△AMD≌△EMN,∴DM=NM,AD=EN.∵正方形ABCD、CGEF,∴AD=DC,FC=FE,∠ADC=∠FCG=∠CFE=90°.∴∠H=90°,∠5=∠NEF,DC=NE.∴∠DCF+∠7=∠5+∠7=90°,∴∠DCF=∠5=∠NEF.∵FC=FE,∴△DCF≌△NEF.∴FD=FN,∠DFC=∠NFE.∵∠CFE=90°,∴∠DFN=90°.∴FM⊥MD,MF=MD.。
2021年春九年级数学中考复习《圆综合型解答题》专项提升训练(附答案)
2021年春九年级数学中考复习《圆综合型解答题》专项提升训练(附答案)1.如图,AB和CD为⊙O的直径,AB⊥CD,点E为CD上一点,CE=CA,延长AE交⊙O 于点F,连接CF交AB于点G.(1)求证:CE2=AE•AF;(2)求证:∠ACF=3∠BAF;(3)若FG=2,求AE的长.2.如图,AB为⊙O的直径,点C为⊙O上一点,点D为AB延长线上一点,连接CD,作CE⊥AB于点E,∠OCE=∠D.(1)求证:CD是⊙O的切线;(2)点F为CD上一点,连接OF交CE于点G,G为OF中点,求证:OC2=CD•CF;(3)在(2)的条件下,CF=DF,若OC=2,求CG.3.如图,BC是⊙O的直径,AD是⊙O的弦,AD交BC于点E,连接AB,CD.过点E作EF⊥AB,垂足为F,∠AEF=∠D.(1)求证:AD⊥BC;(2)点G在BC的延长线上,连接AG,∠DAG=2∠D.①求证:AG与⊙O相切;②当=,CE=3时,求AG的长.4.在平面直角坐标系xOy中,已知点A(6,0),点B(0,6),动点C在以原点O为圆心,半径为3的⊙O上,连接OC,过点O作OD⊥OC,OD与⊙O相交于点D(其中点C,O,D按逆时针方向排列),连接AB.(1)当OC∥AB时,∠BOC的度数为;(2)连接AC,BC,点C在⊙O上运动的过程中,当△ABC的面积最大时,请直接写出△ABC面积的最大值是.(3)连接AD,当OC∥AD,点C位于第二象限时,①求出点C的坐标;②直线BC是否为⊙O的切线?并说明理由.5.已知⊙O的直径AB=4,点P为弧AB上一点,联结P A、PO,点C为劣弧AP上一点(点C不与点A、P重合),联结BC交P A、PO于点D、E.(1)如图,当cos∠CBO=时,求BC的长;(2)当点C为劣弧AP的中点,且△EDP与△AOP相似时,求∠ABC的度数;(3)当AD=2DP,且△BEO为直角三角形时,求四边形AOED的面积.6.如图,AB是⊙O的直径,AC⊥AB,BC交⊙O于点D,点E在劣弧BD上,DE的延长线交AB的延长线于点F,连接AE交BD于点G.(1)求证:∠AED=∠CAD;(2)若点E是劣弧BD的中点,求证:ED2=EG•EA;(3)在(2)的条件下,若BO=BF,DE=1.5,求EF的长.7.如图,AB为⊙O的直径,P为AB延长线上的点,PD为⊙O的切线,切点为D,CD⊥AB,垂足为E,连接,CO,AC,PC.(1)求证:PC为⊙O的切线;(2)求证:AB2=4OE•OP;(3)若OE=2,cos∠CAB=,求BP的长.8.已知:AB,CF都是⊙O的直径,AH,CD都是⊙O的弦,CD⊥AB于点E,AH=CD.(1)如图1,求证:AH⊥CF;(2)如图2,延长AH,CD交于点P,求证:PH=PD;(3)如图3,在(2)的条件下,延长AC,HE交于点Q,若∠Q=45°,CQ=2,求HE的长.9.如图,已知▱ABCD中,AB=8,BC=12,AC=10,P为边BC上一动点,过点P,A,C作⊙O分别交边CD,AD于点E,F,连结EF.(1)求证:△DEF∽△BCA.(2)当点O落在AC边上,求DF的长.(3)在点P的整个运动过程中,若点O到EF的距离与它到▱ABCD某一边所在的直线的距离相等,求所有满足条件的BP的长.10.如图,在Rt△ABC中,∠ABC=90°,E为AB边上一点,过E、B、C三点的圆交线段AC于点D,点A关于直线BD的对称点F落在⊙O上,连CF.(1)求证:∠BCA=45°;(2)若AB=6,点E在运动过程中,当点F关于直线CD的对称点正好落在△BDF的边上时,求CD的长;(3)当tan∠CDF=时,设△CDF的面积为S1,△BDE的面积为S2,求的值.11.已知:如图BC是⊙的直径,点A是圆上一点,点D是BC延长线上一点,AB=AD,AE是⊙O的弦,∠AEC=30°.(1)求证:直线AD是⊙O的切线;(2)若CD=3,求⊙O的半径.(3)若AE⊥BC于F,P为上一点,连接AP,CP,EP,请找出AP,CP,EP之间的关系,并证明.12.如图,A,B,C是⊙O上的三点,且AB=AC,BC=8,点D为优弧BDC上的动点,且cos∠ABC=.(1)如图1,若∠BCD=∠ACB,延长DC到F,使得CF=CA,连接AF,求证:AF是⊙O的切线;(2)如图2,若∠BCD的角平分线与AD相交于E,求⊙O的半径与AE的长;(3)如图3,将△ABC的BC边所在的直线l1绕点A旋转得到l2,直线l2与⊙O相交于M,N,连接AM,AN.l2在运动的过程中,AM•AN的值是否发生变化?若不变,求出其值;若变化,说明变化规律.13.如图,AB与⊙O相切于点C,且C为线段AB的中点,直线AO与⊙O交于点E和点D,OB与⊙O交于点F,连接DF,DC.(1)求证:∠CDF=∠CDE;(2)①若DE=10,DF=8,则CD=;②连接CO,CF,当∠B的度数为时,四边形ODFC是菱形.14.已知△ABC内接于⊙O,点O在△ABC的内部,点D为弧AB上一点,连接OD交AB 于点H,连接OB,∠BOD=∠ACB.(1)如图1,求证:OD⊥AB;(2)如图2,点P为线段BA延长线上一点,连接OP,∠POH=∠ABC,求证:∠BAC+∠POB=180°;(3)如图3,在(2)的条件下,延长DO交BC于点F,延长CA至点E,使AE=AB,射线ED交AB于点G,若∠ABC=60°,P A=6,OF=,求线段DG的长.15.如图1,把△ACD绕点C逆时针旋转90°得△BCE,点A,D分别对应点B,E,且满足A,D,E三点在同一条直线上.连接DE交BC于点F,△CDE的外接圆⊙O与AB 交于G,H两点.(1)求证:BE是⊙O切线;(2)如图2,连接OB,OC,若sin∠CAE=,判断四边形BECO的形状,并说明理由;(3)在(2)的条件下,若CF=,求GH的长.16.如图,在四边形ABCD中,∠ABC=∠DAB=90°,以AB为直径的⊙O与CD相切于点E,连接OD,OC.(1)求证:OD⊥OC;(2)若AB=4,tan∠BCO=,求sin∠BCD的值;(3)如图2,在(2)的条件下,连接OE,BD交于点F,求的值.17.如图,CD是⊙O的直径,且CD⊥AB,垂足为H,连接BC,过弧AD上一点E作EF ∥BC,交BA的延长线于点F,连接CE,其中CE交AB于点G,且FE=FG.(1)求证:EF是⊙O的切线;(2)若sin F=,BC=5,①求⊙O的半径;②若CD的延长线与FE的延长线交于点M,求DM的长度.18.如图,点C是半圆O上一点(不与A、B重合),沿BC所在直线折叠半圆O,使点A 落在A'点处,A'B交半圆O于M,AB=2.(1)M到AB的最大距离为.(2)已知点O的对应点为M,连接AM.①求AM的长;②求阴影部分的面积;(3)设A'B的中点为O',若线段BO'与半圆O仅有一个公共点,求∠ABC的取值范围.19.如图,在四边形ABCD中,AB=AD=CD,以AB为直径的⊙O经过点C,连接AC,OD交于点E.(1)证明:AE=CE;(2)若AC=2BC,证明:DA是⊙O的切线;(3)在(2)条件下,连接BD交⊙O于点F,连接EF,若⊙O的直径为,求EF的长.20.【问题情境】(1)点A是⊙O外一点,点P是⊙O上一动点.若⊙O的半径为2,且OA =5,则点P到点A的最短距离为.【直接运用】(2)如图1,在Rt△ABC中,∠ACB=90°,AC=BC=2,以BC为直径的半圆交AB于D,P是弧CD上的一个动点,连接AP,则AP的最小值是.【构造运用】(3)如图2,已知正方形ABCD的边长为6,点M、N分别从点B、C同时出发,以相同的速度沿边BC、CD方向向终点C和D运动,连接AM和BN交于点P,则点P到点C的最短距离,并说明理由.【灵活运用】(4)如图3,⊙O的半径为4,弦AB=4,点C为优弧AB上一动点,AM ⊥AC交直线CB于点M,则△ABM的面积最大值是.参考答案1.解:(1)∵AB和CD为⊙O的直径,AB⊥CD,∴,∴∠ACE=∠AFC,∵∠CAE=∠F AC,∴△ACE∽△AFC,∴,∴AC2=AE•AF,∵AC=CE,∴CE2=AE•AF;(2)∵AB⊥CD,∴∠AOC=90°,∵OA=OC,∴∠ACE=∠OAC=45°,∴∠AFC=∠AOC=45°,∵AC=CE,∴∠CAE=∠AEC=(180°﹣∠ACO)=67.5°,∴∠BAF=∠CAF﹣∠OAC=22.5°,∵∠AEC=∠AFC+∠DAF=45°+∠DCF=67.5°,∴∠DCF=22.5°,∴∠ACF=∠OCA+∠DAF=67.5°=3×22.5°=3∠BAF;(3)如图,过点G作GH⊥CF交AF于H,∴∠FGH=90°,∵∠AFC=45°,∴∠FHG=45°,∴HG=FG=2,∴FH=2,∵∠BAF=22.5°,∠FHG=45°,∴∠AGH=∠FHG﹣∠BAF=22.5°=∠BAF,∴AH=HG=2,∴AF=AH+FH=2+2,由(2)知,∠OAE=∠OCG,∵∠AOE=∠COG=90°,OA=OC,∴△AOE≌△COG(SAS),∴OE=OG,∠AEO=∠CGO,∴∠OEF=∠OGF,连接EG,∵OE=OG,∴∠OEG=∠OGE=45°,∴∠FEG=∠FGE,∴EF=FG=2,∴AE=AF﹣EF=2+2﹣2=2.2.证明:(1)∵CE⊥AB,∴∠D+∠DCE=90°,∵∠OCE=∠D,∴∠OCE+∠DCE=90°,∴∠OCD=90°,又∵OC是半径,∴CD是⊙O的切线;(2)∵∠OCF=90°,G为OF中点,∴CG=GF=OF,∴∠GCF=∠GFC,∵∠D+∠COD=90°=∠D+∠DCE,∴∠DCE=∠COE=∠CFG,又∵∠OCF=∠OCD=90°,∴△OCF∽△DCO,∴,∴OC2=CF•CD;(3)∵CF=DF,∴CD=2CF,∵OC2=CF•CD,∴4=CF×2CF,∴CF=,∴OF===,∴CG=.3.证明:(1)∵EF⊥AB,∴∠AFE=90°,∴∠AEF+∠EAF=90°,∵∠AEF=∠D,∠ABE=∠D,∴∠ABE+∠EAF=90°,∴∠AEB=90°,∴AD⊥BC;(2)①连接OA,AC,∵AD⊥BC,∴AE=ED,∴CA=CD,∴∠D=∠CAD,∵∠GAE=2∠D,∴∠CAG=∠CAD=∠D,∵OC=OA,∴∠OCA=∠OAC,∵∠CEA=90°,∴∠CAE+∠ACE=90°,∴∠CAG+∠OAC=90°,∴OA⊥AG,∴AG是⊙O的切线;②过点C作CH⊥AG于H.设CG=x,GH=y.∵CA平分∠GAE,CH⊥AG,CE⊥AE,∴CH=CE,∵∠AEC=∠AHC=90°,AC=AC,EC=CH,∴Rt△ACE≌Rt△ACH(HL),∴AE=AH,∵EF⊥AB,BC是直径,∴∠BFE=∠BAC,∴EF∥AC,∴==,∵CE=3,∴BE=,∵BC⊥AD,∴,∴∠CAE=∠ABC,∵∠AEC=∠AEB=90°,∴△AEB∽△CEA,∴,∴AE2=3×=,∵AE>0,∴AE=,∴AH=AE=,∵∠G=∠G,∠CHG=∠AEG=90°,∴△GHC∽△GEA,∴,∴=,解得x=7,y=2,∴AG=2+=.4.解:(1)∵点A(6,0),点B(0,6),∴OA=OB=6,∴△OAB为等腰直角三角形,∴∠OBA=45°,∵OC∥AB,∴当C点在y轴左侧时,∠BOC=∠OBA=45°;当C点在y轴右侧时,∠BOC=90°+∠OBA=135°;综上所述,∠BOC的度数为45°或135°,故答案为:45°或135°;(2)∵△OAB为等腰直角三角形,∴AB=OA=6,∴当点C到AB的距离最大时,△ABC的面积最大,过O点作OE⊥AB于E,OE的反向延长线交⊙O于C,如图1:此时C点到AB的距离的最大值为CE的长,∴OE=AB=3,∴CE=OC+OE=3+3,∴△ABC的面积=CE•AB=×(3+3)×6=9+18;即当点C在⊙O上运动到第三象限的角平分线与圆的交点位置时,△ABC的面积最大,最大值为9+18;故答案是:9+18;(3)①过C点作CF⊥x轴于F,如图2:∵OC∥AD,∴∠COF=∠DAO,又∵∠ADO=∠CFO=90°,∴△OCF∽Rt△AOD,∴=,即=,解得:CF=,在Rt△OCF中,OF===,∴C点坐标为(﹣,);②直线BC是⊙O的切线.理由如下:由①得:(﹣,),在Rt△OCF中,OC=3,CF=,∴CF=OC,∴∠COF=30°,∴∠OAD=30°,∴∠BOC=60°,∠AOD=60°,∵在△BOC和△AOD中,,∴△BOC≌△AOD(SAS),∴∠BCO=∠ADO=90°,∴OC⊥BC,∴直线BC为⊙O的切线.5.解:(1)解法一:如图1,过点O作OG⊥BC于点G,∴BG=BC,∵AB=4,∴OB=2,∵cos∠CBO==,∴BG=,∴BC=2BG=;解法二:如图2,连接AC,∵AB是⊙O的直径,∴∠ACB=90°,∴cos∠ABC=,∴,∴BC=;(2)如图3,连接OC,∵∠P=∠P,△EDP与△AOP相似,∴△DPE∽△OP A,∴∠DPE=∠P AO,∵C是的中点,∴∠AOC=∠COP,设∠ABC=α,则∠AOC=∠COP=2α,∵OB=OC,∴∠OCB=∠OBC=α,∵C是的中点,∴OC⊥AP,∴∠P AO=90°﹣2α,∴∠DEP=∠OEB=90°﹣2α,在△OEB中,∠AOP=∠OEB+∠ABC,∴4α=90°﹣2α+α,∴α=18°,∴∠ABC=18°;(3)分两种情况:①如图4,当∠EOB=90°时,过D作DH⊥AB于H,∴DH∥PO,∴,∵AD=2PD,∴AH=2HO,∵AB=4,∴AH=,OH=,BH=,∵AO=OP,∠AOP=90°,∴∠A=45°,∴AH=DH=,∵OE∥DH,∴,即=,∴OE=1,∴S四边形AOED=S△ABD﹣S△OEB=﹣=﹣1=;②如图5,当∠OEB=90°时,连接AC,∵∠C=∠OEB=90°,∴AC∥OE,CE=BE,∵AD=2DP,同理得AC=2PE,∵AO=BO,∴AC=2OE,∴OE=PE=OP,∴AC=AB,∴∠ABC=30°,∵AB=4,∴OB=2=AC,OE=1,BE=,BC==2,∴CE=,∵AC∥PE,∴=2,∵CD+DE=,∴CD=,∴S四边形AOED=S△ABC﹣S△OEB﹣S△ACD=﹣﹣=.综上,四边形AOED的面积是或.6.(1)证明:∵AB是⊙O的直径,∴∠ADB=90°,∵AC⊥AB,∴∠CAB=90°,∴∠ABD=∠CAD,∵=,∴∠AED=∠ABD,∴∠AED=∠CAD;(2)证明:∵点E是劣弧BD的中点,∴=,∴∠EDB=∠DAE,∵∠DEG=∠AED,∴△EDG∽△EAD,∴,∴ED2=EG•EA;(3)解:连接OE,∵点E是劣弧BD的中点,∴∠DAE=∠EAB,∵OA=OE,∴∠AEO=∠DAE,∴OE∥AD,∴,∵BO=BF=OA,DE=,∴,∴EF=3.7.(1)证明:连接OD,∵PD是⊙O的切线,∴∠PDO=90°,∵OD=OC,CD⊥AB于点E,∴CE=DE,∠POD=∠POC,又∵PO=PO,∴△PDO≌△PCO(SAS),∴∠PCO=∠PDO=90°,∴OC⊥PC,∴PC为⊙O的切线;(2)证明:∵∠PCO=∠PEC=90°,∴∠OCE+∠COF=90°,∠OPC+∠COP=90°,∴∠OCE=∠OPC,∴△OCE∽△OPC,∴,即CO2=OE•OP,又∵AB=2OC,(3)解:∵cos,∴,设CE=x,则AE=3x,∵OE=2,∴OA=OC=3x﹣2,在Rt△COE中,由勾股定理,得(3x﹣2)2=x2+22,解得,,x2=0(不合题意,舍去),∴CE=,OA=OC=3x﹣2=,∵△OCE∽△OPC,∴,即OC2=OP•OE,∵,∴OP=,∴PB=OP﹣OB==.8.(1)证明:∵AH=CD,∴,∵AB是直径,CD⊥AB,∴,∵∠AOF=∠BOC,∴,∴AH⊥CF;(2)证明:连接AC,如图2所示:∵AH=CD,∴,∴,∴,∴∠PCA=∠P AC,∴PC=P A,又∵AH=CD,∴P A﹣AH=PC﹣CD,即PH=PD;(3)解:过点A作AK⊥QH于点K,连接DH,如图3所示:∵四边形ACDH内接于⊙O,∴∠P AC=∠PDH,由(2)知,∠P AC=∠PCA,∴∠PDH=∠PCA,∴DH∥AC,∴∠CQE=∠DHE,∵∠CEQ=∠DHE,CE=DE,∴△CQE≌△DHE(AAS),∴EQ=EH,CQ=DH=2,∵∠Q=45°,AK⊥QH,∴∠Q=∠QAK=45°,∴AK=QK,∵∠CEQ+∠AEK=180°﹣∠AEC=90°,∠AEK+EAK=90°,∴∠EAK=CEQ=∠PCA﹣∠Q=∠P AC﹣∠QAK=∠HAK,∵∠AKE=∠AKH=90°,AK=AK,∠EAK=∠HAK,∴△EAK≌△HAK(ASA),∴EK=HK,AE=AH=CD,设EK=x,则EH=EQ=2x,∴AK=QK=3x,AQ=,AE===x=AH=CD,∴CE==,∴AC===,∵AQ﹣AC=CQ,∴,解得:x=,∴EH=.9.(1)证明:∵四边形ABCD是平行四边形,∴∠B=∠D,AB∥CD,∴∠BAC=∠ACD∵∠DFE=∠ACD,∴∠DFE=∠BAC,∴△DEF∽△BCA;(2)解:连接CF,如图1所示:∵AC为直径,∴∠AFC=90°,∵△DEF∽△BCA,∴DF:EF:DE=AB:AC:BC=8:10:12=4:5:6,设DF=4x,则DE=6x,EF=5x,AF=12﹣4x,在Rt△AFC和Rt△CFD中,由勾股定理得:102﹣(12﹣4x)2=82﹣(4x)2,解得:x=,∴DF=4×=;(3)解:过点A,C分别作AR⊥BC于点R,CH⊥AD于点H,连接CF,如图2所示:则四边形ARCH为矩形,∴AR=CH,∠ARP=∠CHF=90°,在△ARP和△CHF中,,∴△ARP≌△CHF(AAS),∴RP=HF,由(2)得:DH=BR=,RP=FH=﹣4x,则BP=9﹣4x,①连接PF,如图3所示:∵AD∥BC,∴∠AFP=∠FPC,∵∠AFP=∠ACB,∴∠ACB=∠FPC,由已知可得∠B≠∠ACB,∴∠B≠∠FPC,∴PF与CD不平行,∴EF≠CP,∴不存在点O到EF的距离等于O到BC的距离的BP的值;②过点O作OQ⊥EF于Q,如图4所示:当O到AD的距离等于OQ时,则AF=EF,∴12﹣4x=5x,∴;③如图4,当O到CD的距离等于OQ时,则EF=CE,即5x=8﹣6x,∴x=,∴BP=9﹣4x=;④当O到AB的距离等于OQ时,延长BA交⊙O于N,连接NF并延长交CD于S,连接AE,如图5所示:则AN=EF=5x,∴AE∥NS,∵AN∥CD,∴四边形ANSE是平行四边形,∴SE=AN=5x,∴DS=DE﹣SE=6x﹣5x=x,∵AB∥CD,∴△ANF∽△DSF,∴=,即=,∴∴BP=9﹣4x=7;综上所述,BP的长为或或7.10.(1)证明:∵点A、点F关于直线BD对称,∴△ABD≌△FBD,∠A=∠BFD,∵∠BFD=∠BCA,∴∠A=∠BCA,又∵∠ABC=90°,∴∠BCA=∠A=45°;(2)解:由(1)得:∠ABD=∠FBD=∠DCF,∠BCA=∠A=45°,∴AB=BC,∵∠BFC=∠BDC=∠A+∠ABD=45°+∠ABD,∠BCD=∠BCA+∠DCF=45°+∠DCF,∴∠BFC=∠BCD,∴BF=BC=AB=6,分两种情况:①当点F关于直线CD的对称点正好落在△BDF的BD边上G点时,连接GF,如图1所示:则∠FDC=∠BDC,∵∠FDC=∠FBC,∠BDC=∠CFB,∴∠FBC=∠CFB,∴FC=BC,∴△BCF为等边三角形,∴∠BDC=∠CFB=60°,过B作BH⊥AC于H,在Rt△CBH中,∠BCH=45°,∴CH=BH=BC=3,在Rt△DBH中,∠BDC=60°,∴∠DBH=30°,∴DH=BH=,∴CD=CH+DH=3+;②当点F关于直线CD的对称点正好落在△BDF的BF边上I点时,设BF与CD交于点M,连接DI,如图2所示:则DI=DF,∵∠DFI=∠BCA=45°,∴△DFI是等腰直角三角形,∴△DMF、△BMC也是等腰直角三角形,∴DM=FM,BM=CM,∴CD=BF=AB=6;综上所述,当点F关于直线CD的对称点正好落在△BDF的边上时,CD的长为3+或6;(3)解:作BJ⊥CF交AC于J,连接FJ,作FL⊥DC于L,作DK⊥AB于K,如图3所示:∵BF=BC,∴JF=JC,∠BFC=∠BCF,∴∠JFC=∠JCF,∴∠BFJ=∠BCJ=45°,∴∠DFJ=45°+45°=90°,∵tan∠CDF==,∴设FJ=4a,则DF=3a,由勾股定理得:DJ===5a,∵JC=JF=4a,∴DC=5a+4a=9a,∵DF•FJ=DJ•FL,∴FL===a,∴S1=×9a×a=a2,∵点A、点F关于直线BD对称,∴AD=DF,∠ABD=∠FBD,∴DE=DF,∴DE=DF=3a,∵∠KED=∠EBD+∠EDB=∠DCB=45°,∴△DKE是等腰直角三角形,∴DK=DE=×3a=a,∵DK⊥AB,∠ABC=90°,∴DK∥BC,∴△ADK∽△ACB,∴===,∴BC=4KD=4×a=6a,∴AB=BC=6a,∵∠CDE+∠ABC=180°,∠ABC=90°,∴∠CDE=90°,∴∠ADE=90°,∵∠A=45°,∴△ADE是等腰直角三角形,∴BE=DE=×3a=3a,∴BE=AB﹣AE=6a﹣3a=3a,∴S2=×3a×a=a2,∴==.11.(1)证明:如图1,连接AC,OA,∵∠AEC=30°,∴∠ABC=∠AEC=30°,∵AB=AD,∴∠D=∠ABC=30°,∴∠BAD=120°,∵OA=OB,∴∠OAB=∠ABC=30°,∴∠OAD=∠BAD﹣∠OAB=90°,∵点A在⊙O上,∴直线AD是⊙O的切线;(2)解:如图1,连接AC,由(1)知,∠D=30°,∠OAD=90°,∴∠AOC=90°﹣∠D=60°,∴△AOC是等边三角形,∴OC=AC,∠OAC=60°,∴∠CAD=∠OAD﹣∠OAC=30°=∠D,∴AC=CD=3,∴OC=3,即⊙O的半径为3;(3)EP+AP=CP,理由:如图2,∵∠AEC=30°,∴∠APC=∠AEC=30°,连接AC,延长PE至M,使EM=AP,连接CM,∵AE⊥BC,BC为⊙O的直径,∴AC=EC,∵四边形APEC是⊙O的内接四边形,∴∠CAP=∠CEM,∴△ACP≌△ECM(SAS),∴CM=CP,∠APC=∠M=30°,过点C作CN⊥PM于N,∴PM=2MN,在Rt△CNM中,cos M=,∴cos30°==,∴MN=CM,∴PM=2MN=CM=CP,∵PM=PE+EM=PE+AP,∴PE+AP=CP,即EP+AP=CP.12.(1)证明:连接AO,如图1所示:∵AB=AC,∴∠ABC=∠ACB,∵∠BCD=∠ACB,∴∠BCD=∠ABC,∴AB∥DF,∵CF=CA,∴CF=AB,∴四边形ABCF是平行四边形,∴AF∥BC,∵AB=AC,∴=,∴OA⊥BC,∴OA⊥AF,∵OA是⊙O的半径,∴AF是⊙O的切线;(2)解:连接AO交BC于H,连接OB,如图2所示:∵OA⊥BC,∴BH=CH=BC=4,∵cos∠ABC==,∴AB=BH=×4=5,在Rt△AHB中,由勾股定理得:AH===3,设⊙O的半径为x,则OA=OB=x,OH=x﹣3,在Rt△BOH中,由勾股定理得:x2=(x﹣3)2+42,解得:x=,∴⊙O的半径为,∵CE平分∠BCD,∴∠BCE=∠DCE,∵∠ABC=∠ADC,∴∠AEC=∠ADC+∠DCE=∠ABC+∠DCE=∠ACB+∠BCE=∠ACE,∴AE=AC=AB=5;(3)解:连接AO,并延长AO交⊙O于Q,连接NQ,过点A作AP⊥l2于P,如图3所示:则AQ是⊙O的直径,∴∠AMQ=90°,∵AP⊥l2,∴∠APN=90°,∴∠AMQ=∠APN,∵∠AQM=∠ANP,∴△AQM∽△ANP,∴=,∴AM•AN=AP•AQ,由(2)可知,点A到直线l1的距离为3,直线l1绕点A旋转得到l2,∴点A到直线l2的距离始终等于3,不会发生改变,∴AP=3,∵AQ=2OA=2×=,∴AM•AN=AP•AQ=3×=25,∴l2在运动的过程中,AM•AN的值不发生变化,其值为25.13.(1)证明:连接OC.如图1所示:∵AB是⊙O的切线,∴∠OCA=90°,∵C为线段AB的中点,∴OC垂直平分线段AB,∴OA=OB,∴∠AOC=∠BOC,∵∠CDF=∠BOC,∠CDE=∠AOC,∴∠CDF=∠CDE;(2)解:①连接OC,过点O作ON⊥DF于N,延长DF交AB于M,如图2所示:∵ON⊥DF,OD=OF,∴DN=NF=DF=4,∵DE=10,∴OD=5,在Rt△OND中,由勾股定理得:ON===3,∵OC=OD,∴∠CDE=∠OCD,∵∠CDF=∠CDE,∴∠CDF=∠OCD,∴OC∥DF,∴∠OCM+∠CMN=180°,∵∠OCM=90°,∴∠CMN=90°,∵∠ONM=90°,∴四边形OCMN是矩形,∴ON=CM=3,MN=OC=5,∴DM=DN+MN=4+5=9,在Rt△CMD中,由勾股定理得:CD===3,故答案为:3;②如图3所示:∵四边形ODFC是菱形,∴OC=CF,∵OC=OF,∴△OCF是等边三角形,∴∠COB=60°,∵∠OCB=90°,∴∠B=30°,故答案为:30°.14.(1)证明:连接OA,∵∠AOB=2∠ACB,∠ACB=∠BOD,∴∠AOB=2∠BOD,∵∠AOB=∠AOD+∠BOD,∴2∠BOD=∠AOD+∠BOD,∴∠BOD=∠AOD,又∵OA=OB,∴OD⊥AB;(2)证明:延长PO交BC于点K,连接OC,∵OH⊥AB,∴∠P+∠POH=90°,∵∠POH=∠ABC,∴∠P+∠ABC=90°,∴∠PKB=90°,∴PK⊥BC,∵OB=OC,∴∠KOB=∠COB,∵∠BAC=∠COB,∴∠BAC=∠KOB,∵∠KOB+∠POB=180°,∴∠BAC+∠POB=180°;(3)解:延长PO交BC于点K,连接OA,OC,AD,BD,∵∠ABC=60°,∠PHO=∠PKB=90°,∴∠POH=60°,∠P=30°,∠HFB=30°,∴BF=2BH,∵OD⊥AB,∴AB=2BH,∴BF=AB,∵AE=AB,∴BF=AE,设AH=BH=a,则PB=2a+6,KB=PB=a+3,∵OF=,∴OK=OF=,∴FK=OK=2,∴FB=a+5,∴a+5=2a,∴a=5,∴KB=8,PH=11,∵OH⊥AB,∴AD=BD,∵∠EAD+∠CAD=180°,∠DBC+∠CAD=180°,∴∠DBC=∠EAD,∴△ADE≌△BDF(SAS),∴∠E=∠DFB=30°,∵∠AOC=2∠ABC=120°,OA=OC,∴∠CAO=30°,∴∠CAO=∠E,∴OA∥EG,∴∠OAH=∠GDH,∵∠OKC=90°,∴OC==,∴OD=,∴OH=PH•tan P=11×=,∴HD=OD﹣OH==,∵sin∠OAH=,∴sin∠GDH=,∴DG=.15.(1)证明:∵把△ACD绕点C逆时针旋转90°得△BCE,∴∠CAD=∠CBE,∠ACB=∠ECD=90°,∵∠AFC=∠BFE,∴∠BEF=∠ACF=90°,∴AE⊥BE,又∵∠ECD=90°,∴ED为⊙O的直径,∴BE为⊙O的切线;(2)解:四边形BECO为平行四边形.理由如下:∵把△ACD绕点C逆时针旋转90°得△BCE,点A,D分别对应点B,E,∴DC=EC,∠DCE=90°,BE=AD,∵OE=OD,∴CO⊥ED,∴∠COE=90°,∵∠BEO=90°,∴∠COE=∠BEO,∴BE∥OC,在Rt△AOC中,sin∠CAE=,设OC=x,则AC=x,∴AO==2x,∵OA=OD+AD,OD=OC,∴AD=OC=x,∴BE=OC,∴四边形BECO是平行四边形;(3)解:过点O作OM⊥GH于点M,连接OG,则GH=2MG,∵∠FCO+∠OCA=∠OCA+∠CAE=90°,∴∠FCO=∠CAE,∴sin∠FCO=sin∠CAE=,∴sin∠FCO=,∴FO=,∴CO==2,∵四边形BECO为平行四边形,∴OF=BE=,OB=CE,∴OE=2OF=2,∴CE===2,∴OB=2,由(1)(2)知△ACB和△BEO都为等腰直角三角形,∴∠EBO=∠CBA=45°,∴∠EBF=∠OBA,∵BE∥CO,∴∠EBF=∠FCO,∴∠OBA=∠FCO,∴sin∠OBM=,∴,∴OM=2,∵OG=OC=2,∴MG===2,∴GH=2MG=4.16.解:(1)∵∠ABC=∠DAB=90°,∴AD∥BC,又∵⊙O与CD相切,∴OE=OA,∠OED=90°,在Rt△OAD和Rt△OED中,,∴Rt△OAD≌Rt△OED(HL),∴∠ADO=∠EDO,∴∠ODC=∠ADC,同理:∠OCD=∠BCD,∵AD∥BC,∴∠ADC+∠BCD=180°,∴∠ODC+∠OCD=(∠ADC+∠BCD)=90°,∴∠DOC=90°,∴OD⊥OC;(2)∵AB=4,∴OA=OB=2,在Rt△OBC中,tan∠BCO==,∴BC=2OB=4,∵∠DOC=∠DAB=90°,∴∠AOD+∠BOC=∠AOD+∠ODA=90°,∴∠BOC=∠ODA,又∠ABC=∠DAB,∴△OAD∽△CBO,∴,即,∴AD=1,∵∠ABC=∠DAB=90°,∵AB为⊙O的直径,∴AD,BC都与⊙O相切,又∵⊙O与CD相切,∴AD=ED,BC=EC,∴CD=AD+BC=5,如图1,过点D作DG⊥BC于点G,则四边形为ABGD为矩形,∴DG=AB=4,在Rt△CDG中,sin∠BCD==;(3)如图2,连接BE,与OC交于点H,在Rt△OAD中,AD=1,OA=2,∴,在Rt△OBC中,OB=2,BC=4,∴,∵BC=EC,∠OCB=∠OCE,∴OC⊥BE,∵BE=2BH,∴,∴,∴,∴,∵OC⊥BE,OD⊥OC,∴OD∥BE,∴△ODF∽△EBF,∴.17.(1)证明:连接OE,∵H是AB的中点,CD是直径,∴CH⊥AB,∴∠GCH+∠CGH=90°,∵FE=FG,∴∠FGE=∠FEG,∵OE=OC,∴∠OCE=∠OEC,又∵∠CGH=∠EGF,∴∠FEO=∠FEG+∠CEO=∠CGH+∠GCH=90°,∴EF是⊙O的切线;(2)解:①∵EF∥BC,CD⊥AB,∴∠F=∠CBH,∠BHC=90°,在Rt△BCH中,BC=5,sin B=sin F=,∴CH=BC•sin B=5=3,由勾股定理得:HB===4,连接OB,设半径为r,则在Rt△OHB中,由勾股定理得:OH2+BH2=OB2,∴,解得:r=,∴⊙O的半径为.②∵EF∥BC,∴∠M=∠BCH,∴sin M=sin∠BCH===,在Rt△OEM中,OM==,∴DM=OM﹣OD==.18.解:(1)如图1,过点M作MH⊥AB于H,则点M到AB的距离为MH,当点H在点O处时,MH最大,其最大值为OA=AB=1,故答案为:1;(2)①如图2,连接OM,∵点O的对应点为M,∴BC是OM的垂直平分线,∴BM=OB,∵OM=OB,∴OM=OB=BM,∴△BOM是等边三角形,∴∠OBM=60°,∵AB为半圆O的直径,且AB=2,∴BM=2,∠AMB=90°,在Rt△AMB中,根据勾股定理得,AM===;②如图2,连接OC,CM,由①知,△OBM是等边三角形,∴OB=BM,∠BOM=60°,∴∠AOC+∠COM=120°,由折叠知,,∴∠AOC=∠COM=60°,∴S扇形AOC=S扇形COM,过点C作CG⊥AB于G,则∠OGC=60°,∴∠OCG=30°,∴OG=OC=,∴CG=,∴S阴影部分=S扇形AOC+S△BOC﹣S△BMC﹣S弓形=S扇形AOC+S△BOC﹣S△COM﹣S弓形=S扇形AOC+S△BOC﹣S扇形COM=S△BOC=OB•CG=×1×=;(3)如图3,∵线段BO'与半圆O仅有一个公共点,且点B在半圆O上,∴点O'在半圆O内或线段O'B都在半圆外,当点O'在半圆内时,∴BO'<BM,当BO'=BM时,即点O'与M重合,(满足(2)的条件)如图2,由(2)知,∠AOC=60°,∴∠ABC=∠AOC=30°,当线段O'B在半圆O外部时,∠ABA'≥90°,∴∠ABC≥45°,∴45°≤∠ABC<90°,即线段BO'与半圆O仅有一个公共点时,0°<∠ABC<30°或45°≤∠ABC<90°.19.(1)证明:如图1,连接OC,∵AO=CO,AD=CD,OD=OD,∴△ADO≌△CDO(SSS),∴∠AOD=∠COD,∵OA=OC,∴AE=CE;(2)证明:由(1)得:∠ADO=∠CDO,∵AD=CD,∴OD⊥AC,∵AB是⊙O的直径,∴∠ACB=90°,∵AC=2BC,设BC=a,则AC=2a,AE=AC=a,∴AB===a,∵AO=OB,AE=CE,∴OE∥BC,OE=BC=a,∴DE===2a,∴OD=OE+DE=a+2a=a,∴AD2=(a)2=5a2,OA2=(a)2=,OD2==,∴OA2+AD2=OD2,∴∠OAD=90°,∴DA是⊙O的切线;(3)如图2,连接AF,过F作FM⊥EF交OD于M,∵AB=AD,∠OAD=90°,∴△ABD为等腰直角三角形,∵AB为直径,∴∠AFB=90°,∠DAF=45°,∵∠AED=∠AFD=90°,∴∠DAF=∠DEF=45°,∴AF=DF,∴∠AFE=∠DFM,∵∠EAF=∠FDM,∴△AEF≌△DMF(ASA),∵OA=AB=,由(2)知:OE=a,AE=a,∴AE=DM=1,DE=2,∴EM=DE﹣DM=2﹣1=1,∴EF=.20.解:(1)连接AP、OP,如图4所示:∵⊙O的半径为2,∴OP=2,∴OA﹣OP=5﹣2=3,∴P A≥OA﹣OP,∴P A≥3,∴当点P在OA上时,P A最短,最小值为3,故答案为:3;(2)连接OA,交半圆于P′,连接OP,如图1所示:∵AC=BC=2,BC为半圆的直径,∴OP=OC=BC=1,∵∠ACB=90°,∴OA===,∵AP≥OA﹣OP,∴AP≥﹣1,∴当点P在OA上时,AP最短,最小值为﹣1,故答案为:﹣1;(3)点P到点C的最短距离为3﹣3,理由如下:取AB中点O,连接OP、OC、PC,如图2所示:∵点M、N分别从点B、C同时出发,以相同的速度沿边BC、CD方向向终点C和D运动,∴BM=CN,∵四边形ABCD是正方形,∴AB=BC=6,∠ABM=∠BCN=90°,在△ABM和△BCN中,,∴△ABM≌△BCN(SAS),∴∠BAM=∠CBN,∵∠CBN+∠ABN=90°,∴∠BAM+∠ABN=90°,∴∠APB=90°,∴点P在以AB为直径的⊙O上运动,∵OP=OA=OB=AB=3,OC===3,又∵PC≥OC﹣OP,∴PC≥3﹣3,∴PC的最小值为3﹣3;(4)连接OA、OB,如图3所示:∵OA=OB=4=AB,∴△AOB是等边三角形,∴∠AOB=60°,∴∠ACB=∠AOB=×60°=30°,∵AM⊥AC,∴∠M=60°,∴点M在以∠ADB=120°的⊙D上,∵AB=4,S△ABM最大,则点M到AB的距离最大,∴当AM=BM时点M到AB的距离最大,∴△ABM是等边三角形,∴S△ABM=AB×AB=×4××4=4,故答案为:4.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学综合提高训练第一部分 函数图象中点的存在性问题1.1 因动点产生的相似三角形问题例1 如图1,已知抛物线211(1)444by x b x =-++(b 是实数且b >2)与x 轴的正半轴分别交于点A 、B (点A 位于点B 是左侧),与y 轴的正半轴交于点C .(1)点B 的坐标为______,点C 的坐标为__________(用含b 的代数式表示);(2)请你探索在第一象限内是否存在点P ,使得四边形PCOB 的面积等于2b ,且△PBC 是以点P 为直角顶点的等腰直角三角形?如果存在,求出点P 的坐标;如果不存在,请说明理由;(3)请你进一步探索在第一象限内是否存在点Q ,使得△QCO 、△QOA 和△QAB 中的任意两个三角形均相似(全等可看作相似的特殊情况)?如果存在,求出点Q 的坐标;如果不存在,请说明理由.图1满分解答(1)B 的坐标为(b , 0),点C 的坐标为(0,4b ). (2)如图2,过点P 作PD ⊥x 轴,PE ⊥y 轴,垂足分别为D 、E ,那么△PDB ≌△PEC . 因此PD =PE .设点P 的坐标为(x, x). 如图3,联结OP .所以S 四边形PCOB =S △PCO +S △PBO =1152428b x b x bx ⨯⋅+⨯⋅==2b .解得165x =.所以点P 的坐标为(1616,55).图2 图3(3)由2111(1)(1)()4444b y x b x x x b =-++=--,得A (1, 0),OA =1. ①如图4,以OA 、OC 为邻边构造矩形OAQC ,那么△OQC ≌△QOA . 当BA QA QA OA =,即2QA BA OA =⋅时,△BQA ∽△QOA . 所以2()14bb =-.解得843b =±Q 为(1,23.②如图5,以OC 为直径的圆与直线x =1交于点Q ,那么∠OQC =90°。
因此△OCQ ∽△QOA . 当BA QA QA OA=时,△BQA ∽△QOA .此时∠OQB =90°. 所以C 、Q 、B 三点共线.因此BO QACO OA =,即14b QA b =.解得4QA =.此时Q (1,4).图4 图5考点伸展第(3)题的思路是,A 、C 、O 三点是确定的,B 是x 轴正半轴上待定的点,而∠QOA 与∠QOC 是互余的,那么我们自然想到三个三角形都是直角三角形的情况.这样,先根据△QOA 与△QOC 相似把点Q 的位置确定下来,再根据两直角边对应成比例确定点B 的位置.如图中,圆与直线x =1的另一个交点会不会是符合题意的点Q 呢?如果符合题意的话,那么点B 的位置距离点A 很近,这与OB =4OC 矛盾.例2 如图1,已知抛物线的方程C 1:1(2)()y x x m m=-+- (m >0)与x 轴交于点B 、C ,与y 轴交于点E ,且点B 在点C 的左侧.(1)若抛物线C 1过点M (2, 2),求实数m 的值; (2)在(1)的条件下,求△BCE 的面积;(3)在(1)的条件下,在抛物线的对称轴上找一点H ,使得BH +EH 最小,求出点H 的坐标;(4)在第四象限内,抛物线C 1上是否存在点F ,使得以点B 、C 、F 为顶点的三角形与△BCE 相似?若存在,求m 的值;若不存在,请说明理由.图1解答(1)将M (2, 2)代入1(2)()y x x m m =-+-,得124(2)m m =-⨯-.解得m =4. (2)当m =4时,2111(2)(4)2442y x x x x =-+-=-++.所以C (4, 0),E (0, 2).所以S △BCE =1162622BC OE ⋅=⨯⨯=.(3)如图2,抛物线的对称轴是直线x =1,当H 落在线段EC 上时,BH +EH 最小.设对称轴与x 轴的交点为P ,那么HP EOCP CO=. 因此234HP =.解得32HP =.所以点H 的坐标为3(1,)2.(4)①如图3,过点B 作EC 的平行线交抛物线于F ,过点F 作FF ′⊥x 轴于F ′.由于∠BCE =∠FBC ,所以当CE BCCB BF=,即2BC CE BF =⋅时,△BCE ∽△FBC . 设点F 的坐标为1(,(2)())x x x m m -+-,由''FF EO BF CO =,得1(2)()22x x m m x m+-=+. 解得x =m +2.所以F ′(m +2, 0).由'CO BF CE BF =244m BF m +=+.所以2(4)4m m BF ++=. 由2BC CE BF =⋅,得222(4)4(2)4m m m m +++=+整理,得0=16.此方程无解.图2 图3 图4②如图4,作∠CBF=45°交抛物线于F,过点F作FF′⊥x轴于F′,由于∠EBC=∠CBF,所以BE BCBC BF=,即2BC BE BF=⋅时,△BCE∽△BFC.在Rt△BFF′中,由FF′=BF′,得1(2)()2x x m xm+-=+.解得x=2m.所以F′(2,0)m.所以BF′=2m+2,2(22)BF m=+.由2BC BE BF=⋅,得2(2)222(22)m m+=⨯+.解得222m=±.综合①、②,符合题意的m为222+.考点伸展第(4)题也可以这样求BF的长:在求得点F′、F的坐标后,根据两点间的距离公式求BF的长.例3直线113y x=-+分别交x轴、y轴于A、B两点,△AOB绕点O按逆时针方向旋转90°后得到△COD,抛物线y=ax2+bx+c经过A、C、D三点.(1) 写出点A、B、C、D的坐标;(2) 求经过A、C、D三点的抛物线表达式,并求抛物线顶点G的坐标;(3) 在直线BG上是否存在点Q,使得以点A、B、Q为顶点的三角形与△COD相似?若存在,请求出点Q的坐标;若不存在,请说明理由.图1解答(1)A(3,0),B(0,1),C(0,3),D(-1,0).(2)因为抛物线y=ax2+bx+c经过A(3,0)、C(0,3)、D(-1,0) 三点,所以930,3,0.a b cca b c++=⎧⎪=⎨⎪-+=⎩解得1,2,3.abc=-⎧⎪=⎨⎪=⎩所以抛物线的解析式为y=-x2+2x+3=-(x-1)2+4,顶点G的坐标为(1,4).(3)如图2,直线BG的解析式为y=3x+1,直线CD的解析式为y=3x+3,因此CD//BG.因为图形在旋转过程中,对应线段的夹角等于旋转角,所以AB⊥CD.因此AB⊥BG,即∠ABQ=90°.因为点Q在直线BG上,设点Q的坐标为(x,3x+1),那么22(3)10BQ x x x=+=±.Rt△COD的两条直角边的比为1∶3,如果Rt△ABQ与Rt△COD相似,存在两种情况:①当3BQBA=10310x±=.解得3x=±.所以1(3,10)Q,2(3,8)Q--.②当13BQ BA =时,101310x ±=.解得13x =±.所以31(,2)3Q ,41(,0)3Q -.图2 图3考点伸展第(3)题在解答过程中运用了两个高难度动作:一是用旋转的性质说明AB ⊥BG ;二是22(3)10BQ x x x =+=±.我们换个思路解答第(3)题:如图3,作GH ⊥y 轴,QN ⊥y 轴,垂足分别为H 、N .通过证明△AOB ≌△BHG ,根据全等三角形的对应角相等,可以证明∠ABG =90°. 在Rt △BGH 中,sin 110∠=,cos 110∠=.①当3BQ BA=时,310BQ =.在Rt △BQN 中,sin 13QN BQ =⋅∠=,cos 19BN BQ =⋅∠=. 当Q 在B 上方时,1(3,10)Q ;当Q 在B 下方时,2(3,8)Q --.②当13BQ BA =时,1103BQ =.同理得到31(,2)3Q ,41(,0)3Q -.例4 Rt △ABC 在直角坐标系内的位置如图1所示,反比例函数(0)k y k x=≠在第一象限内的图象与BC 边交于点D (4,m ),与AB 边交于点E (2,n ),△BDE 的面积为2. (1)求m 与n 的数量关系;(2)当tan ∠A =12时,求反比例函数的解析式和直线AB 的表达式; (3)设直线AB 与y 轴交于点F ,点P 在射线FD 上,在(2)的条件下,如果△AEO 与△EFP 相似,求点P 的坐标.图1解答(1)如图1,因为点D (4,m )、E (2,n )在反比例函数ky x =的图象上,所以4,2.m k n k =⎧⎨=⎩ 整理,得n =2m .(2)如图2,过点E 作EH ⊥BC ,垂足为H .在Rt △BEH 中,tan ∠BEH =tan ∠A =12,EH =2,所以BH =1.因此D (4,m ),E (2,2m ),B (4,2m +1).已知△BDE 的面积为2,所以11(1)2222BD EH m ⋅=+⨯=.解得m =1.因此D (4,1),E (2,2),B (4,3).因为点D (4,1)在反比例函数k y x =的图象上,所以k =4.因此反比例函数的解析式为4y x=. 设直线AB 的解析式为y =kx +b ,代入B (4,3)、E (2,2),得34,22.k b k b =+⎧⎨=+⎩ 解得12k =,1b =.因此直线AB 的函数解析式为112y x =+.图2 图3 图4(3)如图3,因为直线112y x =+与y 轴交于点F (0,1),点D 的坐标为(4,1),所以FD // x 轴,∠EFP =∠EAO .因此△AEO 与△EFP 相似存在两种情况:①如图3,当EA EFAO FP=时,255=.解得FP =1.此时点P 的坐标为(1,1). ②如图4,当EA FP AO EF =时,2525=.解得FP =5.此时点P 的坐标为(5,1).考点伸展本题的题设部分有条件“Rt △ABC 在直角坐标系内的位置如图1所示”,如果没有这个条件限制,保持其他条件不变,那么还有如图5的情况:第(1)题的结论m 与n 的数量关系不变.第(2)题反比例函数的解析式为12y x=-,直线AB 为172y x =-.第(3)题FD 不再与x 轴平行,△AEO 与△EFP 也不可能相似.图5例5如图1,已知梯形OABC ,抛物线分别过点O (0,0)、A (2,0)、B (6,3).(1)直接写出抛物线的对称轴、解析式及顶点M 的坐标;(2)将图1中梯形OABC 的上下底边所在的直线OA 、CB 以相同的速度同时向上平移,分别交抛物线于点O 1、A 1、C 1、B 1,得到如图2的梯形O 1A 1B 1C 1.设梯形O 1A 1B 1C 1的面积为S ,A 1、 B 1的坐标分别为 (x 1,y 1)、(x 2,y 2).用含S 的代数式表示x 2-x 1,并求出当S =36时点A 1的坐标;(3)在图1中,设点D 的坐标为(1,3),动点P 从点B 出发,以每秒1个单位长度的速度沿着线段BC 运动,动点Q 从点D 出发,以与点P 相同的速度沿着线段DM 运动.P 、Q 两点同时出发,当点Q 到达点M 时,P 、Q 两点同时停止运动.设P 、Q 两点的运动时间为t ,是否存在某一时刻t ,使得直线PQ 、直线AB 、x 轴围成的三角形与直线PQ 、直线AB 、抛物线的对称轴围成的三角形相似?若存在,请求出t 的值;若不存在,请说明理由.图1 图2解答(1)抛物线的对称轴为直线1x =,解析式为21184y x x =-,顶点为M (1,18-).(2) 梯形O 1A 1B 1C 1的面积12122(11)3()62x x S x x -+-⨯3==+-,由此得到1223sx x +=+.由于213y y -=,所以22212211111138484y y x x x x -=--+=.整理,得212111()()384x x x x ⎡⎤-+-=⎢⎥⎣⎦.因此得到2172x x S-=.当S =36时,212114,2.x x x x +=⎧⎨-=⎩ 解得126,8.x x =⎧⎨=⎩ 此时点A 1的坐标为(6,3).(3)设直线AB 与PQ 交于点G ,直线AB 与抛物线的对称轴交于点E ,直线PQ 与x 轴交于点F ,那么要探求相似的△GAF 与△GQE ,有一个公共角∠G .在△GEQ 中,∠GEQ 是直线AB 与抛物线对称轴的夹角,为定值.在△GAF 中,∠GAF 是直线AB 与x 轴的夹角,也为定值,而且∠GEQ ≠∠GAF .因此只存在∠GQE =∠GAF 的可能,△GQE ∽△GAF .这时∠GAF =∠GQE =∠PQD .由于3tan 4GAF ∠=,tan 5DQ t PQD QP t ∠==-,所以345t t =-.解得207t =.图3 图4考点伸展第(3)题是否存在点G 在x 轴上方的情况?如图4,假如存在,说理过程相同,求得的t 的值也是相同的.事实上,图3和图4都是假设存在的示意图,实际的图形更接近图3.例6 如图1,已知点A (-2,4) 和点B (1,0)都在抛物线22y mx mx n =++上.(1)求m 、n ;(2)向右平移上述抛物线,记平移后点A 的对应点为A ′,点B 的对应点为B ′,若四边形A A ′B ′B 为菱形,求平移后抛物线的表达式;(3)记平移后抛物线的对称轴与直线AB ′ 的交点为C ,试在x 轴上找一个点D ,使得以点B ′、C 、D 为顶点的三角形与△ABC 相似.图1动感体验请打开几何画板文件名“10宝山24”,拖动点A ′向右平移,可以体验到,平移5个单位后,四边形A A ′B ′B 为菱形.再拖动点D 在x 轴上运动,可以体验到,△B ′CD 与△ABC 相似有两种情况.思路点拨1.点A 与点B 的坐标在3个题目中处处用到,各具特色.第(1)题用在待定系数法中;第(2)题用来计算平移的距离;第(3)题用来求点B ′ 的坐标、AC 和B ′C 的长.2.抛物线左右平移,变化的是对称轴,开口和形状都不变.3.探求△ABC 与△B ′CD 相似,根据菱形的性质,∠BAC =∠CB ′D ,因此按照夹角的两边对应成比例,分两种情况讨论.满分解答(1) 因为点A (-2,4) 和点B (1,0)都在抛物线22y mx mx n =++上,所以444,20.m m n m m n -+=⎧⎨++=⎩ 解得43m =-,4n =.(2)如图2,由点A (-2,4) 和点B (1,0),可得AB =5.因为四边形A A ′B ′B 为菱形,所以A A ′=B ′B =AB =5.因为438342+--=x x y ()2416133x =-++,所以原抛物线的对称轴x =-1向右平移5个单位后,对应的直线为x =4.因此平移后的抛物线的解析式为()3164342,+--=x y .图2(3) 由点A (-2,4) 和点B ′ (6,0),可得A B ′=5 如图2,由AM //CN ,可得''''B N B CB M B A=,即2845=.解得'5B C =35AC =的性质,在△ABC 与△B ′CD 中,∠BAC =∠CB ′D .①如图3,当''AB B C AC B D =535=,解得'3B D =.此时OD =3,点D 的坐标为(3,0). ②如图4,当''AB B D AC B C =355=,解得5'3B D =.此时OD =133,点D 的坐标为(133,0).图3 图4考点伸展在本题情境下,我们还可以探求△B′CD与△AB B′相似,其实这是有公共底角的两个等腰三角形,容易想象,存在两种情况.我们也可以讨论△B′CD与△C B B′相似,这两个三角形有一组公共角∠B,根据对应边成比例,分两种情况计算.例7 2009年临沂市中考第26题如图1,抛物线经过点A(4,0)、B(1,0)、C(0,-2)三点.(1)求此抛物线的解析式;(2)P是抛物线上的一个动点,过P作PM⊥x轴,垂足为M,是否存在点P,使得以A、P、M为顶点的三角形与△OAC相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由;(3)在直线AC上方的抛物线是有一点D,使得△DCA的面积最大,求出点D的坐标.,图1动感体验请打开几何画板文件名“09临沂26”,拖动点P在抛物线上运动,可以体验到,△P AM的形状在变化,分别双击按钮“P在B左侧”、“P在x轴上方”和“P在A右侧”,可以显示△P AM与△OAC相似的三个情景.双击按钮“第(3)题”, 拖动点D 在x 轴上方的抛物线上运动,观察△DCA 的形状和面积随D 变化的图象,可以体验到,E 是AC 的中点时,△DCA 的面积最大.思路点拨1.已知抛物线与x 轴的两个交点,用待定系数法求解析式时,设交点式比较简便. 2.数形结合,用解析式表示图象上点的坐标,用点的坐标表示线段的长. 3.按照两条直角边对应成比例,分两种情况列方程.4.把△DCA 可以分割为共底的两个三角形,高的和等于OA .满分解答(1)因为抛物线与x 轴交于A (4,0)、B (1,0)两点,设抛物线的解析式为)4)(1(--=x x a y ,代入点C 的 坐标(0,-2),解得21-=a .所以抛物线的解析式为22521)4)(1(212-+-=---=xx x x y . (2)设点P 的坐标为))4)(1(21,(---x x x . ①如图2,当点P 在x 轴上方时,1<x <4,)4)(1(21---=x x PM ,x AM -=4. 如果2==CO AO PM AM ,那么24)4)(1(21=----xx x .解得5=x 不合题意.如果21==CO AO PM AM ,那么214)4)(1(21=----x x x .解得2=x .此时点P 的坐标为(2,1).②如图3,当点P 在点A 的右侧时,x >4,)4)(1(21--=x x PM ,4-=x AM . 解方程24)4)(1(21=---x x x ,得5=x .此时点P 的坐标为)2,5(-.解方程214)4)(1(21=---x x x ,得2=x 不合题意.③如图4,当点P 在点B 的左侧时,x <1,)4)(1(21--=x x PM ,x AM -=4.解方程24)4)(1(21=---x x x ,得3-=x .此时点P 的坐标为)14,3(--.解方程214)4)(1(21=---x x x ,得0=x .此时点P 与点O 重合,不合题意.综上所述,符合条件的 点P 的坐标为(2,1)或)14,3(--或)2,5(-.图2 图3 图4(3)如图5,过点D 作x 轴的垂线交AC 于E .直线AC 的解析式为221-=x y .设点D 的横坐标为m )41(<<m ,那么点D 的坐标为)22521,(2-+-m m m ,点E的坐标为)221,(-m m .所以)221()22521(2---+-=m m m DE m m 2212+-=.因此4)221(212⨯+-=∆m m S DAC m m 42+-=4)2(2+--=m .当2=m 时,△DCA 的面积最大,此时点D 的坐标为(2,1).图5 图6考点伸展第(3)题也可以这样解:如图6,过D 点构造矩形OAMN ,那么△DCA 的面积等于直角梯形CAMN 的面积减去△CDN 和△ADM 的面积.设点D 的横坐标为(m ,n ))41(<<m ,那么42)4(21)2(214)22(21++-=--+-⨯+=n m m n n m n S . 由于225212-+-=m m n ,所以m m S 42+-=. 例8 如图1,△ABC 中,AB =5,AC =3,cos A =310.D 为射线BA 上的点(点D 不与点B 重合),作DE //BC 交射线CA 于点E ..(1) 若CE =x ,BD =y ,求y 与x 的函数关系式,并写出函数的定义域; (2) 当分别以线段BD ,CE 为直径的两圆相切时,求DE 的长度;(3) 当点D 在AB 边上时,BC 边上是否存在点F ,使△ABC 与△DEF 相似?若存在,请求出线段BF 的长;若不存在,请说明理由.图1 备用图 备用图解答(1)如图2,作BH ⊥AC ,垂足为点H .在Rt △ABH 中,AB =5,cosA =310AH AB =,所以AH =32=12AC .所以BH 垂直平分AC ,△ABC 为等腰三角形,AB =CB =5. 因为DE //BC ,所以AB AC DB EC =,即53y x=.于是得到53y x =,(0x >). (2)如图3,图4,因为DE //BC ,所以DE AE BC AC =,MN AN BC AC =,即|3|53DE x -=,1|3|253x MN -=.因此5|3|3x DE -=,圆心距5|6|6x MN -=.图2 图3 图4在⊙M 中,115226M r BD y x ===,在⊙N 中,1122N r CE x ==. ①当两圆外切时,5162x x +5|6|6x -=.解得3013x =或者10x =-.如图5,符合题意的解为3013x =,此时5(3)15313x DE -==.②当两圆内切时,5162x x -5|6|6x -=.当x <6时,解得307x =,如图6,此时E 在CA 的延长线上,5(3)1537x DE -==;当x >6时,解得10x =,如图7,此时E 在CA 的延长线上,5(3)3533x DE -==.图5 图6 图7(3)因为△ABC 是等腰三角形,因此当△ABC 与△DEF 相似时,△DEF 也是等腰三角形.如图8,当D 、E 、F 为△ABC 的三边的中点时,DE 为等腰三角形DEF 的腰,符合题意,此时BF =2.5.根据对称性,当F 在BC 边上的高的垂足时,也符合题意,此时BF =4.1.如图9,当DE 为等腰三角形DEF 的底边时,四边形DECF 是平行四边形,此时12534BF =.图8 图9 图10 图11考点伸展第(3)题的情景是一道典型题,如图10,如图11,AH 是△ABC 的高,D 、E 、F 为△ABC 的三边的中点,那么四边形DEHF 是等腰梯形.例9图1解答(1)1OH =,3k =,23b =. (2)由抛物线的解析式(1)(5)y a x x =+-,得 点M 的坐标为(1,0)-,点N 的坐标为(5,0).因此MN 的中点D 的坐标为(2,0),DN =3.因为△AOB 是等腰直角三角形,如果△DNE 与△AOB 相似,那么△DNE 也是等腰直角三角形. ①如图2,如果DN 为直角边,那么点E 的坐标为E 1(2,3)或E 2(2,-3). 将E 1(2,3)代入(1)(5)y a x x =+-,求得13a =-.此时抛物线的解析式为21145(1)(5)3333y x x x x =-+-=-++. 将E 2(2,-3)代入(1)(5)y a x x =+-,求得31=a .此时抛物线的解析式为353431)5)(1(312--=-+=x x x x y .②如果DN 为斜边,那么点E 的坐标为E 311(3,1)22或E 4)211,213(-.将E 311(3,1)22代入(1)(5)y a x x =+-,求得29a =-.此时抛物线的解析式为222810(1)(5)9999y x x x x =-+-=-++.将E 4)211,213(-代入(1)(5)y a x x =+-,求得92=a .此时抛物线的解析式为9109892)5)(1(922--=-+=x x x x y .图2 图3对于点E 为E 1(2,3)和E 311(3,1)22,直线NE 是相同的,∠ENP =45°. 又∠OBP =45°,∠P =∠P ,所以△POB ∽△PGN . 因此2101472<=⨯=⋅=⋅PN PO PG PB .对于点E 为E 2(2,-3)和E 4)211,213(-,直线NE 是相同的.此时点G 在直线5=x 的右侧,3314>PG .又334>PB ,所以21034143343314>⨯=⨯>⋅PG PB .考点伸展在本题情景下,怎样计算PB 的长?如图3,作AF ⊥AB 交OP 于F ,那么△OBC ≌△OAF ,OF =OC =233,PF =2233-, P A =332(23)31223PF =-=-,所以31PB =+.1.2 因动点产生的等腰三角形问题例1如图1,抛物线y =ax 2+bx +c 经过A (-1,0)、B (3, 0)、C (0 ,3)三点,直线l 是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P 是直线l 上的一个动点,当△P AC 的周长最小时,求点P 的坐标;(3)在直线l 上是否存在点M ,使△MAC 为等腰三角形,若存在,直接写出所有符合条件的点M 的坐标;若不存在,请说明理由.图1解答(1)因为抛物线与x 轴交于A (-1,0)、B (3, 0)两点,设y =a (x +1)(x -3), 代入点C (0 ,3),得-3a =3.解得a =-1.所以抛物线的函数关系式是y =-(x +1)(x -3)=-x 2+2x +3. (2)如图2,抛物线的对称轴是直线x =1.当点P 落在线段BC 上时,P A +PC 最小,△P AC 的周长最小. 设抛物线的对称轴与x 轴的交点为H . 由BH PH BO CO=,BO =CO ,得PH =BH =2. 所以点P 的坐标为(1, 2).图2(3)点M 的坐标为(1, 1)、(1,6)、(1,6-)或(1,0).考点伸展第(3)题的解题过程是这样的: 设点M 的坐标为(1,m ).在△MAC 中,AC 2=10,MC 2=1+(m -3)2,MA 2=4+m 2.①如图3,当MA =MC 时,MA 2=MC 2.解方程4+m 2=1+(m -3)2,得m =1. 此时点M 的坐标为(1, 1).②如图4,当AM =AC 时,AM 2=AC 2.解方程4+m 2=10,得6m =±.此时点M 的坐标为(1,6)或(1,6-).③如图5,当CM =CA 时,CM 2=CA 2.解方程1+(m -3)2=10,得m =0或6. 当M (1, 6)时,M 、A 、C 三点共线,所以此时符合条件的点M 的坐标为(1,0).图3 图4 图5例2如图1,点A 在x 轴上,OA =4,将线段OA 绕点O 顺时针旋转120°至OB 的位置.(1)求点B 的坐标;(2)求经过A 、O 、B 的抛物线的解析式;(3)在此抛物线的对称轴上,是否存在点P ,使得以点P 、O 、B 为顶点的三角形是等腰三角形?若存在,求点P 的坐标;若不存在,请说明理由.图1解答(1)如图2,过点B 作BC ⊥y 轴,垂足为C .在Rt △OBC 中,∠BOC =30°,OB =4,所以BC =2,23OC =. 所以点B 的坐标为(2,23)--.(2)因为抛物线与x 轴交于O 、A (4, 0),设抛物线的解析式为y =ax (x -4), 代入点B (2,23)--,232(6)a -=-⨯-.解得3a =-. 所以抛物线的解析式为23323(4)y x x x x =--=-+.(3)抛物线的对称轴是直线x =2,设点P 的坐标为(2, y ).①当OP =OB =4时,OP 2=16.所以4+y 2=16.解得23y =±.当P 在(2,23)时,B 、O 、P 三点共线(如图2).②当BP =BO =4时,BP 2=16.所以224(23)16y ++=.解得1223y y ==-. ③当PB =PO 时,PB 2=PO 2.所以22224(23)2y y ++=+.解得23y =-. 综合①、②、③,点P 的坐标为(2,23)-,如图2所示.图2 图3考点伸展如图3,在本题中,设抛物线的顶点为D ,那么△DOA 与△OAB 是两个相似的等腰三角形.由23323(4)(2)663y x x x =--=--+,得抛物线的顶点为23(2,)3D .因此23tan 3DOA ∠=.所以∠DOA =30°,∠ODA =120°.例3如图1,已知正方形OABC 的边长为2,顶点A 、C 分别在x 、y 轴的正半轴上,M 是BC 的中点.P (0,m )是线段OC 上一动点(C 点除外),直线PM 交AB 的延长线于点D .(1)求点D 的坐标(用含m 的代数式表示); (2)当△APD 是等腰三角形时,求m 的值;(3)设过P 、M 、B 三点的抛物线与x 轴正半轴交于点E ,过点O 作直线ME 的垂线,垂足为H (如图2).当点P 从O 向C 运动时,点H 也随之运动.请直接写出点H 所经过的路长(不必写解答过程).图1 图2解答(1)因为PC //DB ,所以1CP PM MCBD DM MB===.因此PM =DM ,CP =BD =2-m .所以AD =4-m .于是得到点D 的坐标为(2,4-m ).(2)在△APD 中,22(4)AD m =-,224AP m =+,222(2)44(2)PD PM m ==+-.①当AP =AD 时,2(4)m -24m =+.解得32m =(如图3).②当P A =PD 时,24m +244(2)m =+-.解得43m =(如图4)或4m =(不合题意,舍去).③当DA =DP 时,2(4)m -244(2)m =+-.解得23m =(如图5)或2m =(不合题意,舍去).综上所述,当△APD 为等腰三角形时,m 的值为32,43或23.图3 图4 图5(3)点H 5.考点伸展第(2)题解等腰三角形的问题,其中①、②用几何说理的方法,计算更简单: ①如图3,当AP =AD 时,AM 垂直平分PD ,那么△PCM ∽△MBA .所以12PC MB CM BA ==.因此12PC =,32m =. ②如图4,当P A =PD 时,P 在AD 的垂直平分线上.所以DA =2PO .因此42m m -=.解得43m =.第(2)题的思路是这样的:如图6,在Rt △OHM 中,斜边OM 为定值,因此以OM 为直径的⊙G 经过点H ,也就是说点H 在圆弧上运动.运动过的圆心角怎么确定呢?如图7,P 与O 重合时,是点H 运动的起点,∠COH =45°,∠CGH =90°.图6 图7例4如图1,已知一次函数y =-x +7与正比例函数43y x =的图象交于点A ,且与x 轴交于点B .(1)求点A 和点B 的坐标;(2)过点A 作AC ⊥y 轴于点C ,过点B 作直线l //y 轴.动点P 从点O 出发,以每秒1个单位长的速度,沿O —C —A 的路线向点A 运动;同时直线l 从点B 出发,以相同速度向左平移,在平移过程中,直线l 交x 轴于点R ,交线段BA 或线段AO 于点Q .当点P 到达点A 时,点P 和直线l 都停止运动.在运动过程中,设动点P 运动的时间为t 秒.①当t 为何值时,以A 、P 、R 为顶点的三角形的面积为8?②是否存在以A 、P 、Q 为顶点的三角形是等腰三角形?若存在,求t 的值;若不存在,请说明理由.图1解答(1)解方程组7,4,3y x y x =-+⎧⎪⎨=⎪⎩得3,4.x y =⎧⎨=⎩ 所以点A 的坐标是(3,4).令70y x =-+=,得7x =.所以点B 的坐标是(7,0).(2)①如图2,当P 在OC 上运动时,0≤t <4.由8APR ACP POR CORA S S S S =--=△△△梯形,得1113+7)44(4)(7)8222t t t t -⨯-⨯⨯--⨯-=(.整理,得28120t t -+=.解得t =2或t =6(舍去).如图3,当P 在CA 上运动时,△APR 的最大面积为6.因此,当t =2时,以A 、P 、R 为顶点的三角形的面积为8.图2 图3 图4②我们先讨论P 在OC 上运动时的情形,0≤t <4.如图1,在△AOB 中,∠B =45°,∠AOB >45°,OB =7,42AB =,所以OB >AB .因此∠OAB >∠AOB >∠B .如图4,点P 由O 向C 运动的过程中,OP =BR =RQ ,所以PQ //x 轴.因此∠AQP =45°保持不变,∠P AQ 越来越大,所以只存在∠APQ =∠AQP 的情况. 此时点A 在PQ 的垂直平分线上,OR =2CA =6.所以BR =1,t =1. 我们再来讨论P 在CA 上运动时的情形,4≤t <7.在△APQ 中, 3cos 5A ∠=为定值,7AP t =-,5520333AQ OA OQ OA OR t =-=-=-.如图5,当AP =AQ 时,解方程520733t t -=-,得418t =.如图6,当QP=QA时,点Q在P A的垂直平分线上,AP=2(OR-OP).解方程72[(7)(4)]t t t-=---,得5t=.如7,当P A=PQ时,那么12cosAQAAP∠=.因此2cosAQ AP A=⋅∠.解方程52032(7)335t t-=-⨯,得22643t=.综上所述,t=1或418或5或22643时,△APQ是等腰三角形.图5 图6 图7例5 如图1,在直角坐标平面内有点A(6, 0),B(0, 8),C(-4, 0),点M、N分别为线段AC和射线AB上的动点,点M以2个单位长度/秒的速度自C向A方向作匀速运动,点N以5个单位长度/秒的速度自A向B方向作匀速运动,MN交OB于点P.(1)求证:MN∶NP为定值;(2)若△BNP与△MNA相似,求CM的长;(3)若△BNP是等腰三角形,求CM的长.图1解答(1)如图2,图3,作NQ⊥x轴,垂足为Q.设点M、N的运动时间为t秒.在Rt△ANQ中,AN=5t,NQ=4t,AQ=3t.在图2中,QO=6-3t,MQ=10-5t,所以MN∶NP=MQ∶QO=5∶3.在图3中,QO=3t-6,MQ=5t-10,所以MN∶NP=MQ∶QO=5∶3.(2)因为△BNP与△MNA有一组邻补角,因此这两个三角形要么是一个锐角三角形和一个钝角三角形,要么是两个直角三角形.只有当这两个三角形都是直角三角形时才可能相似.如图4,△BNP∽△MNA,在Rt△AMN中,35ANAM=,所以531025tt=-.解得3031t=.此时CM60 31 =.图2 图3 图4(3)如图5,图6,图7中,OP MP QN MN =,即245OP t =.所以85OP t =. ①当N 在AB 上时,在△BNP 中,∠B 是确定的,885BP t =-,105BN t =-.(Ⅰ)如图5,当BP =BN 时,解方程881055t t -=-,得1017t =.此时CM 2017=.(Ⅱ)如图6,当NB =NP 时,45BE BN =.解方程()1848105255t t ⎛⎫-=- ⎪⎝⎭,得54t =.此时CM 52=.(Ⅲ)当PB =PN 时,1425BN BP =.解方程()1481058255t t ⎛⎫-=- ⎪⎝⎭,得t 的值为负数,因此不存在PB=PN 的情况.②如图7,当点N 在线段AB 的延长线上时,∠B 是钝角,只存在BP =BN 的可能,此时510BN t =-.解方程885105t t -=-,得3011t =.此时CM 6011=.图5 图6 图7考点伸展如图6,当NB =NP 时,△NMA 是等腰三角形,1425BN BP =,这样计算简便一些.例6如图1,在矩形ABCD 中,AB =m (m 是大于0的常数),BC =8,E 为线段BC 上的动点(不与B 、C重合).连结DE ,作EF ⊥DE ,EF 与射线BA 交于点F ,设CE =x ,BF =y .(1)求y 关于x 的函数关系式;(2)若m =8,求x 为何值时,y 的值最大,最大值是多少?(3)若12y m=,要使△DEF 为等腰三角形,m 的值应为多少?图1解答(1)因为∠EDC 与∠FEB 都是∠DEC 的余角,所以∠EDC =∠FEB .又因为∠C =∠B =90°,所以△DCE ∽△EBF .因此DC EB CE BF =,即8m x x y -=.整理,得y 关于x 的函数关系为218y x x m m =-+.(2)如图2,当m =8时,2211(4)288y x x x =-+=--+.因此当x =4时,y 取得最大值为2.(3) 若12y m =,那么21218x x m m m=-+.整理,得28120x x -+=.解得x =2或x =6.要使△DEF 为等腰三角形,只存在ED =EF 的情况.因为△DCE ∽△EBF ,所以CE =BF ,即x =y .将x =y =2代入12y m =,得m =6(如图3);将x =y =6代入12y m=,得m =2(如图4).图2 图3 图4例7已知:如图1,在平面直角坐标系xOy 中,矩形OABC 的边OA 在y 轴的正半轴上,OC 在x 轴的正半轴上,OA =2,OC =3,过原点O 作∠AOC 的平分线交AB 于点D ,连结DC ,过点D 作DE ⊥DC ,交OA 于点E .(1)求过点E 、D 、C 的抛物线的解析式;(2)将∠EDC 绕点D 按顺时针方向旋转后,角的一边与y 轴的正半轴交于点F ,另一边与线段OC 交于点G .如果DF 与(1)中的抛物线交于另一点M ,点M 的横坐标为56,那么EF =2GO 是否成立?若成立,请给予证明;若不成立,请说明理由;(3)对于(2)中的点G ,在位于第一象限内的该抛物线上是否存在点Q ,使得直线GQ 与AB 的交点P 与点C 、G 构成的△PCG 是等腰三角形?若存在,请求出点Q 的坐标;若不存在成立,请说明理由.图1解答(1)由于OD 平分∠AOC ,所以点D 的坐标为(2,2),因此BC =AD =1. 由于△BCD ≌△ADE ,所以BD =AE =1,因此点E 的坐标为(0,1).设过E 、D 、C 三点的抛物线的解析式为c bx ax y ++=2,那么⎪⎩⎪⎨⎧=++=++=.039,224,1c b a c b a c 解得65-=a ,613=b 1=c .因此过E 、D 、C 三点的抛物线的解析式为1613652++-=x x y .。